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A.1 Proof of Theorem 1

We can write the sensor fusion update as

P̃t+1 = (H̃T R̃−1t+1H̃)−1

x̂t+1 = P̃t+1H̃
T R̃−1t+1z̃t+1,

where
P̃t+1 = (HTR−1H + P̄−1t+1)−1.

By the Woodbury matrix identity, (A+ UCV −1) = A−1 −A−1U(C−1 + V A−1U)−1V A−1, with
A = P̄−1t+1 in our case, we get

P̃t+1 = P̄t+1 − P̄t+1H
T (R+HP̄t+1H

T )−1HP̄t+1

= (I − P̄t+1H
T (R+HP̄t+1H

T )−1H)P̄t+1

= (I −Kt+1H)P̄t+1, (A.1)

where recall, the Kalman gain Kt+1 is defined in (6).

Now let us we rewrite the Kalman gain as

Kt+1 = P̄t+1H
T (R+HP̄t+1H

T )−1

= P̄t+1H
TR−1(I +HP̄t+1H

TR−1)−1,

so that
Kt+1(I +HP̄t+1H

TR−1) = P̄t+1H
TR−1,

and after rearranging,
Kt+1 = (I −Kt+1H)P̄t+1H

TR−1. (A.2)
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Putting (A.1) and (A.2) together, we get

P̃t+1H̃
T R̃−1t+1z̃t+1 = (I −Kt+1H)P̄t+1(HTR−1zt+1 + P̄−1t+1x̄t+1)

= (I −Kt+1H)P̄t+1H
TR−1zt+1 + (I −Kt+1H)x̄t+1

= Kt+1zt+1 + (I −Kt+1H)x̄t+1

= x̄t+1 +Kt+1(zt+1 −Hx̄t+1),

which is exactly the Kalman filter prediction, completing the proof.

A.2 Derivation of (12)

We first make the EKF estimate precise. Let

Ft+1 = Df(x̂t), (A.3)
Ht+1 = Dh(x̄t+1), (A.4)

and define

x̄t+1 = Ft+1x̂t, (A.5)

x̂t+1 = x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
, (A.6)

where Kt+1 ∈ Rk×d is defined via

P̄t+1 = Ft+1PtF
T
t+1 +Q, (A.7)

Kt+1 = P̄t+1H
T
t+1(Ht+1P̄t+1H

T
t+1 +R)−1, (A.8)

Pt+1 = (I −Kt+1Ht+1)P̄t+1, (A.9)

Note that (A.7)–(A.9) are exactly the same as (5)–(7), with Ft+1, Ht+1 replacing F,H , respectively.
Moreover, (A.5), (A.6) are nearly the same as (3), (4), with again Ft+1, Ht+1 replacing F,H , except
that the residual in (A.6) is zt+1 − h(x̄t+1), and not zt+1 −Ht+1x̄t+1, as would be analogous from
(4).

Next, we make what we called the extended SF (ESF) estimate precise. Let z̃t+1 ∈ Rd+k be as in
(11), let H̃t+1 ∈ R(d+k)×k be the rowwise concatentation of Ht+1 and I ∈ Rk×k, and R̃t+1 be as in
(9). Here, Ft+1, Ht+1, P̄t+1 are as defined in (A.3), (A.4), (A.7), respectively. The ESF estimate is

x̂t+1 = (H̃T R̃−1t+1H̃)−1H̃T R̃−1t+1z̃t+1. (A.10)

To see that (A.10) and (A.6) are equal, note that by following the proof of Theorem 1 directly, with
Ft+1, Ht+1 in place of F,H , we get

(H̃T
t+1R̃

−1
t+1H̃t+1)−1H̃T

t+1R̃
−1
t+1z̃t+1 = x̄t+1 +Kt+1(zt+1 −Ht+1x̄t+1).

Adding and subtracting Kt+1h(x̄t+1) to the right-hand side gives

(H̃T
t+1R̃

−1
t+1H̃t+1)−1H̃T

t+1R̃
−1
t+1(zt+1, x̄t+1)

= x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
+Kt+1(h(x̄t+1 −Ht+1x̄t+1)

= x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
+ (I −Kt+1Ht+1)P̄t+1H

T
t+1R

−1(h(x̄t+1 −Ht+1x̄t+1)

= x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
+ P̃t+1H

T
t+1R

−1(h(x̄t+1 −Ht+1x̄t+1),

where in the second line we used (A.2), and in the third we used (A.1). Rearranging gives

(H̃T
t+1R̃

−1
t+1H̃t+1)−1H̃T

t+1R̃
−1
t+1

(
zt+1+Ht+1x̄t+1−h(x̄t+1), x̄t+1

)
= x̄t+1+Kt+1

(
zt+1−h(x̄t+1)

)
,

which is precisely the desired conclusion, in (12).
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A.3 Proof of Theorem 2

Let us denote X ∈ Rt×k and Z ∈ Rt×d the matrices of states and sensors, respectively, for the first t
time points. That is, X has rows xi ∈ Rk, i = 1, . . . , t and Z has rows zi ∈ Rd, i = 1, . . . , t. Fix
any j = 1, . . . , k. Let âj ∈ Rd be the jth column of R̂−1t+1H(HT R̂−1t+1H)−1, and let b̂j ∈ Rd be the
solution of (14), equivalently, the solution of

minimize
bj∈Rd

‖Xj − Zbj‖22

subject to HT bj = ej ,
(A.11)

where Xj denotes the jth column of X . We will show that âj = b̂j .

The Lagrangian of problem (A.11) is

L(bj , uj) = ‖Xj − Zbj‖22 + uTj (HT bj − ej),

for a dual variable (Lagrange multiplier) uj ∈ Rk. Taking the gradient of the Lagrangian and setting
it equal to zero at an optimal pair (b̂j , ûj) gives

0 = ZT (Zb̂j −Xj) +Hûj ,

and rearranging gives
b̂j = (ZTZ)−1(ZTXj −Hûj). (A.12)

The dual solution ûj can be determined by plugging (A.12) into the equality constraint HT b̂j = ej ,
but for our purposes, the explicit dual solution is unimportant.

We will now show that b̂j = R̂−1t+1Hβ̂j for some β̂j ∈ Rk. Write

R̂t+1 =
1

t
(Z −XHT )T (Z −XHT ) + (1− α)I

=
1

t
(ZTZ −HXTZ − ZTXHT +HXTXHT ).

Then

R̂t+1b̂j =
1

t
(ZTZb̂j −HXTZb̂j − ZTXHT b̂j +HXTXHT b̂j)

=
1

t
(ZTXj −Hûj −HXTZb̂j − ZTXj +HXTXj)

= H
(XTXj − ûj −XTZb̂j

t

)
︸ ︷︷ ︸

β̂j

,

as desired, where in the second line we have used (A.12) and the constraint HT b̂j = ej .

Observe that âj = R̂−1t+1Hα̂j for some α̂j ∈ Rk, in particular, for α̂j defined to be the jth column of
(HT R̂−1t+1H)−1. Further,

ej = HT âj = HT b̂j

the constraint on âj holding by direct verification, and the constraint on b̂j holding by construction in
(A.11). That is,

HT R̂−1t+1Hα̂j = HT R̂−1t+1Hβ̂j ,

and since HT R̂−1t+1H is invertible, this leads to α̂j = β̂j , and finally âj = b̂j , completing the proof.

A.4 Further SF-regression equivalences

A.4.1 More regularization: covariance shrinkage

Covariance shrinkage—which broadly refers to the technique of adding a well-conditioned matrix to
a covariance estimate to provide stability and regularity—is widely used and well-studied in modern
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multivariate statistics, data mining, and machine learning. As such, it would be natural to replace the
empirical covariance matrix estimate (13) for the measurement noise covariance by

R̂t+1 =
α

t

t∑
i=1

(zi −Hxi)(zi −Hxi)T + (1− α)I, (A.13)

for a parameter α ∈ [0, 1]. For sensor fusion in the flu nowcasting problem, this is considered (in
some form) in Farrow [2016], and leads to significant improvements in nowcasting accuracy.

Our next result shows that when we use shrinkage as in (A.13) to estimate the measurement noise
covariance in SF, this is equivalent to adding a ridge penalty in the regression formulation.

Corollary 1. Let R̂t+1 be as in (A.13), for some value α ∈ [0, 1]. Consider the SF prediction at time
t+ 1, with R̂t+1 in place of R, denoted x̂t+1 = B̂T zt+1. Then each column of B̂, denoted b̂j ∈ Rd,
j = 1, . . . , k, solves

minimize
bj∈Rd

1

t

t∑
i=1

(xij − bTj zi)2 +
(1− α)

α
‖bj‖22

subject to HT bj = ej .

Proof. As before, let X ∈ Rt×k and Z ∈ Rt×d denote the matrix of states and sensors, respectively,
over the first t time points. We can write R̂t+1 in (A.13)

α

t
(Z −XHT )T (Z −XHT ) + (1− α)I =

1

t
(Z̃ − X̃HT )T (Z̃ − X̃HT ),

where Z̃ ∈ R(t+d)×d is the rowwise concatenation of
√
α/tZ and

√
1− α/tI , and X̃ ∈ R(t+k)×k

is the rowwise concatenation of
√
α/tX and 0 ∈ Rk×k (the matrix of all 0s). Applying Theorem 2

to X̃, Z̃, expanding the criterion in the regression problem, and then multiplying the criterion by 1/α,
gives the result.

A.4.2 Less regularization: zero padding

In the opposite direction, we now show that we can modify SF and obtain an equivalent regression
formulation with less regularization, specifically, without constraints.

Corollary 2. At each t = 1, 2, 3, . . ., suppose we augment our measurement vector by introducing k
measurements that are identically zero, denoted z̃t = (zt, 0) ∈ Rd+k. Suppose that we augment our
measurement map accordingly, defining H̃ ∈ R(d+k)×k to be the rowwise concatention of H and the
identity I ∈ Rk×k. Consider running SF on this augmented system, using the empirical covariance
to estimate R, and let x̂t+1 = B̂T zt+1 denote the SF prediction at time t+ 1. Then each column of
B̂, denoted b̂j ∈ Rd, j = 1, . . . , k, solves

minimize
bj∈Rd

t∑
i=1

(xij − bTj zi)2.

Proof. Applying Theorem 2 to the augmented system gives the equivalent regression problem

minimize
bj∈Rd, aj∈Rk

t∑
i=1

(xij − bTj zi − aTj 0)2

subject to HT bj + aj = ej .

The constraint is satisfied with aj = ej−HT bj . But aj has no effect on the criterion, so the constraint
can be removed.

Remark A.1. The analogous equivalence holds for covariance shrinkage and ridge regression. That
is, in Corollary 2, if instead of the empirical covariance, we use α times the empirical covariance plus
(1− α)I , then SF on the augmented system is equivalent to unconstrained ridge, at tuning parameter
(1− α)/α.
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A.5 Example of process model selection

Here we give a simple empirical example of process model selection using the regression formulation
of SF. We initialized x0 = 1, and generated data according to

xt = 0.5xt−1 + 0.05 sin(0.126t) + δt,

zt = Hxt + εt,

for t = 1, . . . , 200. Here H ∈ R4×1 is simply the column vector of all 1s, and the noise is drawn as
δt ∼ N(0, 0.01), εt ∼ N(0, I), independently, over t = 1, . . . , 150.

The prediction setup is as follows. At each time t+ 1, when making a prediction of xt+1, we observe
all past states xi, i = 1, . . . , t and all measurements zi, i = 1, . . . , t+ 1. We fit 5 different candidate
process models to past state data:

1. linear autoregression;

2. quadratic autoregression;

3. spline regression on time;

4. sine regression on time;

5. cosine regression on time.

To be clear, models 1 and 2 regress xi on xi−1 and x2i−1, respectively, over i = 1, . . . , t. Models 3–5
regress xi on a spline, sine, and cosine transformation of i, respectively, over i = 1, . . . , t. The sine
and cosine transformations are given the true frequency. The spline is a cubic smoothing spline (with
a knot at every data point) and its tuning parameter is chosen by cross-validation (using only the past
data). After being fit, we use each of the candidate process models 1–5 to make a prediction of xt+1,
given zt+1. We take this as its ouput.

For t = 151, . . . , 200, we define z̃t ∈ R9 to be the measurement vector zt ∈ R4 augmented with the
outputs of the 5 candidate process models as described above (the burn-in period of 150 time points
ensures that the candidate process models have enough training data to make reasonable predictions).
Figure A.1 shows the outputs from these models over the last 50 time points.
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Figure A.1: Simple process model selection example: outputs from 5 candidate process models, over the last
50 time points.

Finally, in the last 50 time points, to get an assimilated prediction of x̂t+1 at each time t + 1, we
solve the constrained regression problem with a lasso penalty (16), using cross-validation to select
λ (again, using only past data). Further, we penalize only the coefficients of the candidate process
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models (not the pure measurements). Table 1 shows the median of the coefficients over the last 50
time points (in this table, the coefficients for the pure measurement sensors are aggregated as one).
We see that the lasso tends to select the linear and sine sensors, as expected (because these two make
up the true dynamical model), and places a small weight on the spline sensor (which is flexible, and
can mimic the contribution of the sine sensor).

Linear Quadratic Spline Sine Cosine Measurements
Median
Coefficient 0.643 0.000 0.094 0.189 0.000 0.0175

Table 1: Simple process model selection example: median regression coefficients for the sensors, over the last
50 time points.
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