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Abstract

The fused lasso, also known as (anisotropic) total variation denoising, is widely used for piecewise
constant signal estimation with respect to a given undirected graph. The fused lasso estimate is highly
nontrivial to compute when the underlying graph is large and has an arbitrary structure. But for a special
graph structure, namely, the chain graph, the fused lasso—or simply, 1d fused lasso—can be computed
in linear time. In this paper, we revisit a result recently established in the online classification literature
[Herbster et al., 2009, Cesa-Bianchi et al., 2013] and show that it has important implications for signal
denoising on graphs. The result can be translated to our setting as follows. Given a general graph, if we
run the standard depth-first search (DFS) traversal algorithm, then the total variation of any signal over
the chain graph induced by DFS is no more than twice its total variation over the original graph.

This result leads to several interesting theoretical and computational conclusions. Letting m and n
denote the number of edges and nodes, respectively, of the graph in consideration, it implies that for an
underlying signal with total variation t over the graph, the fused lasso (properly tuned) achieves a mean
squared error rate of t2/3n−2/3. Moreover, precisely the same mean squared error rate is achieved by
running the 1d fused lasso on the DFS-induced chain graph. Importantly, the latter estimator is simple
and computationally cheap, requiring O(m) operations to construct the DFS-induced chain and O(n)
operations to compute the 1d fused lasso solution over this chain. Further, for trees that have bounded
max degree, the error rate of t2/3n−2/3 cannot be improved, in the sense that it is the minimax rate for
signals that have total variation t over the tree. Finally, several related results also hold—for example, the
analogous result holds for a roughness measure defined by the `0 norm of differences across edges in
place of the the total variation metric.
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1 Introduction

We study the graph denoising problem, i.e., estimation of a signal θ0 ∈ Rn from noisy data

yi = θ0,i + εi, i = 1, . . . , n, (1)
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when the components of θ0 are associated with the vertices of an undirected, connected graph G = (V,E).
Without a loss of generality, we denote V = {1, . . . , n}. Versions of this problem arise in diverse areas of
science and engineering, such as gene expression analysis, protein mass spectrometry, and image denoising.
The problem is also archetypal of numerous internet-scale machine learning tasks that involve propagating
labels or information across edges in a network (e.g., a network of users, web pages, or YouTube videos).

Methods for graph denoising have been studied extensively in machine learning and signal processing.
In machine learning, graph kernels have been proposed for classification and regression, in both supervised
and semi-supervised data settings (e.g., Belkin and Niyogi [2002], Smola and Kondor [2003], Zhu et al.
[2003], Zhou et al. [2005]). In signal processing, a considerable focus has been placed on the construction
of wavelets over graphs (e.g., Crovella and Kolaczyk [2003], Coifman and Maggioni [2006], Gavish et al.
[2010], Hammond et al. [2011], Sharpnack et al. [2013], Shuman et al. [2013]). We will focus our study on
the fused lasso over graphs, also known as (anisotropic) total variation denoising over graphs. Proposed by
Rudin et al. [1992] in the signal processing literature, and Tibshirani et al. [2005] in the statistics literature,
the fused lasso estimate is defined by the solution of a convex optimization problem,

θ̂G = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖∇Gθ‖1, (2)

where y = (y1, . . . , yn) ∈ Rn the vector of observed data, λ ≥ 0 is a tuning parameter, and ∇G ∈ Rm×n is
the edge incidence matrix of the graph G. Note that the subscript on the incidence matrix∇G and the fused
lasso solution θ̂G in (2) emphasize that these quantities are defined with respect to the graph G. The edge
incidence matrix ∇G can be defined as follows, using some notation and terminology from algebraic graph
theory (e.g., Godsil and Royle [2001]). First, we assign an arbitrary orientation to edges in the graph, i.e., for
each edge e ∈ E, we arbitrarily select one of the two joined vertices to be the head, denoted e+, and the other
to be the tail, denoted e−. Then, we define a row (∇G)e of∇G, corresponding to the edge e, by

(∇G)e,e+ = 1, (∇G)e,e− = −1, (∇G)e,v = 0 for all v 6= e+, e−,

for each e ∈ E. Hence, for an arbitrary θ ∈ Rn, we have

‖∇Gθ‖1 =
∑
e∈E
|θe+ − θe− |.

We can see that the particular choice of orientation does not affect the value ‖∇Gθ‖1, which we refer to as
the total variation of θ over the graph G.

1.1 Summary of results

We wait until Section 1.3 to give a detailed review of the literature, both computational and theoretical, on
the fused lasso. Here we only highlight a key computational aspect of the fused lasso to motivate the main
results in our paper. The fused lasso solution in (2), for a graph G of arbitrary structure, is highly nontrivial
to compute. For a chain graph, however, the fused lasso solution can be computed in linear time (e.g., with
dynamic programming or specialized taut-string methods).

The question we address is: how can we use this fact to our advantage, when seeking to solve (2) over an
arbitrary graph? Given a generic graph G that has m edges and n nodes, it is obvious that we can define a
chain graph based on the ordering of nodes produced by depth-first search (DFS). Far less obvious is that
for any signal, its total variation along the DFS-induced chain graph never exceeds twice its total variation
over the original graph. This fact follows closely from a similar result found in the online graph-structured
classification literature [Herbster et al., 2009, Cesa-Bianchi et al., 2013], and for our purposes, it has three
notable consequences, described below.
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1. No matter the structure ofG, we can denoise any signal defined over this graph inO(m+n) operations:
O(m) operations for DFS and O(n) operations for the 1d fused lasso on the induced chain. We call
the corresponding estimator—the 1d fused lasso run on the DFS-induced chain—the DFS fused lasso.

2. For an underlying signal θ0 that generates the data, as in (1), such that θ0 ∈ BVG(t), where BVG(t)
is the class of signals with total variation at most t, defined in (4), the DFS fused lasso estimator has
mean squared error (MSE) on the order of t2/3n−2/3.

3. For an underlying signal θ0 ∈ BVG(t), the fused lasso estimator over the original graph, in (2), also
has MSE on the order of t2/3n−2/3.

The fact that such a fast rate, t2/3n−2/3, applies for the fused lasso estimator over any connected graph
structure is somewhat surprising. It implies that the chain graph represents the hardest graph structure for
denoising signals of bounded variation—at least, hardest for the fused lasso, since as we have shown, error
rates on general connected graphs can be no worse than the chain rate of t2/3n−2/3.

We also complement these MSE upper bounds with the following minimax lower bound over trees.

4. When G is a tree of bounded max degree, the minimax MSE over the class BVG(t) scales at the rate
t2/3n−2/3. Hence, in this setting, the DFS fused lasso estimator attains the optimal rate, as does the
fused lasso estimator over G.

Lastly, we prove the following for signals with a bounded number of nonzero edge differences.

5. For an underlying signal θ0 ∈ BDG(s), where BDG(s) is the class of signals with at most s nonzero
edge differences, defined in (5), the DFS fused lasso (under a condition on the spacing of nonzero dif-
ferences over the DFS-induced chain) has MSE on the order of s(log s+ log log n) log n/n+ s3/2/n.
When G is a tree, the minimax MSE over the class BDG(s) scales as s log(n/s)/n. Thus, in this
setting, the DFS fused lasso estimator is only off by a log logn factor provided that s is small.

This DFS fused lasso gives us an O(n) time algorithm for nearly minimax rate-optimal denoising over
trees. On paper, this only saves a factor of O(log n) operations, as recent work (to be described in Section
1.3) has produced an O(n log n) time algorithm for the fused lasso over trees, by extending earlier dynamic
programming ideas over chains. However, dynamic programming on a tree is (a) much more complex than
dynamic programming on a chain (since it relies on sophisticated data structures), and (b) noticeably slower
in practice than dynamic programming over a chain, especially for large problem sizes. Hence there is still
a meaningful difference—both in terms of simplicity and practical computational efficiency—between the
DFS fused lasso estimator and the fused lasso over a generic tree.

For a general graph structure, we cannot claim that the statistical rates attained by the DFS fused lasso
estimator are optimal, nor can we claim that they match those of fused lasso over the original graph. As an
example, recent work (to be discussed in Section 1.3) studying the fused lasso over grid graphs shows that
estimation error rates for this problem can be much faster than those attained by the DFS fused lasso (and
thus the minimax rates over trees). What should be emphasized, however, is that the DFS fused lasso can still
be a practically useful method for any graph, running in linear time (in the number of edges) no matter the
graph structure, a scaling that is beneficial for truly large problem sizes.

1.2 Assumptions and notation

Our theory will be primarily phrased in terms of the mean squared error (MSE) an estimator θ̂ of the mean
parameter θ0 in (1), assuming that ε = (ε1, . . . , εn) has i.i.d. mean zero sub-Gaussian components, i.e.,

E(εi) = 0, and P(|εi| > t) ≤M exp
(
− t2/(2σ2)

)
, all t ≥ 0, for i = 1, . . . , n, (3)
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for constants M,σ > 0. The MSE of θ̂ will be denoted, with a slight abuse of notation, by

‖θ̂ − θ0‖2n =
1

n
‖θ̂ − θ0‖22.

(In general, for a vector x ∈ Rn, we denote its scaled `2 norm by ‖x‖n = ‖x‖2/
√
n.) Of course, the MSE

will depend not only on the estimator θ̂ in question but also on the assumptions that we make about θ0. We
will focus our study on two classes of signals. The first is the bounded variation class, defined with respect to
the graph G, and a radius parameter t > 0, as

BVG(t) = {θ ∈ Rn : ‖∇Gθ‖1 ≤ t}. (4)

The second is the bounded differences class, defined again with respect to the graph G, and a now a sparsity
parameter s > 0, as

BDG(s) = {θ ∈ Rn : ‖∇Gθ‖0 ≤ s}. (5)

We call measure of roughness used in the bounded differences class the cut metric, given by replacing the `1
norm used to define the total variation metric by the `0 norm, i.e.,

‖∇Gθ‖0 =
∑
e∈E

1{θe+ 6= θe−},

which counts the number of nonzero edge differences that appear in θ. Hence, we may think of the former
class in (4) as representing a type of weak sparsity across these edge differences, and the latter class in (5) as
representing a type of strong sparsity in edge differences.

When dealing with the chain graph, on n vertices, we will use the following modifications to our notation.
We write ∇1d ∈ R(n−1)×n for the edge incidence matrix of the chain, i.e.,

∇1d =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

. . . . . .
0 0 . . . −1 1

 . (6)

We also write θ̂1d for the solution of the fused lasso problem in (2) over the chain, also called the 1d fused
lasso solution, i.e., to be explicit,

θ̂1d = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ

n−1∑
i=1

|θi+1 − θi|. (7)

We write BV1d(t) and BD1d(s) for the bounded variation and bounded differences classes with respect to
the chain, i.e., to be explicit,

BV1d(t) = {θ ∈ Rn : ‖∇1dθ‖1 ≤ t},
BD1d(s) = {θ ∈ Rn : ‖∇1dθ‖0 ≤ s}.

Lastly, in addition to the standard notation an = O(bn), for sequences an, bn such that an/bn is upper
bounded for n large enough, we use an � bn to denote that both an = O(bn) and a−1n = O(b−1n ). Also, for
random sequences An, Bn, we use An = OP(Bn) to denote that An/Bn is bounded in probability.

1.3 Related work

Since its inception in the signal processing and statistics communities in Rudin et al. [1992] and Tibshirani
et al. [2005], respectively, there has been an impressive amount of work on total variation penalization and
the fused lasso. We do not attempt to give a complete coverage, but point out some relevant computational
and theoretical advances, covering the two categories separately.
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Computational. On the computational side, it is first worth pointing out that there are multiple efficient
algorithms for solving the fused lasso problem over a chain graph, i.e., the 1d fused lasso problem. Davies
and Kovac [2001] derived an algorithm based on a “taut string” perspective that solves the 1d fused lasso
problem in O(n) time (but, the fact that their taut string method solves the 1d fused lasso problem was
not explicitly stated in the work). This was later extended by Condat [2012], Barbero and Sra [2014] to
allow for arbitrary weights in both of the individual penalty and loss terms. Johnson [2013] proposed an
entirely different O(n) time algorithm for the fused lasso based on dynamic programming. The taut string
and dynamic programming algorithms are extremely fast in practice (e.g., they can solve a 1d fused lasso
problem with n in the tens of millions in just a few seconds on a standard laptop).

Kolmogorov et al. [2016] extended the dynamic programming approach of Johnson [2013] to solve
the fused lasso problem on a tree. Their algorithm in theoretically very efficient, with O(n log n) running
time, but the implementation that achieves this running time (we have found) can be practically slow for
large problem sizes, compared to dynamic programming on a chain graph. Alternative implementations are
possible, and may well improve practical efficiency, but as far as we see it, they will all involve somewhat
sophisticated data structures in the “merge” steps in the forward pass of dynamic programming.

Barbero and Sra [2014] extended (though not in the same direct manner) fast 1d fused lasso optimizers to
work over grid graphs, using operator splitting techniques like Douglas-Rachford splitting. Their techniques
appear to be quite efficient in practice, and the authors provide thorough comparisons and a thorough literature
review of related methods. Over general graphs structures, many algorithms have been proposed, e.g., to
highlight a few: Chambolle and Darbon [2009] described a direct algorithm based on a reduction to parametric
max flow programming; Hoefling [2010], Tibshirani and Taylor [2011] gave solution path algorithms (tracing
out the solution in (2) over all λ ∈ [0,∞]); Chambolle and Pock [2011] described what can be seen as a kind
of preconditioned ADMM-style algorithm; Kovac and Smith [2011] described an active set approach; Tansey
and Scott [2015] leveraged fast 1d fused lasso solvers in an ADMM decomposition over trails of the graph;
most recently, Landrieu and Obozinski [2015] derived a new method based on graph cuts. We emphasize
that, even with the advent of these numerous clever computational techniques for the fused lasso over general
graphs, it is still far slower to solve the fused lasso over an arbitrary graph than it is to solve the fused lasso
over a chain.

Theoretical. On the theoretical side, it seems that the majority of statistical theory on the fused lasso can
be placed into two categories: analysis of changepoint recovery, and analysis of MSE. Some examples of
works focusing on changepoint recovery are Rinaldo [2009], Harchaoui and Levy-Leduc [2010], Qian and
Jia [2012], Rojas and Wahlberg [2014]. The statistical theory will concern MSE rates, and hence we give a
more detailed review of related literature for this topic.

We begin with results for chain graphs. Mammen and van de Geer [1997] proved, when θ0 ∈ BV1d(t),
that the 1d fused lasso estimator estimator θ̂1d with λ � t−1/3n1/3 satisfies

‖θ̂1d − θ0‖2n = OP(t2/3n−2/3). (8)

This is indeed the minimax MSE rate for the class BV1d(t), as implied by the minimax results in Donoho
and Johnstone [1998]. (For descriptions of the above upper bound and this minimax rate in a language more
in line with that of the current paper, see Tibshirani [2014].) Recently, Lin et al. [2016] improved on earlier
results for the bounded differences class in Dalalyan et al. [2014], and proved that when θ0 ∈ BD1d(s), the
1d fused lasso estimator θ̂1d with λ � (nWn)1/4 satisfies

‖θ̂1d − θ0‖2n = OP

(
s

n

(
(log s+ log log n) log n+

√
n/Wn

))
, (9)

where Wn denotes the minimum distance between positions at which nonzero differences occur in θ0, more
precisely, Wn = min{|i− j| : (∇1dθ0)i 6= 0, (∇1dθ0)j 6= 0}. When these nonzero differences or “jumps”
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in θ0 are evenly spaced apart, we have Wn � n/s, and the above becomes, for λ �
√
ns−1/4,

‖θ̂1d − θ0‖2n = OP

(
s(log s+ log log n) log n

n
+
s3/2

n

)
. (10)

This is quite close to the minimax lower bound, whose rate is s log(n/s)/n, that we establish for the class
BD1d(s), in Theorem 7. (The minimax lower bound that we prove this theorem actually holds beyond the
chain graph, and applies to tree graphs). We can see that the 1d fused lasso rate in (10) is only off by a factor
of log log n, provided that s does not grow too fast (specifically, s = O((log n log logn)2)).

Beyond chain graphs, the story is in general much less clear, however, interesting results are known in
special cases. For a d-dimensional grid graph, with d ≥ 2, Hutter and Rigollet [2016] recently improved on
results of Wang et al. [2016], showing that for θ0 ∈ BVG(t) ∩ BDG(s), the fused lasso estimator θ̂G over G
satisfies

‖θ̂G − θ0‖2n = OP

(
min{t, s} loga n

n

)
. (11)

when λ � loga/2 n, where a = 2 if d = 2, and a = 1 if d ≥ 3. A minimax lower bound on the MSE rate for
the BVG(t) class over a grid G of dimension d ≥ 2 was established to be t

√
log(n/t)/n, by Sadhanala et al.

[2016]. This makes the rate achieved by the fused lasso in (11) nearly optimal for bounded variation signals,
off by at most a log3/2 n factor when d = 2, and a log n factor when d ≥ 3.

Wang et al. [2016], Hutter and Rigollet [2016] also derived MSE rates for the fused lasso over several
other graph structures, such as Erdos-Renyi random graphs, Ramanujan d-regular graphs, star graphs, and
complete graphs. As it is perhaps the most relevant to our goals in this paper, we highlight the MSE bound
from Wang et al. [2016] that applies to arbitrary connected graphs. Their Theorem 3 implies, for a generic
connected graph G, θ0 ∈ BVG(t), that the fused lasso estimator θ̂G over G with λ �

√
n log n satisfies

‖θ̂G − θ0‖2n = OP

(
t

√
log n

n

)
. (12)

(See Appendix A.1 for details.) In Theorem 3, we show that the universal tn−1/2 rate (ignoring log terms) in
(12) for the fused lasso over an arbitrary connected graph can be improved to t2/3n−2/3. In Theorem 2, we
show that the same rate can indeed be achieved by a simple, linear-time algorithm: the DFS fused lasso.

1.4 Outline

In Section 2, we review a simple but key lemma relating the `1 norm (and `0) norm of differences on a tree
and a chain induced by running DFS. (This follows closely from an analogous result on binary signals, in
Herbster et al. [2009].) We then define the DFS fused lasso estimator. In Section 3, we derive MSE rates
for the DFS fused lasso, and the fused lasso over the original graph G under consideration, for signals of
bounded variation. We also derive lower bounds for the minimax MSE over trees. In Section 4, we proceed
similarly but for signals in the bounded differences class. In Section 5, we present numerical experiments. In
Section 6, we summarize our work and describe some potential extensions.

2 The DFS fused lasso

In this section, we define the DFS-induced chain graph and the DFS fused lasso.
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2.1 Tree and chain embeddings

We start by studying some of the fundamental properties associated with total variation on general graphs,
and embedded trees and chains. Given a graph G = (V,E), let T = (V,ET ) be an arbitrary spanning tree of
G. It is clear that for any signal, its total variation of over T is no larger than its total variation over G,

‖∇T θ‖1 =
∑
e∈ET

|θe+ − θe− | ≤
∑
e∈E
|θe+ − θe− | = ‖∇Gθ‖1, for all θ ∈ Rn. (13)

The above inequality, albeit very simple, reveals to us the following important fact: if the underlying mean
θ0 in (1) is assumed to be smooth with respect to the graph G, inasmuch as ‖∇Gθ0‖1 ≤ t, then it must also
be smooth with respect to any spanning tree T of G, since ‖∇T θ0‖1 ≤ t. Roughly speaking, computing the
fused lasso solution in (2) over a spanning tree T , instead of G, would therefore still be reasonable for the
denoising purposes, as the mean θ0 would still be smooth over T according to the total variation metric.

The same property as in (14) also holds if we replace total variation by the cut metric:

‖∇T θ‖0 =
∑
e∈ET

1{θe+ 6= θe−} ≤
∑
e∈E

1{θe+ 6= θe−} = ‖∇Gθ‖0, for all θ ∈ Rn. (14)

Thus for the mean θ0, the property ‖∇Gθ0‖0 ≤ s again implies ‖∇T θ0‖0 ≤ s for any spanning tree T of G,
and this would again justify solving the fused lasso over T , in place of G, assuming smoothness of θ0 with
respect to the cut metric in the first place.

Here we go one step further than (13), (14), and assert that analogous properties actually hold for specially
embedded chain graphs. The next lemma gives the key result.

Lemma 1. Let G = (V,E) be a connected graph, where recall we write V = {1, . . . , n}. Consider depth-
first search (DFS) run on G, and denote by v1, . . . , vn the nodes in the order in which they are reached by
DFS. Hence, DFS first visits v1, then v2, then v3, etc. This induces a bijection τ : {1, . . . , n} → {1, . . . , n},
such that

τ(i) = vi, for all i = 1, . . . , n.

Let P ∈ Rn×n denote the permutation associated with τ . Then it holds that

‖∇1dPθ‖1 ≤ 2‖∇Gθ‖1, for all θ ∈ Rn, (15)

as well as
‖∇1dPθ‖0 ≤ 2‖∇Gθ‖0, for all θ ∈ Rn. (16)

Proof. The proof is simple. Observe that

‖∇1dPθ‖1 =
∑

i=1,...,n−1
|θτ(i+1) − θτ(i)|, (17)

and consider an arbitrary summand |θτ(i+1) − θτ(i)|. There are two cases to examine. First, suppose that
the node τ(i) is not a leaf in the spanning tree constructed by DFS; then there is an edge e ∈ E such that
{e−, e+} = {τ(i), τ(i+ 1)}, and |θτ(i+1) − θτ(i)| = |θe+ − θe− |. Second, suppose that τ(i) is a leaf node
in the DFS tree; then there is a path p = {p1, . . . , pr} in the tree such that p1 = τ(i), pr = τ(i + 1), and
each {pj , pj+1} ∈ E, j = 1, . . . , r − 1, so that by the triangle inequality

|θτ(i+1) − θτ(i)| ≤
r−1∑
j=1

|θpj+1 − θpj |.

Applying this logic over all terms in the sum in (17), and invoking the fundamental property that DFS visits
each edge exactly twice (e.g., Chapter 22 of Cormen et al. [2001]), we have established (15). The proof for
(16) follows from precisely the same arguments.
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Remark 1. Lemma 1 has essentially already appeared in the literature, in a form for binary signals and a
roughness metric given by the quadratic form in the graph Laplacian (in place the total variation metric or
cut metric), see Herbster et al. [2009]. The key idea behind this result and ours is the same, and the proof of
Lemma 1 only requires minor modifications. For completeness, we have presented Lemma 1 and its proof
anyway. More generally, we should note that graph embeddings—in particular, using chains and trees—are
well-known in the online graph-based classification setting. See, e.g., Herbster et al. [2009], Cesa-Bianchi
et al. [2013], and references therein.

Example 1. The idea behind Lemma 1 can also be clearly demonstrated through an example. We consider
G to be a binary tree graph with n = 7 nodes, shown below, where we have labeled the nodes according to
the order in which they are visited by DFS (i.e., so that here P is the identity).

1

2

3 4

5

6 7

In this case,

‖∆1dθ‖1 =
6∑
i=1

|θi+1 − θi|

≤ |θ2 − θ1|+ |θ3 − θ2|+
(
|θ3 − θ2|+ |θ4 − θ2|

)
+
(
|θ4 − θ2|+ |θ2 − θ1|+ |θ5 − θ1|

)
+ |θ6 − θ5|+

(
|θ6 − θ5|+ |θ7 − θ5|

)
≤ 2

∑
e∈G
|θe+ − θe− | = 2‖∇Gθ‖1,

where in the inequality above, we have used triangle inequality for each term in parentheses individually.

2.2 The DFS fused lasso

We define the DFS fused lasso estimator, θ̂DFS, to be the fused lasso estimator over the chain graph induced
by running DFS on G. Formally, if τ denotes the bijection associated with the DFS ordering (as described in
Lemma 1), then the DFS-induced chain graph can be expressed as C = (V,EC) where V = {1, . . . , n} and
EC = {{τ(1), τ(2)}, . . . , {τ(n− 1), τ(n)}}. Denoting by P the permutation matrix associated with τ , the
edge incidence matrix of C is simply∇C = ∇1dP , and the DFS fused lasso estimator is given by

θ̂DFS = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖∇1dPθ‖1

= P>

(
argmin
θ∈Rn

1

2
‖Py − θ‖22 + λ

n−1∑
i=1

|θi+1 − θi|

)
. (18)

Therefore, we only need to compute the 1d fused lasso estimator on a permuted data vector Py, and apply
the inverse permutation operator P>, in order to compute θ̂DFS.

Given the permutation matrix P , the computational cost of (18) is O(n), since, to recall the discussion in
Section 1.3, the 1d fused lasso problem (7) can be solved in O(n) operations with dynamic programming or
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taut string algorithms. The permutation P is obtained by running DFS, which requires O(m) operations, and
makes the total computation cost of the DFS fused lasso estimator O(m+ n).

It should be noted that, when multiple estimates are desired over the same graph G, we must only run
DFS once, and all subsequent estimates on the induced chain require just O(n) operations.

The bounds in (15), (16) for the DFS chain are like those in (13), (14) for spanning trees, and carry the
same motivation as that discussed above for spanning trees, beneath (13), (14): if the mean θ0 is assumed to
be smooth with respect to t, insofar as its total variation satisfies ‖∇Gθ0‖1 ≤ t, then denoising with respect
to C would also be reasonable, in that ‖∇1dPθ0‖1 ≤ 2t; the same can be said for the cut metric. However, it
is the rapid O(m + n) computational cost of the DFS fused lasso, and also the simplicity of the dynamic
programming and taut string algorithms for the 1d fused lasso problem (7), that make (15), (16) particularly
appealing compared to (13), (14). To recall the discussion in Section 1.3, the fused lasso can in principle be
computed efficiently over a tree, in O(n log n) operations using dynamic programming, but this requires a
much more cumbersome implementation and in practice we have found it to be noticeably slower.

2.3 Running DFS on a spanning tree

We can think of the induced chain graph, as described in the last section, as being computed in two steps:

(i) run DFS to compute a spanning tree T of G;

(ii) run DFS on the spanning tree T to define the chain C.

Clearly, this is the same as running DFS on G to define the induced chain C, so decomposing this process
into two steps as we have done above may seem odd. But this decomposition provides a useful perspective
because it leads to the idea that we could compute the spanning tree T in Step (i) in any fashion, and then
proceed with DFS on T in Step 2 in order to define the chain C. Indeed, any spanning tree in Step (i) will
lead to a chain C that has the properties (15), (16) as guaranteed by Lemma 1. This may be of interest if
we could compute a spanning tree T that better represents the geometry of the original graph G, so that the
differences over the eventual chain C better mimicks those over G.

An example of a spanning tree whose geometry is designed to reflect that of the original graph is a
low-stretch spanning tree. Current interest on low-stretch spanning trees began with the breakthrough results
in Elkin et al. [2008]; most recently, Abraham and Neiman [2012] showed that a spanning tree with average
stretch O(log n log logn) can be computed in O(m log n log logn) operations.

In Section 6.4, we discuss a setting in which the fused lasso problem (2) has arbitrary penalty weights,
which gives rise to a weighted graph G. In this setting, an example of a spanning tree that can be crafted so
that its edges represent important differences in the original graph is a maximum spanning tree. Prim’s and
Kruskal’s minimum spanning tree algorithms, each of which require O(m log n) operations [Cormen et al.,
2001], can be used to compute a maximum spanning tree after we negate all edge weights.

2.4 Averaging multiple DFS estimators

Notice that several DFS-induced chains can be formed from a single seed graph G, by running DFS itself on
G with different random starts (or random decisions about which edge to follow at each step in DFS), or by
computing different spanning trees T of G (possibly themselves randomized) on which we run DFS, or by
some combination, etc. Denoting by θ̂(1)DFS, θ̂

(2)
DFS, . . . , θ̂

(K)
DFS the DFS fused lasso estimators fit to K different

induced chains, we might believe that the average estimator, (1/K)
∑K

k=1 θ̂
(k)
DFS, will have good denoising

performance, as it incorporates fusion at each node in multiple directions. In Section 5, we demonstrate that
this intuition holds true (at least, across the set of experiments we consider).
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3 Analysis for signals of bounded variation

Throughout this section, we assume that the underlying mean θ0 in (1) satisfies θ0 ∈ BVG(t) for a generic
connected graph G. We derive upper bounds on the MSE rates of the DFS fused lasso and the fused lasso
over G. We also derive a tight lower bound on the minimax MSE when G is a tree that of bounded degree.

3.1 The DFS fused lasso

The analysis for the DFS fused lasso estimator is rather straightforward. By assumption, ‖∇Gθ0‖1 ≤ t, and
thus ‖∇1dPθ0‖1 ≤ 2t by (15) in Lemma 1. Hence, we may think of our model (1) as giving us i.i.d. data Py
around Pθ0 ∈ BV1d(2t), and we may apply existing results from Mammen and van de Geer [1997] on the
1d fused lasso for bounded variation signals, as described in (8) in Section 1.3. This establishes the following.

Theorem 2. Consider a data model (1), with i.i.d. sub-Gaussian errors as in (3), and θ0 ∈ BVG(t), where
G is a generic connected graph. Then for any DFS ordering of G yielding a permutation matrix P , the DFS
fused lasso estimator θ̂DFS in (18), with a choice of tuning parameter λ � t−1/3n1/3, has MSE converging
in probability at the rate

‖θ̂DFS − θ0‖2n = OP(t2/3n−2/3). (19)

We note that, if multiple DFS fused lasso estimators θ̂(1)DFS, θ̂
(2)
DFS, . . . , θ̂

(K)
DFS are computed across multiple

different DFS-induced chains on G, then the average estimator clearly satisfies the same bound as in (19),∥∥∥∥∥ 1

K

K∑
k=1

θ̂
(k)
DFS − θ0

∥∥∥∥∥
2

n

= OP(t2/3n−2/3),

provided that K is held constant, by the triangle inequality.

3.2 The graph fused lasso

Interestingly, the chain embedding result (15) in Lemma 1 is not only helpful for establishing the MSE rate
for the DFS fused lasso estimator in Theorem 2, but it can also be used to improve the best known rate for the
original fused lasso estimator over the graph G. In Section 1.3, we described a result (12) that follows from
Wang et al. [2016], establishing an MSE rate of tn−1/2 rate (ignoring log terms) for the fused lasso estimator
over a connected graph G, when ‖∇Gθ0‖1 ≤ t. In fact, as we will now show, this can be improved to a rate
of t2/3n−2/3, just as in (19) for the DFS fused lasso.

Wang et al. [2016] present a framework for deriving fast MSE rates for fused lasso estimators based on
entropy. They show in their Lemma 9 that a bound in probability on the sub-Gaussian complexity

max
x∈SG(1)

ε>x

‖x‖1−w/22

, (20)

for some 0 < w < 2, where SG(1) = {x ∈ row(∇G) : ‖∇Gx‖1 ≤ 1}, leads to a bound in probability on
the MSE of the fused lasso estimator θ̂G over G. (Wang et al. [2016] actually assume Gaussian errors, but
their Lemma 9, Theorem 10, Lemma 11, and Corollary 12 still hold for sub-Gaussian errors as in (3)). The
sub-Gaussian complexity in (20) is typically controlled via an entropy bound on the class SG(1). Typically,
one thinks of controlling entropy by focusing on specific classes of graph structures G. Perhaps surprisingly,
Lemma 1 shows we can uniformly control the sub-Gaussian complexity (20) over all connected graphs.
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For any DFS-induced chain C constructed from G, note first that row(∇G) = span{1}⊥ = row(∇C),
where 1 = (1, . . . , 1) ∈ Rn is the vector of all 1s. This, and (15) in Lemma 1, imply that

max
x∈SG(1)

ε>x

‖x‖1−w/22

≤ max
x∈SC(2)

ε>x

‖x‖1−w/22

.

Now, taking w = 1,

max
x∈SC(2)

ε>x

‖x‖1/22

= max
x : 1>x=0,
‖∇1dPx‖1≤2

ε>x

‖x‖1/22

= max
x : 1>x=0,
‖∇1dx‖1≤1

2−1/2(Pε)>x

‖x‖1/22

= OP(n1/4).

The last step (asserting that the penultimate term is OP(n1/4)) holds by first noting that Pε is equal in law to
ε (as we have assumed i.i.d. components of the error vector), and then applying results on the chain graph in
Theorem 10, Lemma 11, and Corollary 12 of Wang et al. [2016]. Applying Lemma 9 of Wang et al. [2016],
we have now established the following result.

Theorem 3. Consider a data model (1), with i.i.d. sub-Gaussian errors as in (3), and θ0 ∈ BVG(t), where
G is a generic connected graph. Then the fused lasso estimator θ̂G over G, in (2), under a choice of tuning
parameter λ � t−1/3n1/3, has MSE converging in probability at the rate

‖θ̂G − θ0‖2n = OP(t2/3n−2/3). (21)

In a sense, the above theorem suggests that the chain graph is among the hardest graphs for denoising
bounded variation signals, since the fused lasso estimator on any connected graph G will achieve an MSE
rate in that is at least as good as in the chain rate, if not better. In this vein, it is worth emphasizing that the
MSE bound in (21) is not tight for certain graph structures; a good example is the 2d grid, where we must
compare (21) from the theorem to the known MSE bound in (11) from Hutter and Rigollet [2016], the latter
being only log factors from optimal, as shown in Sadhanala et al. [2016]. It is natural for the 2d grid graph to
consider the scaling t �

√
n (as argued in Sadhanala et al. [2016]), in which case the rates for the fused lasso

estimator are n−1/3 from Theorem 3 versus (log2 n)n−1/2 from Hutter and Rigollet [2016].

3.3 Minimax lower bound for trees

We derive a lower bound for the MSE over the class BVG(t) when G is a tree graph. The proof applies
Assouad’s Lemma [Yu, 1997], over a discrete set of probability measures constructed by a careful partitioning
of the vertices of G, that balances both the sizes of each partition element and the number of edges crossing
in between partition elements. It is deferred until Appendx A.2.

Theorem 4. Consider a data model (1), with i.i.d. Gaussian errors εi ∼ N(0, σ2), i = 1, . . . , n, and with
θ0 ∈ BVG(t), where G is a tree graph, having maximum degree dmax. Then there exists absolute constants
N,C > 0, such that for n/(tdmax) > N ,

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖2n ≥ C
(

t

σd2maxn

)2/3

. (22)

The theorem demonstrates that, for trees of bounded degree, such as the chain and balanced d-ary trees,
the fused lasso estimator over the tree achieves achieves the minimax rate, as does the DFS fused lasso.
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4 Analysis for signals with bounded differences

We assume that the underlying mean θ0 in (1) satisfies θ0 ∈ BDG(s) for a generic connected graph G. We
analyze the MSE of the DFS fused lasso, as well as (a particular formulation of) wavelet denoising over G.
We again establish a lower bound on the minimax MSE when G is a tree.

4.1 The DFS fused lasso

As it was for the bounded variation case, the analysis for the DFS fused lasso estimator is straightforward.
By assumption, ‖∇Gθ0‖0 ≤ s, thus ‖∇1dPθ0‖0 ≤ 2s by (16) in Lemma 1, and we may think of our model
(1) as having i.i.d. data Py around Pθ0 ∈ BD1d(2s). Applying an existing result on the 1d fused lasso for
bounded differences signals, as described in (9), from Lin et al. [2016], gives the following result.

Theorem 5. Consider a data model (1), with i.i.d. sub-Gaussian errors as in (3), and θ0 ∈ BDG(s), for a
connected graph G. Consider an arbitrary DFS ordering of G, that defines a permutation matrix P and the
DFS fused lasso estimator θ̂DFS in (18). Denote by Wn = min{|i− j| : (∇1dPθ0)i 6= 0, (∇1dPθ0)j 6= 0}
the minimum distance between positions, measured along the DFS-induced chain, at which nonzero differences
or jumps occur in θ0. Then, under a choice of tuning parameter λ � (nWn)1/4, the DFS fused lasso estimator
has MSE converging in probability at the rate

‖θ̂DFS − θ0‖2n = OP

(
s

n

(
(log s+ log log n) log n+

√
n/Wn

))
. (23)

Hence, if the s jumps along the DFS chain are evenly spaced apart, i.e., Wn � n/s, then for λ �
√
ns−1/4,

‖θ̂DFSr − θ0‖2n = OP

(
s(log s+ log log n) log n

n
+
s3/2

n

)
. (24)

An undesirable feature of applying existing 1d fused lasso results for signals with bounded differences, in
the above result, is the dependence on Wn in the DFS fused lasso error bound (23) (we applied the result
(9) from Lin et al. [2016], but the bounds from Dalalyan et al. [2014] also depend on Wn, and as far as we
can tell, so should any analysis of the 1d fused lasso for signals with bounded differences). In the 1d setting,
assuming that Wn � n/s, which says that jumps in θ0 occur at roughly equally spaced positions, is fairly
reasonable; but to assume the same when the jumps are measured with respect to the DFS-induced chain, as
we must in order to establish (24), is perhaps not. Even if the differences apparent in θ0 over edges in G are
somehow (loosely speaking) spaced far apart, running DFS could well produce an ordering such that jumps
in Pθ0 occur at positions very close together. We reiterate that the MSE bounds for the DFS fused lasso for
bounded variation signals, in Theorem 2, do not suffer from any such complications.

4.2 Graph wavelet denoising

We compare the performances of the DFS fused lasso and wavelet denoising using spanning tree wavelets, for
signals with bounded differences. For spanning tree wavelets, the construction starts with a spanning tree and
carefully defines a hierarchical decomposition by recursively finding and splitting around a balancing vertex,
which is a vertex whose adjacent subtrees are of size at most half of the original tree; this decomposition is
used to construct an unbalanced Haar wavelet basis, as in Singh et al. [2010]. In Sharpnack et al. [2013], it
was shown that for any connected graph G, the constructed wavelet basis W ∈ Rn×n satisfies

‖Wθ‖0 ≤ dlog dmaxedlog ne‖∇Gθ‖0, for all θ ∈ Rn, (25)
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where dmax is the maximum degree of G, and the above holds regardless of choice of spanning tree in the
wavelet construction. Now consider the wavelet denoising estimator

θ̂W = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖Wθ‖1. (26)

The following is an immediate consequence of (25), the fact that the wavelet basis W is orthonormal, and
standard results about soft-thresholding (e.g., Lemma 2.8 in [Johnstone, 2011]).

Theorem 6. Consider a data model (1), with i.i.d. Gaussian errors εi ∼ N(0, σ2), i = 1, . . . , n, and with
θ0 ∈ BDG(t), where G is a connected graph, having maximum degree dmax. Then the spanning tree wavelet
estimator θ̂W in (26), with a choice λ �

√
log n, has MSE converging in expectation at the rate

E‖θ̂W − θ0‖2n = O

(
s log dmax log2 n

n

)
. (27)

The result in (27) has the advantage over the DFS fused lasso result in (23) that it does not depend on a
hard-to-interpret quantity like Wn, the minimum spacing between jumps along the DFS-induced chain. But
when (say) dmax � 1, s � 1, and we are willing to assume that Wn � n (meaning the jumps of θ0 occur at
positions evenly spaced apart on the DFS chain), we can see that the spanning tree wavelet rate in (27) is just
slightly slower than the DFS fused lasso rate in (24), by a factor of log n/ log log n.

While the comparison between the DFS fused lasso and wavelet rates, (23) and (27), show an advantage
to spanning tree wavelet denoising, as it does not require assumptions about the spacings between nonzero
differences in θ0, we have found nonetheless that the DFS fused lasso performs well in practice compared to
spanning tree wavelets, and indeed often outperforms the latter in terms of MSE. Experiments comparing the
two methods are presented Section 5.

4.3 Minimax lower bound for trees

We now derive a lower bound for the MSE over the class BDG(s) when G is a tree graph. The proof relates
the current denoising problem to one of estimating sparse normal means, with a careful construction of the
sparsity set using degree properties of trees. It is deferred until Appendix A.3.

Theorem 7. Consider a data model (1), with i.i.d. Gaussian errors εi ∼ N(0, σ2), i = 1, . . . , n, and with
θ0 ∈ BDG(s), where G is a tree. Then there are absolute constants N,C > 0, such that for n/s > N ,

inf
θ̂

sup
θ0∈BDG(s)

E‖θ̂ − θ0‖2n ≥ Cσ2
s

n
log
(n
s

)
. (28)

The MSE lower bound in (28) shows that, when we are willing to assume that Wn � n/s in the DFS-
induced chain, the DFS fused lasso estimator is a log log n factor away from the optimal rate, provided that s
is not too large, namely s = O((log n log log n)2). The spanning tree wavelet estimator, on the other hand, is
a log n factor from optimal, without any real restrictions on s, i.e., it suffices to have s = O(na) for some
a > 0. It is worth remarking that, for large enough s, the lower bound in (28) is perhaps not very interesting,
as in such a case, we may as well consider the bounded variation lower bound in (22), which will likely be
tighter (faster).

5 Experiments

In this section we compare experimentally the speed and accuracy of two approaches for denoising signals on
graphs: the graph fused lasso, and the fused lasso along the chain graph induced by a DFS ordering. In our
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experiments, we see that the DFS-based denoiser sacrifices a modest amount in terms of mean squared error,
while providing gains (sometimes considerable) in computational speed. This shows that our main theorem,
in addition to providing new insights on MSE rates for the graph fused lasso, also has important practice
consequences. For truly massive problems, where the full graph denoising problem is impractical to solve,
we may use the linear-time DFS fused lasso denoiser, and obtain a favorable tradeoff of accuracy for speed.

5.1 Generic graphs

We begin by considering three examples of large graphs of (more or less) generic structure, derived from road
networks in three states: California, Pennsylvania, and Texas. Data on these road networks are freely available
at https://snap.stanford.edu. In these networks, intersections and endpoints are represented by
nodes, and roads connecting these intersections or endpoints are represented by undirected edges; see
Leskovec et al. [2009] for more details. For each network, we use the biggest connected component as our
graph structure to run comparisons. The graph corresponding to California has n = 1957027 nodes and
m = 2760388 edges, the one for Pennsylvania has n = 1088092 nodes and m = 1541898 edges, and the
graph for Texas has n = 1351137 nodes and m = 1879201 edges. We compare Laplacian smoothing versus
the fused lasso over a DFS-induced chain, on the graphs from the three states. We do not compare with the
fused lasso over the original graphs, due to its prohibitive computational cost at such large scales.

We used the following procedure to construct a synthetic signal θ0 ∈ Rn on each of the road network
graphs, of piecewise constant nature:

• an initial seed node v1 is selected uniformly at random from the nodes V = {1, . . . , n} in the graph;

• a component C1 is formed based on the bn/10c nodes closest to v1 (where the distance between two
nodes in the graph is given by the length of the shortest path between them);

• a second seed node v2 is selected uniformly at random from G \ C1;

• a component C2 is formed based on the bn/10c nodes closest to v2 (again in shortest path distance);

• this process is repeated1 until we have a partition C1, . . . , C10 of the node set V into components of
(roughly) equal size, and θ0 ∈ Rn is defined to take constant values on each of these components.

In our experiments, we considered 20 values of the total variation for the underlying signal. For each, the
signal θ0 was scaled appropriately to achieve the given total variation value, and data y ∈ Rn was generated
by adding i.i.d. N(0, 0.22) noise to the components of θ0. For each data instance y, the DFS fused lasso and
Laplacian smoothing estimators, the former defined by (18) and the latter by

θ̂Lap = argmin
θ∈Rn

1

2
‖y − θ‖22 + λθ>LGθ, (29)

where LG = ∇>G∇G is the Laplacian matrix of the given graph G, and each estimator is computed over 20
values of its own tuning parameter. Then, the value of the tuning parameter minimizing the average MSE,
over 50 draws of data y around θ0, was selected for each method. Finally, this optimized MSE, averaged
over the 50 draws of data y, and further, over 10 repetitions of the procedure for constructing the signal θ0
explained above, was recorded. Figure 1 displays the optimized MSE for the DFS fused lasso and Laplacian
smoothing, as the total variation of the underlying signal varies, for the three road network graphs.

As we can see from the figure, for low values of the underlying total variation, i.e., low signal-to-noise
ratio (SNR) levels, Laplacian smoothing and the DFS fused lasso, each tuned to optimality, perform about

1Here, whenever isolated small components are unintentionally created, we add them to the big components.
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Figure 1: The optimized MSE for the DFS fused lasso and Laplacian smoothing (i.e., MSE achieved by these methods
under optimal tuning) is plotted as a function of the total variation of the underlying signal, for each of the three road
network graphs. This has been averaged over 50 draws of data y for each construction of the underlying signal θ0, and
10 repetitions in constructing θ0 itself. For low values of the underlying total variation, i.e., low SNR levels, the two
methods perform about the same, but as the SNR increases, the DFS fused lasso outperforms Laplacian smoothing by a
considerable margin.

the same. This is because at low enough SNR levels, each will be approximating θ0 by something like ȳ1,
with ȳ being the sample average of the data vector y. But as the SNR increases, we see that the DFS fused
lasso outpeforms Laplacian smoothing by a considerable amount. This might seem surprising, as Laplacian
smoothing uses information from the entire graph, whereas the DFS fused lasso reduces the rich structure
of the road network graph in each case to that of an embedded chain. However, Laplacian smoothing is a
linear smoother (meaning that θ̂Lap in (29) is a linear function of the data y), and therefore it comes with
certain limitations when estimating signals of bounded variation (e.g., see the seminal work of Donoho and
Johnstone [1998], and the more recent graph-based work of Sadhanala et al. [2016]). In contrast, the DFS
fused lasso is a nonlinear estimator, and while it discards some information in the original graph structure, it
retains enough of the strong adaptivity properties of the fused lasso over the original graph to statistically
dominate a linear estimator like Laplacian smoothing.

Lastly, in terms of computational time, it took an average of 82.67 seconds, 44.02 seconds, and 54.49
seconds to compute the 20 DFS fused lasso solutions (i.e., over the 20 tuning parameter values) for the road
network graphs from California, Pennsylvania, and Texas, respectively (the averages are taken over the 50
draws of data y around each signal θ0, and the 10 repetitions in constructing θ0). By comparison, it took an
average of 2748.26 seconds, 1891.97 seconds, and 1487.36 seconds to compute the 20 Laplacian smoothing
solutions for the same graphs. The computations and timings were performed on a standard laptop computer
(with a 2.80GHz Intel Core i7-2640M processor). For the DFS fused lasso, in each problem instance, we first
computed a DFS ordering using the dfs function from the R package igraph, which is an R wrapper for a
C++ implementation of DFS, and initialized the algorithm at a random node for the root. We then computed
the appropriate 1d fused lasso solutions using the trendfilter function from the R package glmgen,
which is an R wrapper for a C++ implementation of the fast (linear-time) dynamic programming algorithm
in Johnson [2013]. For Laplacian smoothing, we used the solve function from the R package Matrix,
which is an R wrapper for a C++ implementation of the sparse Cholesky-based solver in Davis and Hager
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[2009]. For such large graphs, alternative algorithms, such as (preconditioned) conjugate gradient methods,
could certainly be more efficient in computing Laplacian smoothing solutions; our reported timings are only
meant to indicate that the DFS fused lasso is efficiently computable at problem sizes that are large enough
that even a simple linear method like Laplacian smoothing becomes nontrivial.

5.2 2d grid graphs

Next we consider a denoising example on a 2d grid graph of dimension 1000 × 1000, so that the number
of nodes is n = 1000000 and the number of edges is m = 1998000. We generated a synthetic piecewise
constant signal θ0 ∈ R1000×1000 over the 2d grid, shown in the top left corner of Figure 2, where a color
scale (displayed in the accompanying color legend) is used, with red denoting the smallest possible value
and yellow the largest possible value. Data y ∈ R1000×1000 was generated by adding i.i.d. N(0, 1) noise
to the components of θ0, displayed in the top middle panel of Figure 2. We then computed the 2d fused
lasso solution, i.e., the fused lasso solution over the 2d grid graph2, as well as three DFS-based variations:
the DFS fused lasso solution using a random DFS ordering (given by running DFS beginning at a random
node), labeled as “1 random DFS” in the figure; the average of DFS fused lasso solutions over 5 random
DFS orderings, labeled “5 random DFS” in the figure; and the average of DFS fused lasso solutions over
2 “snake” DFS orderings (one given by collecting and joining all horizontal edges and the other all vertical
edges) labeled “2 snake DFS” in the figure. The tuning parameter for each method displayed in the figure
was chosen to minimize the average MSE over 100 draws of the data y from the specified model. Visually,
we can see that the full 2d fused lasso solution is the most accurate, however, the 1 random DFS, 5 random
DFS, and 2 snake DFS solutions all still clearly capture the structure inherent in the underlying signal. Of the
three DFS variations, the 5 random DFS estimator is visually most accurate; the 1 random DFS estimator is
comparably “blotchy”, and the 2 snake DFS estimator is comparably “stripey”.

The left panel of 3 shows the optimized MSE for each method, i.e., the minimum of the average MSE
over 100 draws of the data y, when we consider 20 choices for the tuning parameter. This optimized MSE
is plotted as a function of the sample size, which runs from n = 2500 (a 50× 50 grid) to n = 1000000 (a
1000× 1000 grid), and in each case the underlying signal is formed by taking an appropriate (sub)resolution
of the image in the top left panel of Figure 2. The 2d fused lasso provides the fastest decrease in MSE as n
grows, followed by the 5 random DFS estimator, then the 1 random DFS estimator, and the 2 snake DFS
estimator. This is not a surprise, since the 2d fused lasso uses the information from the full 2d grid. Indeed,
comparing (11) and (19), we recall that the 2d fused lasso enjoys an MSE rate of t log2 n/n when θ0 has
2d total variation t, whereas the DFS fused lasso has an MSE rate of only (t/n)2/3 in this setting. When
t �
√
n, which is a natural scaling for the underlying total variation in 2d and also the scaling considered in

the experimental setup for the figure, these rates are (log2 n)n−1/2 for the 2d fused lasso, and n−1/3 for the
DFS fused lasso. The figure uses a log-log plot, so the MSE curves all appear to have linear trends, and the
fitted slopes roughly match these theoretical MSE rates (-0.58 for the 2d fused lasso, and -0.39, -0.40, and
-0.36 for the three DFS variations).

The right panel of Figure 3 shows the runtimes for each method (averaged over 100 draws of the data y), as
a function of the sample size n. The runtime for each method counts the total time taken to compute solutions
across 20 tuning parameter values. The computations and timings were carried out on a standard desktop
computer (with a 3.40GHz Intel Core i7-4770 processor). To compute 2d fused lasso solutions, we used the
TVgen function in the Matlab package proxTV, which is a Matlab wrapper for a C++ implementation of
the proximal stacking technique described in Barbero and Sra [2014]. For the DFS fused lasso, we computed

2In the previous subsection, we remarked that the fused lasso was prohibitive to compute over the road network graphs, which
each have in between 1 or 2 million nodes and 1.5 and 3 million edges. Here, we are able to compute the fused lasso over a graph
with 1 million nodes and nearly 2 million edges. The difference is the specialized 2d grid structure in the present example, which is
leveraged by the proximal stacking technique in Barbero and Sra [2014] that we use to compute the 2d fused lasso solutions.
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Figure 2: Underlying signal, data, and solutions from the 2d fused lasso and different variations on the DFS fused
lasso fit over a 1000× 1000 grid.
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Figure 3: Optimized MSE and runtime for the 2d fused lasso and DFS fused lasso estimators over a 2d grid, as the
grid size n (total number of nodes) varies.
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initial DFS orderings using the dfs function from the Matlab package MathBGL, and then, as before, used
the C++ implementation available through glmgen to compute the appropriate 1d fused lasso solutions. The
figure uses a log-log plot, and hence we can see that all DFS-based estimators are quite a bit more efficient
than the 2d fused lasso estimator.

5.3 Tree graphs

We finish with denoising comparisons on tree graphs, for sample sizes varying from n = 100 to n = 5300.
For each sample size n, a random tree is constructed via a sequential process in which each node is assigned
a number of children between 2 and 10 (uniformly at random). Given a tree, an underlying signal θ0 ∈ Rn
is constructed to be piecewise constant with total variation 5

√
n (the piecewise constant construction here

is made easy because the oriented incidence matrix of a tree is invertible). Data y ∈ Rn was generated by
adding i.i.d. N(0, 1) noise to θ0. We compared the fused lasso estimator over the full tree, 1 random DFS
and 5 random DFS estimators (using the terminology from the last subsection), and the wavelet smoothing
estimator defined in (26). For each estimator, we computed the entire solution path using the path algorithm
of Tibshirani and Taylor [2011] implemented in the R package genlasso, and selected the step along the
path to minimize the average MSE over 50 draws of data y around θ0, and 10 repetitions in constructing
θ0. (The full solution path can be computed here because each estimator can be cast as a generalized lasso
problem, and because the problem sizes considered here are not enormous.)

The left panel of Figure 4 plots this optimized MSE as a function of the sample size n. We see that the
fused lasso estimator over the full tree and the 5 random DFS estimator perform more or less equivalently
over all sample sizes. The 1 random DFS estimator is slightly worse, and the wavelet smoothing estimator is
considerably worse. The right panel shows the the MSE as a function of the effective degrees of freedom
of each estimator, for a particular data instance with n = 5300. We see that both the tree fused lasso and 1
random DFS estimators achieve their optimum MSEs at solutions of low complexity (degrees of freedom),
whereas wavelet smoothing does not come close to achieving this MSE across its entire path of solutions.
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Figure 4: The left panel shows the optimized MSE as a function of the sample size n for the fused lasso over a tree
graph, as well as the 1 random DFS and 5 random DFS estimators, and wavelet smoothing. The right panel shows the
MSE as a function of the degrees of freedom of each estimator, for a particular data example with n = 5300.
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BVG(t), t � 1 BDG(s), s � 1

Fused lasso, θ̂G n−2/3 unknown

Spanning tree wavelets, θ̂W unknown (log2 n log dmax)/n

DFS fused lasso, θ̂DFS n−2/3 (log n log logn)/n∗

Tree lower bound n−2/3d
−4/3
max log n/n

Table 1: A summary of the theoretical results derived in this paper. All rates are on the mean squared error (MSE)
scale (E‖θ̂ − θ0‖2n for an estimator θ̂), and for simplicity, are presented under a constant scaling for t, s, the radii in
the BVG(t),BDG(s) classes, respectively. The superscript “∗” in the BDG(s) rate for the DFS fused lasso is used to
emphasize that this rate only holds under the assumption that Wn � n. Also, we write dmax to denote the max degree
of the graph in question.

6 Discussion

Recently, there has been a significant amount on interest on graph-structured denoising. Much of this work
has focused on the construction of graph kernels or wavelet bases. We have proposed and studied a simple
method, defined by computing the 1d fused lasso over a particular DFS-induced ordering of the nodes of a
general graph. This linear-time algorithm comes with strong theoretical guarantees for signals of bounded
variation (achieving optimal MSE rates for trees of bounded degree), as well as guarantees for signals with a
bounded number of nonzero differences (achieving nearly optimal rates under a condition on the spacings of
jumps along the DFS-induced chain). We summarize our theoretical results in Table 1.

Practically, we have seen that the DFS fused lasso can often represent a useful tradeoff between compu-
tational efficiency and statistical accuracy, versus competing methods that offer better statistical denoising
power but are more computationally expensive, especially for large problems. A simple trick like averaging
multiple DFS fused lasso fits, over multiple random DFS-induced chains, often improves statistical accuracy
at little increased computational cost. Several extensions along these lines, and other lines, are possible. To
study any of them in detail is beyond the scope of this paper. We discuss them briefly below, leaving detailed
follow-up to future work.

6.1 Beyond simple averaging

Given multiple DFS fused lasso estimators, θ̂(1)DFS, . . . , θ̂
(K)
DFS, obtained using multiple DFS-induced chains

computed on the same graph G, there are several possibilities for intelligently combining these estimators
beyond the simple average, denoted (say) θ̄(K)

DFS = (1/K)
∑K

k=1 θ̂
(k)
DFS. To better preserve edges in the

combined estimator, we could run a simple nonlinear filter—for example, a median filter, over θ̂(1)DFS, . . . , θ̂
(K)
DFS

(meaning that the combined estimator is defined by taking medians over local neighborhoods of all of the
individual estimators). A more sophisticated approach would be to compute the DFS fused lasso estimators
sequentially, using the (k − 1)st estimator to modify the response in some way in the 1d fused lasso problem
that defines the kth DFS fused lasso estimator. We are intentionally vague here with the specifics, because
such a modification could be implemented in various ways; for example, it could be useful to borrow ideas
from the boosting literature, which would have us treat each DFS fused lasso estimator as a weak learner.
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6.2 Distributed algorithm

For large graphs, we should be able to both compute a DFS ordering over G, and solve the DFS fused lasso
problem in (18), in a distributed fashion. There are many algorithms for distributed DFS, offering a variety
of communication and time complexities; see, e.g., Tsin [2002] for a survey. Distributed algorithms for the
1d fused lasso are not as common, though we can appeal to the now well-studied framework for distributed
optimization via the alternating direction method of multipliers (ADMM) from Boyd et al. [2011]. Different
formulations for the auxiliary variables present us with different options for communication costs. We have
found that, for a formulation that requires O(1)-length messages to be communicated between processors,
the algorithm typically converges in a reasonably small number of iterations.

6.3 Theory for piecewise constant signals

The bounded differences class BDG(s) in (5) is defined in terms of the cut metric ‖∇Gθ‖0 of a parameter θ,
which recall, counts the number of nonzero differences occurring in θ over edges in the graph G. The cut
metric measures a notion of strong sparsity (compared to the weaker notion measured by the total variation
metric) in a signal θ, over edge differences; but, it may not be measuring sparsity on the “right” scale for
certain graphs G. Specifically, the cut metric ‖∇Gθ‖0 can actually be quite large for a parameter θ that is
piecewise constant over G, with a small number of pieces—these are groups of connected nodes that are
assigned the same constant value in θ. Over the 2d grid graph, e.g., one can easily define a parameter θ that
has only (say) two constant pieces but on the order of

√
n nonzero edge differences. Therefore, for such a

“simple” configuration of the parameter θ, the cut metric ‖∇Gθ‖0 is deceivingly large.
To formally define a metric that measures the number of constant pieces in a parameter θ, with respect to

a graph G = (V,E), we introduce a bit of notation. Denote by H(θ) ⊆ E the subset of edges over which θ
exhibits nonzero differences, i.e., H(θ) = {e ∈ E : θe+ 6= θe−}. Also write (∇G)−H(θ) for the submatrix of
the edge incidence matrix∇G with rows indexed by E \H(θ). We consider a metric defined by

ρG(θ) = nullity
(
(∇G)−H(θ)

)
,

where nullity(·) denotes the dimension of the null space of its argument. An equivalent definition is

ρG(θ) = the number of connected components in (V,E \H(θ)).

We may now define the piecewise constant class, with respect to G, and a parameter s > 0,

PCG(s) = {θ ∈ Rn : ρG(θ) ≤ s}.

It is not hard to to see that BVG(s) ⊆ PCG(s) (assuming only that G is connected), but for certain graph
geometries, the latter class PCG(s) will be much larger. Indeed, to repeat what we conveyed above, for the
2d grid one can naturally define a parameter θ such that θ ∈ BDG(

√
n) and θ ∈ PCG(2).

We conjecture that the fused lasso estimator over G can achieve a fast MSE rate when the mean θ0 in
(1) exhibits a small number of constant pieces, i.e., θ0 ∈ PCG(s), provided that these pieces are of roughly
equal size.

6.4 Weighted graphs

The key result in Lemma 1 can be extended to the setting of a weighted graph G = (V,E,w), with we ≥ 0
denoting the edge weight associated an edge e ∈ E.
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Lemma 8. Let G = (V,E,w) be a connected weighted graph, where recall we write V = {1, . . . , n}, and
we assume all edge weights are nonnegative. Consider running DFS on G, and denote by τ : {1, . . . , n} →
{1, . . . , n} the induced permutation, so that if v1, . . . , vn are the nodes in the order that they are traversed
by DFS, then

τ(i) = vi, for all i = 1, . . . , n.

Denote wmin = mine∈E we, the minimum edge weight present in the graph, and define

w̃τ(i),τ(i+1) =

{
we if e = {τ(i), τ(i+ 1)} ∈ E,
wmin otherwise,

for all i = 1, . . . , n− 1. (30)

It holds that
n−1∑
i=1

w̃τ(i),τ(i+1)

∣∣θτ(i+1) − θτ(i)
∣∣ ≤ 2

∑
e∈E

we|θe+ − θe− |, for all θ ∈ Rn, (31)

as well as
n−1∑
i=1

w̃τ(i),τ(i+1)1
{
θτ(i+1) 6= θτ(i)

}
≤ 2

∑
e∈E

we1{θe+ 6= θe−}, for all θ ∈ Rn. (32)

Remark 2. As with Lemma 1, Lemma 8 has also essentially appeared in the literature, in a form for binary
signals and the roughness metric being the quadratic form in the graph Laplacian, see Cesa-Bianchi et al.
[2013]. The main idea behind this result and Lemma 8 is the same, and the latter follows from the former
with only minor modifications.

For simplicity, when edges in the DFS chain do not appear in the original graph, we have defined their
corresponding weights to be the minimum of the weights in the original graph. Instead, we could have taken
the approach in Cesa-Bianchi et al. [2013], and defined the weight for such an edge in the DFS chain to be
the minimum of weights from original edges in its backtracking path.

The bounds in (31), (32) are the analogies of (15), (16) but for a weighted graph G; indeed we see that
we can still embed a DFS chain into G, but this chain itself comes with edge weights, as in (30). These new
edge weights in the chain do not cause any computational issues; the 1d fused lasso problem with arbitrary
penalty weights can still be solved in O(n) time using the taut string algorithm in Barbero and Sra [2014].
Thus, in principle, all of the results in this paper should carry over in some form to weighted graphs.

6.5 Robustness to signal perturbation

Here we briefly explore some robustness properties of the DFS fused lasso estimator, under perbutations of
the mean parameter θ0 in (1) with respect to a small number of nodes. This is based on the approach taken
by Cesa-Bianchi et al. [2013] to study robustness in their online graph-structured classification setting. Let
G = (V,E,w) be a weighted graph, and write ‖∇Gθ‖1 for the weighted total variation of a signal θ, i.e.,

‖∇Gθ‖1 =
∑
e∈E

we|θe+ − θe− |.

Denote by θδ a perturbed version of θ, where any number of entries are given by adding an amount δ > 0 to
the corresponding entries of θ. (More general forms of perturbations can also be investigated but slightly
complicate the discussion that follows, so for simplicity, we will limit ourselves to considering this simple
model for perbutations.) Denote by

I(θ, θδ) =
{
i ∈ {1, . . . , n} : θi 6= θδi

}
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the subset of nodes at which the components of θ, θδ differ. Observe

∣∣∣‖∇Gθ‖1 − ‖∇Gθδ‖1∣∣∣ =

∣∣∣∣∣∣
∑

{e+,e−}∩I(θ,θδ)6=∅

we

(
|θe+ − θe− | − |θδe+ − θ

δ
e− |
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

|{e+,e−}∩I(θ,θδ)|=1

we

(
|θe+ − θe− | − |θδe+ − θ

δ
e− |
)∣∣∣∣∣∣

≤
∑

|{e+,e−}∩I(θ,θδ)|=1

we

(
|θe+ − θδe+ |+ |θe− − θ

δ
e− |
)

= δ cutG
(
I(θ, θδ)

)
,

where, for a subset S ⊆ V , we use cutG(S) to denote the cost of the cut in between S, Sc in the graph G,
i.e., the sum of edge weights among edges with one endpoint in S and the other in Sc.

Thus we have shown that the (weighted) total variation metric associated withG has modulus of continuity
δ cutG(I(θ, θδ)) with respect to perturbations θδ of θ. This scales linearly in δ, but how does it scale in
|I(θ, θδ)| (the number of discrepancies)? The answer to this depends on the geometry of G, in particular, it
depends on whether perturbations occur at nodes having high (weighted) degree. Even when |I(θ, θδ)| is
small, cutG(I(θ, θδ)) can be very large—an example is given below with G being a star graph. Further, the
modulus of continuity δ cutG(I(θ, θδ)) is tight, i.e., it can always be achieved3, and thus for graphs G with
nodes of high (weighted) degrees, in a worst-case sense, small perturbations of θ can lead to big differences
in ‖∇Gθ‖1.

For the DFS-induced chain graph derived from G, the worst-case is not nearly as bad. Letting C denote
this chain and P the corresponding permutation matrix, by the same argument as above,∣∣∣‖∇CPθ‖1 − ‖∇CPθδ‖1∣∣∣ ≤ δ cutC

(
I(θ, θδ)

)
.

But the key difference now is that cutC(I(θ, θδ)) sums the edge weights of at most 2|I(θ, θδ)| edges in C,
due to the special structure of the chain. Denoting by νG(k) = maxF⊆E, |F |=k

∑
e∈F we the sum of the k

largest edge weights in G, and similarly for C, we can proceed to upper bound the right-hand side above,∣∣∣‖∇CPθ‖1 − ‖∇CPθδ‖1∣∣∣ ≤ δ νC(2|I(θ, θδ)|
)
≤ δ νG

(
2|I(θ, θδ)|

)
,

the second inequality following from the definition of the weights in the chain graph, as in (30). When all
weights in the original graph G are unity, e.g., this says that perturbing k of the entries of any input signal by
an amount δ results in a total variation difference over the DFS-induced chain of at most 2δk.

Consider the following instructive example, borrowed from Cesa-Bianchi et al. [2013]. Let G be a star
graph, having one center node that is connected to each of the remaining n− 1 nodes, and no other edges in
the graph. Assume that all weights of G are unity, and define θ to take a value 0 on the center node, and 1 on
all others. Then by flipping the value of the center node from 0 to 1, the total variation over G changes from
n− 1 to 0. However, for any DFS-induced chain, we see from the above analysis that the total variation can
change by at most 2, making it more robust to such a perturbation. We can rephrase this robustness property
in an interesting way. Suppose that the mean θ0 in (1) is defined over the star graph G to take a value 0 on the
center node, and 1 on all others. Then θ0 is “close” to a signal of bounded variation, since changing only
its value at the center node makes it have zero total variation, and yet in its current configuration it has total

3By this we mean that, for any graph G, any subset S ⊆ V of nodes at which perturbations are to occur, there exist θ, θδ such
that I(θ, θδ) = S and |‖∇Gθ‖1 − ‖∇Gθδ‖1| = δ cutG(I(θ, θ

δ)).
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variation n− 1. Hence, we would not expect the fused lasso estimator over G to be consistent, when fit to
data drawn around θ0. But the total variation of θ0 as measured over the DFS-induced chain C is at most 2
(as the total variation over C is zero once we perturb the value of center node from 0 to 1). With respect to C
then, the parameter θ0 is certainly of bounded variation and using the DFS fused lasso estimator, we will
achieve an MSE rate of n−2/3. The DFS fused lasso thus exhibits a robustness property, in that it allows us to
accurately estimate signals that are “close to” the set of bounded variation signals over G.

6.6 Potts and energy minimization

Replacing the total variation metric by the cut metric in the fused lasso problem (2) gives us

θ̃G = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖∇Gθ‖0, (33)

often called the Potts minimization problem. Because the 1d Potts minimization problem

θ̃1d = argmin
θ∈Rn

1

2
‖y − θ‖22 + λ‖∇1dθ‖0 (34)

can be solved efficiently, e.g., in worst-caseO(n2) time with dynamic programming Bellman [1961], Johnson
[2013], the same strategy proposed in this paper can be applied to reduce the graph Potts problem (33) to a
1d Potts problem (34), via a DFS ordering of the nodes. This may be especially interesting as the original
Potts problem (33) is nonconvex and generally intractable (i.e., intractable to solve to global optimality) for
an arbitrary graph structure, so a reduction to a worst-case quadratic-time denoiser could be very valuable.

When the optimization domain in (33) is a discrete set, the problem is often called an energy minimization
problem, as in Boykov et al. [2001]. It has not escaped our notice that denoising over DFS-induced chains
could be useful for this setting, as well.
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A Proofs

A.1 Derivation of (12) from Theorem 3 in Wang et al. [2016]

We first establish a result on the exact form for the inverse of (an augmented version of) the edge incidence
matrix of a generic tree T = (V,ET ), where, recall V = {1, . . . , n}. Without a loss of generality, we may
assume that the root of T is at node 1. For m ≤ n, we define a path in T , of length m, to be a sequence
p1, . . . , pm such that {pr, pr+1} ∈ ET for each r = 1, . . . ,m− 1. We allow for the possibility that m = 1,
in which case the path has just one node. For any j, k, ` = 1, . . . , n, we say that j is on the path from k to ` if
there exists a path p1, . . . , pm such that p1 = k, pm = ` and pr = j for some r = 1, . . . ,m. For each node
i = 2, . . . , n (each node other than the root), we define its parent p(i) to be the node connected to i which is
on the path from the root to i.
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We can also assume without a loss of generality that for each i = 2, . . . , n, the (i − 1)st row of ∇T
corresponds to the edge {p(i), i}, and thus we can write

(∇T )i−1,j =


−1 if j = p(i),

1 if j = i,

0 if j ∈ {1, . . . , n} \ {i, p(i)}.

for each j = 1, . . . , n. The next lemma describes the inverse of∇T , in the appropriate sense.

Lemma 9. Let e1 = (1, 0, . . . , 0) ∈ Rn, and define the matrix AT ∈ Rn×n by

(AT )i,j =

{
1 if j is on the path from the root to i,
0 otherwise,

(35)

for each i, j = 1, . . . , n. Then

AT =

(
e>1
∇T

)−1
.

Proof. We will prove that the product

B =

(
e>1
∇T

)
AT

is the identity. As the root of T corresponds to node 1, we have that by definition of AT that its first column is

(AT )·,1 = (1, . . . , 1),

which implies that the first column of B is
B·,1 = e1.

Moreover, by definition of AT , its first row is

(AT )1,· = e>1 ,

which implies that the first row of B is
B1,· = e>1 .

Let us now assume that i, j are each not the root. We proceed to consider three cases.

Case 1. Let j 6= i, and j be on the path from the root to i. Then j is also on the path from the root to p(i).
This implies that

Bij =

(
e>1
∇T

)
i,·

(AT )·,j = (∇T )i−1,·(AT )·,j = 1− 1 = 0.

Case 2. Let j 6= i, and j not be on the path from the root to i. Then j is not on the path from the root to p(i),
which implies that

Bij =

(
e>1
∇T

)
i,·

(AT )·,j = (∇T )i−1,·(AT )·,j = 0− 0 = 0.

Case 3. Let j = i. Then j is on the path from the root to i, and j is not on the path from the root to p(i).
Hence,

Bij =

(
e>1
∇T

)
i,·

(AT )·,j = (∇T )i−1,·(AT )·,j = −1 · 0 + 1 · 1 = 1.

Assembling these three cases, we have shown that B = I , completing the proof.
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We now establish (12).

Proof of (12). The proof of Theorem 3 in Wang et al. [2016] proceeds as in standard basic inequality
arguments for the lasso, and arrives at the step

‖Π⊥(θ̂G − θ0)‖22 ≤ 2ε>Π⊥(θ̂G − θ0) + 2λ‖∇Gθ0‖1 − 2λ‖∇Gθ̂G‖1,

where Π⊥ is the projection matrix onto the space span{1}⊥, i.e., the linear space of all vectors orthogonal to
the vector 1 = (1, . . . , 1) ∈ Rn of all 1s. The proof in Wang et al. [2016] uses the identity Π⊥ = ∇†G∇G,
where∇†G denotes the pseudoinverse of∇G. However, notice that we may also write Π⊥ = ∇†T∇T for any
spanning tree T of G. Then, exactly the same arguments as in Wang et al. [2016] produce the MSE bound

‖θ̂G − θ0‖2n = OP

(
M(∇T )

√
log n

n
‖∇Gθ0‖1

)
,

where M(∇T ) is the maximum `2 norm among the columns of∇†T . We show below, using Lemma 9, that
M(∇T ) ≤

√
n, and this gives the desired MSE rate.

For any b ∈ Rn−1, we may characterize∇†T b as the unique solution x ∈ Rn to the linear system

∇Tx = b,

such that 1>x = 0, i.e., the unique solution to the linear system(
e>1
∇T

)
x =

(
a
b

)
,

for a value of a ∈ R such that 1>x = 0. By Lemma 9, we may write

x = AT

(
a
b

)
,

so that the constraint 0 = 1>x = na+ 1>(AT )·,2:nb gives a = −(1/n)>(AT )·,2:nb, and

x = (I − 11>/n)(AT )·,2:nb.

Evaluating this across b = e1, . . . , en, we find that the maximum `2 norm of columns of ∇†T is bounded by
the maximum `2 norm of columns of (AT )·,2:n, which, from the definition in (35), is at most

√
n.

A.2 Proof of Theorem 4

We first present two preliminary lemmas.

Lemma 10. Let S1, . . . , Sm be a partition of the nodes of G such that the total number of edges with ends in
distinct elements of the partition is at most s. Let k ≤ mini=1,...,m |Si|. Then

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖22 ≥
kmt2

4σ2s2
exp

(
− kt2

σ2s2

)
.

Proof. For each η ∈ {−1, 1}m, define

θη =
δ

2

m∑
i=1

ηi
1Si√
|Si|

,
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where δ > 0 will be specified shortly. Also define the class P = {N(θη, σ
2I) : η ∈ {−1, 1}m}. Note that

‖∇Gθη‖1 ≤ δs/
√
k, so to embed P into the class {N(θ, σ2I) : θ ∈ BVG(t)}, we set δ = t

√
k/s.

Let η, η′ ∈ {−1, 1}m differ in only one coordinate. Then the KL divergence between the corresponding
induced measures in P is ‖θη − θη′‖22/σ2 ≤ δ2/σ2. Hence by Assouad’s Lemma [Yu, 1997], and a well-
known lower bound on the affinity between probability measures in terms of KL divergence,

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖22 ≥
δ2m

4σ2
exp

(
− δ2

σ2

)
.

The result follows by plugging in the specified value for δ.

Lemma 11. Let G be a tree with maximum degree dmax, and k ∈ {1, . . . , n} be arbitrary. Then there exists
a partition as in Lemma 10, s = m− 1, and

k ≤ min
i=1,...,m

|Si| ≤ k(dmax + 1).

Proof. Our proof proceeds inductively. We begin by constructing S′1, the smallest subtree among all those
having size at least k, and generated by a cut of size 1 (i.e., separated from the graph by the removal of 1
edge). Note that |S′1| ≤ kdmax, because if not then S′1 has at least k internal nodes, and we can remove its
root to produce another subtree whose size is smaller but still at least k.

For the inductive step, assume S′1, . . . , S
′
` have been constructed. We consider two cases. (For a subgraph

G′ of G, we denote by G−G′ the complement subgraph, given by removing all nodes in G′, and all edges
incident to a node in G′.)

Case 1. If |G− ∪`i=1S
′
i| > k, then we construct S′`+1, the smallest subtree of G− ∪li=1S

′
i among all those

having size at least k, and generated by a cut of size 1. As before, we obtain that |S′`+1| ≤ kdmax.

Case 2. If |G− ∪`i=1S
′
i| ≤ k, then the process is stopped. We define Si = S′i, i = 1, . . . , `− 1, as well as

S` = S′` ∪ (G− ∪`i=1S
′
i). With m = `, the result follows.

We now demonstrate a more precise characterization of the lower bound in Theorem 4, from which the
result in the theorem can be derived.

Theorem 12. Let G be a tree with maximum degree dmax. Then

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖22 ≥
t2

4eσ2n

((
σn

2t(dmax + 1)

)2/3

− 1

)2

.

Proof. Set s = m− 1 and

k =

⌊(
σn

2t(dmax + 1)

)2/3
⌋
.
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By Lemmas 10 and 11,

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖22 ≥
kmt2

4σ2s2
exp

(
− kt2

σ2s2

)
≥ kt2

4σ2m
exp

(
− kt2

σ2(m− 1)2

)
≥ kt2

4σ2m
exp

(
− t2k3(dmax + 1)2

σ2n2
m2

(m− 1)2

)
≥ kt2

4σ2n
exp

(
− 4t2k3(dmax + 1)2

σ2n2

)
≥ k2t2

4σ2n
exp(−1).

In the above, the third line uses n/m ≤ kdmax as given by Lemma 11, the fourth line simply uses m ≤ n
and m2/(m− 1)2 ≤ 4 (as m ≥ 2), and the last line uses the definition of k. Thus, because

k ≥
(

σn

2t(dmax + 1)

)2/3

− 1,

we have established the desired result.

A.3 Proof of Theorem 7

First we establish that, as G is a tree, the number of nodes of degree at most 2 is at least n/2. Denote by di
be the degree of the node i, for each i = 1, . . . , n. Then

2(n− 1) =
n∑
i=1

di =
∑
i : di≤2

di +
∑
i : di≥3

di ≥ |{i : di ≤ 2}|+ 3|{i : di ≥ 3}| = 3n− 2|{i : di ≤ 2}|.

Hence, rearranging, we find that |{i : di ≤ 2}| ≥ n/2 + 1.
Let I = {i : di ≤ 2} so that |I| ≥ dn/2e and stipulate that |I| is even without loss of generality. Let k

be the largest even number such that k ≤ s/2. Define

B = {z ∈ Rn : zI ∈ {−1, 0,+1}|I|, zIc = 0, ‖z‖0 = k}.

Note that by construction B ⊆ BDG(s).
Assume s ≤ n/6. Then this implies k/2 ≤ n/6 ≤ |I|/3. By Lemma 4 in Raskutti et al. [2011], there

exists B̃ ⊆ B such that

log |B̃| ≥ k

2
log

(
|I| − k
k/2

)
,

and ‖z − z′‖22 ≥ k/2 for all smashz, z′ ∈ B̃. Defining B0 = 2δB̃, for δ > 0 to be specified shortly, we now
have ‖z − z′‖22 ≥ 2δ2k for all z, z′ ∈ B0.

For θ ∈ B0, let us consider comparing the measure Pθ = N(θ, σ2I) against P0 = N(0, σ2I): the KL
divergence between these two satisfies K(Pθ||P0) = ‖θ‖22/σ2 = 2δ2k/σ2. Let δ =

√
ασ2/(2k) log |B0|,

for a parameter α < 1/8 that we will specify later. We have

1

|B0|
∑
θ∈B0

K(Pθ||P0) ≤ α log |B0|.
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Hence by Theorem 2.5 in Tsybakov [2009],

inf
θ̂

sup
θ0∈BDG(s)

P(‖θ̂ − θ0‖22 ≥ δ2k) ≥
√
|B0|

1 +
√
|B0|

(
1− 2α−

√
2α

log |B0|

)
. (36)

It holds that

δ2k =
ασ2

2
log |B0| ≥

ασ2k

4
log
|I| − k
k/2

≥ Cσ2s log

(
n

s

)
,

for some constant C > 0 depending on α alone. Moreover, the right-hand side in (36) can be lower bounded
by (say) 1/4 by taking α to be small enough and assuming n/s is large enough. Thus we have established

inf
θ̂

sup
θ0∈BDG(s)

P

(
‖θ̂ − θ0‖22 ≥ Cσ2s log

(
n

s

))
≥ 1

4
,

and the result follows by Markov’s inequality.

References

I. Abraham and O. Neiman. Using petal-decompositions to build a low stretch spanning tree. ACM Symposium
on Theory of Computing, 44:395–406, 2012.
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