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Abstract

Degrees of freedom is a fundamental concept in statistical modeling, as it provides a quan-
titative description of the amount of fitting performed by a given procedure. But, despite this
fundamental role in statistics, its behavior is not completely well-understood, even in somewhat
basic settings. For example, it may seem intuitively obvious that the best subset selection fit
with subset size k has degrees of freedom larger than k, but this has not been formally verified,
nor has is been precisely studied. At large, the current paper is motivated by this problem, and
we derive an exact expression for the degrees of freedom of best subset selection in a restricted
setting (orthogonal predictor variables). Along the way, we develop a concept that we name
“search degrees of freedom”; intuitively, for adaptive regression procedures that perform vari-
able selection, this is a part of the (total) degrees of freedom that we attribute entirely to the
model selection mechanism. Finally, we establish a modest extension of Stein’s formula to cover
discontinuous functions, and discuss its potential role in degrees of freedom and search degrees
of freedom calculations.
Keywords: degrees of freedom, model search, lasso, best subset selection, Stein’s formula

1 Introduction

Suppose that we are given observations y ∈ Rn from the model

y = µ+ ε, with E(ε) = 0, Cov(ε) = σ2I, (1)

where µ ∈ Rn is some fixed, true mean parameter of interest, and ε ∈ Rn are uncorrelated errors,
with zero mean and common marginal variance σ2 > 0. For a function f : Rn → Rn, thought of as
a procedure for producing fitted values, µ̂ = f(y), recall that the degrees of freedom of f is defined
as (Efron 1986, Hastie & Tibshirani 1990):

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(y), yi

)
. (2)

Intuitively, the quantity df(f) reflects the effective number of parameters used by f in producing
the fitted output µ̂. Consider linear regression, for example, where f(y) is the least squares fit of y
onto predictor variables x1, . . . xp ∈ Rn: for this procedure f , our intuition gives the right answer, as
its degrees of freedom is simply p, the number of estimated regression coefficients.1 This, e.g., leads
to an unbiased estimate of the risk of the linear regression fit, via Mallows’s Cp criterion (Mallows
1973).

In general, characterizations of degrees of freedom are highly relevant for purposes like model
comparisons and model selection; see, e.g., Efron (1986), Hastie & Tibshirani (1990), Tibshirani &
Taylor (2012), and Section 1.2, for more motivation. Unfortunately, however, counting degrees of
freedom can become quite complicated for nonlinear, adaptive procedures. (By nonlinear, we mean
f being nonlinear as a function of y.) Even for many basic adaptive procedures, explicit answers are

1This is assuming linear independence of x1, . . . xp; in general, it is the dimension of span{x1, . . . xp}.

1



not known. A good example is best subset selection, in which, for a fixed integer k, we regress on
the subset of x1, . . . xp of size at most k giving the best linear fit of y (as measured by the residual
sum of squares). Is the degrees of freedom here larger than k? It seems that the answer should be
“yes”, because even though there are k coefficients in the final linear model, the variables in this
model were chosen adaptively (based on the data). And if the answer is indeed “yes”, then the
natural follow-up question is: how much larger is it? That is, how many effective parameters does
it “cost” to search through the space of candidate models? The goal of this paper is to investigate
these questions, and related ones.

1.1 A motivating example

We begin by raising an interesting point: though it seems certain that a procedure like best subset
selection would suffer an inflation of degrees of freedom, not all adaptive regression procedures do.
In particular, the lasso (Tibshirani 1996, Chen et al. 1998), which also performs variable selection in
the linear model setting, presents a very different story in terms of its degrees of freedom. Stacking
the predictor variables x1, . . . xp along the columns of a matrix X ∈ Rn×p, the lasso estimate can be
expressed as:

β̂lasso = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1, (3)

where λ ≥ 0 is a tuning parameter, controlling the level of sparsity. Though not strictly necessary
for our discussion, we assume for simplicity that X has columns in general position, which ensures
uniqueness of the lasso solution β̂lasso (see, e.g., Tibshirani (2013)). We will write Alasso ⊆ {1, . . . p}
to denote the indices of nonzero coefficients in β̂lasso, called the support or active set of β̂lasso, also
expressed as Alasso = supp(β̂lasso).

The lasso admits a simple formula for its degrees of freedom.

Theorem 1 (Zou et al. 2007, Tibshirani & Taylor 2012). Provided that the variables (columns) in
X are in general position, the lasso fit µ̂lasso = Xβ̂lasso has degrees of freedom

df(µ̂lasso) = E|Alasso|,

where |Alasso| is the size of the lasso active set Alasso = supp(β̂lasso). The above expectation assumes
that X and λ are fixed, and is taken over the sampling distribution y ∼ N(µ, σ2I).

In other words, the degrees of freedom of the lasso fit is the number of selected variables, in
expectation. This is somewhat remarkable because, as with subset selection, the lasso uses the data
to choose which variables to put in the model. So how can its degrees of freedom be equal to the
(average) number of selected variables, and not more? The key realization is that the lasso shrinks
the coefficients of these variables towards zero, instead of perfoming a full least squares fit. This
shrinkage is due to the `1 penalty that appears in (3). Amazingly, the “surplus” from adaptively
building the model is exactly accounted for by the “deficit” from shrinking the coefficients, so that
altogether (in expectation), the degrees of freedom is simply the number of variables in the model.

Remark 1. An analogous result holds for an entirely arbitrary predictor matrix X (not necessarily
having columns in general position), see Tibshirani & Taylor (2012); analogous results also exist
for the generalized lasso problem (special cases of which are the fused lasso and trend filtering), see
Tibshirani & Taylor (2011, 2012).

Figure 1 shows an empirical comparison between the degrees of freedom of the lasso and best
subset selection fits, for a simple example with n = 20, p = 10. The predictor variables were setup
to have a block correlation structure, in that variables 1 through 4 had high pairwise correlation
(between 0.6 and 0.9), variables 5 through 10 also had high pairwise correlation (between 0.6 and
0.9), and the two blocks were uncorrelated with each other. The outcome y was drawn by adding
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Figure 1: A simulated regression example with n = 20, p = 10. We drew 100 copies of the outcome y from
the same sparse regression setup, and fit the lasso and best subset selection estimates each time, across 10
prespecified tuning parameter values. The plot shows the average number of selected variables by the lasso (in
blue) and best subset selection (in red), across the tuning parameter values, versus their (estimated) degrees
of freedom. The lasso degrees of freedom lines up with the number of selected variables, but the same is not
true for subset selection, with its degrees of freedom being relatively much larger.

independent normal noise to Xβ∗, for some true coefficient vector β∗, supported on the first block
of variables, and on one variable in the second block. We computed the lasso estimate in (3) over
10 values of the tuning parameter λ, as well as a best subset selection estimate

β̂subset ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖0, (4)

over its own 10 values of λ. Recall that ‖β‖0 =
∑p
j=1 1{βj 6= 0}. We repeated this process 100

times, i.e., drew 100 copies of y from the described regression model, keeping X and β∗ fixed, and
each time computed fitted values from the lasso and best subset selection across the same 10 values
of the tuning parameter. For each method and value of λ, we then:

1. computed the average number of nonzero coefficients over the 100 trials;

2. evaluated the covariance in (2) empirically across the 100 trials, as an (unbiased) estimate of
the degrees of freedom.

Figure 1 plots the first quantity versus the second quantity, with the lasso in blue and best subset
selection in red. As prescribed by Theorem 1, the (estimated) degrees of freedom of the lasso fit is
closely aligned with the average number of nonzero coefficients in its estimate. But subset selection
does not follow the same trend; its (estimated) degrees of freedom is much larger than its delivered
number of nonzero coefficients. For example, when λ is tuned so that the subset selection estimate
has a little less than 3 nonzero coefficients on average, the fit uses about 9 degrees of freedom.

Why does this happen? Again, this can be intuitively explained by shrinkage—this time, a lack
thereof. If we denote the support of a best subset selection solution by Asubset = supp(β̂subset), and
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abbreviate A = Asubset, then it is not hard to see that

β̂subset
A = (XT

AXA)−1XT
Ay,

i.e., the active coefficients are given by least squares on the active variables XA (the submatrix of
X formed by taking the columns in A). Therefore, like the lasso, best subset selection chooses an
active set of variables adaptively, but unlike the lasso, it fits their coefficients without shrinkage,
using ordinary least squares. It pays for the “surplus” of covariance from the adaptive model search,
as well as the usual amount from least squares estimation, resulting in a total degrees of freedom
much larger than |A| (or rather, E|A|).

A clarifying note: simulations along the lines of that in Figure 1 can be found throughout the
literature and we do not mean to claim originality here (e.g., see Figure 4 of Tibshirani & Knight
(1999) for an early example, and Figure 2 of Janson et al. (2013) for a recent example). This
simulation is instead simply meant to motivate the work that follows, as an aim of this paper is to
examine the observed phenomenon in Figure 1 more formally.

1.2 Degrees of freedom and optimism

Degrees of freedom is closely connected to the concept of optimism, and so alternatively, we could
have motivated the study of the covariance term on the right-hand side in (2) from the perspective
of the optimism, rather than the complexity, of a fitting procedure. Assuming only that y is drawn
from the model in (1), and that y′ is an independent copy of y (i.e., an independent draw from (1)),
it is straightforward to show that for any fitting procedure f ,

E‖y′ − f(y)‖22 − E‖y − f(y)‖22 = 2σ2 · df(f). (5)

The quantity on the left-hand side above is called the optimism of f , i.e., the difference in the
mean squared test error and mean squared training error. The identity in (5) shows that (for
uncorrelated, homoskedastic regression errors as in (1)) the optimism of f is just a positive constant
times its degrees of freedom; in other words, fitting procedures with a higher degrees of freedom
will have higher a optimism. Hence, from the example in the last section, we know when they are
tuned to have the same (expected) number of variables in the fitted model, best subset selection will
produce a training error that is generally far more optimistic than that produced by the lasso.

1.3 Lagrange versus constrained problem forms

Recall that we defined the subset selection estimator using the Lagrange form optimization problem
(4), instead of the (perhaps more typical) constrained form definition

β̂subset ∈ argmin
β∈Rp

‖y −Xβ‖22 subject to ‖β‖0 ≤ k. (6)

There are several points now worth making. First, these are nonconvex optimization problems, and
so the Lagrange and constrained forms (4) and (6) of subset selection are generally not equivalent.
In fact, for all λ, solutions of (4) are solutions of (6) for some choice of k, but the reverse is
not true. Second, even in situations in which the Lagrange and constrained forms of a particular
optimization problem are equivalent (e.g., this is true under strong duality, and so it is true for most
convex problems, under very weak conditions), there is a difference between studying the degrees
of freedom of an estimator defined in one problem form versus the other. This is because the map
from the Lagrange parameter in one form to the constraint bound in the other generically depends
on y, i.e., it is a random mapping (Kaufman & Rosset (2013) discuss this for ridge regression and
the lasso).

Lastly, in this paper, we focus on the Lagrange form (4) of subset selection because we find this
problem is easier to analyze mathematically. For example, in Lagrange form with X = I, the ith
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component of the subset selection fit β̂subset
i depends on yi only (and is given by hard thresholding),

for each i = 1, . . . n; in constrained form with X = I, each β̂subset
i is a function of the order statistics

of |y1|, . . . |yn|, and hence depends on the whole sample.
Given the general spirit of our paper, it is important to recall the relevant work of Ye (1998),

who studied degrees of freedom for special cases of best subset selection in constrained form. In one
such special case (orthogonal predictors with null underlying signal), the author derived a simple
expression for degrees of freedom as the sum of the k largest order statistics from a sample of n
independent χ2

1 random variables. This indeed establishes that, in this particular special case, the
constrained form of best subset selection with k active variables has degrees of freedom larger than
k. It does not, however, imply any results about the Lagrange case for the reasons explained above.

1.4 Assumptions, notation, and outline

Throughout this work, we will assume the model

y = µ+ ε, ε ∼ N(0, σ2I). (7)

Note that this is stronger than the model in (1), since we are assuming a normal error distribution.
While the model in (1) is sufficient to define the notion of degrees of freedom in general, we actually
require normality for the calculations to come—specifically, Lemma 1 (on the degrees of freedom of
hard thresholding), and all results in Section 5 (on extending Stein’s formula), rely on the normal
error model. Beyond this running assumption, we will make any additional assumptions clear when
needed.

In terms of notation, we write M+ to denote the (Moore-Penrose) pseudoinverse of a matrix M ,
with M+ = (MTM)+MT for rectangular matrices M , and we write MS to denote the submatrix of
M whose columns correspond to the set of indices S. We write φ for the standard normal density
function and Φ for the standard normal cumulative distribution function.

Finally, here is an outline for the rest of this article. In Section 2, we derive an explicit formula
for the degrees of freedom of the best subset selection fit, under orthogonal predictors X. We also
introduce the notion of search degrees of freedom for subset selection, and study its characteristics
in various settings. In Section 3, we define search degrees of freedom for generic adaptive regression
procedures, including the lasso and ridge regression as special cases. Section 4 returns to considering
best subset selection, this time with general predictor variables X. Because exact formulae for the
degrees of freedom and search degrees of freedom of best subset selection are not available in the
general X case, we turn to simulation to investigate these quantities. We also examine the search
degrees of freedom of the lasso across the same simulated examples (as its analytic calculation is
again intractable for general X). Section 5 casts all of this work on degrees of freedom (and search
degrees of freedom) in a different light, by deriving an extension of Stein’s formula. Stein’s formula
is a powerful tool that can be used to compute the degrees of freedom of continuous and almost
differentiable fitting procedures; our extension covers functions that have “well-behaved” points of
discontinuity, in some sense. This extended version of Stein’s formula offers an alternative proof
of the exact result in Section 2 (the orthogonal X case), and potentially, provides a perspective
from which we can formally understand the empirical findings in Section 4 (the general X case). In
Section 6, we conclude with some discussion.

2 Best subset selection with an orthogonal X

In the special case that X ∈ Rn×p is orthogonal, i.e., X has orthonormal columns, we can compute
the degrees of freedom of the best subset selection fit directly.
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Theorem 2. Assume that y ∼ N(µ, σ2I), and that X is orthogonal, meaning that XTX = I. Then
the best subset selection fit µ̂subset = Xβ̂subset, at any fixed value of λ, has degrees of freedom

df(µ̂subset) = E|Asubset|+
√

2λ

σ

p∑
i=1

[
φ

(√
2λ− (XTµ)i

σ

)
+ φ

(√
2λ+ (XTµ)i

σ

)]
, (8)

where φ is the standard normal density.

The proof essentially reduces to a calculation on the degrees of freedom of the (componentwise)
hard thresholding operator because, in the orthogonal X case, the best subset selection solution is
exactly hard thresholding of XT y. Formally, define the hard thresholding operator Ht : Rn → Rn,
at a fixed level t ≥ 0, by its coordinate functions

[Ht(y)]i = yi · 1{|yi| ≥ t}, i = 1, . . . n.

Let At denote the support set of the output, At = supp(Ht(y)). The following result simply comes
from the normality of y, and the definition of degrees of freedom in (2).

Lemma 1. Assume that y ∼ N(µ, σ2I), and t ≥ 0 is arbitrary but fixed. Then the hard thresholding
operator Ht has degrees of freedom

df(Ht) = E|At|+
t

σ

n∑
i=1

[
φ

(
t− µi
σ

)
+ φ

(
t+ µi
σ

)]
. (9)

Remark 2. This result, on the degrees of freedom of the hard thresholding operator, can be found in
both Mazumder et al. (2011) and Deledalle et al. (2013). The former work uses degrees of freedom
as a calibration tool in nonconvex sparse regression; the latter derives an estimate of the right hand
side in (9) that, although biased, is consistent under some conditions.

The proofs of Lemma 1, and subsequently Theorem 2, involve straightforward calculations, but
are deferred until the appendix for the sake of readability.

We have established that, for and orthogonal X, the degrees of freedom of the subset selection
fit is equal to E|Asubset|, plus an “extra” term. We make some observations about this term in the
next section.

2.1 Search degrees of freedom

The quantity

sdf(µ̂subset) =

√
2λ

σ

p∑
i=1

[
φ

(√
2λ− (XTµ)i

σ

)
+ φ

(√
2λ+ (XTµ)i

σ

)]
(10)

appearing in (8) is the amount by which the degrees of freedom exceeds the expected number of
selected variables. We will refer to this the search degrees of freedom of best subset selection, because
roughly speaking, we can think of it as the extra amount of covariance that comes from searching
through the space of models. Note that sdf(µ̂subset) > 0 for any λ > 0, because the normal density
is supported everywhere, and therefore we can indeed conclude that df(µ̂subset) > E|Asubset|, as we
suspected, in the case of an orthogonal predictor matrix.

How big is sdf(µ̂subset)? At the extremes: sdf(µ̂subset) = 0 when λ = 0, and sdf(µ̂subset) → 0 as
λ → ∞. In words, searching has no cost when all of the variables, or none of the variables, are in
the model. But the behavior is more interesting for intermediate values of λ. The precise shape of
the search degrees of freedom curve (10), over λ, depends on the underlying signal µ; the next three
sections study three canonical cases for the underlying signal.
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Figure 2: An example with n = p = 100, X = I, and µ = 0. The left panel plots the curves df(µ̂subset),
sdf(µ̂subset), and E|Asubset| as functions of λ, drawn as blue, red, and black lines, respectively. The right
panel plots the same quantities with respect to E|Asubset|.

2.2 Example: null signal

We consider first the case of a null underlying signal, i.e., µ = 0. The best subset selection search
degrees of freedom (10), as a function of λ, becomes

sdf(µ̂subset) =
2p
√

2λ

σ
φ

(√
2λ

σ

)
. (11)

In Figure 2, we plot the quantities df(µ̂subset), sdf(µ̂subset), and E|Asubset| as functions of λ, for a
simple example with n = p = 100, underlying signal µ = 0, noise variance σ2 = 1, and predictor
matrix X = I, the 100× 100 identity matrix. We emphasize that this figure was produced without
any random draws or simulations, and the plotted curves are exactly as prescribed by Theorem 2
(recall that E|Asubset| also has an explicit form in terms of λ, given in the proof of Lemma 1). In
the left panel, we can see that the search degrees of freedom curve is maximized at approximately
λ = 0.5, and achieves a maximum value of nearly 50. That is, when λ = 0.5, best subset selection
spends nearly 50 (extra) parameters searching through the space of models!

It is perhaps more natural to parametrize the curves in terms of the expected number of active
variables E|Asubset| (instead of λ), as displayed in the right panel of Figure 2. This parametriza-
tion reveals something interesting: the search degrees of freedom curve is maximized at roughly
E|Asubset| = 31.7. In other words, searching is most costly when there are approximately 31.7 vari-
ables in the model. This is a bit counterintuitive, because there are more subsets of size 50 than any
other size, that is, the function

F (k) =

(
p

k

)
, k = 1, 2, . . . p,

is maximized at k = p/2 = 50. Hence we might believe that searching through subsets of variables
is most costly when E|Asubset| = 50, because in this case the search space is largest. Instead, the
maximum actually occurs at about E|Asubset| = 31.7. Given the simple form (11) of the search
degrees of freedom curve in the null signal case, we can verify this observation analytically: direct
calculation shows that the right hand side in (11) is maximized at λ = σ2/2, which, when plugged
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into the formula for the expected number of selected variables in the null case,

E|Asubset| = 2pΦ

(
−
√

2λ

σ

)
,

yields E|Asubset| = 2Φ(−1)p ≈ 0.317p.
Although this calculation may have been reassuring, the intuitive question remains: why is the

31.7 variable model associated with the highest cost of model searching (over, say, the 50 variable
model)? At this point, we cannot offer a truly satisfying intuitive answer, but we will attempt an
explanation nonetheless. Recall that search degrees of freedom measures the additional amount of
covariance in (2) that we attribute to searching through the space of models—additional from the
baseline amount E|Asubset|, which comes from estimating the coefficients in the selected model. The
shape of the search degrees of freedom curve, when µ = 0, tells us that there is more covariance to
be gained when the selected model has 31.7 variables than when it has 50 variables. As the size of
the selected subset k increases from 0 to 50, note that:

1. the number of subsets of size k increases, which means that there are more opportunities to
decrease the training error, and so the total degrees of freedom (optimism) increases;

2. trivially, the baseline amount of fitting also increases, as this baseline is just k, the degrees of
freedom (optimism) of a fixed model on k variables.

Search degrees of freedom is the difference between these two quantities (i.e., total minus baseline
degrees of freedom), and as it turns out, the two are optimally balanced at approximately k = 31.7
(at exactly k = 2Φ(−1)p) in the null signal case.

2.3 Example: sparse signal

Now we consider the case in which µ = Xβ∗, for some sparse coefficient vector β∗ ∈ Rp. We let
A∗ = supp(β∗) denote the true support set, and k∗ = |A∗| the true number of nonzero coefficients,
assumed to be small. The search degrees of freedom curve in (10) is

sdf(µ̂subset) =

√
2λ

σ

∑
i∈A∗

[
φ

(√
2λ− β∗i
σ

)
+ φ

(√
2λ+ β∗i
σ

)]
+

2(p− k∗)
√

2λ

σ
φ

(√
2λ

σ

)
. (12)

When the nonzero coefficients β∗i are moderate (not very large), the curve in (12) acts much like
the search degrees of freedom curve (11) in the null case. Otherwise, it can behave very differently.
We therefore examine two different sparse setups by example, having low and high signal-to-noise
ratios. See Figure 3. In both setups, we take n = p = 100, σ2 = 1, X = I, and µ = Xβ∗, with

β∗i =

{
ρ i = 1, . . . 10

0 i = 11, . . . 100.
(13)

The left panel uses ρ = 1, and the right uses ρ = 8. We plot the total degrees of freedom and search
degrees of freedom of subset selection as a function of the expected number of selected variables
(and note, as before, that these plots are produced by mathematical formulae, not by simulation).
The curves in the left panel, i.e., in the low signal-to-noise ratio case, appear extremely similar to
those in the null signal case (right panel of Figure 2). The search degrees of freedom curve peaks
when the expected number of selected variables is about E|Asubset| = 31.9, and its peak height is
again just short of 50.

Meanwhile, in the high signal-to-noise ratio case, i.e., the right panel of Figure 3, the behavior
is very different. The search degrees of freedom curve is bimodal, and is basically zero when the
expected number of selected variables is 10. The intuition: with such a high signal-to-noise ratio in
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Figure 3: An example with n = p = 100, X = I, and µ = Xβ∗ with β∗ as in (13). The left panel corresponds
to the choice ρ = 1 (low signal-to-noise regime) and the right to ρ = 8 (high signal-to-noise regime).

the true model (13), best subset selection is able to select the same (true) subset of 10 variables in
every random data instance, and therefore the size 10 model produced by subset selection is akin to
a fixed model, with no real searching performed whatsoever. Another interesting point is that the
cost of model searching is very high when the selected model has average size equal to 5; here the
search component contributes over 30 degrees of freedom to the total. Intuitively, with 10 strong
variables in the true model (13), there are many competitive subsets of size 5, and hence a lot of
searching is needed in order to report the best subset of size 5 (in terms of training error).

It is worth mentioning the interesting, recent works of Kaufman & Rosset (2013) and Janson
et al. (2013), which investigate unexpected nonmonoticities in the (total) degrees of freedom of an
estimator, as a function of some underlying parametrization for the amount of imposed regulariza-
tion. We note that the right panel of Figure 3 portrays a definitive example of this, in that the
best subset selection degrees of freedom undergoes a major nonmonoticity at 10 (expected) active
variables, as discussed above.

2.4 Example: dense signal

The last case we consider is that of a dense underlying signal, µ = Xβ∗ for some dense coefficient
vector β∗ ∈ Rp. For the sake of completeness, in the present case, the expression (10) for the search
degrees of freedom of best subset selection is

sdf(µ̂subset) =

√
2λ

σ

p∑
i=1

[
φ

(√
2λ− β∗i
σ

)
+ φ

(√
2λ+ β∗i
σ

)]
. (14)

The search curve degrees of freedom curve (14) exhibits a very similar behavior to the curve (11)
in the null signal case when the coefficients β∗i are small or moderate, but a very different behavior
when some coefficients β∗i are large. In Figure 4, we take n = p = 100, X = I, and µ = Xβ∗ with
β∗i = ρ, i = 1, . . . p. The left panel of the figure corresponds to ρ = 1, and the right corresponds
to ρ = 8. Both panels plot degrees of freedom against the expected number of selected variables
(and, as in the last two subsections, these degrees of freedom curves are plotted according to their
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Figure 4: An example with n = p = 100, X = I, and µ = Xβ∗ with β∗
i = ρ, i = 1, . . . p. The left panel

corresponds to ρ = 1 (low signal-to-noise regime) and the right to ρ = 8 (high signal-to-noise regime).

closed-form expressions, they are not derived from simulation). We can see that the low signal-to-
noise ratio case, in the left panel, yields a set of curves quite similar to those from the null signal
case, in the right panel of Figure 2. One difference is that the search degrees of freedom curve has
a higher maximum (its value about 56, versus 48 in the null signal case), and the location of this
maximum is further to the left (occuring at about E|Asubset| = 29.4, versus E|Asubset| = 31.7 in the
former case).

On the other hand, the right panel of the figure shows the high signal-to-noise ratio case, where
the total degrees of freedom curve is now nonmonotone, and reaches its maximum at an expected
number of selected variables (very nearly) E|Asubset| = 50. The search degrees of freedom curve
itself peaks much later than it does in the other cases, at approximately E|Asubset| = 45.2. Another
striking difference is the sheer magnitude of the degrees of freedom curves: at 50 selected variables on
average, the total degrees of freedom of the best subset selection fit is well over 300. Mathematically,
this makes sense, as the search degrees of freedom curve in (14) is increasing in |β∗i |. Furthermore,
we can liken the degrees of freedom curves in the right panel of Figure 4 to those in a small portion
of the plot in the right panel of Figure 3, namely, the portion corresponding to E|Asubset| ≤ 10. The
two sets of curves here appear similar in shape. This is intuitively explained by the fact that, in
the high signal-to-noise ratio regime, subset selection over a dense true model is similar to subset
selection over a sparse true model, provided that we constrain our attention in the latter case to
subsets of size less than or equal to the true model size (since under this constraint, the truly
irrelevant variables in the sparse model do not play much of a role).

3 Search degrees of freedom for general procedures

Here we extend the notion of search degrees of freedom to general adaptive regression procedures.
Given an outcome y ∈ Rn and predictors X ∈ Rn×p, we consider a fitting procedure f : Rn → Rn
of the form

f(y) = Xβ̂(f),

10



for some estimated coefficients β̂(f) ∈ Rp. Clearly, the lasso and best subset selection are two ex-
amples of such a fitting procedure, with the coefficients as in (3) and (4), respectively. We denote
A(f) = supp(β̂(f)), the support set of the estimated coefficients under f . The overall complexity of
f is measured by its degrees of freedom, as defined in (2) (just as it is for all fitting procedures),
but we may be also interested in a degree of complexity associated solely with its model selection
component—i.e., we might ask: how many effective parameters does f spend in simply selecting the
active set A(f)?

We propose to address this question by developing a notion of search degrees of freedom for f ,
in a way that generalizes the notion considered in the last section specifically for subset selection.
Abbreviating A = A(f), we first define a modified procedure f̃ that returns the least squares fit on
the active set A,

f̃(y) = PAy.

where PA = XA(XT
AXA)+XT

A is the projection onto the span of active predictors XA (note the
use of the pseudoinverse, as XA need not have full column rank, depending on the nature of the
procedure f). We now define the search degrees of freedom of f as

sdf(f) = df(f̃)− E[rank(XA)]

=
1

σ2

n∑
i=1

Cov
(
(PAy)i, yi

)
− E[rank(XA)]. (15)

The intuition behind this definition: by construction, f̃ and f are identical in their selection of the
active set A, and only differ in how they estimate the nonzero coefficients once A has been chosen,
with f̃ using least squares, and f using a possibly different mechanism. If A were fixed, then a least
squares fit on XA would use E[rank(XA)] degrees of freedom, and so it seems reasonable to assign
the leftover part, df(f̃) − E[rank(XA)], as the degrees of freedom spent by f̃ in selecting A in the
first place, i.e., the amount spent by f in selecting A in the first place.

It may help to discuss some specific cases.

3.1 Best subset selection

When f is the best subset selection fit, we have f̃ = f , i.e., subset selection already performs least
squares on the set of selected variables A. Therefore,

sdf(f) = df(f)− E|A|, (16)

where we have also used the fact that XA must have linearly independent columns with best subset
selection (otherwise, we could strictly decrease the `0 penalty in (4) while keeping the squared error
loss unchanged). This matches our definition (10) of search degrees of freedom for subset selection
in the orthogonal X case—it is the total degrees of freedom minus the expected number of selected
variables, with the total being explicitly computable for orthogonal predictors, as we showed in the
last section.

The same expression (16) holds for any fitting procedure f that uses least squares to estimate the
coefficients in its selected model, because then f̃ = f . (Note that, in full generality, E|A| should be
replaced again by E[rank(XA)] in case XA need not have full column rank.) An example of another
such procedure is forward stepwise regression.

3.2 Ridge regression

For ridge regression, the active model is A = {1, . . . p} for any draw of the outcome y, which means
that the modified procedure f̃ is just the full regression fit on X, and

sdf(f) = E[rank(X)]− E[rank(X)] = 0.

11



This is intuitively the correct notion of search degrees of freedom for ridge regression, since this
procedure does not perform any kind of variable selection whatsoever. The same logic carries over
to any procedure f whose active set A is almost surely constant.

3.3 The lasso

The lasso case is an interesting one. We know from the literature (Theorem 1) that the degrees of
freedom of the lasso fit is E|A| (when the predictors are in general position), but how much of this
total can we attribute to model searching? The modified procedure f̃ that performs least squares on
the lasso active set A has been called the relaxed lasso (see Meinshausen (2007), who uses the same
term to refer to a broader family of debiased lasso estimates). We will denote the relaxed lasso fitted
values by µ̂relax = PAlassoy. When X has orthonormal columns, it is not hard to see that the relaxed
lasso fit is given by hard thresholding, just like best subset selection, but this time with threshold
level t = λ. The following result hence holds by the same arguments as those in Section 2 for subset
selection.

Theorem 3. If y ∼ N(µ, σ2), and XTX = I, then the relaxed lasso fit µ̂relax = PAlassoy, at a fixed
value λ ≥ 0, has degrees of freedom

df(µ̂relax) = E|Alasso|+ λ

σ

p∑
i=1

[
φ

(
λ− (XTµ)i

σ

)
+ φ

(
λ+ (XTµ)i

σ

)]
.

Therefore the lasso has search degrees of freedom

sdf(µ̂lasso) =
λ

σ

p∑
i=1

[
φ

(
λ− (XTµ)i

σ

)
+ φ

(
λ+ (XTµ)i

σ

)]
. (17)

The search degrees of freedom formulae (17) and (10) are different as functions of λ, the tuning
parameter, but this is not a meaningful difference; when each is parametrized by their respective
expected number of selected variables E|A|, the two curves are exactly the same, and therefore all
examples and figures in Section 2 demonstrating the behavior of the search degrees of freedom of
best subset selection also apply to the lasso. In a sense, this is not a surprise, because for orthogonal
predictors both the lasso and subset selection fits reduce to a sequence of marginal considerations
(thresholds, in fact), and so their search mechanisms can be equated.

But for correlated predictors, we might believe that the search components associated with the
lasso and best subset selection procedures are actually quite different. Even though our definition
of search degrees of freedom in (15) is not connected to computation in any way, the fact that best
subset selection (4) is NP-hard for a general X may seem to suggest (at a very loose level) that it
somehow “searches more” than the convex lasso problem (3). For many problem setups, this guess
(whether or not properly grounded in intuition) appears to be true in simulations, as we show next.

4 Best subset selection with a general X

We look back at the motivating example given in Section 1.1, where we estimated the degrees of
freedom of best subset selection and the lasso by simulation, in a problem with n = 20 and p = 10.
See Section 1.1 for more details about the setup (i.e., correlation structure of the predictor variables
X, true coefficients β∗, etc.). Here we also consider the degrees of freedom of the relaxed lasso,
estimated from the same set of simulations. Figure 5 plots these degrees of freedom estimates, in
green, on top of the existing best subset selection and lasso curves from Figure 1. Interestingly, the
relaxed lasso is seen to have a smaller degrees of freedom than best subset selection (when each is
parametrized by their own average number of selected variables). Note that this means the search
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degrees of freedom of the lasso (i.e., the difference between the green curve and the diagonal) is
smaller than the search degrees of freedom of subset selection (the difference between the red curve
and the diagonal).
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Figure 5: The same simulation setup as in Figure 1, but now including the relaxed lasso degrees of freedom
on the left panel, in green. (The relaxed lasso is the fitting procedure that performs least squares on the lasso
active set.) We can see that the relaxed lasso has a smaller degrees of freedom than subset selection, as a
function of their (respective) average number of selected variables. Hence, the lasso exhibits a smaller search
degrees of freedom than subset selection, in this example.

This discrepancy between the search degrees of freedom of the lasso and subset selection, for
correlated variables X, stands in contrast to the orthogonal case, where the two quantities were
proven to be equal (subject to the appropriate parametrization). Further simulations with correlated
predictors show that, for the most part, this discrepancy persists across a variety of cases; consult
Figure 6 and the accompanying caption text for details. However, it is important to note that this
phenomenon is not universal, and in some instances (particularly, when the computed active set is
small, and the true signal is dense) the search degrees of freedom of the lasso can grow quite large
and compete with that of subset selection. Hence, we can see that the two quantities do not always
obey a simple ordering, and the simulations presented here call for a more formal understanding of
their relationship.

Unfortunately, this is not an easy task, since direct calculation of the relevant quantities—the
degrees of freedom of best subset selection and the relaxed lasso—is not tractable for a general X.
In cases such as these, one usually turns to Stein’s formula as an alternative for calculating degrees
of freedom; e.g., the result in Theorem 1 is derived using Stein’s formula. But Stein’s formula only
applies to continuous (and almost differentiable) fitting procedures f = f(y), and neither the best
subset selection nor the relaxed lasso fit is continuous in y. The next section, therefore, is focused
on extending Stein’s result to discontinuous functions.
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Figure 6: A set of simulation results with n = 30, p = 16 (we are confined to such a small setup because of
the exponential computational complexity of subset selection). The rows of X were drawn i.i.d. from N(0,Σ),
where Σ is block diagonal with two equal sized (8× 8) blocks Σ1,Σ2. All diagonal entries of Σ1,Σ2 were set
to 1, and the off-diagonal entries were drawn uniformly between 0.4 and 0.9. We considered three cases for
the true mean µ = Xβ∗: null (β∗ = 0), sparse (β∗ is supported on 3 variables in the first block and 1 in
the second, with all nonzero components equal to 1), and dense (β∗ has all components equal to 1). In all
cases, we drew y around µ with independent standard normal noise, for a total of 100 repetitions. Overall,
the search degrees of freedom of subset selection appears to be larger than that of the lasso, but at times the
latter can rival the former in magnitude, especially for small active sets, and in the dense signal case.



5 An extension of Stein’s formula

This section considers Stein’s formula (Stein 1981), and presents an extension that yields an alter-
native derivation of the degrees of freedom results in Section 2, as well as (potential) insights into
the empirical results in Section 4. In his remarkable paper, Stein studies the problem of estimating
the mean of a multivariate normal distribution, with a spherical covariance matrix, under the usual
squared error loss. The main result is an unbiased estimate of the associated risk for a large class of
estimates of the mean. At the root of Stein’s arguments lies the following lemma.

Lemma 2 (Stein 1981). Let Z ∼ N(0, 1). Let f : R → R be absolutely continuous, with derivative
f ′. Assume that E|f ′(Z)| <∞. Then

E[Zf(Z)] = E[f ′(Z)].

In its own right, this lemma (along with a converse statement, which is also true) has a number
of important applications that span various areas of probability and statistics. For our purposes,
the most relevant application is an alternative and highly useful formula for computing degrees of
freedom. This is given by extending the above lemma to a setting in which the underlying normal
distribution has an arbitrary mean vector and variance, and is also multivariate.

Lemma 3 (Stein 1981). Let X ∼ N(µ, σ2I), for some fixed µ ∈ Rn and σ2 > 0. Let g : Rn → R be
continuous and almost differentiable, and write ∇g = (∂g1/∂x1, . . . ∂gn/xn) for the vector of partial
derivatives. Assume that E‖∇g(X)‖2 <∞. Then

1

σ2
E[(X − µ)g(X)] = E[∇g(X)]. (18)

We will delay the definition of almost differentiability until a little while later, but the eager
reader can look ahead to Definition 2. Putting aside any concerns about regularity conditions, the
result in (18) looks like a statement about degrees of freedom. To complete the connection, consider
a function f : Rn → Rn giving the fit µ̂ = f(y), and assume the usual normal model y ∼ N(µ, σ2I).
Let fi : Rn → R be the ith coordinate function of f . If fi satisfies the appropriate conditions
(continuity and almost differentiability), then we can apply Lemma 3 with X = y and g = fi, take
the ith equality in (18), and sum over i to give

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(y), yi

)
= E

[ n∑
i=1

∂fi
∂yi

(y)

]
, (19)

where ∂fi/∂yi denotes the partial derivative of fi with respect to its ith variable. This is known as
Stein’s formula for degrees of freedom. It can be very useful, because in some cases the divergence∑n
i=1 ∂fi/∂yi on the right-hand side of (19) can be computed explicitly, which yields an unbiased

estimate of degrees of freedom. This is true, e.g., of the lasso fit, and as a conrete illustration, we
prove the result in Theorem 1, using Stein’s formula, in the appendix.

Useful as it can be, Stein’s formula (19) is not universally applicable. There are several ways to
break its assumptions; our particular interest is in fitting procedures that are discontinuous in y.
For example, we showed in the proof of Theorem 2 that, when X is orthogonal, the subset selection
solution is given by hard thresholding XT y at the level t =

√
2λ. The hard thresholding function

Ht is clearly discontinuous: each one of its coordinate functions is discontinuous at t and −t. We
therefore derive a modest extension of Stein’s formula that allows us to deal with a certain class of
(well-behaved) discontinuous functions. We begin with the univariate case, and then move on to the
multivariate case.
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5.1 An extension of Stein’s univariate lemma

We consider functions f : R→ R that are absolutely continuous on a partition of R. Formally:

Definition 1. We say that a function f : R→ R is piecewise absolutely continuous, or p-absolutely
continuous, if there exist points δ1 < δ2 < . . . < δm such that f is absolutely continuous on each one
of the open intervals (−∞, δ1), (δ1, δ2), . . . (δm,∞).

For a p-absolutely continuous function f , we write D(f) = {δ1, . . . δm} for its discontinuity set.
Furthermore, note that such a function f has a derivative f ′ almost everywhere (because it has a
derivative almost everywhere on each of the intervals (−∞, δ1), (δ1, δ2), . . . (δm,∞)). We will simply
refer to f ′ as its derivative. Finally, we use the following helpful notation for one-sided limits,

f(x)+ = lim
t↓x

f(t) and f(x)− = lim
t↑x

f(t).

We now have the following extension of Stein’s univariate lemma, Lemma 2.

Lemma 4. Let Z ∼ N(0, 1). Let f : R → R be p-absolutely continuous, and have a discontinuity
set D(f) = {δ1, . . . δm}. Let f ′ be its derivative, and assume that E|f ′(Z)| <∞. Then

E[Zf(Z)] = E[f ′(Z)] +

m∑
k=1

φ(δk)
[
f(δk)+ − f(δk)−

]
.

The proof is similar to Stein’s proof of Lemma 2, and is left to the appendix, for readability. It
is straightforward to extend this result to a nonstandard normal distribution.

Corollary 1. Let X ∼ N(µ, σ2). Let h : R → R be p-absolutely continuous, with discontinuity set
D(h) = {δ1, . . . δm}, and derivative h′ satisfying E|h′(X)| <∞. Then

1

σ2
E[(X − µ)h(X)] = E[h′(X)] +

1

σ

m∑
k=1

φ

(
δk − µ
σ

)[
h(δk)+ − h(δk)−

]
.

With this extension, we can immediately say something about degrees of freedom, though only
in a somewhat restricted setting. Suppose that f : Rn → Rn provides the fit µ̂ = f(y), and that f
is actually univariate in each coordinate,

f(y) =
(
f1(y1), . . . fn(yn)

)
.

Suppose also that each coordinate function fi : R → R is p-absolutely continuous. We can apply
Corollary 1 with X = yi and h = fi, and sum over i to give

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(yi), yi

)
=

n∑
i=1

E[f ′i(yi)] +
1

σ

n∑
i=1

∑
δ∈D(fi)

φ

(
δ − µi
σ

)[
fi(δ)+ − fi(δ)−

]
. (20)

The above expression provides an alternative way of proving the result on the degrees of freedom
of hard thresholding, which was given in Lemma 1, the critical lemma for deriving the degrees of
freedom of both best subset selection and the relaxed lasso for orthogonal predictors, Theorems 2
and 3. We step through this proof next.
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Alternate proof of Lemma 1. For f(y) = Ht(y), the ith coordinate function is

fi(yi) = [Ht(yi)]i = yi · 1{|yi| ≥ t},

which has a discontinuity set D(fi) = {−t, t}. The second term in (20) is hence

1

σ

n∑
i=1

[
φ

(
t− µi
σ

)
· (t− 0) + φ

(
−t− µi

σ

)
· (0−−t)

]
=
t

σ

n∑
i=1

[
φ

(
t− µi
σ

)
+ φ

(
t+ µi
σ

)]
,

while the first term is simply
n∑
i=1

E[1{|yi| ≥ t}] = E|At|.

Adding these together gives

df(Ht) = E|At|+
t

σ

n∑
i=1

[
φ

(
t− µi
σ

)
+ φ

(
t+ µi
σ

)]
,

precisely the conclusion of Lemma 1.

5.2 An extension of Stein’s multivariate lemma

The degrees of freedom result (20) applies to functions f for which the ith component function fi
depends only on the ith component of the input, fi(y) = fi(yi), for i = 1, . . . n. Using this result,
we could compute the degrees of freedom of the best subset selection and relaxed lasso fits in the
orthogonal predictor matrix case. Generally speaking, however, we cannot use this result outside
of the orthogonal setting, due to the requirement on f that fi(y) = fi(yi), i = 1, . . . n. Therefore,
in the hope of understanding degrees of freedom for procedures like best subset selection and the
relaxed lasso in a broader context, we derive an extension of Stein’s multivariate lemma.

Stein’s multivariate lemma, Lemma 3, is concerned with functions g : Rn → R that are contin-
uous and almost differentiable. Loosely speaking, the concept of almost differentiability is really a
statement about absolute continuity. In words, a function is said to be almost differentiable if it is
absolutely continuous on almost every line parallel to the coordinate axis (this notion is different,
but equivalent, to that given by Stein). Before translating this mathematically, we introduce some
notation. Let us write x = (xi, x−i) to emphasize that x ∈ Rn is determined by its ith component
xi ∈ R and the other n − 1 components x−i ∈ Rn−1. For g : Rn → R, we let g( · , x−i) denote g as
a function of the ith component alone, with all others components fixed at the value x−i. We can
now formally define almost differentiability:

Definition 2. We say that a function g : Rn → R is almost differentiable if for every i = 1, . . . n
and Lebesgue almost every x−i ∈ Rn−1, the function g( · , x−i) : R→ R is absolutely continuous.

Similar to the univariate case, we propose a relaxed continuity condition. Namely:

Definition 3. We say that a function g : Rn → R is p-almost differentiable if for every i = 1, . . . n
and Lebesgue almost every x−i ∈ Rn−1, the function g( · , x−i) : R→ R is p-absolutely continuous.

Note that a function g that is p-almost differentiable has partial derivatives almost everywhere,
and we write the collection as ∇g = (∂g/∂x1, . . . ∂g/∂xn).2 Also, when dealing with g( · , x−i), the
function g restricted to its ith variable with all others fixed at x−i, we write its one-sided limits as

g(xi, x−i)+ = lim
t↓xi

g(t, x−i) and g(xi, x−i)− = lim
t↑xi

g(t, x−i).

We are now ready to present our extension of Stein’s multivariate lemma.

2Of course, this does not necessarily mean that g has a well-defined gradient, and so, cumbersome as it may read,
we are careful about referring to ∇g as the vector of partial derivatives, instead of the gradient.
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Lemma 5. Let X ∼ N(µ, σ2I), for some fixed µ ∈ Rn and σ2 > 0. Let g : Rn → R be p-almost
differentiable, with vector of partial derivatives ∇g = (∂g/∂x1, . . . ∂g/∂xn). Then, for i = 1, . . . n,

1

σ2
E[(Xi − µi)g(X)] = E

[
∂g

∂xi
(X)

]
+

1

σ
E

[ ∑
δ∈D(g( · ,X−i))

φ

(
δ − µi
σ

)[
g(δ,X−i)+ − g(δ,X−i)−

]]
,

provided that E|∂g/∂xi (X)| <∞ and

E

∣∣∣∣∣ ∑
δ∈D(g( · ,X−i))

φ

(
δ − µi
σ

)[
g(δ,X−i)+ − g(δ,X−i)−

]∣∣∣∣∣ <∞.
Refer to the appendix for the proof, which utilizes a conditioning argument to effectively reduce

the multivariate setup to a univariate one, and then invokes Lemma 4.
The above lemma, Lemma 5, leads to our most general extension of Stein’s formula for degrees

of freedom. Let f : Rn → Rn be a fitting procedure, as in µ̂ = f(y), and let f(y) = (f1(y), . . . fn(y)).
Consider Lemma 5 applied to the ith coordinate function, so that X = y and g = fi. Provided that
each fi is p-almost differentiable and satisfies the regularity conditions

E
∣∣∣∣∂fi∂yi

(y)

∣∣∣∣ <∞ and E

∣∣∣∣∣ ∑
δ∈D(fi( · ,y−i))

φ

(
δ − µi
σ

)[
fi(δ, y−i)+ − fi(δ, y−i)−

]∣∣∣∣∣ <∞, (21)

we can take the ith equality in the lemma, and sum over i to give

df(f) =
1

σ2

n∑
i=1

Cov
(
fi(y), yi

)
=

n∑
i=1

E
[
∂fi
∂yi

(y)

]
+

1

σ

n∑
i=1

E

[ ∑
δ∈D(fi( · ,y−i))

φ

(
δ − µi
σ

)[
fi(δ, y−i)+ − fi(δ, y−i)−

]]
. (22)

Even if we assume that (22) is applicable to subset selection and the relaxed lasso with arbitrary
predictors X, the discontinuity sets—and hence the second term in (22)—seem to be quite difficult
to calculate in these cases. In other words, unfortunately, the formula (22) does not seem to provide
an avenue for exact computation of the degrees of freedom of subset selection or the relaxed lasso
in general. However, it may still help us understand these quantities, as we discuss next.

5.3 Potential insights from the multivariate Stein extension

For both of the best subset selection and relaxed lasso fitting procedures, one can show that the
requisite regularity conditions (21) indeed hold, which makes the extended Stein formula (22) valid.
Here we briefly outline a geometric interpretation for these fits, and describe how it can be used to
understand their discontinuity sets, and the formula in (22). For an argument of a similar kind (and
one given in more rigorous detail), see Tibshirani & Taylor (2012).

In both cases, we can decompose Rn into a finite union of disjoint sets, Rn = ∪mi=1Ui, with each
Ui being polyhedral for the relaxed lasso, and each Ui an intersection of quadratic sublevel sets for
subset selection. The relaxed lasso and best subset selection now share the property that, on the
relative interior of each set Ui in their respective decompositions, the fit is just a linear projection
map, and assuming that X has columns in general position, this is just the projection map onto the
column space of XA for some fixed set A. Hence the discontinuity set of the fitting procedure in
each case is contained in ∪mi=1relbd(Ui), which has measure zero. In other words, the active set is
locally constant for almost every y ∈ Rn, and only for y crossing the relative boundary of some Ui
does it change. From this, we can verify the appropriate regularity conditions in (21).
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As f for the relaxed lasso and subset selection is the locally linear projection map f(y) = PAy,
almost everywhere in y, the first term

∑n
i=1 E[∂fi(y)/∂yi] in (22) is simply E|A|. The second term,

then, exactly coincides with the search degrees of freedom of these procedures. (Recall that the same
breakdown occurred when using the univariate Stein extension to derive the degrees of freedom of
hard thresholding, in Section 5.1.) This suggests a couple potential insights into degrees of freedom
and search degrees of freedom that may be gleaned from the extended Stein formula (22), which we
discuss below.

• Positivity of search degrees of freedom. If one could show that

fi(δ, y−i)+ − fi(δ, y−i)− > 0 (23)

for each discontinuity point δ ∈ D(fi(·, y−i)), almost every y−i ∈ Rn, and each i = 1, . . . n,
then this would imply that the second term in (22) is positive. For the relaxed lasso and subset
selection fits, this would mean that the search degrees of freedom term is always positive, i.e.,
the total degrees of freedom of these procedures is always larger than the (expected) number
of selected variables. In words, the condition in (23) says that the ith fitted value, at a point
of discontinuity, can only increase as the ith component of y increases. Note that this is a
sufficient but not necessary condition for positivity of search degrees of freedom.

• Search degrees of freedom and discontinuities. The fact that the second term in (22) gives the
search degrees of freedom of the best subset selection and the relaxed lasso fits tells us that
the search degrees of freedom of a procedure is intimately related to its discontinuities over y.
At a high level: the greater the number of discontinuities, the greater the magnitude of these
discontinuities, and the closer they occur to the true mean µ, the greater the search degrees
of freedom.

This may provide some help in understanding the apparent (empirical) differences in search
degrees of freedom between the relaxed lasso and best subset selection fits under correlated
setups, as seen in Section 4. The particular discontinuities of concern in (22) arise from fixing
all but ith component of the outcome at y−i, and examining the ith fitted value fi(·, y−i) as a
function of its ith argument. One might expect that this function fi(·, y−i) generally exhibits
more points of discontinuity for best subset selection compared to the relaxed lasso, due to
the more complicated boundaries of the elements Ui in the active-set-determining decomposi-
tion described above (these boundaries are piecewise quadratic for best subset selection, and
piecewise linear for the relaxed lasso). This is in line with the general trend of subset selection
displaying a larger search degrees of freedom than the relaxed lasso.

But, as demonstrated in Figure 6, something changes for large values of λ (small active sets,
on average), and for µ = Xβ∗ with a sparse or (especially) dense true coefficient vector β∗; we
saw that the search degrees of freedom of both the relaxed lasso and best subset selection fits
can grow very large in these cases. Matching search degrees of freedom to the second term in
(22), therefore, we infer that both fits must experience major discontinuities here (and these
are somehow comparable overall, when measured in number, magnitude, and proximity to µ).
This makes sense, especially when we think of taking λ large enough so that these procedures
are forced to select an active set that is strictly contained in the true support A∗ = supp(β∗);
different values of y, quite close to µ = Xβ∗, will make different subsets of A∗ look more or
less appealing according to the criterions in (3), (4).

5.4 Connection to Theorem 2 of Hansen & Sokol (2014)

After completing this work, we discovered the independent and concurrent work of Hansen & Sokol
(2014). These authors propose an interesting and completely different geometric approach to study-
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ing the degrees of freedom of a metric projection estimator

f(y) ∈ argmin
u∈K

‖y − u‖22,

where the set K ⊆ Rn can be nonconvex. Their Theorem 2 gives a decomposition for degrees of
freedom that possesses an intriguing tie to ours in (22). Namely, these authors show that the degrees
of freedom of any metric projection estimator f an be expressed as its expected divergence plus an
“extra” term, this term being the integral of the normal density with respect to a singular measure
(dependent on f). Equating this with our expression in (22), we see that the two forms of “extra”
terms must match—i.e., our second term in (22), defined by a sum over the discontinuities of the
projection f , must be equal to their integral.

This has an immediate implication for the projection operator onto the `0 ball of radius k, i.e.,
the best subset selection estimator in constrained form: the search degrees of freedom here must
be nonnegative (as the integral of a density with respect to a measure is always nonnegative). The
decomposition of Hansen & Sokol (2014) hence elegantly proves that the best subset selection fit,
constrained to have k active variables, attains a degrees of freedom larger than or equal k. However,
as far as we can tell, their Theorem 2 does not apply to best subset selection in Lagrange form, the
estimator considered in our paper, since it is limited to metric projection estimators. To be clear,
our extension of Stein’s formula in (22) is not restricted to any particular form of fitting procedure
f (though we do require the regularity conditions in (21)).

We find the connections between our work and theirs fascinating, and hope to understand them
more deeply in the future.

6 Discussion

In this work, we explored the degrees of freedom of best subset selection and the relaxed lasso (the
procedure that performs least squares on the active set returned by the lasso). We derived exact
expressions for the degrees of freedom of these fitting procedures with orthogonal predictors X, and
investigated by simulation their degrees of freedom for correlated predictors. We introduced a new
concept, search degrees of freedom, which intuitively measures the amount of degrees of freedom
expended by an adaptive regression procedure in merely constructing an active set of variables (i.e.,
not counting the degrees of freedom attributed to estimating the active coefficients). Search degrees
of freedom has a precise definition for any regression procedure. For subset selection and the relaxed
lasso, this reduces to the (total) degrees of freedom minus the expected number of active variables;
for the lasso, we simply equate its search degrees of freedom with that of the relaxed lasso, since
these two procedures have the exact same search step.

The last section of this paper derived an extension of Stein’s formula for discontinuous functions.
This was motivated by the hope that such a formula could provide an alternative lens from which
we could view degrees of freedom for discontinuous fitting procedures like subset selection and the
relaxed lasso. The application of this formula to these fitting procedures is not easy, and our grasp
of the implications of this formula for degrees of freedom is only preliminary. There is much work to
be done, but we are hopeful that our extension of Stein’s result will prove useful for understanding
degrees of freedom and search degrees of freedom, and potentially, for other purposes as well.
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A Proofs

A.1 Proof of Lemma 1

By definition,

df(Ht) =
1

σ2

n∑
i=1

Cov
(
[Ht(y)]i, yi

)
=

1

σ2

n∑
i=1

E
[
yi(yi − µi)

(
1{yi ≥ t}+ 1{yi ≤ −t}

)]
=

1

σ2

n∑
i=1

E
[
(zi + µi)zi

(
1{zi ≥ t− µi}+ 1{zi ≤ −t− µi}

)]
, (24)

where z = y − µ ∼ N(0, σ2I). To compute the above, we note the identities (the last two can be
checked using integration by parts):

E
[
zi · 1{zi ≤ a}

]
= −σφ(a/σ), (25)

E
[
zi · 1{zi ≥ b}

]
= σφ(b/σ), (26)

E
[
z2i · 1{zi ≤ a}

]
= −σaφ(a/σ) + σ2Φ(a/σ), (27)

E
[
z2i · 1{zi ≥ b}

]
= σbφ(b/σ) + σ2

[
1− Φ(b/σ)

]
, (28)

where Φ denotes the standard normal cdf. Plugging these in, the expression in (24) becomes

n∑
i=1

[
1− Φ

(
t− µi
σ

)
+ Φ

(
−t− µi

σ

)]
+
t

σ

n∑
i=1

[
φ

(
t− µi
σ

)
+ φ

(
−t− µi

σ

)]
,

and the first sum above is exactly

E
[ n∑
i=1

(
1{zi ≥ t− µi}+ 1{zi ≤ −t− µi}

)]
= E|At|,

as desired.

A.2 Proof of Theorem 2

As X is orthogonal, the criterion in (4) can be written as

‖y −Xβ‖22 = ‖XT y − β‖22 + c,

where c is a constant, meaning that it does not depend on β. Hence we can rewrite the optimization
problem in (4) as

β̂subset ∈ argmin
β∈Rp

1

2
‖XT y − β‖22 + λ‖β‖0,

and from this it is not hard to see that the solution is

β̂subset = H√2λ(XT y),

hard thresholding the quantity XT y by the amount t =
√

2λ. Finally, we note that

df(Xβ̂subset) = tr
(

Cov(Xβ̂subset, y)
)

= tr
(

Cov(β̂subset, XT y)
)
,

because the trace operator is invariant under commutation of matrices, and XT y ∼ N(XTµ, σ2I).
Applying Lemma 1 completes the proof.
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A.3 Proof of Theorem 1

We use several facts about the lasso without proof. These are derived in, e.g., Tibshirani & Taylor
(2012) and Tibshirani (2013). For fixed X,λ, the lasso fit f(y) = µ̂lasso(y) is continuous and almost
differentiable in each coordinate, so we can apply Stein’s formula (19). As X has columns in general
position, there is a unique lasso solution β̂lasso, and letting A denote its active set, and s denote the
signs of active lasso coefficients,

A = supp(β̂lasso) and s = sign(β̂lasso
A ),

the fit can be expressed as

µ̂lasso = XA(XT
AXA)−1XT

Ay −XA(XT
AXA)−1λs.

For almost every y ∈ Rn, the set A and vector s are locally constant (with respect to y), and so
they have zero derivative (with respect to y). Hence, for almost every y,

n∑
i=1

∂µ̂lasso
i

∂yi
(y) = tr

(
XA(XT

AXA)−1XT
A

)
= |A|,

and taking an expectation gives the result.

A.4 Proof of Lemma 4

The result can be shown using integration by parts. We prove it in a different way, mimicking Stein’s
proof of Lemma 2, which makes the proof for the multivariate case (Lemma 5) easier. We have

E[f ′(Z)] =

∫ ∞
−∞

f ′(z)φ(z) dz

=

∫ ∞
0

f ′(z)

{∫ ∞
z

tφ(t) dt

}
dz −

∫ 0

−∞
f ′(z)

{∫ z

−∞
tφ(t) dt

}
dz

=

∫ ∞
0

tφ(t)

{∫ t

0

f ′(z) dz

}
dt−

∫ 0

−∞
tφ(t)

{∫ 0

t

f ′(z) dz

}
dt. (29)

The second equality follows from φ′(t) = −tφ(t), and the third is by Fubini’s theorem. Consider the
first term in (29); as f is absolutely continuous on each of the intervals (−∞, δ1), (δ1, δ2), . . . (δm,∞),
the fundamental theorem of (Lebesgue) integral calculus gives∫ t

0

f ′(z) dz = f(t)− f(0)−
m∑
k=1

[
f(δk)+ − f(δk)−

]
· 1(0 ≤ δk ≤ t).

Therefore∫ ∞
0

tφ(t)

{∫ t

0

f ′(z) dz

}
dt =

∫ ∞
0

tφ(t)
[
f(t)− f(0)

]
dt−

∑
δk≥0

[
f(δk)+ − f(δk)−

] ∫ ∞
δk

tφ(t) dt.

The second term in (29) is similar, and putting these together we get

E[f ′(Z)] = E[Zf(Z)]− E[Z]f(0)−
∑
δk≥0

[
f(δk)+ − f(δk)−

]
· E
[
Z · 1{Z ≥ δk}

]
+

∑
δk<0

[
f(δk)+ − f(δk)−

]
· E
[
Z · 1{Z ≤ δk}

]
.

The result follows by noting that E[Z] = 0 and recalling the identities (25) and (26).
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A.5 Proof of Corollary 1

Define Z = (X − µ)/σ and f(z) = h(σz + µ), and apply Lemma 4.

A.6 Proof of Lemma 5

We assume that X ∼ N(0, I), and then a similar standardization argument to that given in the
proof of Corollary 1 can be applied here to prove the result for X ∼ N(µ, σ2I).

For fixed X−i, the function g( · , X−i) is univariate. Hence, following the proof of Lemma 4, and
using the independence of Xi and X−i,

E
[
∂g

∂xi
(X)

∣∣∣X−i] =

∫ ∞
−∞

∂g

∂xi
(z,X−i)φ(z) dz

=

∫ ∞
0

∂g

∂xi
(z,X−i)

{∫ ∞
z

tφ(t) dt

}
dz −

∫ 0

−∞

∂g

∂xi
(z,X−i)

{∫ z

−∞
tφ(t) dt

}
dz

=

∫ ∞
0

tφ(t)

{∫ t

0

∂g

∂xi
(z,X−i) dz

}
dt−

∫ 0

−∞
tφ(t)

{∫ 0

t

∂g

∂xi
(z,X−i) dz

}
dt.

Consider the first term above. For almost every X−i, the function g( · , X−i) is p-absolutely contin-
uous, so the inner integral is∫ t

0

∂g

∂xi
(z,X−i) dz = g(t,X−i)− g(0, X−i)−

∑
δ∈Di

[
g(z,X−i)+ − g(z,X−i)−

]
· 1(0 ≤ δ ≤ t),

where we have abbreviated Di = D(g( · , X−i)). The next steps follow the corresponding arguments
in the proof of Lemma 4, yielding

E
[
∂g

∂xi
(X)

∣∣∣X−i] = E[Xig(X) |X−i]−
∑
δ∈Di

[
g(δ,X−i)+ − g(δ,X−i)−

]
for almost every X−i. Taking an expectation over X−i gives the result.
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