
Dynamic Programming for Total Variation Denoising, Explained

Ryan J. Tibshirani

In this note, we will explain Nick Johnson’s dynamic programming algorithm for univariate total variation
denoising, also called the univariate fused lasso signal approximator. We consider the weighted problem:

minimize
β∈Rn

1

2

n∑
i=1

wi(yi − θi)
2 + λ

n−1∑
i=1

|θi − θi+1|, (1)

for a fixed regularization parameter λ ≥ 0, and strictly positive observation weights wi > 0, i = 1, . . . n.

1 Standard representation, O(n2) complexity
Define

f1(θ1) =
1

2
w1(y1 − θ1)

2,

and then define, for all k = 1, . . . n− 1,

bk(θk+1) = argmin
θk∈R

fk(θk) + λ|θk − θk+1|

gk(θk+1) = min
θk∈R

fk(θk) + λ|θk − θk+1|

= fk(bk(θk+1)) + λ|bk(θk+1)− θk+1|

fk+1(θk+1) = gk(θk+1) +
1

2
wk+1(yk+1 − θk+1)

2.

The following result is key.

Lemma 1. For all k = 1, . . . n− 1, the functions fk, gk are piecewise quadratic, convex, and differentiable.
Further, there exists points t−k , t

+
k such that

f ′
k(t

−
k ) = −λ, f ′

k(t
+
k ) = λ,

and

bk(θk+1) = Tt−k ,t+k
(θk+1) =


t+k θk+1 > t+k
θk+1 θk+1 ∈ [t−k , t

+
k ]

t−k θk+1 < t−k .

Proof. We first prove all claims by induction, considering first the base case k = 1. The function f1 is clearly
a convex, differentiable quadratic. Furthermore, by subgradient optimality, θ1 minimizes f1(θ1) + λ|θ1 − θ2|
if and only if

f ′
1(θ1) + λs = 0,

where s is a subgradient of |θ1− θ2| with respect to θ1, i.e., s = sign(θ1− θ2) when θ1− θ2 ̸= 0, and s ∈ [−1, 1]
otherwise. This optimality condition is satisfied at θ1 = b1(θ2) = Tt−1 ,t+1

(θ2), where f ′
1(t

−
1 ) = −λ, f ′

1(t
+
1 ) = λ.

To see this, check each case:

• when θ2 > t+1 , we have b1(θ2)− θ2 < 0, so s = −1, and the optimality condition reads

λ+ λ · (−1) = 0;

1



• when θ2 ∈ [t−1 , t
+
1 ], we have f ′

1(θ2) ∈ [−λ, λ] by definition of t−1 , t
+
1 (and monotonicity of the derivative),

and b1(θ2)− θ2 = 0, so we can choose the subgradient to be any value in [−1, 1], and for s = −f ′
1(θ2)/λ,

we have
f ′
1(θ2) + λ ·

(
− f ′

1(θ2)/λ
)
= 0;

• when θ2 < t−1 , the argument is similar to the first case.

(We remark that we can explicitly compute t−1 = −λ/w1 + y1 and t+1 = λ/w1 + y1.) Finally, as for g1, note
that f1(θ1) + λ|θ1 − θ2| is jointly convex in θ1, θ2, and therefore g1, which is given by partial minimization
over θ1, is convex in its argument θ2. It is piecewise quadratic with knots at t−1 , t

+
1 , and in fact we can write

it explicitly as

g1(θ2) =


1
2w1(y1 − t+1 )

2 + λ(θ2 − t+1 ) θ2 > t+1
1
2w1(y1 − θ2)

2 θ2 ∈ (t−1 , t
+
1 )

1
2w1(y1 − t−1 )

2 + λ(t−1 − θ2) θ2 < t−1 .

From this we can see that it is differentiable because its left and right derivatives match at t−1 , t
+
1 (they are

equal to −λ, λ respectively). This completes the base case.
Now assume all statements are true at k−1. Then fk(θk) = gk−1(θk)+

1
2wk(yk−θk)2 is piecewise quadratic,

convex, and differentiable, because gk−1(θk) is. By subgradient optimality, θk minimizes fk(θk)+λ|θk− θk+1|
if and only if

f ′
k(θk) + λs = 0,

where s is a subgradient of |θk − θk+1| with respect to θk. By the same arguments as in the base case, at
optimality we have θk = bk(θk+1) = Tt−k ,t+k

(θk+1), where t−k , t
+
k are characterized by f ′

k(t
−
k ) = −λ, f ′

k(t
+
k ) = λ.

(Why do such points exist? Note that we can see directly from its definition that gk−1(θk) is linear outside of
[t−k−1, t

+
k−1], and hence fk(θk) = gk−1(θk) +

1
2wk(yk − θk)

2 has derivatives approaching ±∞ as θk approaches
±∞.) Finally, the function fk(θk) + λ|θk − θk+1| is jointly convex in θk, θk+1, and so gk, which is given by
partial minimization of this function over θk, is convex in θk+1. Expressing gk as

gk(θk+1) = fk(bk(θk+1)) + λ|bk(θk+1)− θk+1|

=


fk(t

+
k ) + λ(θk+1 − t+k ) θk+1 > t+k

fk(θk+1) θk+1 ∈ [t−k , t
+
k ]

fk(t
−
k ) + λ(t−k − θk+1) θk+1 < t−k ,

we see that gk(θk+1) is piecewise quadratic, with additional knots at t−k , t
+
k . It is differentiable on the interior

of [t−k , t
+
k ] because fk is, and it is differentiable at t−k , t

+
k by construction: the left and right derivatives match

at these points (with values −λ, λ respectively). This completes the proof.

This lemma and the recursive definition of fk, gk suggests that we could perform one “forward pass” and
end up with a single piecewise quadratic, convex, differentiable function fn(θn). This function encapsulates
partial minimization of the total variation denoising criterion over all θ1, . . . θn−1, so minimizing fn delivers
the nth component of the solution, θ̂n. Once we have this value, we could then perform a “backward pass”,
by evaluating θ̂k = bk(θ̂k+1) for k = n− 1, . . . 1. (The functions bk will be called “back pointers”.) We would
have then have fully enumerated the total variation denoising solution, and can terminate.

The backward pass is operationally clear. The forward pass requires computation of t−k , t
+
k , the points at

which the derivative of fk are equal to −λ, λ, respectively, for each k = 1, . . . n− 1. How do we do this? The
trick is to keep track of the knots of fk, and the derivatives of fk at the knots; recalling that fk is convex and
differentiable, its derivative must increase as we move from left to right through the knot points. Hence, for
determination of t−k , for example, note that

−λ ∈ [f ′
k(x1), f

′
k(x2)] =⇒ t−k ∈ [x1, x2].

Therefore if we find the knot points x1, x2 such that the derivative of fk at these points straddles −λ, then
we know that t−k must lie between x1 and x2. The next result further describes how to calculate t−k from
x1, x2, f

′
k(x1), f

′
k(x2) (and it applies just the same to calculating t+k ).

2



Lemma 2. Suppose that q is a quadratic function, and we seek x0 such that q′(x0) = d. Then, given any
x1, x2 such that q′(x1) ̸= q′(x2), we can compute x0 according to

x0 =
dx1 − dx2 + q′(x1)x2 − q′(x2)x1

q′(x1)− q′(x2)
.

Proof. Write the derivative as q′(x) = ax+ b. We have

q′(x1) = ax1 + b

q′(x2) = ax2 + b,

and solving for a and b gives

a =
q′(x1)− q′(x2)

x1 − x2

b =
q′(x2)x1 − q′(x1)x2

x1 − x2
.

Hence, to have q′(x0) = d, we need x0 = (d− b)/a, and plugging in a, b gives the result.

Putting this together, a summary of the dynamic programming algorithm is as follows.

Dynamic programming for total variation denoising, standard form.

1. Begin with k = 1. As f1(x) =
1
2w1(y1 − x)2 (a single quadratic), initialize the knot set X = ∅, and

derivative set D = ∅. Initialize the back pointers t−1 = −λ/w1 + y1, t+1 = λ/w1 + y1.

2. For k = 2, . . . n:

(a) As gk−1(x) = fk−1(bk−1(x)) + λ|bk−1(x)− x|, and fk(x) = gk−1(x) +
1
2wk(yk − x)2. Append

t−k−1, t
+
k−1 to the knot set X, and correspondingly append derivatives −λ, λ to D. Delete any

knots outside of these two points (any knots to the left of t−k−1, and to the right of t+k−1).

(b) For all knots xi ∈ K, update its derivative di ∈ D according to di ← di + wk(xi − yk).

(c) Find the location i− such that −λ ∈ [di−−1, di− ]; compute t−k using Lemma 2.

(d) Find the location i+ such that λ ∈ [di+−1, di+ ]; compute t+k using Lemma 2.

3. Find the location i0 such that 0 ∈ [di0−1, di0 ]; compute θ̂n using Lemma 2.

4. For k = n− 1, . . . 1:

(a) Let θ̂k = bk(θ̂k+1) = Tt−k ,t+k
(θ̂k+1).

5. Return θ̂1, . . . θ̂n.

This algorithm is clean and simple, but what is its running time? Unfortunately the number of operations
needed is O(n2). One can see this from the forward pass, in Step 2(b), where we must update the derivatives
at all knots. In the worse case, the number of knots is O(k) at iteration k, which makes the whole algorithm
O(n2), quadratic in the number of observations.

2 Tail representation, O(n) complexity
We now describe Nick’s (very clever) tail representation for the derivatives f ′

k, which guarantees linear-time
worst-case compexity for the dynamic programming approach.

Lemma 3. For each k = 1, . . . n, the derivative of the (piecewise quadratic, convex, differentiable) function
fk can be represented as

f ′
k(x) = afirstk x+ bfirstk +

mk∑
i=1

1{x ≥ xk,i}(ak,ix+ bk,i),

3



or equivalently

f ′
k(x) = −alastk x− blastk −

mk∑
i=1

1{x < xk,i}(ak,ix+ bk,i),

where mk denotes the number of knots, xk,1 < . . . < xk,mk
are the sorted knot points. The coefficients satisfy

afirstk +

j∑
i=1

ak,j = −alastk −
mk∑

i=j+1

ak,j , bfirstk +

j∑
i=1

bk,j = −blastk −
mk∑

i=j+1

bk,j ,

for all j = 0, . . .mk (where the empty sum is interpreted to be 0).

This lemma suggests an elegant implementation of the dynamic programming algorithm. It can also be
proved by induction, which we omit; however we give the details of the implementation next (and comment
on the proof afterward.)

Dynamic programming for the 1d fused lasso, tail form.

1. Begin with k = 1, and m1 = 0 (no knots). Set

afirst1 = w1, bfirst1 = −w1y1,

alast1 = −w1, blast1 = w1y1.

2. Compute t−1 = −λ/w1 + y1, t+1 = λ/w1 + y1. In preparation for iteration k = 2, set m2 = 2, and
set the knots x2,1 = t−1 , x2,2 = t+1 . Also set the coefficients

afirst2 = w2, bfirst2 = −w2y2 − λ,

a2,1 = afirst1 , b2,1 = bfirst1 + λ,

a2,2 = alast1 , b2,2 = blast1 + λ,

alast2 = −w2, blast2 = w2y2 − λ.

3. For k = 2, . . . n− 1:

(a) Compute

ℓ = min

{
j ∈ {1, . . .mk + 1} :

(
afirstk +

j−1∑
i=1

ak,i

)
xk,j +

(
bfirstk +

j−1∑
i=1

bk,i

)
> −λ

}
,

u = max

{
j ∈ {ℓ− 1, . . .mk} :

(
− alastk −

mk∑
i=j+1

ak,i

)
xk,j +

(
− bfirstk −

mk∑
i=j+1

bk,i

)
< λ

}
,

(where we interpret an empty sum to be 0, and xk,mk+1 =∞), and

t−k =
−λ− bfirstk −

∑ℓ−1
i=1 bk,i

afirstk +
∑ℓ−1

i=1 ak,i
, t+k =

λ+ blastk +
∑mk

i=u+1 bk,i

−alastk −
∑mk

i=u+1 ak,i
.

(b) In preparation for iteration k + 1, set mk+1 = u− ℓ+ 3, and set the knots as

xk+1,1 = t−k ,

xk+1,i = xk,ℓ+i−2 for i = 2, . . . u− ℓ+ 2,

xk+1,mk+1
= t+k .

(In words, we are appending t−k , t
+
k as knots, and deleting all knots numbered 1, . . . ℓ− 1 and

u+ 1, . . .mk.)

4



Also set

afirstk+1 = wk+1, bfirstk+1 = −wk+1yk+1 − λ,

ak+1,1 = afirstk +

ℓ−1∑
i=1

ak,i, bk+1,1 = bfirstk +

ℓ−1∑
i=1

bk,i + λ,

ak+1,i = ak,ℓ+i−2, bk+1,i = bk,ℓ+i−2, for i = 2, . . . u− ℓ+ 2,

ak+1,mk+1
= alastk +

mk∑
i=u+1

ak,i, bk+1,mk+1
= blastk +

mk∑
i=u+1

bk,i + λ,

alastk+1 = −wk+1, blastk+1 = wk+1yk+1 − λ.

4. Compute

i0 = min

{
j ∈ {1, . . .mn + 1} :

(
afirstn +

j−1∑
i=1

an,i

)
xk,j +

(
bfirstn +

j−1∑
i=1

bn,i

)
> 0

}
,

and

θ̂n =
afirstn +

∑i0−1
i=1 an,i

bfirstn +
∑i0−1

i=1 bn,i
.

5. For k = n− 1, . . . 1:

(a) Let θ̂k = bk(θ̂k+1) = Tt−k ,t+k
(θ̂k+1).

6. Return θ̂1, . . . θ̂n.

The inductive proof for Lemma 3 essentially just follows Steps 1–3 laid out in the above algorithm; the key
point is that only the coefficients ak+1,1, ak+1,mk+1

and bk+1,1, bk+1,mk+1
need to be modified in preparation

for iteration k + 1 (see Step 3(b)), and all other coefficients remain the same. Overall, the work required in
the kth iteration is dominated by the computation of ℓ, u, and the quantities

ℓ−1∑
i=1

ak,i,

ℓ−1∑
i=1

bk,i,

mk∑
i=u+1

ak,i,

mk∑
i=u+1

bk,i.

This requires a number of operations equal to the number of knots deleted at iteration k, which is ℓ+(mk−u).
There are exactly 2n knots in total, and each knot can be deleted at most once, which means that the total
time for forming these quantities across all iterations is O(n). The rest of the algorithm is clearly linear-time,
and so the dynamic programming implementationgiven above is worst-case O(n).

5


	Standard representation, O(n2) complexity
	Tail representation, O(n) complexity
	Dealing with zero weights

