
Equivalences Between Sparse Models and Neural Networks

Ryan J. Tibshirani

April 15, 2021

Abstract

We present some observations about neural networks that are, on the one hand, the result of fairly trivial algebraic
manipulations, and on the other hand, potentially noteworthy and deserving of further study. A summary is as follows.

• The lasso is equivalent to a two-layer neural network fit with weight decay (i.e., with a ridge penalty placed on
all of the parameters), linear activation functions, no bias terms, and a very simple connectivity structure.

• A k-layer neural network that has otherwise the same structure is in turn equivalent to an `p-penalized regression
problem, where p = 2/k < 1.

• Similar equivalences hold for regression problems in which we seek group sparsity (the group lasso, and an `p
variant of the group lasso for p < 1) and neural networks with richer connectivity structures.

• All of these equivalences extend to any loss function (not just squared loss, as is traditional in regression).

Lastly, we present equivalent representations for fully-connected neural networks that use rectified linear unit (ReLU)
activation functions, and have two or three layers. These representations may help shed light on how weight decay can
be sparsity-inducing in such network structures.

1 Introduction
In this note, we make some basic observations about reparametrizing certain neural network optimization problems. On
the one hand, the arguments that we present are elementary, and in many cases, quite trivial. On the other, they lead to
interesting and potentially fruitful directions for further study, and we have not seen the same observations presented in
the literature (though to be fair, several related ideas have appeared before, and we draw connections to them).

2 Sparse models

2.1 Two-layer case
For responses yi ∈ R, i = 1, . . . , n, feature vectors xi ∈ Rd, i = 1, . . . , n, and a tuning parameter λ ≥ 0, we consider
the standard lasso problem

minimize
β

n∑
i=1

(yi − xTi β)2 + 2λ

d∑
j=1

|βj |. (1)

We note the following simple observation: for any c,

min
ab=c

(a2 + b2) = 2|c|,

the minimum being achieved at a = b =
√
|c|. In other words, this is just saying that the arithmetic mean-geometric

mean (AM-GM) inequality 1
2 (a

2 + b2) ≥ ab is tight when a = b. We can apply this observation to (1): by introducing
u, v ∈ Rd such that βj = ujvj , j = 1, . . . , d, we can rewrite problem (1) as

minimize
u,v

n∑
i=1

(
yi −

d∑
j=1

xijujvj

)2

+ λ

d∑
j=1

(u2j + v2j). (2)

1

The above problem is an optimization over a two-layer neural network1 that we call simply-connected: each input unit j
is connected to hidden unit j (and no others). We have all linear activation functions, with no bias parameters; we also
have a ridge penalty on all parameters, which is equivalent to training via gradient descent with weight decay.

Although the equivalence of (1), (2) is a result of trivial algebra, it is a bit surprising, at least at first glance. Due to
the sparsity-inducing nature of the `1 norm in (1), we see that solutions in (2) must also be sparse. But this would not
be immediately obvious by simply looking at (2) on its own. That sparse solutions arise in this problem–where a ridge
penalty is combined with a product parametrization (in the loss function)—is somewhat counterintuitive, and suggests
some interesting geometry may be at play in the nonconvex, higher-dimensional problem (2) (“higher-dimensional” in
the sense that it has 2d variables, compared to d variables in (1)).

Another perspective. There is a different way to see the equivalence of (1), (2); it is a bit circuitous compared to the
above reasoning, but we tend to like it because we find that it helps to see how to derive other equivalences, presented
after this section. First, note that, without a loss of generality, we may constrain v ≥ 0 in problem (2) (as the signs can
always be absorbed into the components of u), yielding

minimize
u, v≥0

n∑
i=1

(
yi −

d∑
j=1

xijujvj

)2

+ λ

d∑
j=1

(u2j + v2j).

Now reparametrize, using
vj =

√
αj , uj = βj/

√
αj ,= j = 1, . . . , d,

to give the equivalent problem

minimize
α≥0, β

n∑
i=1

(yi − xTi β)2 + λ

d∑
j=1

(β2
j /αj + αj). (3)

(Some care needs to be taken to handle division by zero: we interpret the jth summand be 0 if αj = βj = 0, and∞ if
αj = 0 but βj 6= 0.) Lastly, that (3) is equivalent to the lasso problem (1) is given by the following simple lemma.

Lemma 1. The function g : R+ × R→ R defined by

g(x, y) =

1
2 (y

2/x+ x) x 6= 0

0 x = y = 0

∞ x = 0, y 6= 0

has
min
x≥0

g(x, y) = |y|,

with the minimum achieved at x = |y|.
To reiterate, we have argued that (2) ⇐⇒ (3) ⇐⇒ (1) (where we write P ⇐⇒ Q to denote that problems P,Q

are equivalent). Introducing (3) as a middleman to equate (2) and (1) is a strategy that we will mimick both in the next
subsection (on the multi-layer case), and in the coming sections (on group sparsity and fully-connected networks).

Before moving to the next subsection, we make a few remarks.

General loss functions. There is nothing special here about squared loss, and the same equivalence actually holds
for any loss function L. The exact same arguments as above show that for any L (convex or not), the problem

minimize
u,v

n∑
i=1

L

(
yi,

d∑
j=1

xijujvj

)
+ λ

d∑
j=1

(u2j + v2j). (4)

is equivalent to

minimize
β

n∑
i=1

L(yi, x
T
i β) + 2λ

d∑
j=1

|βj |. (5)

1The structure in (2) hardly deserves to be referred to as a neural network, because it is so simple, and there is a symmetry between layers—we
can interpret u as the first-layer weights and v as the second-layer weights, or vice versa. (In a standard neural network, the aspect of composition
with nonlinear activation functions would of course result in asymmetry between the layers.) That said, we will still refer to it as a neural network;
and the networks we study in this short note will become progressively less simple and more structured.

2

Matrix factorization. The equivalence between (4), (5) is quite related to what are now well-known results in the
matrix factorization literature. From Srebro et al. (2004), we know that for any matrix Y ∈ Rn×d and loss L,

minimize
M

L(Y,M) + 2λ‖M‖∗ (6)

(with ‖ · ‖F denoting the Frobenius norm, and ‖ · ‖∗ denoting the trace norm) is equivalent to

minimize
U,V

L(Y,UV T) + λ(‖U‖2F + ‖V ‖2F). (7)

This is in fact, at its core, the same equivalence as that between (4), (5). For diagonal matrices, the trace norm is the `1
norm of the diagonal, and the Frobenius norm is the `2 norm of the diagonal.

Further, for problems like low-rank matrix completion, the equivalent representation given by problem (7), though
nonconvex, can often present significant computational advantages, see, e.g., Hastie et al. (2015). This motivates the
next remark.

Large-scale optimization. To solve a large-scale `1-penalized problem (5), it might be worth pursuing optimization
in the formulation (4). While latter is nonconvex (even for convex L), the modern deep learning optimization toolkit
can be incredibly efficient (in large part, it seems, thanks to advances in hardware). It can also be surprisingly effective
at delivering practically reasonable (local) solutions to continuous, nonconvex problems. In this sense, it seems worth
applying this toolkit to (4) at scale, to see how it fares (especially for smooth L beyond squared loss, e.g., for logistic or
multinomial regression loss, in which case (5) becomes more challenging than in the squared loss case).

Early stopping. It is well-known that early-stopped gradient descent (as well as stochastic gradient descent) admits
practical and formal connections to ridge regularization; see, e.g., Ali et al. (2019, 2020) and references therein. In this
light, we could apply the deep learning optimization toolkit to problem (4), but instead of using ridge penalties (instead
of weight decay), we could use early stopping. It would be reasonable to expect that the early-stopped iterates would
approximate solutions in (5) (where the stopping time would be in inverse correspondence with the tuning parameter λ,
i.e., earlier stopping would mean heavier regularization).

2.2 Multi-layer case
Consider now a k-layer neural network, again with simple connections, and linear activations (with no bias terms),

minimize
w(`), `=1,...,k

n∑
i=1

L

(
yi,

d∑
j=1

xij

k∏
`=1

w
(`)
j

)
+ λ

d∑
j=1

k∑
`=1

(w
(`)
j)2. (8)

Similar to the two-layer case, we note the following simple observation: for any c,

min∏k
`=1 a`=c

(k∑
`=1

a2`

)
= k|c|2/k,

the minimum being achieved at a` = |c|1/k, ` = 1, . . . , k. As before, we can interpret this as saying that the AM-GM
inequality 1

k

∑k
`=1 a

2
` ≥

∏k
`=1 a

2/k
` is tight when a1 = · · · = ak. Applying this fact to (8), we can rewrite it as

minimize
β

n∑
i=1

L

(
yi,

d∑
j=1

xijβj

)
+ kλ

d∑
j=1

|βj |2/k. (9)

The above problem uses an `p penalty, where p = 2/k, as its regularizer. Note that when we have k > 2 layers in (8),
we have p = 2/k < 1, which makes the penalty in (9) nonconvex. Note also that in the infinite depth limit (k →∞),
we get an `0 penalty in (9) (we have to shrink λ appropriately as we grow k, in order to end up with a finite effective
regularization parameter in (9)).

The algebra equating (8), (9) is again quite trivial. Nonetheless, the connection seems surprising and interesting.
From what we know about how `p regularization acts in the latter problem (9), we see that the former problem (8)
admits sparse solutions, even more so for greater depth (larger k).

3

Another perspective. As before, there is a different way to see the equivalence between (8), (9). The next lemma
generalizes Lemma 1, though it is still very simple.

Lemma 2. For any r > 0, the function gr : R+ × R→ R defined by

gr(x, y) =

1
r+1 (y

2/xr + rx) x 6= 0

0 x = y = 0

∞ x = 0, y 6= 0

has
min
x≥0

gr(x, y) = |y|
2

r+1 ,

with the minimum achieved at x = |y|
2

r+1 .

Returning to (8), without a loss of generality, we can introduce the constraint w(k) ≥ 0, then reparametrize via

w
(k)
j =

√
αj , w

(k−1)
j = βj/

√
αj , j = 1, . . . , d.

Applying Lemma 2 (with r = 1), we can collapse the last two layers into one by minimizing over α ≥ 0, and then for
simplicity we can change notation back to w(k−1) = β. This yields

minimize
w(`), `=1,...,k−1

n∑
i=1

L

(
yi,

d∑
j=1

xij

k−1∏
`=1

w
(`)
j

)
+ λ

d∑
j=1

(k−2∑
`=1

(w
(`)
j)2 + 2|w(k−1)

j |
)
.

Proceeding along the same lines, we introduce the constraint w(k−1) ≥ 0, reparametrize via

w
(k−1)
j = αj , w

(k−2)
j = βj/αj , j = 1, . . . , d,

and collapse the last two layers into one, by applying Lemma 2 (with r = 2), yielding

minimize
w(`), `=1,...,k−2

n∑
i=1

L

(
yi,

d∑
j=1

xij

k−2∏
`=1

w
(`)
j

)
+ λ

d∑
j=1

(k−3∑
`=1

(w
(`)
j)2 + 3|w(k−2)

j |2/3
)
.

Carrying on collapsing layers in this manner, we arrive at the `p-penalized problem (9).
The remarks about optimization at the end of Section 2.1 in the discussion of the equivalence between (1), (2) all

carry over to the current setting as well. We reiterate that it would be interesting to approximately solve (9) by attacking
(8) with the modern deep learning optimization toolkit. This could be potentially even more fruitful than solving (1) via
(2), since problem (9) for k > 2 is itself nonconvex to begin with, and generally much harder to solve than (1).

We make one more remark before moving on to discuss group sparsity.

Hardness. For any p < 1, it is known that `p-penalized problems of the form (9) are strongly NP-hard (Chen et al.,
2015), for a wide class of loss functions L (this includes common ones like squared loss and logistic loss). The same
result therefore applies to problem (8), for each k > 2. This gives a sense of how difficult it must be to train a neural
network to global optimality, in general: even an extremely simple neural network, with all simple connections and
linear activations, is strongly NP-hard once we have k > 2 layers!

On the other hand, this result may have little practical relevance, because as already stated, current deep learning
optimization toolkits seem to be able to produce useful local solutions at huge scale.

3 Group-sparse models

3.1 Two-layer case
We now extend the results to the case of a more interesting connectivity structure, and as we will see, the group lasso
arises as an equivalence in the two-layer case (whose groups are in correspondence with the connectivity structure).
Consider

minimize
w(1),w(2)

n∑
i=1

L

(
yi,

d2∑
j=1

xTi,Gj
w

(1)
j w

(2)
j

)
+ λ

(d2∑
j=1

‖w(1)
j ‖

2
2 + ‖w(2)‖22

)
. (10)

4

In this network, we have all linear activation functions with no bias terms. There are d2 units in the output layer, and
each output unit j is connected to all input units in some set Gj . (Take Gj = {1, . . . , d} and we get a fully-connected
network; take Gj = {j} and we get the simply-connected networks considered previously.)

Now take w(2) ≥ 0 without a loss of generality, reparametrize via

w
(2)
j =

√
αj , w

(1)
j = βj/

√
αj , j = 1, . . . , d2,

and minimize over α ≥ 0 (applying Lemma 1 with x =
√
αj and y = ‖βj‖2, for each j = 1, . . . , d2) to yield

minimize
β

n∑
i=1

L

(
yi,

d2∑
j=1

xTi,Gj
βj

)
+ 2λ

d2∑
j=1

‖βj‖2. (11)

Thus the two-layer neural network (10) is evidently equivalent to (11), which is a kind of group lasso problem.

3.2 Multi-layer case
In the multi-layer case, it seems the most interesting extension of the previous two-layer result comes from a network
structure with group connections between the first and second layers, and simple connections between all other layers.
That is, consider

minimize
w(`), `=1,...,k

n∑
i=1

L

(
yi,

d2∑
j=1

xTi,Gj
w

(1)
j

k∏
`=2

w
(`)
j

)
+

(d2∑
j=1

‖w(1)
j ‖

2
2 +

k∑
`=2

‖w(`)‖22
)
. (12)

Then virtually the same arguments as in the previous multi-layer result (when we have all simple connections) produce
the equivalent group sparse problem:

minimize
β

n∑
i=1

L

(
yi,

d2∑
j=1

xTi,Gj
βj

)
+ kλ

d2∑
j=1

‖βj‖2/k2 . (13)

The penalty in problem (13) is a kind of `p variant of the group lasso penalty, with p = 2/k. Note that when we have
k > 2 layers in (12), this gives p = 2/k < 1, and the penalty in (13) is nonconvex.

The remarks about optimization made at the end of Section 2.1 in reference to problems (1), (2) all carry over to
the connection between (12), (13) (and (10), (11) in the case k = 2) as well. Even just the group lasso (11), at large
problem sizes, is considerably more challenging computationally than the lasso (1). Of course, the `p variant (13) only
makes matters worse, computationally. Therefore, it could be useful to explore optimization in (10) or (12), with a deep
learning toolkit.

4 Fully-connected networks

4.1 Two-layer case
We apply the same ideas in order to derive equivalences for fully-connected neural networks with rectified linear unit
(ReLU) activation functions, and weight decay. Starting with the two-layer case, consider

minimize
b(1),w(1),w(2)

n∑
i=1

L

(
yi,

d2∑
j=1

φ(xTi w
(1)
j + b

(1)
j)w

(2)
j

)
+ λ

(d2∑
j=1

‖w(1)
j ‖

2
2 + ‖w(2)‖22

)
. (14)

Here φ(x) = max{x, 0} is the ReLU function. Note that this has the important positive homogeneity property:

φ(ax) = sign(a)φ(|a|x).

This allows us to rewrite (14) as

minimize
b(1), w(1), w(2)≥0,
s(2)∈{−1,1}d2

n∑
i=1

L

(
yi,

d2∑
j=1

φ(xTi w
(1)
j w

(2)
j + b

(1)
j w

(2)
j)s

(2)
j

)
+ λ

(d2∑
j=1

‖w(1)
j ‖

2
2 + ‖w(2)‖22

)
.

5

Reparametrize via
w

(2)
j =

√
αj , w

(1)
j = βj/

√
αj , b

(1)
j = γj/

√
αj , j = 1, . . . , d2,

then minimize over α ≥ 0 (applying Lemma 1 with x =
√
αj and y = ‖βj‖2, for each j = 1, . . . , d2) to obtain

minimize
α, β, s(2)∈{−1,1}d2

n∑
i=1

L

(
yi,

d2∑
j=1

φ(xTi βj + γj)s
(2)
j

)
+ 2λ

d2∑
j=1

‖βj‖2. (15)

The equivalence between (14) and (15) is quite interesting. Due to what we know about the group lasso penalty, many
of the parameters βj , j = 1, . . . , d2 will be sparse at the solution in (15), which means that the same will be true of the
feature maps

x 7→ φ(xTi w
(1)
j + b

(1)
j)w

(2)
j , j = 1, . . . , d2.

at the solution in (14). (That is, many of these functions will be either the zero map, or a constant map.) Therefore, a
standard two-layer neural network, trained with weight decay, is actually “hunting” for a sparse representation in terms
of its learned features!

We should be clear that this is not a new result: the equivalence between (14), (15) already appears in Theorem 1
by Neyshabur et al. (2015). It has been followed up on by several authors, in similar contexts (fully-connected ReLU
networks, usually with two layers, sometimes infinitely wide), including Savarese et al. (2019); Ongie et al. (2020);
Parhi and Nowak (2021). We are only stating it here, in the current note, because it fits the general theme of equating
neural networks with sparse models and it follows from the same line of arguments.

4.2 Three-layer case
We now move to the three-layer case. We omit bias terms only for simplicity of exposition. Consider

minimize
w(1),w(2),w(3)

n∑
i=1

L

(
yi,

d3∑
j=1

φ
(
h(2)(xi)

Tw
(2)
j

)
w

(3)
j

)
+ λ

(d2∑
j=1

‖w(1)
j ‖

2
2 +

d3∑
j=1

‖w(2)
j ‖

2
2 + ‖w(3)‖22

)
, (16)

where h(2) has component functions

h
(2)
j (x) = φ(xTw

(1)
j), j = 1, . . . , d2.

By the arguments of the last subsection, we can reduce (16) to

minimize
w(1),w(2)

s(3)∈{−1,1}d3

n∑
i=1

L

(
yi,

d3∑
j=1

φ
(
h(2)(xi)

Tw
(2)
j

)
s
(3)
j

)
+ λ

(d2∑
j=1

‖w(1)
j ‖

2
2 +

d3∑
j=1

2‖w(2)
j ‖2

)
,

Constraining w(2) ≥ 0 and introducing a separate sign variable, then using the positive homogeneity property of the
ReLU function, we can rewrite the above as

minimize
w(1), w(2)≥0,

s(2)∈{−1,1}d3×d2 ,

s(3)∈{−1,1}d3

n∑
i=1

L

(
yi,

d3∑
j=1

φ

(d2∑
`=1

φ(xTi w
(1)
` w

(2)
j`)s

(2)
j`

)
s
(3)
j

)
+ λ

(d2∑
j=1

‖w(1)
j ‖

2
2 + 2

d3∑
j=1

‖w(2)
j ‖2

)
,

Now the reparametrization and partial minimization is a bit more tricky than it was before. First define

w
(2)
j` = αj`, w

(1)
` = βj`/αj`, ` = 1, . . . , d2, j = 1, . . . , d3.

Then the above problem becomes

minimize
α≥0, β,

βj` ∝ βk` for all j, k, `
s(2)∈{−1,1}d3×d2 ,

s(3)∈{−1,1}d3

n∑
i=1

L

(
yi,

d3∑
j=1

φ

(d2∑
`=1

φ(xTi βj`)s
(2)
j`

)
s
(3)
j

)
+ λ

(
1

d3

d2∑
`=1

d3∑
j=1

‖βj`‖22
αj`

+ 2

d3∑
j=1

√√√√ d2∑
`=1

α2
j`

)
.

6

There are two important points to note about the above problem. First, we placed additional constraints βj` ∝ βk` for
all j, k, ` (where for vectors u, v, we use u ∝ u to denote that u = cv for a scalar c) in the optimization problem, which
are necessary to preserve the structure in the original parametrization. Second, while there was a degree of flexibility in
expressing each ‖w(1)

` ‖22 in the new parametrization, we purposely chose

‖w(1)
` ‖

2
2 =

1

d3

d2∑
j=1

‖βj`‖22
αj`

in order to make the partial optimization over α ≥ 0 analytically tractable. To that end, the following lemma is useful.

Lemma 3. Define a function g : Rd+ × Rd → R by

g(x, y) =
1

d

d∑
`=1

y2`
x2`

+ 2‖x‖2

(where we interpret the each summand as per the rules of Lemmas 1 and 2: the `th summand is 0 if x` = y` = 0, and
∞ if x` = 0 but y` 6= 0). Then

min
x≥0

g(x, y) =
5

d

(
d

2

)2/3(d∑
`=1

y`

)2/3

,

with the minimum achieved at

x` =

(
2

d

)1/3

y
1/2
`

(d∑
m=1

ym

)1/6

, ` = 1, . . . , d.

Applying this lemma to the problem in the display that immediately precedes the lemma (i.e., applying it separately
for each j = 1, . . . , d3, with x = (σj1, . . . , σjd2) and y = (‖βj1‖2, . . . , ‖βjd2‖2)), yields

minimize
βj` ∝ βk` for all j, k, `
s(2)∈{−1,1}d3×d2 ,

s(3)∈{−1,1}d3

n∑
i=1

L

(
yi,

d3∑
j=1

φ

(d2∑
`=1

φ(xTi βj`)s
(2)
j`

)
s
(3)
j

)
+

5λ

d3

(
d3
2

)2/3 d3∑
j=1

(d2∑
`=1

‖βj`‖2
)2/3

.

Finally, we can eliminate the proportionality constraints by (re)introducing variables βj` = w
(1)
` w

(2)
j` for each j, `, and

further simplify by eliminating the sign variable s(2), yielding

minimize
w(1), w(2), s(3)∈{−1,1}d3

n∑
i=1

L

(
yi,

d3∑
j=1

φ

(d2∑
`=1

φ(xTi w
(1)
`)w

(2)
j`

)
s
(3)
j

)
+

5λ

d3

(
d3
2

)2/3 d3∑
j=1

(d2∑
`=1

|w(2)
j` |‖w

(1)
` ‖2

)2/3

.

(17)
The equivalence between (16), (17) is similar to that in the two-layer case. However, similar to what happens in other
multi-layer equivalences derived in this note, the penalty in (17) has become nonconvex. It therefore promotes sparsity
to an even greater degree, in the learned feature maps.

Acknowledgements
This note was inspired by a conversation with Rob Nowak. We would also like to thank Rob for his insights in this and
ensuing conversations, and for pointing us to the paper by Neyshabur et al. (2015) and follow up work.

References
Alnur Ali, J. Zico Kolter, and Ryan J. Tibshirani. A continuous-time view of early stopping for least squares. In

International Conference on Artificial Intelligence and Statistics, 2019.

7

Alnur Ali, Edgar Dobriban, and Ryan J. Tibshirani. The implicit regularization of stochastic gradient flow for least
squares. In International Conference on Machine Learning, 2020.

Yichen Chen, Dongdong Ge, Mengdi Wang, Zizhuo Wang, Yinyu Ye, and Hao Yin. Strong NP-hardness for sparse
optimization with concave penalty functions. In International Conference on Machine Learning, 2015.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank SVD via fast
alternating least squares. Journal of Machine Learning Research, 16(104):3367–3402, 2015.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: on the role of implicit
regularization in deep learning. In International Conference on Learning Representations (Workshop), 2015.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded norm infinite width
ReLU nets: The multivariate case. In International Conference on Learning Representations, 2020.

Rahul Parhi and Robert D. Nowak. Banach space representer theorems for neural networks and ridge splines. Journal
of Machine Learning Research, 22(43):1–40, 2021.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm networks look in
function space? In Conference on Learning Theory, 2019.

Nathan Srebro, Jason Rennie, and Tommi S. Jaakkola. Maximum-margin matrix factorization. In Advances in Neural
Information Processing Systems, 2004.

8

	Introduction
	Sparse models
	Two-layer case
	Multi-layer case

	Group-sparse models
	Two-layer case
	Multi-layer case

	Fully-connected networks
	Two-layer case
	Three-layer case

