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Abstract

We study the problem of uncertainty quantification for time series prediction, with the goal of providing
easy-to-use algorithms with formal guarantees. The algorithms we present build upon ideas from conformal
prediction and control theory, are able to prospectively model conformal scores in an online setting, and
adapt to the presence of systematic errors due to seasonality, trends, and general distribution shifts. Our
theory both simplifies and strengthens existing analyses in online conformal prediction. Experiments
on 4-week ahead forecasting of statewide COVID-19 death counts in the U.S. show an improvement in
coverage over the ensemble forecaster used in official CDC communications. We also run experiments on
predicting electricity demand, market returns, and temperature using autoregressive, Theta, Prophet, and
Transformer models. We provide an extendable codebase for testing our methods and for the integration
of new algorithms, data sets, and forecasting rules.1

1 Introduction
Machine learning models run in production systems regularly encounter data distributions that change over
time. This can be due to factors such as seasonality and time-of-day, continual updating and re-training of
upstream machine learning models, changing user behaviors, and so on. These distribution shifts can degrade
a model’s predictive performance. They also invalidate standard techniques for uncertainty quantification,
such as conformal prediction [VGS99, VGS05].

To address the problem of shifting distributions, we consider the task of prediction in an adversarial online
setting, as in [GC21]. In this problem setting, we observe a (possibly) adversarial time series of deterministic
covariates xt ∈ X and responses yt ∈ Y, for t ∈ N = {1, 2, 3, . . . }. As in standard conformal prediction, we
are free to define any conformal score function st : X ×Y → R, which we can view as measuring the accuracy
of our forecast at time t. We will assume with a loss of generality that st is negatively oriented (lower values
mean greater forecast accuracy). For example, we may use the absolute error st(x, y) = |y − ft(x)|, where ft
is a forecaster trained on data up to but not including data at time t.

The challenge in the sequential setting is as follows. We seek to invert the score function to construct a
conformal prediction set,

Ct = {y ∈ Y : st(xt, y) ≤ qt}, (1)

where qt is an estimated 1−α quantile for the distribution of the score st(xt, yt) at time t. Recall, in standard
conformal prediction, we would take qt to be a level 1− α sample quantile (up to a finite-sample correction)
of st(xi, yi), i < t; if the data sequence (xi, yi), i ∈ N were i.i.d. or exchangeable, then this would yield 1− α
coverage [VGS05] at each time t. However, in the sequential setting, which does not assume exchangeability
(or any probabilistic model for the data for that matter), choosing qt in (1) to yield coverage is a formidable
task. In fact, if we are not willing to make any assumptions about the sequence, then a coverage guarantee at
time t would only be possible with trivial methods, which construct prediction intervals of infinite sizes.

Therefore, our goal is to achieve long-run coverage in time. That is, letting errt = 1 {yt /∈ Ct}, we would
like to achieve, for large integers T ,

1

T

T∑
t=1

errt = α+ o(1) (2)

1http://github.com/aangelopoulos/conformal-time-series
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under few or no assumptions, where o(1) denotes a quantity that tends to zero as T →∞. We note that (2)
is not probabilistic at all, and every theoretical statement we will make in this paper holds deterministically.
Furthermore, going beyond (2), we also seek to design flexible strategies to produce the sharpest prediction
sets possible, which not only adapt to, but also anticipate distribution shifts.

We call our proposed solution conformal PID control. It treats the system for producing prediction sets
as a proportional-integral-derivative (PID) controller. In the language of control, the prediction sets take a
process variable, qt, and then produce an output, errt. We seek to anchor errt to a set point, α. To do so, we
apply corrections to qt based on the error of the output, gt = errt − α. By reframing the problem in this
language, we are able to build algorithms that have more stable coverage while also prospectively adapting to
changes in the score sequence, much in the same style as a control system. See the diagram in Figure 1.

 

 

scorecaster

integrator

quantile tracker

Figure 1: Conformal PID control, expressed as a block diagram.

1.1 Peek at results: methods
Three design principles underlie our methods:

1. Quantile tracking (P control). Running online gradient descent on the quantile loss (summed over all
past scores) gives rise to a method that we call quantile tracking, which achieves long-run coverage (2)
under no assumptions except boundedness of the scores. This bound can be unknown. Unlike adaptive
conformal inference (ACI) [GC21], quantile tracking does not return infinite sets after a sequence of
miscoverage events. This can be seen as equivalent to proportional (P) control.

2. Error integration (I control). By incorporating the running sum
∑t
i=1(erri − α) of the coverage errors

into the online quantile updates, we can further stabilize the coverage. This error integration scheme
achieves long-run coverage (2) under no assumptions whatsoever on the scores (they can be unbounded).
This can be seen as equivalent to integral (I) control.

3. Scorecasting (D control). To account for systematic trends in the scores—this may be due to aspects of
the data distribution, fixed or changing, which are not captured by the initial forecaster—we train a
second model, namely, a scorecaster, to predict the quantile of the next score. While quantile tracking
and error integration are merely reactive, scorecasting is forward-looking. It can potentially residualize
out systematic trends in the errors and lead to practical advantages in terms of coverage and efficiency
(set sizes). This can be seen as equivalent to derivative (D) control. Traditional control theory would
suggest using a linear approximation g′t = gt − gt−1, but in our problem, we will typically choose more
advanced scorecasting algorithms that go well beyond simple difference schemes.

These three modules combine to make our final iteration, the conformal PID controller :

qt+1 = ηgt︸︷︷︸
P

+ rt

(
t∑
i=1

gt

)
︸ ︷︷ ︸

I

+ g′t︸︷︷︸
D

. (3)
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In traditional PID control, one would take rt(x) to be a linear function of x. Here, we allow for nonlinearity
and take rt to be a saturation function obeying

x ≥ c · h(t) =⇒ rt(x) ≥ b, and x ≤ −c · h(t) =⇒ rt(x) ≤ −b, (4)

for constants b, c > 0, and a sublinear, nonnegative, nondecreasing function h—we call a function h satisfying
these conditions admissible. An example is the tangent integrator rt(x) = KI tan(x log(t)/(tCsat)), where we
set tan(x) = sign(x) · ∞ for x /∈ [−π/2, π/2], and Csat,KI > 0 are constants. The choice of integrator rt is a
design decision for the user, as is the choice of scorecaster g′t.

We find it convenient to reparametrize (3), to produce a sequence of quantile estimates qt, t ∈ N used in
the prediction sets (1), as follows:

let q̂t+1 be any function of the past: xi, yi, qi, for i ≤ t,

then update qt+1 = q̂t+1 + rt

(
t∑
i=1

(erri − α)

)
.

(5)

Taking q̂t+1 = ηgt + g′t recovers (3), but we find it generally useful to instead consider the formulation in
(5), which will be our main focus in the exposition henceforth. Now we view q̂t+1 as the scorecaster, which
directly predicts qt+1 using past data. A main result of this paper, whose proof is given in Section 2, is that
the conformal PID controller (5) achieves long-run coverage for any choice of integrator rt that satisfies the
appropriate saturation condition, and any scorecaster q̂t+1.

Theorem 1. Let {q̂t}t∈N be any sequence of numbers in [−b/2, b/2] and let {st}t∈N be any sequence of score
functions with outputs in [−b/2, b/2]. Here b > 0, and may be infinite. Assume that rt satisfies (4), for an
admissible function h. Then the iteration (5) achieves long-run coverage (2).

To emphasize, this result holds deterministically, with no probabilistic model on the data (xt, yt), t ∈ N.
(Thus in the case that the sequence is random, the result holds for all realizations of the random variables.)
As we will soon see, this theorem can be seen as a generalization of existing results in the online conformal
literature.

1.2 Peek at results: experiments
COVID-19 death forecasting. To demonstrate conformal PID in practice, we consider 4-week ahead
forecasting of COVID-19 deaths in California, from late 2020 through late 2022. The base forecaster ft that
we use is the ensemble model from the COVID-19 Forecast Hub, which is the model used for official CDC
communications on COVID-19 forecasting [CHW+22, RBB+23]. In this forecasting problem, at each time t
we actually seek to predict the observed death count yt+4 at time t+ 4.

Figure 2 shows the central 80% prediction sets from the Forecast Hub ensemble model on the left panel,
and those from our conformal PID method on the right. We use a quantile conformal score function, as in
conformalized quantile regression [RPC19], applied asymmetrically (i.e., separately) to the lower and upper
quantile levels). We use the tan integrator, with constants chosen heuristically (as described in Appendix B),
and an `1-regularized quantile regression as the scorecaster—in particular, the scorecasting model at time t
predicts the quantile of the score at time t+ 4 based on all previous forecasts, cases, and deaths, from all 50
US states. The main takeaway is that conformal PID control is able to correct for consistent underprediction
of deaths in the winter wave of late 2020/early 2021. We can see from the figure that the original ensemble
fails to cover 8 times in a stretch of 10 weeks, resulting in a coverage of 20%; meanwhile, conformal PID only
fails to cover 3 times during this stretch, restoring the coverage to 70% (recall the nominal level is 80%).

How is this possible? The ensemble is mainly comprised of constituent forecasters that ignore geographic
dependencies between states [CRL+22] for the sake of simplicity or computational tractability. But COVID
infections and deaths exhibit strong spatiotemporal dependencies, and most US states experienced the winter
wave of late 2020/early 2021 at similar points in time. The scorecaster is thus able to learn from the mistakes
made on other US states in order to prospectively adjust the ensemble’s forecasts for the state of California.
Similar improvements can be seen for other states, and we include experiments for New York and Texas as
examples in Appendix E, which also gives more details on the scorecaster and the results.
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Figure 2: Results for 4-week ahead COVID-19 death forecasting in California. The left column shows the
COVID-19 Forecast Hub ensemble model, and the right column shows conformal PID control using the tan
integrator, and a scorecaster given by `1-penalized quantile regression on all past forecasts, cases, and deaths
from all 50 states. The top row plots coverage, averaged over a trailing window of 10 weeks. The nominal
coverage level is 1− α = 0.8 and marked by a gray dotted line. The bottom row plots the prediction sets in
gold along with the ground-truth times series (death counts). Miscoverage events are indicated by red dots.
Summary statistics such as the coverage and average set size are available in Table 1.

Electricity demand forecasting. Next we consider a data set on electricity demand forecasting in New
South Wales [Har99], which includes half-hourly data from May 7, 1996 to December 5, 1998. For the base
forecaster we use a Transformer model [VSP+17] as implemented in darts [HLP+22]. This is only re-trained
daily, to predict the entire day’s demand in one batch; this is a standard approach with Transformer models
due to their high computational cost. For the conformal score, we use the asymmetric (signed) residual score.
We use the tan integrator as before, and we use a lightweight Theta model [AN00], re-trained at every time
point (half-hour), as the scorecaster.

The results are shown in the right panel of Figure 3, where adaptive conformal inference (ACI) [GC21] is
also compared in the left panel. In short, conformal PID control is able to anticipate intraday variations in
the scores, and produces sets that “hug” the ground truth sequence tightly; it achieves tight coverage without
generating excessively large or infinite sets. The main reason why this is improved is that the scorecaster
has a seasonality component built into its prediction model; in general, large improvements such as the one
exhibited in Figure 3 should only be expected when the base forecaster is imperfect, as is the case here.

1.3 Related work
The adversarial online view of conformal prediction was pioneered by [GC21], in the same paper that first
introduced ACI. Since then, there has been significant work towards improving ACI, primarily by setting
the learning rate adaptively [GC22, ZFG+22, BWXB23], and incorporating ideas from multicalibration to
improve conditional coverage [BGJ+22]. It is worth noting that [BWXB23] also makes the observation that
the ACI iteration can be generalized to track the quantile of the score sequence, although their focus is on
adaptive regret guarantees. Because the topic of adaptive learning rates for ACI and related algorithms has
already been investigated heavily, we do not consider it in the current paper. Any such method, such as those
of [GC22, BWXB23] should work well in conjunction with our proposed algorithms.

A related but distinct line of work surrounds online calibration in the adversarial sequence model, which
dates back to [Fos99, FV98], and connects in interesting ways to both game theory and online learning. We
will not attempt to provide a comprehensive review of this rich and sizeable literature, but simply highlight
[KL15, KE17, KD23] as a few interesting examples of recent work.

Lastly, outside the online setting, we note that several researchers have been interested in generalizing
conformal prediction beyond the i.i.d. (or exchangeable) data setting: this includes [TBCR19, PR21, LC21,
FBA+22, CLR23], and for time series prediction, in particular, [CWY18, SAvdS21, XX21, XX23, AGKH23].
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Figure 3: Results for electricity demand forecasting. The left column shows adaptive conformal inference
(ACI), and the right column shows conformal PID control. The base forecaster is a Transformer model, and
we use a tan integrator and a Theta scorecaster. The format of the figure follows that of Figure 2, except the
nominal coverage is now 1− α = 0.9, and the coverage is averaged over a trailing window of 50 points (we
also omit the red dots which mark miscoverage events). Summary statistics are available in Table 2.

The focus of all of these papers is quite different, and they all rely on probabilistic assumptions on the data
sequence to achieve validity.

2 Methods
We describe the main components of our proposal one at a time, beginning with the quantile tracker.

2.1 Quantile tracking
The starting point for quantile tracking is to consider the following optimization problem:

minimize
q∈R

T∑
t=1

ρ1−α(st − q), (6)

for large T , where we abbreviate st = st(xt, yt) for the score of the test point, and ρ1−α denotes the quantile
loss at the level 1− α, i.e., ρτ (z) = τ |z| for z > 0 and (1− τ)|z| for z ≤ 0. The latter is the standard loss
used in quantile regression [KB78, Koe05]. Problem (6) is thus a simple convex (linear) program that tracks
the 1 − α quantile of the score sequence st, t ∈ N . To see this, recall that for a continuously distributed
random variable Z, the expected loss E[ρ1−α(Z − q)] is uniquely minimized (over q ∈ R) at the level 1− α
quantile of the distribution of Z.

In the sequential setting, where we receive one score st at a time, a natural and simple approach is to
apply online gradient descent to (6), with a constant learning rate η > 0. This results in the update:2

qt+1 = qt + η∇ρ1−α(st − qt)
= qt + η(errt − α), (7)

where the second line follows as ∇ρ1−α(st − qt) = 1−α if st > qt ⇐⇒ errt = 1, and ∇ρ1−α(st − qt) = −α if
st ≤ qt ⇐⇒ errt = 0. Note that the update in (7) is highly intuitive: if we miscovered (committed an error)
at the last iteration then we increase the quantile, whereas if we covered (did not commit an error) then we
decrease the quantile.

2Technically, this is the online subgradient method; in a slight abuse of notation, we write ∇ρ1−α(0) to denote a subgradient
of ρ1−α at 0, which can take on any value in [−α, 1− α].
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Even though it is extremely simple, the quantile tracking iteration (7) can achieve long-run coverage own
its own, provided the scores are bounded.

Proposition 1. Let {st}t∈N be any sequence of numbers in [−b, b], for 0 < b <∞. Then the quantile tracking
iteration (7) with q1 = 0 satisfies ∣∣∣∣∣ 1

T

T∑
t=1

(errt − α)

∣∣∣∣∣ ≤ b+ η

ηT
,

for any learning rate η > 0 and T ≥ 1. In particular, this means (7) yields long-run coverage as in (2).

The proof is very simple, and we derive it as a corollary of Proposition 2, given in the next subsection,
because the proof reveals something perhaps unforeseen about the quantile tracker: it acts as an error
integrator, despite only adjusting the quantile based on the most recent time step.

Proof. Unraveling the iteration (7) yields

qt+1 = η

t∑
i=1

(erri − α). (8)

For rt(x) = ηx, h(t) = b, we see (4) holds with c = 1/η. Proposition 2 now applies.

A few remarks are in order. First, although Proposition 1 assumes boundedness of the scores, we do not
need to know this bound in order to run (7) and obtain long-run coverage. As long as the scores lie in [−b, b]
for any finite b, the guarantee goes through—clearly, the quantile tracker proceeds agnostically and performs
the same updates in any case.

Second, for the learning rate, in practice we typically set η heuristically, as some fraction of the highest
score over a trailing window B̂t = max{st−∆+1, . . . , st}. On this scale, setting η = 0.1B̂t usually gives good
results, and we use it in all experiments unless specified otherwise (we also set the window length ∆ to be the
same as the length of the burn-in period for training the initial base forecaster and scorecaster).3 Extremely
high learning rates result in volatile sets, while very low ones may fail to keep up with rapid changes in the
score distribution.

Finally, the proof reveals that quantile tracking (7), which comes from applying online gradient descent
to (6), can be equivalently viewed as a pure linear integrator (8) of past coverage errors. This explains why
quantile tracking is able to achieve coverage: as we will see later, an error integrator induces a certain kind of
self-correcting behavior: after some amount of excess cumulative miscoverage it forces a coverage event, and
vice versa, for excess cumulative coverage.

ACI as a special case. Though it may not be immediately obvious, adaptive conformal inference (ACI)
is actually a special case of the quantile tracker. ACI follows the iteration:

αt+1 = αt − η(errt − α),

which is equivalent to

1− αt+1 = 1− αt + η(errt − α)

= 1− αt + η∇ρ1−α(βt − (1− αt)),

for βt = inf{β : st ≤ Quantileβ ({s1, . . . , st−1}). This shows that ACI is a particular instance of the quantile
tracker that uses a secondary score s′t = βt and quantile q′t = 1− αt. Thus, because quantile tracking (7) is
the same as a linear coverage integrator (8), so is ACI.

We can see here that ACI transforms unbounded score sequences into bounded ones, which then implies
long-run coverage for any score sequence. This may, however, come at a cost: ACI can sometimes output
infinite or null prediction sets (when αt drifts below 0 or above 1, respectively). Direct quantile tracking on
the scale of the original score sequence does not have this behavior.

3Technically, this learning rate is not fixed, so Proposition 1 does not directly apply. However, we can view it as a special
case of error integration and an application of Proposition 2 thus provides the relevant coverage guarantee.
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2.2 Error integration
Error integration is a generalization of quantile tracking that follows the iteration:

qt+1 = rt

(
t∑
i=1

(erri − α)

)
, (9)

where rt is a saturation function that satisfies (4) for an admissible function h; recall that we use admissible
to mean nonnegative, nondecreasing, and sublinear. As we saw in (8), the quantile tracker uses a constant
threshold function h, whereas h is now permitted to grow, as long as it grows sublinearly, i.e., h(t)/t→ 0 as
t→∞. A non-constant threshold function h can be desirable because it means that rt will “saturate” (will
hit the conditions on the right-hand sides in (4)) less often, so corrections for coverage error will occur less
often, and in this sense, a greater degree of coverage error can be tolerated along the sequence.

The next proposition, in particular its proof, makes the role of h precise.

Proposition 2. Let {st}t∈N be any sequence of numbers in [−b, b], where b > 0, and may be infinite. Assume
that rt satisfies (4), for an admissible function h. Then the error integration iteration (9) satisfies∣∣∣∣∣ 1

T

T∑
t=1

(errt − α)

∣∣∣∣∣ ≤ ch(T ) + 1

T
, (10)

for any T ≥ 1, where c is the constant in (4). In particular, this means (9) yields long-run coverage (2).

Proof of Proposition 2. Abbreviate ET =
∑T
t=1(errt − α). We will prove one side of the absolute inequality

in (10), namely, ET ≤ ch(T ) + 1, and the other side follows similarly. We use induction. The base case, for
T = 1, holds trivially. Now assume the result is true up to T − 1. We divide the argument into two cases:
either ch(T − 1) < ET−1 ≤ ch(T − 1) + 1 or ET−1 ≤ ch(T − 1). In the first case, note that that (4) implies
qT = rt(ET−1) ≥ b and therefore sT ≤ qT and errt = 0. This means that

ET = ET−1 − α ≤ ch(T − 1) + 1− α ≤ ch(T ) + 1,

as h is nondecreasing, which is the desired result at T . In the second case, we just use errT ≤ 1, so

ET ≤ ET−1 + 1− α ≤ ch(T − 1) + 1− α ≤ ch(T ) + 1.

This again gives the desired result at T , and completes the proof.

Importantly, Proposition 2 suffices to prove Theorem 1.

Proof of Theorem 1. We can transform (5) by setting q′t+1 = qt+1 − q̂t+1, and this becomes an update of the
form (9) with respect to q′t+1. Further, the score sequence in this new parameterization is s′t = st − q̂t, which
is in [−b, b] because both st and q̂t are in [−b/2, b/2]. Applying Proposition 2 gives the result.

As already mentioned in the introduction, in all our experiments we use a nonlinear saturation function
rt(x) = KI tan(x log(t)/(tCsat)), where we set tan(x) = sign(x) · ∞ for x /∈ [−π/2, π/2], and Csat,KI > 0 are
constants that we choose heuristically (described in Appendix B). In a sense, this tan integrator is akin to a
quantile tracker whose learning rate adapts to the current coverage gap. To see this, we can use a first-order
Taylor approximation, which shows (ignoring constants):

qt+1 = tan

(
log(t)

t

t∑
i=1

(erri − α)

)
≈ qt +

log(t)

t
sec2

(
log(t− 1)

t− 1

t−1∑
i=1

(erri − α)

)
︸ ︷︷ ︸

effective learning rate

∇ρ1−α(st − qt).

Above, sec(x) = 1/ cos(x) is the secant function, which has a U-shape; thus we can see from the above that
the effective learning rate is higher for larger errors. Similar analyses for different integrators will give different
adaptive learning rates; see Appendix C for another example.
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2.3 Scorecasting
The final piece to discuss is scorecasting. A scorecaster attempts to forecast qt+1 directly, taking advantage of
leftover signal that may not be captured by the base forecaster. This, recall, is the role played by q̂t+1 in (5).
Scorecasting may be particularly useful when it is difficult to modify or re-train the base forecaster. This can
occur when the base forecaster is computationally costly to train (e.g., as in a Transformer model); or it can
occur in complex operational prediction pipelines where frequently updating a forecasting implementation is
infeasible. Another scenario where scorecasting may be useful is one in which the forecaster and scorecaster
have access to different levels of data. For example, if a public health agency collects epidemic forecasts from
external groups, and forms an ensemble forecast, then the agency may have access to finer-grained data that
it can use to recalibrate the ensemble’s prediction sets (compared to the level of data granularity granted to
the forecasters originally).

This motivates the need for scorecasting as a modular layer that “sits on top” of the base forecaster and
residualizes out systematic errors in the score distribution. This intuition is made more precise by recalling,
as described above (following Proposition 2), that scorecasting combined with error integration as in (5) is
just a reparameterization of error integration (9), where q′t = qt − q̂t and s′t = st − q̂t are the new quantile
and new score, respectively. A well-executed scorecaster could reduce the variability in the scores and make
them more exchangeable, resulting in more stable coverage and tighter prediction sets, as seen in Figure 3.
On the other hand, using an aggressive scorecaster in a situation in which there is little or no signal left in
the scores can actually hurt: in this case it would only add variance to the new score sequence s′t, which
could result in more volatile coverage and larger sets.

There is no limit to what we can choose for the scorecasting model. We might like to use a model that
can simultaneously incorporate seasonality, trends, and exogenous covariates. Two traditional choices would
be SARIMA (seasonal autoregressive integrated moving average) and ETS (error-trend-seasonality) models,
but there are many other available methods, such as the Theta model [AN00], Prophet model [TL18], and
various neural network forecasters. A modern review of forecasting methods is given in [HA18].

2.4 Putting it all together
Briefly, we revisit the PID perspective, to recap how quantile tracking, error integration, and scorecasting fit
in and work in combination. It helps to return to (3), which we copy again here for convenience:

qt+1 = g′t + η(errt − α) + rt

(
t∑
i=1

(erri − α)

)
. (11)

Quantile tracking is precisely given by taking g′t = qt and rt = 0. This can be seen as equivalent to P control:
subtract qt from both sides in (11) and treat the increment ut+1 = qt+1 − qt as the process variable; then in
this modified system, quantile tracking is exactly P control. For this reason, we use “conformal P control” to
refer to the quantile tracker in the experiments that follow. Similarly, we use “conformal PI control” to refer
to the choice g′t = qt, and rt 6= 0 as a generic integrator (for us, tan is the default). Lastly, “conformal PID
control” refers to letting g′t be a generic scorecaster, and rt 6= 0 be a generic integrator.

3 Experiments
In addition to the statewide COVID-19 death forecasting experiment described in the introduction, we run
experiments on all combinations of the following data sets and forecasters.

Data sets:

• Electricity demand in New South Wales [Har99]

• Return (log price) of Amazon, Google, and Mi-
crosoft stock [Ngu18]

• Temperature in Delhi [Vra17]

Forecasters (all via darts [HLP+22]) :

• Autoregressive (AR) model with 3 lags

• Theta model with θ = 2 [AN00]

• Prophet model [TL18]

• Transformer model [VSP+17]

8



In all cases except for the COVID-19 forecasting data set, we: re-train the base forecaster at each time
point; construct prediction sets using the asymmetric (signed) residual score; and use a Theta model for the
scorecaster. For the COVID-19 forecasting setting, we: use the given ensemble model as the base forecaster
(no training at all); construct prediction sets using the asymmetric quantile score; and use an `1-penalized
quantile regression as the scorecaster, fit on features derived from previous forecasts, cases, and deaths, as
described in the introduction. And lastly, in all cases, we use a tan function for the integrator with constants
chosen heuristically, as described in Appendx B.

The results that we choose to show in the subsections below are meant to illustrate key conceptual points
(differences between the methods). Additional results are presented in Appendix F. Our GitHub repository,
https://github.com/aangelopoulos/conformal-time-series, provides the full suite of evaluations.

3.1 ACI versus quantile tracking
We forecast the daily Amazon (AMZN) opening stock price from 2006–2014. We do this in log-space (hence
predicting the return of the stock). Figure 4 compares ACI and the quantile tracker, each with its default
learning rate: η = 0.005 for ACI, and η = 0.1B̂t for quantile tracking. We see that the coverage from each
method is decent, but oscillates nontrivially around the nominal level of 1 − α = 0.9 (with ACI generally
having larger oscillations). Figure 5 thus increases the learning rate for each method: η = 0.1 for ACI, and
η = 0.5B̂t for the quantile tracker. We now see that both deliver very tight coverage. However, ACI does so
by frequently returning infinite sets; meanwhile, the corrections to the sets made by the quantile tracker are
nowhere near as aggressive.

As a final comparison, in Appendix D, we modify ACI to clip the sets in a way that disallows them from
ever being infinite. This heuristic may be used by practitioners that want to guard against infinite sets, but
it no longer has a validity guarantee for bounded or unbounded scores. The results in the appendix indicate
that the quantile tracker has similar coverage to this procedure, and usually with smaller sets.

3.2 The effect of integration
Next we forecast the daily Google (GOOGL) opening stock price from 2006–2014 (again done in log-space).
Figure 6 compares the quantile tracker without and without an additional integrator component (P control
versus PI control). We purposely choose a very small learning rate, η = 0.01B̂t, in order to show how the
integrator can stabilize coverage, which it does nicely for most of the time series. The coverage of PI control
begins to oscillate more towards the end of the sequence, which we attribute at least in part to the fact that
the integrator measures coverage errors accumulated over all time—and by the end of a long sequence, the
marginal coverage can still be close to 1 − α even if the local coverage deviates more wildly. This can be
addressed by using a local version of the integrator, an idea we return to in the discussion.

3.3 The effect of scorecasting
Figures 2 and 3 already showcase examples in which scorecasting offers significant improvement in coverage
and set sizes. Recall that these were settings in which the base forecaster produces errors (scores) that have
predictable trends. Further examples in the COVID-19 forecasting setting, which display similar benefits to
scorecasting, are given in Appendix E.

We emphasize that it is not always the case that scorecasting will help. In some settings, scorecasting
may introduce enough variance into the new score sequence that the coverage or sets will degrade in stability.
(For example, this will happen if we run a highly complex scorecaster on a sequence of i.i.d. scores, where
there are no trends whatsoever.) In practice, scorecasters should be designed with care, just as one would
design a base forecaster; it is unlikely that using “out of the box” techniques for scorecasting will be robust
enough, especially in high-stakes problems. Appendix F provides examples in which scorecasting, run across
all settings using a generic Theta model, can hurt (for example, it adds noticeable variance to the coverage
and sets in some instances within the Amazon data setting).
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Average set size ∞ 17.6 ∞ 51.7 ∞ 17.8 ∞ 70.4
Median set size 13.4 13.3 50.7 37.3 12.8 13.1 61.9 44.3
75% quantile set size 28.4 22.3 117 72.1 20.9 22.6 179 98.4
90% quantile set size 44.1 37.7 236 114 38.6 38.4 302 153
95% quantile set size 49.9 46.2 ∞ 140 48.2 46.9 ∞ 196

Figure 4: Results for forecasting Amazon stock return, comparing ACI and quantile tracking (P control).
The plots show AR as the base forecaster; the table summarizes the results of all four base forecasters. We
use the default learning rates for both ACI and quantile tracking: η = 0.005 and η = 0.1B̂t, respectively.
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Median set size ∞ 18.6 60.6 31.9 ∞ 18.7 46 35.5
75% quantile set size ∞ 37.4 ∞ 56.5 ∞ 37.8 ∞ 69.7
90% quantile set size ∞ 66.3 ∞ 93.4 ∞ 63.4 ∞ 123
95% quantile set size ∞ 81.8 ∞ 116 ∞ 78.5 ∞ 164

Figure 5: As in Figure 4, but with larger learning rates for ACI and quantile tracking: η = 0.1 and η = 0.5B̂t,
respectively.
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75% quantile set size 21.3 30.1 120 88 60 42.6 386 121
90% quantile set size 30.7 38.4 150 118 66.2 51.3 482 244
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Figure 6: Results for forecasting Google stock return, comparing quantile tracking with and without the
integrator (P control versus PI control). The plots show Prophet as the base forecaster; the table summarizes
the results of all four base forecasters. We purposely use a very small learning rate, η = 0.01B̂t, in order to
show how the integrator can stabilize coverage.

4 Discussion
Our work presents a framework for constructing prediction sets in time series that is analogous (and indeed
formally equivalent) to PID control. The framework consists of quantile tracking (P control), which is simply
online gradient descent applied to the quantile loss; error integration (I control) to stabilize coverage; and
scorecasting (D control) to remove systematic trends in the scores (errors made by the base forecaster).

We found the combination of quantile tracking and integration to consistently yield robust and favorable
performance in our experiments. Scorecasting provides additional benefits if there are trends left in scores
that are predictable (and the scorecaster is well-designed), as is the case in some of our examples. Otherwise,
scorecasting may add variability and make the coverage and prediction sets more volatile. Overall, designing
the scorecaster (which includes the choice to even use one at all) is an important modeling step, just like the
design of the base forecaster.

It is worth emphasizing that, with the exception of the COVID-19 forecasting example, our experiments
are intended to be illustrative and we did not look to use state-of-the-art forecasters, or include any and all
possibly relevant features for prediction. Further, while we found that using heuristics to set constants (such
as the learning rate η, and constants Csat,KI for the tan integrator) worked decently well, we believe that
more rigorous techniques, along the lines of [GC22, BWXB23], can be used to tune these adaptively in an
online fashion.

We now present an extension of our analysis to conformal risk control [ABF+22, BAL+21, FRBR22]. In
this problem setting, we are given a sequence of loss functions Lt : 2Y × Y → [0, 1] satisfying Lt(Y, y) = 0
for all y, and Lt(∅, y) = 1 for all y. The goal is to bound the deviation of the average risk 1

T

∑T
t=1 Lt(Ct, yt)

from α. We state a result for the integrator below, and give its proof in Appendix A.

Proposition 3. Consider the iteration qt+1 = rt(
∑t
i=1(Li(Ci, yi)− α)), with Lt as above. Assume that rt

satisfies (4), for an admissible function h. Also assume that Ct(Ct, yt) = ∅ if qt ≤ −b and Y if qt ≥ b, where
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b > 0, and may be infinite. Then for all T ≥ 1,∣∣∣∣∣ 1

T

T∑
t=1

(Lt(Ct, yt)− α)

∣∣∣∣∣ ≤ ch(T ) + 1

T
. (12)

for any T ≥ 1, where c is the constant in (4).

We briefly conclude by mentioning that we believe many other extensions are possible, especially with
respect to the integrator. Broadly, we can choose to integrate in a kernel-weighted fashion

rt

(
t∑
i=1

(erri − α) ·K
(
(i, xi, yi), (t, xt, yt)

))
(13)

As a special case, the kernel could simply assign weight 1 if t− i ≤ w, and weight 0 otherwise, which would
result in an integrator that aggregates coverage over a trailing window of length w. This can help consistently
sustain better local coverage, for long sequences. As another special case, the kernel could assign a weight
based on whether xi and xt lie in the same bin in some pre-defined binning of X space, which may be useful
for problems with group structure (where we want group-wise coverage). Many other choices and forms of
kernels are possible, and it would be interesting to consider adding together a number of such choices (13) in
combination, in a multi-resolution flavor, for the ultimate quantile update.
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A Conformal risk control guarantee
Proof of Proposition 3. The proof is similar to that of Proposition 2—as in that proof, we only prove one
side of the absolute inequality (12), and use induction. Abbreviate ET =

∑T
t=1(Li(Ci, yi)− α)). The base

case holds trivially. For the inductive step, either ch(T − 1) < ET−1 ≤ ch(T − 1) + 1 or ET−1 ≤ ch(T − 1).
In the first case, we have saturated, so Lt(Ct, yt) = 0, and

ET = ET−1 − α ≤ ch(T − 1) + 1− α ≤ ch(T ) + 1,

as h is nondecreasing, which is the desired result at T . In the second case, we just use the boundedness of
the loss Lt(Ct, yt) ≤ 1, so

ET ≤ ET−1 + 1− α ≤ ch(T − 1) + 1− α ≤ ch(T ) + 1.

This again gives the desired result at T , and completes the proof.

B Heuristics for setting constants
Consider the tan integrator rt(x) = KI tan(x log(t)/(tCsat)), where we set tan(x) = sign(x) · ∞ whenever
x /∈ [−π/2, π/2], and Csat,KI > 0 are constants. The constant Csat is primarily in charge of guaranteeing
that by time T , we want to have an absolute guarantee of at least 1− α− δ coverage. Then we can set

Csat =
2

π

(
dlog(T )δe − 1/ log(T )

)
to ensure the tan function has an asymptote at the correct point. The purpose of the constant KI is to place
the integrator on the same scale as the scores. So if B′ is a hypothesized bound on the magnitude of the
scores, then one can set KI = B′. In practice, these heuristics can be taken as a starting place, and then the
numbers can be fine-tuned during a burn-in period by hand or algorithmically. As alluded to previously, we
believe there is room for work in the style of [GC22, BWXB23] to rigorously tune these parameters online,
but it is not the focus of our paper.

C Quantile tracking with decaying learning rate
Consider rt(x) = ηx/

√
t. (This will give long-run coverage only for bounded scores, because condition (4) is

only met for finite and not infinite b.) Then (9) becomes qt+1 = η√
t

∑t
i=1(erri − α), which can be rewritten as

qt+1 =

√
t− 1√
t

η√
t− 1

t−1∑
i=1

(erri − α) +
η√
t
(erri − α) ≈ qt +

η√
t
(errt − α).

This is approximately the quantile tracker (7) with a decaying learning rate, on the order of 1/
√
t.

D Comparison to clipped ACI
Figures 7 and 8 compare the quantile tracker to a clipped version of ACI which disallows infinite-sized sets by
clipping the sets to the largest score seen so far.

E More details on COVID-19 forecasting
In this experiment, the scorecaster receives as input the three most recent scores (i.e., quantile errors) of the
ensemble forecaster, as well as the three most recent case and death counts, from all 50 states. The scorecaster
is an `1-penalized quantile regression as implemented by sklearn.linear_model.QuantileRegressor. We
fixed tuning parameter for the `1 penalty at 10; in our experience, the performance of the scorecaster was
fairly robust to this choice. Automatic selection (e.g., using cross-validation) could be the topic of future
study. Figures 9 and 10 shows the analogous experiments but for forecasting in New York and Texas.
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Average set size 44.9 28.4 52.6 42.6 43.3 27.8 60.5 54.2
Median set size 41.8 18.6 38.8 31.9 27.3 18.7 36.6 35.5
75% quantile set size 58.9 37.4 66.9 56.5 59.5 37.8 85.5 69.7
90% quantile set size 93.9 66.3 137 93.4 94.7 63.4 148 123
95% quantile set size 136 81.8 166 116 136 78.5 182 164

Figure 7: As in Figure 4, but with clipped ACI.
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Longest err sequence 6 3 13 6 5 5 21 9
Average set size 19.5 17.6 69.5 51.7 17.9 17.8 115 70.4
Median set size 13.4 13.3 48.7 37.3 12.8 13.1 61.7 44.3
75% quantile set size 27.9 22.3 91.1 72.1 20.7 22.6 165 98.4
90% quantile set size 44 37.7 168 114 38.5 38.4 248 153
95% quantile set size 48.7 46.2 195 140 47.2 46.9 304 196

Figure 8: As in Figure 5, but with clipped ACI.
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Figure 9: Results for 4-week ahead COVID-19 death forecasting in New York.
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Figure 10: Results for 4-week ahead COVID-19 death forecasting in Texas.
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Base Forecaster Conformal PID Ctrl

Marginal coverage 0.82 0.86
Longest err sequence 6 2
Average set size 625 858
Median set size 512 688
75% quantile set size 754 1.01e+03
90% quantile set size 1.12e+03 1.47e+03
95% quantile set size 1.45e+03 1.8e+03

Table 1: Summary statistics for COVID-19 death forecasting in California, as in Figure 2.

AR Transformer
ACI Conformal PID Control ACI Conformal PID Ctrl

Marginal coverage 0.899 0.9 0.899 0.901
Longest err sequence 3 2 3 2
Average set size ∞ 0.177 ∞ 0.174
Median set size 0.406 0.178 0.426 0.175
75% quantile set size 0.484 0.21 0.574 0.206
90% quantile set size 0.672 0.236 ∞ 0.233
95% quantile set size ∞ 0.252 ∞ 0.249

Table 2: Summary statistics for electricity forecasting, as in Figure 3. Results for the Prophet and Theta
models are not available because darts does not support intermittent retraining for these algorithms.

F Further experiments
We give a more comprehensive view of our results, examing all data sets, and a range of tuning parameters
for each method. We restrict our attention to AR as the base forecaster; for the rest of the base forecasters,
we refer to the GitHub repository: https://github.com/aangelopoulos/conformal-time-series.

For each experiment, we describe the data set in a new subsection, and two plots are included: one for
the coverage, and one for the prediction sets. Each column in the plots represents a different method, and
each row is a different learning rate. For the quantile tracker, the learning rate is to be interpreted as the
multiplier in front of B̂t. Each method is given a different color, which stays consistent throughout the plots.
We use a tan integrator and a Theta scorecaster throughout, just as in the main text experiments.

F.1 Amazon/Google
These data sets are part of a multivariate time series consisting of thirty blue-chip stock prices, including
those of Amazon (AMZN) and Google (GOOGL), from January 1, 2006 to December 31, 2014. We attempt
to forecast the daily opening price of each of Amazon and Google stock, on a log scale. Available to the
scorecaster are the previous open prices of all 30 stocks.

F.2 Microsoft
This data set is a univariate time series consisting of a single stock open price, that of Microsoft (MSFT),
from April 1, 2015 to May 31, 2021.

F.3 Daily temperature in Delhi
This data set contains the daily temperature (averaged over 8 measurements in 3 hour periods), humidity,
wind speed, and atmospheric temperature in the city of Delhi from January 1, 2003 to April 24, 2017, scraped
using the Weather Underground API.
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F.4 Electricity demand forecasting
This data set measures electricity demand in New South Wales collected at half-hour increments from May
7th, 1996 to December 5th, 1998 (we zoom in on the first 2000 time points). There are also several other
variables collected, such as the demand and price in Victoria, the amount of energy transfer between New
South Wales and Victoria, and so on. These are given as covariates to the scorecaster. The demand value is
normalized by default to lie in [0, 1].

F.5 Synthetic data sets
We perform some experiments on two synthetic score sequences which include change points and other
behaviors difficult to produce using real data. In this setting, there is no ground truth yt sequence, so we do
not plot the sets. Instead, we plot the scores themselves in one column, and the quantiles qt produced by
each algorithm in a different column (when qt ≥ st, we cover). The general goal is for qt to track the 1− α
quantile of st, and if it is too far off, that corresponds to the “set being too large or too small” in a situation
where we would be constructing sets out of these scores.

We consider an i.i.d. sequence of scores, a noisy increasing sequence of scores, and a mix of change points
and trends. Our codebase describes the score generation procedure in more detail.
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Figure 11: Results for the Amazon data set.
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Figure 12: Results for the Google data set.

21



0.0

0.5

1.0
Trail

cvg=87.5%

ACI

lr=0.1, cvg=90.0%

Conformal P

lr=1, cvg=90.0%

Conformal PI

lr=1, cvg=89.9%

Conformal PID

lr=1, cvg=89.9%

0.0

0.5

1.0

lr=0.05, cvg=89.9% lr=0.5, cvg=89.9% lr=0.5, cvg=89.6% lr=0.5, cvg=89.6%

0.0

0.5

1.0

lr=0.01, cvg=89.8% lr=0.1, cvg=89.9% lr=0.1, cvg=89.8% lr=0.1, cvg=89.7%

0.0

0.5

1.0

lr=0.005, cvg=89.7% lr=0.05, cvg=89.8% lr=0.05, cvg=89.8% lr=0.05, cvg=89.7%

1000 2000 3000
0.0

0.5

1.0

1000 2000 3000

lr=0.0001, cvg=88.7%

1000 2000 3000

lr=0, cvg=0.0%

1000 2000 3000

lr=0, cvg=89.8%

1000 2000 3000

lr=0, cvg=89.8%

Time

C
ov

er
ag

e

25

50

75

100
y

ground truth

Trail ACI
lr=0.1

Conformal P
lr=1

Conformal PI
lr=1

Conformal PID
lr=1

25

50

75

100
forecast lr=0.05 lr=0.5 lr=0.5 lr=0.5

25

50

75

100
lr=0.01 lr=0.1 lr=0.1 lr=0.1

25

50

75

100
lr=0.005 lr=0.05 lr=0.05 lr=0.05

0 1000 2000 3000

25

50

75

100

0 1000 2000 3000 0 1000 2000 3000

lr=0.0001

0 1000 2000 3000

lr=0

0 1000 2000 3000

lr=0

0 1000 2000 3000

lr=0

Time

t

Figure 13: Results for the Microsoft data set.
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Figure 14: Results for the Delhi temperature data set.
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Figure 15: Results for the electricity demand forecasting data set.
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Figure 16: Results for an i.i.d. score sequence.
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Figure 17: Results for an increasing score sequence.
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Figure 18: Results for a score sequence that is a mix of change points and trends.
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