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Abstract
We propose a method for estimation in high-dimensional 
linear models with nominal categorical data. Our estima-
tor, called SCOPE, fuses levels together by making their 
corresponding coefficients exactly equal. This is achieved 
using the minimax concave penalty on differences between 
the order statistics of the coefficients for a categorical vari-
able, thereby clustering the coefficients. We provide an al-
gorithm for exact and efficient computation of the global 
minimum of the resulting nonconvex objective in the case 
with a single variable with potentially many levels, and 
use this within a block coordinate descent procedure in 
the multivariate case. We show that an oracle least squares 
solution that exploits the unknown level fusions is a limit 
point of the coordinate descent with high probability, pro-
vided the true levels have a certain minimum separation; 
these conditions are known to be minimal in the univari-
ate case. We demonstrate the favourable performance of 
SCOPE across a range of real and simulated datasets. An R 
package CatReg implementing SCOPE for linear models 
and also a version for logistic regression is available on 
CRAN.
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1  |   INTRODUCTION

Categorical data arise in a number of application areas. For example, electronic health data typically 
contain records of diagnoses received by patients coded within controlled vocabularies and also pre-
scriptions, both of which give rise to categorical variables with large numbers of levels (Jensen et al., 
2012). Vehicle insurance claim data also contain a large number of categorical variables detailing 
properties of the vehicles and parties involved (Hu et al., 2018). When performing regression with 
such data as covariates, it is often helpful, both for improved predictive performance and interpretation 
of the fit, to fuse the levels of several categories together in the sense that the estimated coefficients 
corresponding to these levels have exactly the same value.

To fix ideas, consider the following ANOVA model relating response vector Y = (Y1, …, Yn)T ∈ ℝ
n 

to categorical predictors Xij ∈ {1, …, Kj}, j = 1, …, p: 

Here the �i are independent zero mean random errors, �0 is a global intercept and �0
jk

 is the contribution 
to the response of the kth level of the jth predictor; we will later place restrictions on the parameters to 
ensure they are identifiable. We are interested in the setting where the coefficients corresponding to any 
given predictor are clustered, so defining 

we have sj ≪ Kj, at least when Kj is large. Note that our setup can include high-dimensional settings 
where p is large and many of the predictors do not contribute at all to the response: when sj = 1, the con-
tribution of the jth predictor is effectively null as it may be absorbed by the intercept term.

1.1  |  Background and motivation

Early work on collapsing levels together in low-dimensional models of the form (1) focused on per-
forming a variety of significance tests for whether certain sets of parameters were equal (Calinski & 
Corsten, 1985; Scott & Knott, 1974; Tukey, 1949). A more modern and algorithmic method based on 
these ideas is delete or merge regressors (DMR) (Maj-Kańska et al., 2015), which involves agglom-
erative clustering based on t-statistics for differences between levels.

The CART algorithm (Breiman et al., 1984) for building decision trees effectively starts with all 
levels of the variables fused together and greedily selects which levels to split. One potential drawback 
of these greedy approaches is that in high-dimensional settings where the search space is very large, 
they may fail to find good groupings of the levels. The popular random forest procedure (Breiman, 
2001) uses randomisation to alleviate the issues with the greedy nature of the splits, but sacrifices 
interpretability of the fitted model.

(1)Yi = �0 +

p∑
j= 1

Kj∑
k= 1

�0
jk
�{Xij=k} + �i.

(2)sj: = |{�0
j1

, …, �0
jKj
} | ,

K E Y W O R D S

categorical data, dynamic programming, high-dimensional 
regression, nonconvex penalty
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An alternative to greedy approaches in high-dimensional settings is using penalty-based methods 
such as the Lasso (Tibshirani, 1996). This can be applied to continuous or binary data and involves 
optimising an objective for which global minimisation is computationally tractable, thereby avoiding 
some of the pitfalls of greedy optimisation. In contrast to random forest, the fitted models are sparse 
and interpretable. Inspired by the success of the Lasso and related methods for high-dimensional 
regression, a variety of approaches have proposed estimating �0 = (�0

jk
)j=1,…,p,k=1,…,Kj

 and �0 via opti-
mising over (μ, θ) a sum of a least squares criterion 

and a penalty of the form 

This is the CAS-ANOVA penalty of Bondell and Reich (2009). The weights wj,kl can be chosen to bal-
ance the effects of having certain levels of categories more prevalent than others in the data. The penalty 
is an ‘all-pairs’ version of the fused Lasso and closely related to so-called convex clustering (Chiquet 
et al., 2017; Hocking et al., 2011). We note that there are several other approaches besides using penalty 
functions. For instance, Pauger and Wagner (2019) proposes a Bayesian modelling procedure using 
sparsity-inducing prior distributions to encourage fusion of levels. See also Tutz and Gertheiss (2016) 
and references therein for a review of other methods including those based on mixture models and 
kernels.

The fact that the optimisation problem resulting from (4) is convex makes the procedure attractive. 
However, a drawback is that it may not give a desirable form of shrinkage. Indeed, consider the case 
where p = 1, and dropping subscripts for simplicity, all wkl = 1. This would typically be the case if 
all levels were equally prevalent. Further suppose for simplicity that the number of levels K is even. 
Then if the coefficients are clustered into two groups where one contains only a single isolated co-
efficient, the number of non-zero summands in Equation (4) is only K − 1. This almost doubles to 
2(K − 2) when one of the two groups is of size 2. The extreme case where the two groups are of equal 
size yields (K∕2)2 non-zero summands. This particular property of all-pairs penalties, which results in 
them favouring groups of unequal sizes, is illustrated schematically in Figure 1. We can see the impact 
of this in the following concrete example.

Suppose K = 20 levels are clustered into four groups with 

If the coefficient estimates satisfy �𝜃1 =⋯ = �𝜃4 < �𝜃5 =⋯ = �𝜃10 ≤ �𝜃k for all k ≥ 11, so the first two 
groups have distinct coefficients, then moving any coefficient from the first group towards the second, and 
so increasing the number of estimated groups, actually decreases the penalty contribution in Equation (4). 
Specifically, if the kth coefficient for some k ∈ {1, …, 4} moves to �̂k + t for t ∈ [0, �̂5 − �̂4] with all 
other coefficients kept fixed, the penalty contribution decreases by 13t. In this case, then CAS-ANOVA 
will struggle to keep the groups intact, especially smaller ones. We see this in Figure 2, which shows the 
result of applying CAS-ANOVA to data generated according to (1) with p = 1, �0 as above, n = 20 (so we 

(3)�(�, �): =
1

2n

n�
i= 1

⎛⎜⎜⎝
Yi − � −

p�
j= 1

Kj�
k= 1

�jk�{Xij=k}

⎞⎟⎟⎠

2

(4)
p∑

j= 1

Kj∑
k= 2

k− 1∑
l= 1

wj,kl |�jk − �jl | .

�0
1
=⋯=�0

4
=−6, �0

5
=⋯=�0

10
=−2.5

�0
11
=⋯=�0

16
=2.5, �0

17
=⋯=�0

20
=6.
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have a single observation corresponding to each level), and �i

i.i.d.
∼ �(0, 1). There is no value of the tuning 

parameter λ where the true groups are recovered.
As in the standard regression setting, the bias introduced by all-pairs �1-type penalties may be re-

duced by choosing data-adaptive weights analogously to the adaptive Lasso (Zou, 2006), or replacing 

F I G U R E  1   Illustration of the number of non-zero summands in (4) when p = 1, K = 16 and coefficients are 
clustered into two groups of equal size (right), and where one contains a single coefficient (left) and two coefficients 
(middle)

F I G U R E  2   Solution paths as the tuning parameter varies in a univariate example where there are four true 
groups. From left to right: CAS-ANOVA, the range penalty and SCOPE with γ = 8. The setup is as described in the 
main text of Section 1.1, with the different colours corresponding to the different true groups. The tuning parameter 
varies along the y axis. In this example, only SCOPE identifies the four correct groups at any point along its solution 
path [Colour figure can be viewed at wileyonlinelibrary.com]

−6 −4 −2 0 2 4 6

CAS−ANOVA

−6 −4 −2 0 2 4 6

Range penalty

−6 −4 −2 0 2 4 6

SCOPE

www.wileyonlinelibrary.com
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the absolute value |�jk + �jl | by �( |�jk + �jl | ) where ρ is a concave and non-decreasing penalty func-
tion (Ma & Huang, 2017; Oelker et al., 2015). However, this does not address the basic issue of a 
preference for groups of unequal sizes. Additionally, optimising an objective involving a penalty with 
O
�∑ p

j=1
K2

j

�
 summands can be computationally challenging, particularly in the case where ρ is not 

convex, both in terms of runtime and memory.
To help motivate the new approach we are proposing in this paper, let us consider the setting where 

the predictors are ordinal rather than nominal, so there is an obvious ordering among the levels. In these 
settings, it is natural to consider a fused Lasso (Tibshirani et al., 2005) penalty of the form 

where �j is a permutation of {1, …, Kj} specifying the given order; this is done in Gertheiss and 
Tutz (2010) who advocate using it conjunction with the all-pairs-type CAS-ANOVA penalty for 
nominal categories.

If, however, we treat the nominal variable setting as analogous to having ordinal variables with 
unknown orderings �j, one might initially think of choosing �j corresponding to the order of the es-
timates �j: = (�jk)

Kj

k=1
, such that �j�j(k) = �j(k), where �j(k) is the kth smallest entry in �j. This, however, 

leads to what we refer to as the ‘range’ penalty: 

While this shrinks the largest and smallest of the estimated coefficients together, the remaining coeffi-
cients lying in the open interval between these are unpenalised and so no grouping of the estimates is 
encouraged, as we observe in Figure 2; see also Oelker et al. (2015) for a discussion of this issue in the 
context of ordinal variables.

1.2  |  Our contributions and organisation of the paper

Given how all-pairs penalties have an intrinsic and undesirable preference for unequal group sizes, 
and how the fused Lasso applied to ordered coefficients (6) does not result in grouping of the coef-
ficients, we propose the following solution. Our approach is to use the penalty 

for concave (and nonconvex) non-decreasing penalty functions �j, which, for computational reasons we 
discuss in Section 3, we base on the minimax concave penalty (MCP) (Zhang, 2010). In Section 2 we for-
mally introduce our method, which we call SCOPE, standing for Sparse Concave Ordering & Penalisation 
Estimator.

Note that whereas in conventional high-dimensional regression, the use of nonconvex penalties 
has been primarily motivated by a need to reduce bias in the estimation of large coefficients (Fan & 

(5)
p∑

j= 1

Kj − 1∑
k= 1

|�j�j(k+1) − �j�j(k) | ,

(6)
Kj − 1∑
k= 1

|�j(k+1) − �j(k) | = max
k

�jk − min
k
�jk.

p∑
j= 1

Kj − 1∑
k= 1

�j(�j(k+1) − �j(k)),
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Li, 2001), here the purpose is very different: in our setting a nonconvex penalty is in fact even nec-
essary for shrinkage to sparse solutions to occur (see Proposition 1). Because of these fundamental 
differences, the rich algorithmic and statistical theory concerning high-dimensional regression with 
nonconvex penalties (see, e.g. Loh and Wainwright (2012, 2015), Wang et al. (2014), Fan et al. (2018), 
Zhao et al. (2018) and references therein) is not directly applicable to our setting.

In Section 3, we therefore introduce a new dynamic programming approach that recovers the global 
minimum of the resulting objective function exactly in the univariate case, that is, when p = 1. We 
then build this into a blockwise coordinate descent approach to tackle the multivariate setting.

In Section 4 we study the theoretical properties of SCOPE and give sufficient conditions for the 
estimator to coincide with the least squares solution with oracular knowledge of the level fusions in 
the univariate case. These conditions involve a minimal separation between unequal coefficients that 
is, up to constant factors, minimax optimal. Our result contrasts sharply with Theorem 2 of Ma and 
Huang (2017) for an all-pairs nonconvex penalty. The latter instead shows the existence of a local op-
timum that coincides with the oracle least squares solution. While in conventional high-dimensional 
regression settings, it is known that under certain conditions, all local optima have favourable proper-
ties (Loh & Wainwright, 2015), we note that the separation requirements in Ma and Huang (2017) are 
substantially weaker than those indicated by the minimax lower bound, and so cannot be extended to 
a particular local optimum determined by the data; see the discussion following Theorem 5.

We use our univariate result to show that the oracle least squares solution is a fixed point of our 
blockwise coordinate descent algorithm in the multivariate case. In Section 5 we outline some exten-
sions of our methodology including a scheme for handling settings when there is a hierarchy among 
the categorical variables. Section 6 contains numerical experiments that demonstrate the favourable 
performance of our method compared to a range of competitors on both simulated and real data. We 
conclude with a discussion in Section 7. Further details of our algorithm can be found in the Appendix. 
The supplementary material contains additional information on the runtime of our algorithm, and an 
approximate version suitable for very large-scale settings, all the proofs, and additional information on 
the experiments in Section 6.

2  |   SCOPE METHODOLOGY

Recall that our goal is to estimate parameters (�0, �0) in model (1). Let us first consolidate some nota-
tion. For any � ∈ ℝ

K1 ×⋯ ×ℝ
Kp, we define �j: = (�jk)

Kj

k=1
∈ ℝ

Kj. We will study the univariate setting 
where p = 1 separately, and so it will be helpful to introduce some simplified notation for this case, 
dropping any extraneous subscripts. We thus write K ≡ K1, Xi ≡ Xi1 and � ≡ �1. Additionally, we let 
Yk denote the average of the Yi with Xi = k: 

where nk =
∑

n
i=1

�{Xi=k}.
In order to avoid an arbitrary choice of corner point constraint, we instead impose the following to 

ensure that �0 is identifiable: for all j = 1, …, p we have 

(7)Yk =
1

nk

n∑
i= 1

Yi�{Xi=k},

(8)gj(�
0
j
) = 0, where gj(�j) =

Kj∑
k= 1

njk�jk and njk =

n∑
i= 1

�{Xij=k}.
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Let Θj = {�j ∈ ℝ
Kj : gj(�j) = 0}, and let Θ = Θ1 ×⋯ × Θp. We will construct estimators by minimising 

over � ∈ ℝ and θ ∈ Θ an objective function of the form 

where ℓ is the least squares loss function (3) and �j(1) ≤ ⋯ ≤ �j(Kj)
 are the order statistics of �j. We 

allow for different penalty functions �j for each predictor in order to help balance the effects of vary-
ing numbers of levels Kj. The identifiability constraint that θ ∈ Θ ensures that the estimated intercept 
�̂: = arg min� Q̃(�, �) satisfies �̂ =

∑
n
i=1

Yi∕n.
We note that while the form of the identifiability constraint would not have a bearing on the 

fitted values of unregularised least squares regression, this is not necessarily the case when regu-
larisation is imposed. For example, consider the simple univariate setting with p = 1 and the cor-
ner point constraint �1 = 0. Then the fitted value for an observation with level 1 would simply be 
the average Y1, coinciding with that of unpenalised least squares. However, the fitted values with 
observations with other level k ≥ 2 would be subject to regularisation and in general be different 
to Yk. This inequitable treatment of the levels is clearly undesirable as they may have been labelled 
in an arbitrary way. Our identifiability constraint treats the levels more symmetrically, but also 
takes into account the prevalence of levels, so the fitted values corresponding to more prevalent 
levels effectively undergo less regularisation.

As the estimated intercept �̂ does not depend on the tuning parameters, we define 

We will take the regularisers �j: [0, ∞) → [0, ∞) in Equation (9) to be concave (and nonconvex); as 
discussed in the introduction and formalised in Proposition 1 below, a nonconvex penalty is necessary for 
fusion to occur.

Proposition 1  Consider the univariate case with p = 1. Suppose the subaverages (Yk)K
k=1

 (7) are all 
distinct, and that �1 ≡ � is convex. Then any minimiser �̂ of Q has �̂k ≠ �̂l for all k ≠ l such that 
�𝜃(1) < Yk − �𝜇 < �𝜃(K) or �𝜃(1) < Yl − �𝜇 < �𝜃(K).

We base the penalties ρj :[0, ∞) → [0, ∞) on the minimax concave penalty (MCP) (Zhang, 2010): 

where (u)+ = u�{u ≥ 0}. This is a piecewise quadratic function with gradient λ at 0 and flat beyond γλ. 
For computational reasons which we discuss in Section 3, the simple piecewise quadratic form of this is 
particularly helpful. In the multivariate case we take �j = �� , �j

 with �j = �
√

Kj. This choice of scaling is 
motivated by requiring that when �0 = 0 we also have �̂ = 0 with high probability; see Lemma 10 in the 
Supplementary material. We discuss the choice of the tuning parameters λ and γ in Section 3.3, but first 
turn to the problem of optimising (9).

Q̃(�,�) = �(�,�) +

p∑
j= 1

Kj − 1∑
k= 1

�j(�j(k+1) − �j(k)),

(9)Q(�) =
1

2n

n�
i= 1

⎛⎜⎜⎝
Yi − �̂ −

p�
j= 1

Kj�
k= 1

�jk�{Xij=k}

⎞⎟⎟⎠

2

+

p�
j= 1

Kj − 1�
k= 1

�j(�j(k+1) − �j(k)).

�(x) = �� ,�(x) = ∫
x

0

�

(
1−

t

��

)

+

dt,
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3  |   COMPUTATION

In this section we include details of how SCOPE is computed. Section 3.1 motivates and describes the 
dynamic programming algorithm we use to compute global minimiser of the SCOPE objective, which 
is highly nonconvex. Section 3.2 contains details of how this is used to solve the multivariate objective 
by embedding it within a blockwise coordinate descent routine. Discussion of practical considerations 
is contained in Section 3.3.

3.1  |  Univariate model

3.1.1  |  Preliminaries

We now consider the univariate case (p = 1) and explain how the solutions are computed. In this 
case, we may rewrite the least squares loss contribution to the objective function in the following 
way: 

where wk = nk∕n. Thus the optimisation problem (9) can be written equivalently as 

suppressing the dependence of the MCP ρ on tuning parameters γ and λ. In fact, it is straightforward to 
see that the constraint that the solution lies in Θ will be automatically satisfied, so we may replace Θ with 
ℝ

K. Two challenging aspects of the optimisation problem above are the presence of the nonconvex ρ and 
the order statistics. The latter, however, are easily dealt with using the result below, which holds more 
generally whenever ρ is a concave function.

Proposition 2  Consider the univariate optimisation (11) with ρ any concave function such that a 
minimiser �̂ exists. If for k, l we have Yk > Yl, then �̂k ≥ �̂l.

This observation substantially simplifies the optimisation: after re-indexing such that 
Y1 ≤ Y2 ≤⋯ ≤ YK, we may re-express (11) as, 

We use the following intermediate functions to structure the algorithm: 

(10)

1

2n

n∑
i= 1

(
Yi− �̂−

K∑
k= 1

�k�{Xi=k}

)2

=
1

2n

K∑
k= 1

n∑
i= 1

�{Xi=k}(Yi− �̂−�k)2

=
1

2

K∑
k= 1

wk(Yk − �̂−�k)2+
1

2n

n∑
i= 1

K∑
k= 1

�{Xj=k}(Yi−Yk)2

(11)
�̂ ∈ arg min

�∈Θ

1

2

K∑
k= 1

wk

(
Yk − �̂ − �k

)2
+

K − 1∑
k= 1

�
(
�(k+1) − �(k)

)
,

(12)�̂ ∈ arg min
�:�1 ≤⋯≤�K

{
1

2

K∑
k= 1

wk

(
Yk − �̂ − �k

)2
+

K − 1∑
k= 1

�
(
�k+1 − �k

)}
.
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for k = 2, …, K; here sarg min refers to the smallest minimiser in the case that it is not unique. Invariably, 
however, this will be unique, as the following result indicates.

Proposition 3  The set of (Yk)K
k=1

 that yields distinct solutions to (11) has Lebesgue measure zero as 
a subset of ℝK.

We will thus tacitly assume uniqueness in some of the discussion that follows, although this is not 
required for our algorithm to return a global minimiser. Observe now that �̂K is the minimiser of the 
univariate objective function fK: indeed for k ≥ 2, 

Furthermore, we have �̂K−1 = bK(�̂K), and more generally �̂k = bk+1(�̂k+1) for k = K−1, …, 1. Thus pro-
vided fK can be minimised efficiently (which we shall see is indeed the case), given this and the functions 
b2, …, bK we can iteratively compute �̂K , �̂K−1, …, �̂1. In order to make use of these properties, we must 
be able to compute fK and the bk efficiently; we explain how to do this in the following subsection.

3.1.2  |  Computation of fK and b2, …, bK

The simple piecewise quadratic form of the MCP-based penalty is crucial to our approach for com-
puting the fK and the bk. Some important consequences of this piecewise quadratic property are sum-
marised in the following lemma.

Lemma 4   For each k,

(i)	 fk is continuous, coercive and piecewise quadratic with finitely many pieces;
(ii)	 bk is piecewise linear with finitely many pieces;
(iii)	 for each �k+1 ∈ ℝ, if a minimiser �̃k = �̃k(�k+1) of �k ↦ fk(�k) + �(�k+1 − �k) over ( −∞, �k+1] 

satisfies 𝜃̃k < 𝜃k+1, then fk must be differentiable at �̃k.

Properties (i) and (ii) above permit exact representation of fk and bk with finitely many quantities. 
The key task then is to form the collection of intervals and corresponding coefficients of quadratic 
functions for 

given a similar piecewise quadratic representation of fk; and also the same for the linear functions com-
posing bk. A piecewise quadratic representation of fk+1 would then be straightforward to compute, and we 

(13)
f1(�1)=

1

2
w1(Y1− �̂−�1)2,

fk(�k)= min
�k−1:�k−1≤�k

{fk−1(�k−1)+�(�k −�k−1)}+
1

2
wk(Yk − �̂−�k)2,

bk(�k)= sarg min
�k−1:�k−1≤�k

{fk−1(�k−1)+�(�k −�k−1)},

(14)fk(�k) = min
(�1,…,�k−1)T :�1 ≤⋯≤�k−1 ≤�k

{
1

2

k∑
l= 1

wl(Yl − �̂ − �l)
2 +

k− 1∑
l= 1

�(�l+1 − �l)

}
.

(18)gk(�k+1): = min
�k:�k ≤�k+1

{fk(�k) + �(�k+1 − �k)}
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can iterate this process. To take advantage of property (iii) above, in computing gk(�k+1) we can separately 
search for minimisers at stationary points in ( −∞, �k+1) and compare the corresponding function values 
with fk(�k+1); the fact that we need only consider potential minimisers at points of differentiability will 
simplify things as we shall see below.

Suppose Ik,1, …, Ik,m(k) are intervals that partition ℝ (closed on the left) and qk,1, …, qk,m(k) are 
corresponding quadratic functions such that fk(�k) = qk,r(�k) for �k ∈ Ik,r. Let us write 

We may then express fk as fk(�k) = minr q̃k,r(�k). We can also express the penalty � = �� ,� in a similar 
fashion. Let 

Then �(x) = mint �̃t(x) for x ≥ 0. Let Dk be the set of points at which fk is differentiable. We then have, 
using Lemma 4 (iii) that 

where m̃in denotes the minimum if it exists and ∞ otherwise. The fact that in the inner minimisation we 
are permitted to consider only points in Dk simplifies the form of 

We show in Section A.1 of the Appendix that this is finite only on an interval and there takes the value of 
a quadratic function; coefficients for this function and the interval endpoints have closed form expressions 
that are elementary functions of the coefficients and intervals corresponding to q̃k,r. With this, we have 
an explicit representation of gk as the minimum of a collection of functions that are quadratic on intervals 
and ∞ everywhere else. Let us refer to these intervals (closed on the left) and corresponding quadratic 
functions as Jk,1, …, Jk,n(k) and pk,1, …, pk,n(k) respectively.

In order to produce a representation of fk+1 for use in future iterations, we must express gk as a 
collection of quadratics defined on disjoint intervals. To this end, define for each x ∈ ℝ the active set 
at x, A(x) = {r: x ∈ Jk,r}. Note that the endpoints of the intervals Jk,r are the points where the active 
set changes and it is thus straightforward to determine A(x) at each x. Let r(x) be the index such that 
gk(x) = pk,r(x)(x). For large negative values of x, A(x) will contain a single index and for such x this 
must be r(x). Consider also for each r ∈ A(x) ╲ {r(x)}, the horizontal coordinate x′ of the first intersec-
tion beyond x (if it exists) between pk,r and pk,r(x). We refer to the collection of all such tuples (x′, r) as 
the intersection set at x and denote it by N(x). Given r(x), N(x) can be computed easily. The intersec-
tion set N(x) then in turn helps to determine the smallest x′ > x where r(x′) ≠ r(x) changes, that is the 

q̃k,r(�k) =

{
qk,r(�k) if �k ∈ Ik,r

∞ otherwise.

𝜌̃1(x):=−𝛾𝜆2{1−x∕(𝛾𝜆)}2∕2+𝛾𝜆2∕2 if 0≤ x<𝛾𝜆 and ∞ otherwise,

𝜌̃2(x):= 𝛾𝜆2∕2 if x≥ 𝛾𝜆 and ∞ otherwise.

(16)

gk(𝜃k+1)= min
𝜃k :𝜃k≤𝜃k+1

{min
r

q̃k,r(𝜃k)+min
t
𝜌̃t(𝜃k+1−𝜃k)}

=min[ m̃in
𝜃k∈Dk:𝜃k<𝜃k+1

min
r,t

{q̃k,r(𝜃k)+ 𝜌̃t(𝜃k+1−𝜃k)}, fk(𝜃k+1)]

=min[min
r,t

m̃in
𝜃k∈Dk :𝜃k<𝜃k+1

{q̃k,r(𝜃k)+ 𝜌̃t(𝜃k+1−𝜃k)}, fk(𝜃k+1)],

(17)uk,r,t(𝜃k+1): = m̃in
𝜃k ∈Dk:𝜃k <𝜃k+1

{q̃k,r(𝜃k) + 𝜌̃t(𝜃k+1 − 𝜃k)}.
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next knot of gk beyond x, as we now explain. Suppose at a point xold, we have computed rold = r(xold).  
We set xcur = xold and perform the following.

1.	 Given r(xcur), compute N(xcur) and set (xint, rint) = arg min(x,r)∈N(xcur)
x.

2.	 If there are no changes in the active set between xcur and xint, we have found the next knot point at 
xint and rint = r(xint).

3.	 If instead the active set changes, move xcur to the leftmost change point. We have that r(x) = rold for 
x ∈ [xold, xcur). To determine if r(x) changes at xcur, we check if
(i).	 rold leaves the active set at xcur, so rold ∉ A(xcur), or
(ii).	 some rnew enters the active set at xcur and ‘beats’ rold, so rnew ∈ A(xcur)�A(xold) and 

pk,rnew
(xcur + 𝜖) < pk,rold

(xcur + 𝜖) for  ϵ > 0 sufficiently small.

If either hold xcur is a knot and r(xcur) may be computed via r(xcur) = arg minr∈A(xcur)
pk,r(xcur).

If neither hold, we conclude that r(xcur) = rold and go to step 1 once more.

Hence we can proceed from one knot of gk to the next by comparing the values and intersections of 
a small collection of quadratic functions, and thereby form a piecewise quadratic representation of 
gk in a finite number of steps. Figure 3 illustrates the steps outlined above. The pieces of bk may be 
computed in a similar fashion.

We note there are several modifications that can speed up the algorithm: for example, for 
each r, uk,r,2 (17) is a constant function where it is finite (see pk,3 in the figure), and these can 

F I G U R E  3   Illustration of the optimisation problem and our algorithm, to be interpreted with reference to steps 1, 
2, 3 in the main text. Shading indicates regions where the active set, displayed at the bottom of the plot, is invariant, 
and vertical dotted lines signify changes. Dotted curves correspond to parts of quadratic functions pk,l lying outside 
their associated intervals Jk,l. At xold, we have r(xold) = 1, A(xold) = {1, 2} and N(xold) = {(x

(1)

int
, 2)}. Since the active set 

changes between xold and x(1)

int
, we move xcur to the first change point P and see neither (i) nor (ii) occur. We therefore 

return to step 1 and compute N(xcur) which additionally contains (x(2)

int
, 2). As the active set is unchanged between xcur 

and x(2)

int
 we have determined the next knot point x(2)

int
 and minimising quadratic pk,3 [Colour figure can be viewed at 

wileyonlinelibrary.com]

www.wileyonlinelibrary.com


590  |      STOKELL et al.

be dealt with more efficiently. For further details including pseudocode see Section A.2 of the 
Appendix.

In summary, our algorithm produces a piecewise quadratic representation of fK, which we can mi-
nimise efficiently to obtain �̂K. We also have piecewise linear representations of functions b2,…, bK 
through which we may iteratively obtain �̂k = bk+1(�̂k+1) for k = K−1, …, 1.

It seems challenging to obtain meaningful bounds on the number of computations that must 
be performed at each stage of this process in terms of parameters of the data. However, to give an 
indication of the scalability of this algorithm, we ran a simple example with 3 true levels and found 
that with 50 categories the runtime was under 10−3 seconds; with 2000 categories it was still well 
under half a second. More details on computation time can be found in Sections 1.3 and 3.2 of the 
Supplementary material. In Section 1.4 of the Supplementary material, we describe an approximate 
version of the algorithm that can be used for fast computation in very large-scale settings.

3.2  |  Multivariate model

Using our dynamic programming algorithm for the univariate problem, we can attempt to minimise 
the objective (9) for the multivariate problem using block coordinate descent. This has been shown 
empirically to be a successful strategy for minimising objectives for high-dimensional regression with 
nonconvex penalties such as the MCP (Breheny & Huang, 2011; Breheny & Huang, 2015; Mazumder 
et al., 2011), and we take this approach here. Considering the multivariate case, we iteratively minimise 
the objective Q over �j: = (�jk)

Kj

k=1
∈ Θj keeping all other parameters fixed. Then for a given (γ,λ) and 

initial estimate �̂
(0)

∈ Θ, we repeat the following until a suitable convergence criterion is met:

1.	 Initialise m  =  1, and set for i  =  1,  …,  n 

2.	 For j = 1, …, p, compute 

 

3.	 Increment m → m + 1.

We define a blockwise optimum of Q to be any �̂ ∈ Θ, such that for each j = 1, …, p, 

Ri = Yi − �̂ −

p∑
l= 1

Kl∑
k= 1

�̂
(m−1)

lk
�{Xil=k}.

(18)R
(j)

i
= Ri +

Kj∑
k= 1

�̂
(m−1)

jk
�{Xij=k} for each i,

(19)

�̂
(m)

j
= arg min

�j∈Θj

⎧
⎪⎨⎪⎩

1

2n

n�
i= 1

⎛⎜⎜⎝
R

(j)

i
−

Kj�
k= 1

�jk�{Xij=k}

⎞⎟⎟⎠

2

+

⎛⎜⎜⎝

Kj − 1�
k= 1

�j(�j(k+1)−�j(k))

⎞⎟⎟⎠

⎫⎪⎬⎪⎭
Ri=R

(j)

i
−

Kj�
k= 1

�̂
(m)

jk
�{Xij=k} for each i.

(20)�̂j ∈ arg min
�j ∈Θj

Q(�̂1,…, �̂j−1,�j, �̂j+1, …, �̂p).
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This is equivalent to �̂ being a fixed point of the block coordinate descent algorithm above. Provided 
γ > 0, Q is continuous in θ. As a consequence of Tseng (2001), Theorem 4.1 (c), provided the minimisers 
�̂

(m)

j
 in (19) are unique for all j and m (which will invariably be the case when the responses are realisa-

tions of continuous random variables; see Proposition 3), then all limit points of the sequence (�̂
(m)

)∞
m=0

 
are blockwise optima.

3.3  |  Practicalities

In practice the block coordinate descent procedure described above must be performed over a grid 
of (γ,λ) values to facilitate tuning parameter selection by cross-validation. In line with analogous 
recommendations for other penalised regression optimisation procedures (Breheny & Huang, 2011; 
Friedman et al., 2010), we propose, for each fixed γ, to iteratively obtain solutions for an exponentially 
decreasing sequence of λ values, warm starting each application of block coordinate descent at the 
solution for the previous λ. It is our experience that this scheme speeds up convergence and helps to 
guide the resulting estimates to statistically favourable local optima, as has been shown theoretically 
for certain nonconvex settings (Wang et al., 2014).

The grid of γ values can be chosen to be fairly coarse as the solutions appear to be less sensitive 
to this tuning parameter; in fact fixing γ ∈ {8, 32} yields competitive performance across a range of 
settings (see Section 6). The choice γ↓0, which mimics the �0 penalty, has good statistical properties 
(see Theorem 5 and following discussion). However, the global optimum typically has a smaller basin 
of attraction and can be prohibitively hard to locate, particularly in low signal to noise ratio settings 
where larger γ tends to dominate.

4  |   THEORY

In this section, we study the theoretical properties of SCOPE. Recall our model 

for i = 1, …, n, where �0 ∈ Θ. We will assume the errors (�i)
n
i=1

 have mean zero, are independent and 
sub-Gaussian with parameter σ. Let 

and define the oracle least squares estimate 

 This is the least squares estimate of �0 with oracular knowledge of which categorical levels are fused in �0.

(21)Yi = �0 +

p∑
j= 1

Kj∑
k= 1

�0
jk
�{Xij=k} + �i

Θ0 =
{
� ∈ Θ: �jk = �jl whenever �0

jk
= �0

jl
for all j

}

(22)�̂
0
:= arg min

�∈Θ0

1

2n

n�
i= 1

⎛⎜⎜⎝
Yi− �̂−

p�
j= 1

Kj�
k= 1

�jk�{Xij=k}

⎞⎟⎟⎠

2

.
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Note that in the case where the errors have equal variance v2, the expected mean squared prediction 
error of �̂

0
 satisfies 

with equality when �̂
0
 is unique.

Our results below establish conditions under which �̂
0
 is a blockwise optimum (20) of the SCOPE 

objective function Q (9), or in the univariate case when this in fact coincides with SCOPE. The mini-
mum differences between the signals defined for each j by 

will play a key role. If all components of �0
j
 are equal we take Δ(�0

j
) to be ∞. We also introduce 

nj,min = minknjk, 

these latter two quantities are the minimum and maximum number of observations corresponding to a set 
of fused levels in the jth predictor respectively.

4.1  |  Univariate model

We first consider the univariate case, where as usual we will drop the subscript j for simplicity. The 
following result establishes conditions for recovery of the oracle least squares estimate (22).

Theorem 5  Consider the model (21) in the univariate case with p = 1. Suppose there exists η ∈ (0,1] 
such that �∕s ≤ n0

j,min
∕n ≤ n0

j,max
∕n ≤ 1∕�s. Let �∗ = min{� , �s} and � ∗ = max{� , �s}. Suppose 

further that 

Then with probability at least 

the oracle least squares estimate �̂
0
 (22) is the global optimum of (9), so �̂ = �̂

0
.

For a choice of the tuning parameters (γ,λ) with γ ≤ ηs and λ such that equality holds in (24), we 
have, writing Δ ≡ Δ(�0), that �̂ = �̂

0
 with probability at least 

�

⎧
⎪⎨⎪⎩

1

n

n�
i= 1

⎛
⎜⎜⎝
�̂ − �0 +

p�
j= 1

Kj�
k= 1

(�̂
0

jk
− �0

jk
)�{Xij=k}

⎞
⎟⎟⎠

2 ⎫
⎪⎬⎪⎭
≤ v2

n

�
1 +

p�
j= 1

(sj − 1)

�
,

(23)Δ(�0
j
): = min

k,l

{
|�0

jk
− �0

jl
| : �0

jk
≠ �0

jl

}
,

n0
j,min

= min
k

∑
l:�0

jl
=�0

jk

njl and n0
j,max

= max
k

∑
l:�0

jl
=�0

jk

njl;

(24)Δ(�0) ≥ 3
�

1 +
√

2∕�
�√

�� ∗�.

(25)1 − 2exp

(
−

nmin�s�∗�
2

8�2
+ log(K)

)
,
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where c is an absolute constant. The quantity η reflects how equal the number of observations in the true 
fused levels are: in settings where the prevalences of the underlying true levels are roughly equal, we 
would expect this to be closer to 1.

Consider now an asymptotic regime where K, s and 1/Δ are allowed to diverge with n, nmin ≍ n∕K,  
so all levels have roughly the same prevalence, and η is bounded away from zero, so all true underly-
ing levels also have roughly the same prevalence. Then in order for �̂ = �̂

0
 with high probability, we 

require Δ ≳ 𝜎
√

Klog(K)∕n. This requirement cannot be weakened for any estimator; this fact comes 
as a consequence of minimax lower bounds on mis-clustering errors in Gaussian mixture models (Lu 
& Zhou, 2016, Theorem 3.3).

We remark that our result here concerning properties of the global minimiser of our objective is 
very different from existing results on local minimisers of objectives involving all-pairs-type penalties. 
For example, in the setting above where K = n, Theorem 2 of Ma and Huang (2017) gives that pro-
vided s = o(n1∕3(logn)−1∕3) and Δ ≫ 𝜎s3∕2n−1∕2

√
log(n), there exists a sequence of local minimisers 

converging to the oracle least squares estimate with high probability. This is significantly weaker than 
the condition Δ ≳ 𝜎

√
log(n) required for any estimator to recover oracle least squares in this setting, 

illustrating the substantial difference between results on local and global optima here.

4.2  |  Multivariate model

When the number of variables is p > 1, models can become high dimensional, with ordinary least 
squares estimation failing to provide a unique solution. We will, however, assume that the solution 
for � ∈ Θ0 to 

is unique, which occurs if and only if the oracle least squares estimate (22) is unique. In this case, we note 
that �̂

0
= AY for a fixed matrix A. A necessary condition for this is that 

∑
j(sj − 1) < n.

Our result below provides a bound on the probability that the oracle least squares estimate is a 
blockwise optimum of the SCOPE objective (9) with �j = �� j,�j

. This is much more meaningful than 
an equivalent bound for �̂

0
 to be a local optimum as the number of local optima will be enormous. 

In general though there may be several blockwise optima, and it seems challenging to obtain a result 
giving conditions under which our blockwise coordinate descent procedure is guaranteed to converge 
to �̂

0
. Our empirical results (Section 6), however, show that the fixed points computed in practice tend 

to give good performance.

Theorem 6  Consider the model (21) and assume �̂
0
= AY . Suppose that there exists η ∈ (0, 1] such 

that �∕sj ≤ n0
j,min

∕n ≤ n0
j,max

∕n ≤ 1∕�sj for all j  =  1,  …,  p. Let �∗j = min{� j, �sj} and 
� ∗

j
= max{� j, �sj}. Further suppose that 

1 − 2exp
(
−c�2nminΔ

2∕�2 + log(K)
)

,

p∑
j= 1

Kj∑
k= 1

�0
jk
�{Xij=k} =

p∑
j= 1

Kj∑
k= 1

�jk�{Xij=k}

(26)
Δ(�0

j
) ≥ 3

�
4

3
+

√
2

�

��
� j�

∗
j
�j.
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 Then letting cmin: = (maxl(AAT )ll)
−1, with probability at least 

the oracle least squares estimate �̂
0
 is a blockwise optimum of (9).

Now suppose � j ≤ �sj and �j are such that equality holds in Equation (26) for all j. Then writing 
Kmax = maxjKj, nmin = minjnj,min and Δmin = minjΔ(�0

j
), we have that �̂

0
 is a blockwise optimum of 

(9) with probability at least 

where c is an absolute constant. Consider now an analogous asymptotic regime to that described in the 
previous section for the univariate case. Specifically assume nmin ≍ n∕Kmax and cmin ≳ nmin for simplic-
ity. We then see that in order for �̂

0
 to be a blockwise optimum with high probability, it is sufficient that 

Δmin ≳ 𝜎
√

Kmaxlog(Kmaxp)∕n.

5  |   EXTENSIONS

In this section, we describe some extensions of our SCOPE methodology.

Continuous covariates. If some of the covariates are continuous rather than categorical, we can 
apply any penalty function of choice to these, and perform a regression by optimising the sum of a 
least squares objective, our SCOPE penalty and these additional penalty functions, using (block) co-
ordinate descent.

For example, consider the model (1) with the addition of d continuous covariates. Let Z ∈ ℝ
n×d be 

the centred design matrix for these covariates with ith row Zi ∈ ℝ
d. One can fit a model with SCOPE 

penalising the categorical covariates, and the Lasso with tuning parameter α > 0 penalising the con-
tinuous covariates, resulting in the following objective over � ∈ ℝ

d and θ ∈ Θ: 

 This sort of integration of continuous covariates is less straightforward when attempting to use tree-based 
methods to handle categorical covariates, for example.

Generalised linear models. Sometimes a generalised linear model may be appropriate. 
Although a quadratic loss function is critical for our exact optimisation algorithm described in 
Section 3.1, we can iterate local quadratic approximations to the loss term in the objective and 
minimise this. This results in a proximal Newton algorithm and is analogous to the standard ap-
proach for solving �1-penalised generalised linear models (Friedman et al., 2010, Section 3). An 
implementation of this scheme in the case of logistic regression for binary responses is available in 
the accompanying R package CatReg. We remark that when computing logistic regression mod-
els with a SCOPE penalty it is advisable to use a larger value of γ than with a continuous response 
to aid convergence of the proximal Newton step; we recommend a default setting of γ = 100. In 

(27)1 − 4

p∑
j= 1

exp

(
−

(nj,min ∧ cmin)��∗jsj�
2
j

8�2
+ log(Kj)

)
,

1 − 4exp
(
−c�2(nmin ∧ cmin)Δ2

min
∕�2 + log(Kmaxp)

)
,

1

2n

n�
i= 1

⎛⎜⎜⎝
Yi − �̂ − ZT

i
� −

p�
j= 1

Kj�
k= 1

�jk�{Xij=k}

⎞⎟⎟⎠

2

+ �‖�‖1 +

p�
j= 1

Kj − 1�
k= 1

�j(�j(k+1) − �j(k)).
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Section 6.2 we use the approach described above to perform a logistic regression using SCOPE on 
US census data.

Hierarchical categories. Often certain predictors may have levels that are effectively subdivisions 
of the levels of other predictors. Examples include category of item in e-commerce or geographical 
data with predictors for continent, countries and district. For simplicity, we will illustrate how such 
settings may be dealt with by considering a case with two predictors, but this may easily be generalised 
to more complex hierarchical structures. Suppose there is a partition G1 ∪⋯ ∪ GK1

 of {1, …, K2} such 
that for all k = 1, …, K1, 

so the levels of the second predictor in Gk represent subdivisions of kth level of the first predictor. Let 
K2k: = |Gk | and let �2k refer to the subvector (�2l)l∈Gk

 for each k = 1, …, K1, so components of �2k are 
the coefficients corresponding to the levels in Gk. Also let �2k(r) denote the rth order statistic within �2k. It 
is natural to encourage fusion among levels within Gk more strongly than for levels in different elements 
of the partition. To do this we can modify our objective function so the penalty takes the form 

 We furthermore enforce the identifiability constraints that 

As well as yielding the desired shrinkage properties, an additional advantage of this approach is that the 
least squares criterion is separable in �21, …, �2K1

 so the blockwise update of �2 can be performed in 
parallel. This can lead to a substantial reduction in computation time if K2 is large.

6  |   NUMERICAL EXPERIMENTS

In this section we explore the empirical properties of SCOPE. We first present results on the perfor-
mance on simulated data, and then in Sections 6.2–6.5 present analyses and experiments on US census 
data, insurance data and COVID-19 modelling data.

We denote SCOPE with a specific choice of γ as SCOPE-γ, and write SCOPE-CV to denote 
SCOPE with a cross-validated choice of γ. SCOPE solutions are computed using our R (R Core 
Team, 2020) package CatReg (Stokell, 2021), using fivefold cross-validation to select λ for all ex-
amples except those in Section 6.5. We compare SCOPE to linear or logistic regression where appro-
priate and a range of existing methods, including CAS-ANOVA (Bondell & Reich, 2009) (4), and an 
adaptive version where the weights wj,kl are multiplied by a factor proportional to the | �̂init

jk
− �̂

init

jl
| −1,  

where ̂�
init

 is an initial CAS-ANOVA estimate. For these methods the tuning parameter λ was also selected 
by fivefold cross-validation. As well as this, we include DMR (Maj-Kańska et al., 2015) and Bayesian 
effect fusion (BEF) (Pauger & Wagner, 2019) in some experiments. With the former, models were fitted 
using DMRnet (Prochenka-Sotys & Pokarowski, 2018) and selected by fivefold cross-validation where 
possible; otherwise an information criterion was used. With BEF, coefficients were modelled with a 
Gaussian mixture model with posterior mean estimated using 1000 samples using effectFusion 

Xi2 ∈ Gk ⟹ Xi1 = k,

K1 − 1∑
k= 1

�1(�1(k+1) − �1(k)) +

K1∑
k= 1

K2k − 1∑
l= 1

�2k(�2k(l+1) − �2k(l)).

K1∑
l= 1

n1l�1l = 0 and
∑

l∈Gk

n2l�2l = 0 for all k = 1, …, K.
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(Pauger et al., 2019). We also include comparison to the tree-based approaches CART (Breiman et al., 
1984) and random forests (RF) (Breiman, 2001). Lastly, in some experiments, models were also fitted 
using the Lasso (Tibshirani, 1996). CART was implemented using rpart (Therneau & Atkinson, 2019) 
with pruning according to the one standard error rule. Random forests and Lasso were implemented 
using the default settings in randomForest (Liaw & Wiener, 2002) and glmnet (Friedman et al., 
2010) packages respectively. For full details of the specific versions of these methods and software used 
in the numerical experiments, see Section 3.1 of the Supplementary material.

6.1  |  Simulations

We simulated data according to the model (1) with the covariates Xij generated randomly in the follow-
ing way. We first drew (Wij)

p

j=1
 from a multivariate �p(0,Σ) distribution where the covariance matrix 

Σ had ones on the diagonal. The off-diagonal elements of Σ were chosen such that Uij: = Φ−1(Wij)  had 
corr(Uij, Uik) = � for j ≠ k. The marginally uniform Uij were then quantised this to give Xij = ⌈24Uij ⌉,  
so the number of levels Kj = 24.

The errors �i were independently distributed as �(0, �2). The performance of SCOPE and com-
petitor methods was measured using mean squared prediction error on 105 new (noiseless) observa-
tions generated in the same way as the training data, and final results are averages over 500 draws of 
training and test data. We considered various settings of (n, p, �, �0, �2) below with low-dimensional 
and high-dimensional scenarios considered in Sections 6.1.1 and 6.1.2 respectively. The coefficient 
vectors for each experiment are specified up to an additive constant, which is required to satisfy the 
identifiability condition (8).

We measured predictive performance by the mean squared prediction error (MSPE) given by 

where g is the true regression function, ĝ an estimate, and the expectation is taken over the covariate 
vector x.

6.1.1  |  Low-dimensional experiments

Results are presented for three settings with n = 500, p = 10 given below.

1.	�
0
j
= (

10 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−3, …, −3,

4 times

⏞⏞⏞
0, …, 0,

10 times

⏞⏞⏞⏞⏞
3, …, 3 ) for j  =  1,  2,  3, and �0

j
= 0 otherwise; ρ  =  0.

2.	�0
j
= (

8 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−3, …, −3,

8 times

⏞⏞⏞
0, …, 0,

8 times

⏞⏞⏞
3, …, 3 ) for j = 1, 2, 3, and �0

j
= 0 otherwise; ρ = 0.

3.	 As Setting 1, but with ρ = 0.8.

Each of these experiments were performed with noise variance �2 = 1, 6.25, 25 and 100. Note 
that the variance of the signal varies across each setting, and signal-to-noise ratio (SNR) for each 
experiment is displayed in Table 1. Methods included for comparison were SCOPE-8, SCOPE-32, 
SCOPE-CV, linear regression, vanilla and adaptive CAS-ANOVA, DMR, Bayesian effect fusion, 
CART and random forests. Also included are the results from the oracle least squares estimator (22).

(28)MSPE: = �x{g(x) − ĝ(x)}2,
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T A B L E  1   Mean squared prediction errors (and standard deviations thereof) of various methods on the settings 
described.

Setting 1

�2: 1 6.25 25 100

SNR: 4.7 1.9 0.95 0.47

SCOPE-8 0.014 (0.0) 0.450 (0.5) 4.571 (1.0) 12.936 (2.8)

SCOPE-32 0.018 (0.0) 0.878 (0.6) 4.151 (0.9) 12.356 (2.1)

SCOPE-CV 0.015 (0.0) 0.407 (0.4) 4.120 (0.9) 12.513 (2.5)

Linear regression 0.851 (0.1) 5.317 (0.7) 21.503 (2.7) 86.745 (10.7)

Oracle least squares 0.014 (0.0) 0.091 (0.1) 0.333 (0.2) 1.405 (0.8)

CAS-ANOVA 0.617 (0.3) 1.602 (0.3) 5.448 (1.0) 14.814 (2.2)

Adaptive CAS-ANOVA 0.135 (0.1) 0.880 (0.4) 5.076 (1.2) 22.896 (4.7)

DMR 0.014 (0.0) 0.448 (0.4) 4.884 (1.4) 18.394 (3.6)

BEF 0.020 (0.0) 2.209 (1.1) 6.297 (1.8) 21.927 (2.3)

CART 3.844 (0.4) 5.099 (0.9) 13.219 (2.1) 22.431 (1.2)

RF 9.621 (0.5) 10.944 (0.5) 13.217 (0.7) 16.344 (0.9)

Setting 2

�2: 1 6.25 25 100

SNR: 4.2 1.7 0.85 0.42

SCOPE-8 0.015 (0.0) 0.285 (0.3) 6.775 (0.9) 12.697 (2.3)

SCOPE-32 0.019 (0.0) 0.655 (0.4) 5.026 (1.0) 12.037 (2.0)

SCOPE-CV 0.016 (0.0) 0.292 (0.3) 5.005 (1.1) 12.444 (2.5)

Linear regression 0.869 (0.1) 5.406 (0.7) 21.216 (2.5) 85.439 (10.9)

Oracle least squares 0.014 (0.0) 0.088 (0.0) 0.336 (0.2) 1.532 (0.8)

CAS-ANOVA 1.483 (0.4) 1.626 (0.3) 5.466 (1.0) 13.421 (2.2)

Adaptive CAS-ANOVA 0.134 (0.1) 0.912 (0.3) 5.535 (1.2) 22.213 (4.9)

DMR 0.016 (0.0) 0.409 (0.4) 6.430 (1.4) 17.457 (2.1)

BEF 0.019 (0.0) 1.055 (0.9) 8.183 (2.0) 18.236 (1.5)

CART 5.530 (0.6) 7.457 (0.9) 13.280 (1.8) 18.198 (0.7)

RF 8.947 (0.3) 9.747 (0.4) 11.249 (0.6) 13.646 (0.8)

Setting 3

�2: 1 6.25 25 100

SNR: 7.3 2.9 1.5 0.73

SCOPE-8 0.015 (0.0) 0.967 (0.7) 5.060 (1.3) 14.555 (2.9)

SCOPE-32 0.018 (0.0) 0.713 (0.4) 3.580 (0.8) 9.721 (1.9)

SCOPE-CV 0.022 (0.1) 0.582 (0.3) 3.368 (0.9) 10.168 (2.6)

Linear regression 0.879 (0.1) 5.485 (0.7) 21.987 (2.7) 87.820 (11.9)

Oracle least squares 0.014 (0.0) 0.092 (0.0) 0.362 (0.2) 1.488 (1.0)

(Continues)
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Results are shown in Table 1 and further details are given in Section 3.2.1 of the Supplementary 
material. Across all experiments, SCOPE with a cross-validated choice of γ exhibits prediction per-
formance at least as good as the optimal approaches, and in all but the lowest noise settings performs 
better than the other methods that were included. In these exceptions, we see that fixing γ to be a small 
value (corresponding to high concavity) provides leading performance.

In these low noise settings, we see that the methods based on first estimating the clusterings of 
the levels and then estimating the coefficients without introducing further shrinkage, such as DMR or 
Bayesian effect Fusion, perform well. However, they tend to struggle when the noise is larger. In con-
trast the tree-based methods perform poorly in low noise settings but exhibit competitive performance 
in high noise settings.

6.1.2  |  High-dimensional experiments

We considered eight settings as detailed below, each with n = 500, p = 100 and simulated 500 times.

1.	�0
j
= (

8 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

8 times

⏞⏞⏞
0, …, 0,

8 times

⏞⏞⏞⏞⏞
2, …, 2 ) for j  =  1,  2,  3, �0

j
= (

10 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

4 times

⏞⏞⏞
0, …, 0,

10 times

⏞⏞⏞⏞⏞
2, …, 2 ) for 

j  =  4,  5,  6, and �0
j
= 0 otherwise; ρ  =  0 and �2 = 50.

2.	 As Setting 1, but with ρ = 0.5.

3.	�0
j
= (

8 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

8 times

⏞⏞⏞
0, …, 0,

8 times

⏞⏞⏞
2, …, 2 ) for j = 1, 2, 3, �0

j
= (

16 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

8 times

⏞⏞⏞
3, …, 3 ) for j = 4, 5, 6, 

and �0
j
= 0 otherwise; ρ = 0.5 and �2 = 100.

4.	�0
j
= (

5 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

5 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−1, …, −1,

4 times

⏞⏞⏞
0, …, 0,

5 times

⏞⏞⏞
1, …, 1,

5 times

⏞⏞⏞
2, …, 2 ) for j = 1, …, 5, and �0

j
= 0 otherwise; 

ρ = 0 and �2 = 25.

5.	�0
j
= (

16 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

8 times

⏞⏞⏞
3, …, 3 ) for j = 1, …, 25, and �0

j
= 0 otherwise; ρ = 0 and �2 = 1.

Setting 3

�2: 1 6.25 25 100

SNR: 7.3 2.9 1.5 0.73

CAS-ANOVA 0.710 (0.2) 1.601 (0.3) 4.732 (0.9) 12.708 (2.1)

Adaptive CAS-ANOVA 0.189 (0.2) 0.701 (0.3) 3.705 (1.0) 16.186 (3.6)

DMR 0.015 (0.0) 0.553 (0.5) 5.730 (1.9) 18.594 (4.5)

BEF 0.019 (0.0) 1.716 (0.9) 8.143 (2.6) 26.923 (7.0)

CART 4.336 (0.6) 5.685 (1.0) 9.910 (1.7) 18.543 (2.2)

RF 4.039 (0.3) 5.673 (0.5) 9.157 (0.9) 13.766 (1.7)

The best results for each setting are in bold.

T A B L E  1   (Continued)
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6.	 As Setting 5, but with ρ = 0.5.

7.	�0
j
= (

4 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−2, …, −2,

12 times

⏞⏞⏞
0, …, 0,

8 times

⏞⏞⏞
2, …, 2 ) for j = 1, …, 10, and �0

j
= 0 otherwise; ρ = 0 and �2 = 25.

8.	 �0
j
= (

6 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−3, …, −3,

⏞⏞⏞⏞⏞⏞⏞⏞⏞
−1, …, −1

6 times

,

⏞⏞⏞
1, …, 1

6 times

,

6 times

⏞⏞⏞
3, …, 3 ) for j = 1, …, 5, and �0

j
= 0 otherwise; ρ = 0 

and �2 = 25.

Models were fitted using SCOPE-8, SCOPE-32, SCOPE-CV, DMR, CART, Random forests and 
the Lasso. Table 2 gives the mean squared prediction errors across each of the settings.

As well as prediction performance, it is interesting to see how the methods perform in terms of 
variable selection performance. With categorical covariates, there are two potential ways of evaluat-
ing this. The first is to consider the number of false positives and false negatives across the p = 100 
categorical variables, defining a variable j to have been selected if �̂j ≠ 0. These results are shown 
in Table 3. This definition of a false positive can be considered quite conservative; typically one can 
find that often the false signal variables have only two levels, each with quite small coefficients. This 
means that the false positive rate can increase substantially with only a small increase in the dimension 
of the estimated linear model.

The second is to see within the signal variables (i.e. the j for which �0
j
≠ 0), how closely the 

estimated clustering resembles the true structure. To quantify this, we use the adjusted Rand index 
(Hubert & Arabie, 1985). This is the proportion of all pairs of observations that are either (i) in differ-
ent true clusters and different estimated clusters, or (ii) in the same true cluster and estimated cluster; 

T A B L E  2   Mean squared prediction errors (and standard deviations thereof) of each of the methods in the 8 high-
dimensional settings considered.

Setting: 1 2 3 4 5 6 7 8

SNR: 0.6 1.0 1.0 0.64 12 36 0.87 1.0

SCOPE-8 14.319 
(2.0)

15.445 
(2.9)

30.597 
(5.6)

7.254 
(1.2)

96.538 
(25.0)

7.960 
(23.2)

15.867 
(1.4)

11.028 
(1.6)

SCOPE-32 14.009 
(1.6)

10.780 
(1.6)

21.841 
(3.4)

7.256 
(0.9)

65.344 
(13.4)

0.107 
(0.0)

14.867 
(1.2)

11.218 
(1.4)

SCOPE-CV 14.026 
(1.7)

10.843 
(1.8)

22.004 
(3.9)

7.191 
(1.0)

54.030 
(19.2)

0.084 
(0.0)

14.865 
(1.3)

10.941 
(1.5)

Oracle LSE 5.044 
(0.6)

5.130 
(0.6)

2.664 
(1.0)

1.09 
(0.3)

0.054 
(0.0)

0.055 
(0.0)

1.087 
(0.3)

0.799 
(0.3)

DMR 18.199 
(1.4)

22.627 
(4.4)

42.979 
(9.2)

9.645 
(1.2)

139.095 
(4.3)

213.691 
(35.7)

19.298 
(0.8)

11.737 
(2.4)

CART 18.146 
(0.5)

31.235 
(3.6)

58.73 
(6.6)

10.466 
(0.3)

139.35 
(2.1)

614.739 
(42.8)

19.021 
(0.4)

23.775 
(1.5)

RF 16.181 
(0.6)

16.345 
(1.4)

31.561 
(2.6)

9.053 
(0.4)

128.618 
(2.2)

264.374 
(14.4)

17.224 
(0.4)

19.783 
(0.7)

Lasso 18.136 
(0.5)

24.839 
(1.3)

48.162 
(2.5)

10.473 
(0.4)

135.375 
(5.0)

154.656 
(7.8)

18.886 
(0.6)

23.813 
(1.6)

The best results for each setting are in bold.
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this is then corrected to ensure that its value is zero when exactly one of the clusterings is ‘all-in-one’. 
In Table 4 we report the average adjusted Rand index over the true signal variables in each setting.

Further details can be found in Section 3.2.2 of the Supplementary material. In particular we in-
clude a table with the distribution of cross-validated choices of γ (from a grid {4, 8, 16, 32, 64}) for 
each experimental setting. Note that a choice of γ = 4 is close to the setting of γ = 3 recommended 
in Zhang (2010), although the problem of categorical covariates is very different in nature than the 
vanilla variable selection problem considered there. Our results there suggest that for SCOPE, a larger 
value of γ is preferable across a range of settings, which is also visible in the comparison between 
γ = 8 and γ = 32 in Table 2.

Across all the settings in this study, SCOPE performs better than any of the other methods in-
cluded. This is regardless of which of the three γ regimes is chosen, although cross-validating γ gives 
the strongest performance overall. Comparing the results for γ = 8 and γ = 32 suggests that a larger 
(low-concavity) choice of γ is preferable for higher-dimensional settings. In setting 6, we see from 
Tables 3 and 4 that SCOPE obtains the true underlying groupings of the coefficients and obtains the 
oracle least squares estimate in every case, giving these striking results. This is also achieved for some 
of the experiments in setting 5. In contrast, DMR, which initially applies a group Lasso (Yuan & Lin, 
2006) to screen the categorical variables and give a low-dimensional model, necessarily misses some 
signal variables in this first stage and hence struggles here.

6.2  |  Adult dataset analysis

The Adult dataset, available from the UCI Machine Learning Repository (Dua & Graff, 2019), con-
tains a sample of 45,222 observations based on information from the 1994 US census. The binary 
response variable is 0 if the individual earns at most $50,000 a year, and 1 otherwise. There are 2 con-
tinuous and eight categorical variables; some such as ‘native country’ have large numbers of levels, 

T A B L E  4   Average adjusted Rand index among true signal variables for the high-dimensional settings

Setting: 1 2 3 4 5 6 7 8

SCOPE-8 0.23 0.36 0.38 0.15 0.39 0.96 0.13 0.29

SCOPE-32 0.29 0.46 0.48 0.19 0.56 1.00 0.17 0.34

SCOPE-CV 0.27 0.45 0.46 0.18 0.56 1.00 0.17 0.31

DMR 0.04 0.20 0.23 0.06 0.04 0.19 0.03 0.28

Lasso 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T A B L E  3   (False positive rate)/(False negative rate) of linear modelling methods considered in the high-
dimensional settings

Setting: 1 2 3 4 5 6 7 8

SCOPE-8 0.02/0.35 0.04/0.23 0.04/0.25 0.02/0.15 0.02/0.23 0.02/0.01 0.02/0.35 0.01/0.00

SCOPE-32 0.14/0.15 0.30/0.02 0.30/0.02 0.15/0.04 0.52/0.00 0.00/0.00 0.21/0.08 0.21/0.00

SCOPE-CV 0.12/0.20 0.30/0.02 0.29/0.03 0.12/0.07 0.59/0.00 0.00/0.00 0.21/0.11 0.09/0.00

DMR 0.00/0.86 0.00/0.44 0.00/0.47 0.00/0.62 0.00/0.91 0.03/0.60 0.00/0.88 0.00/0.02

Lasso 0.01/0.88 0.00/1.00 0.00/1.00 0.01/0.83 0.00/0.98 0.00/1.00 0.00/0.91 0.00/0.90
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bringing the total dimension to 93. An advantage of using SCOPE here over black-box predictive 
tools such as Random forests is the interpretability of the fitted model.

In Table 5, we show the 25-dimensional fitted model. Within the Education category, we see 
that six distinct levels have been identified. These agree almost exactly with the stratification one 
would expect, with all school dropouts before 12th grade being grouped together at the lowest level 
Figure 4.

Here we assess performance in the challenging setting when the training set is quite small by 
randomly selecting 1% (452) of the total observations for training, and using the remainder as a test 
set. Any observations containing levels not in the training set were removed. Models were fitted with 
SCOPE-100, SCOPE-250, logistic regression, vanilla and adaptive CAS-ANOVA, DMR, Bayesian 
effect fusion, CART and random forests.

We see in Figure 4 that both SCOPE-100 and SCOPE-250 are competitive, with CART and Random 
forests also performing well, although the latter two include interactions in their fits. CAS-ANOVA 
also performs fairly well, the misclassification error is larger that for both versions of SCOPE, and the 
average fitted model size is larger (see Table 6).

6.3  |  Adult dataset with artificially split levels

To create a more challenging example, we artificially created additional levels in the Adult dataset as 
follows. For each categorical variable we recursively selected a level with probability proportional to 
its prevalence in the data and then split it into two by appending “−0” or “−1” to the level for each 
observation independently and with equal probabilities. We repeated this until the total number of 
levels reached m times the original number of levels for that variable for m = 2, 3, 4. This process 
simulates for example responses to a survey, where different respondents might answer ‘US’, ‘U.S.’, 
‘USA’, ‘U.S.A.’, ‘United States’ or ‘United States of America’ to a question, which would naively all 
be treated as different answers.

We used 2.5% (1130) of the observations for training and the remainder for testing and applied 
SCOPE with γ = 100 and logistic regression. Results were averaged over 250 training and test splits. 
Figure 5 shows that as the number of levels increases, the misclassification error of SCOPE increases 
only slightly and the fitted model dimension remains almost unchanged, whereas both increase with 
m for logistic regression.

6.4  |  Insurance data example

The Prudential Life Insurance Assessment challenge was a prediction competition run on Kaggle 
(2015). By more accurately predicting risk, the burden of extensive tests and check-ups for life insur-
ance policyholders could potentially be reduced. For this experiment, we use the training set that was 
provided for entrants of the competition.

We removed a small number of variables due to excessive missingness, leaving five continuous vari-
ables and 108 categorical variables, most with two or three levels but with some in the hundreds (and the 
largest with 579 levels). Rather than using the response from the original dataset, which is ordinal, to better 
suit the regression setting we are primarily concerned with in this work, we artificially generated a con-
tinuous response. To construct this signal, firstly 10 of the categorical variables were selected at random, 
with probability proportional to the number of levels. For the jth of these, writing Kj for the number of 
levels, we set sj : = ⌊2 +

1

2
logKj ⌋ and assigned each level a coefficient in 1, …, sj uniformly at random, 
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T A B L E  5   Coefficients of SCOPE model trained on the full dataset. Here, γ = 100 and λ was selected by fivefold 
cross-validation (with cross-validation error of 16.82%). Countries, aside from those in the United Kingdom, are 
referred to by their (possibly historical) internet top-level domains

Variable Coefficient Levels

Intercept −3.048 —

Age 0.027 —

Hours per week 0.029 —

Work class 0.378 Federal government, Self-employed (incorporated)

0.058 Private

−0.143 Local government

−0.434 Self-employed (not incorporated), State government, Without pay

Education level 1.691 Doctorate, Professional school

1.023 Master’s

0.646 Bachelor’s

−0.132 Associate’s (academic), Associate’s (vocational), Some college 
(non-graduate)

−0.546 12th, High school grad

−1.539 Preschool, 1st–4th, 5th–6th, 7th–8th, 9th, 10th, 11th

Marital status 0.059 Divorced, Married (armed forces spouse), Married (civilian spouse), 
Married (absent spouse), Separated, Widowed

−0.476 Never married

Occupation 0.560 Executive/Managerial

0.311 Professional/Specialty, Protective service, Tech support

−0.003 Armed forces, Sales

−0.168 Admin/Clerical, Craft/Repair

−0.443 Machine operative/inspector, Transport

−1.107 Farming/Fishing, Handler/Cleaner, Other service, Private house 
servant

Relationship* 1.498 Wife

0.332 Husband

−1.220 Not in family

−1.482 Unmarried, Other relative

−2.144 Own child

Race 0.013 White

0.008 Asian/Pacific islander, Other

−0.182 Native-American/Inuit, Black

Sex 0.139 Male

−0.619 Female

Native country 0.018 KH, CA, CU, ENG, FR, DE, GR, HT, HN, HK, HU, IN, IR, IE, IT, 
JM, JP, PH, PL, PT, PR, TW, US, YU

−0.882 CN, CO, DO, EC, SV, GT, NL, LA, MX, NI, GU-VI-etc, PE, SCT, 
ZA, TH, TT, VN

*Relation with which the subject lives.
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thus yielding sj true levels. The coefficients for the 5 continuous covariates were generated as draws from 
�5(0, I). The response was then scaled to have unit variance, after which standard normal noise was added.

We used 10% (n = 5938) of the 59,381 total number of observations for training, and the remainder 
to compute an estimated MSPE (28) by taking an average over these observations. We repeated this 
1000 times, sampling 10% of the observations and generating the coefficients as above anew in each 
repetition. The average mean squared prediction errors achieved by the various methods under com-
parison are given in Figure 6. We see that SCOPE with a cross-validated choice of γ performs best, 
followed by the Lasso and SCOPE-32.

6.5  |  COVID-19 forecast Hub example

As well as the prediction performance experiments in the rest of this section, we include an exploratory 
data analysis example based on data relating to the ongoing (at time of writing) global COVID-19 pan-
demic. The COVID-19 Forecast Hub (2020) ‘... serves as a central repository of forecasts and predictions 
from over 50 international research groups.’ A collection of different research groups publish forecasts 
every week of case incidence in each US state for some number of weeks into the future.

F I G U R E  4   Prediction performance and fitted model dimension (respectively) of various methods on the Adult 
dataset: (A) SCOPE-100; (B) SCOPE-250; (C) Logistic regression; (D) CAS-ANOVA; (E) Adaptive CAS-ANOVA; 
(F) DMR; (G) BEF; (H) CART; (I) RF [Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E  6   Results of experiments on the Adult dataset.

Method Misclassification error Model dimension Computation time (s)

SCOPE-100 0.194 10.5 467

SCOPE-250 0.191 11.8 450

Logistic regression 0.202 68.9 0.04

CAS-ANOVA 0.198 21.5 429

Adaptive CAS-ANOVA 0.205 11.7 8757

DMR 0.235 6.9 11

BEF 0.207 9.8 1713

CART 0.196 0.01

RF 0.194 0.14

The best result is in bold.

www.wileyonlinelibrary.com
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In order to understand some of the difficulties of this challenging forecasting problem, we fitted an 
error decomposition model of the form 

where w is the week that the forecast is for, l is the state, m indexes the forecasting model, t is the ‘target’ 
number of weeks in the future the forecast is for, �m,t,w,� is an error term, and casesw,� and est.casesm,t,w,� 
are the observed and estimated cases respectively. This decomposition allows an interaction term between 
time and location, which is important given that the pandemic was known to be more severe at different 
times for different areas. An interaction between model and forecasting distance was also included in order 
to capture the effect of some models potentially being more ‘short-sighted’ than others. The inclusion of 
the +1 on the left-hand side is to avoid numerators or denominators of zero.

We used data from 6 April 2020 to 19 October 2020, giving a total of 100,264 (m, t, w,  l)-tuples. 
We applied a SCOPE penalty with γ = 8 to �w,�, which had 1428 levels. The �m,t coefficients, which 
amounted to 170 levels, were left unpenalised. The additional tuning parameter λ was selected using 

(29)log

(
1 + casesw,�

1 + est.casesm,t,w,�

)
= �0 + �m,t + �w,� + �m,t,w,� ,

F I G U R E  5   Misclassification error and dimensions of models fitted on a sample of the Adult dataset when levels 
have been artificially split m times [Colour figure can be viewed at wileyonlinelibrary.com]
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the extended Bayesian information criterion (Chen & Chen, 2008) rather than cross-validation, as it 
was more suited to this sort of exploratory analysis on data with a chronological structure.

The resulting estimates �̂w,� had 8 levels. We measured the ‘similarity’ of two US states la and lb 
over a period of time by computing the proportion of weeks at which their estimates �̂w,la

= �̂w,lb
 co-

incided. The similarity matrix presented in Figure 7 was constructed based on the second ‘wave’ of 
the epidemic which occurred in Summer 2020, with clusters identified by applying spectral clustering 
on the similarity matrix and plotted in order of decreasing within-cluster median pairwise similarity.

The resulting clusters are at once interpretable and interesting. Roughly speaking, the top 3 clusters 
(‘top’ when ordered according to median pairwise within-cluster agreement) correspond to states that ex-
perienced notable pandemic activity in the second, first and third ‘waves’ of the US coronavirus pandemic 
respectively. The first cluster features several southern States (e.g. Georgia, Florida, Texas) which experi-
enced a surge of COVID cases in June–July. The second cluster features east coast states (e.g. New Jersey 
and New York) which experienced an enormous pandemic toll in April–May. And the third features mid-
western states (e.g. Kentucky, Indiana, Nebraska) which had upticks most recently in September–October.

F I G U R E  7   Similarity matrix for US states computed based on data relating to the second ‘wave’ of the 
COVID-19 pandemic in the United States, taken to be from 26 June 2020 to 29 August 2020 [Colour figure can be 
viewed at wileyonlinelibrary.com]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1A
la

ba
m

a
A

rk
an

sa
s

C
al

ifo
rn

ia
Fl

or
id

a
G

eo
rg

ia
Id

ah
o

Lo
ui

si
an

a
N

ev
ad

a
N

ew
 M

ex
ic

o
N

or
th

 C
ar

ol
in

a
O

hi
o

O
kl

ah
om

a
O

re
go

n
S

ou
th

 C
ar

ol
in

a
Te

nn
es

se
e

Te
xa

s
U

ta
h

W
as

hi
ng

to
n

C
on

ne
ct

ic
ut

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

N
ew

 H
am

ps
hi

re
N

ew
 J

er
se

y
N

ew
 Y

or
k

Ve
rm

on
t

D
is

tri
ct

 o
f C

ol
um

bi
a

Ill
in

oi
s

In
di

an
a

Ke
nt

uc
ky

M
in

ne
so

ta
N

eb
ra

sk
a

V
irg

in
ia

A
la

sk
a

C
ol

or
ad

o
D

el
aw

ar
e

H
aw

ai
i

Io
w

a
K

an
sa

s
M

ic
hi

ga
n

M
is

si
ss

ip
pi

M
is

so
ur

i
M

on
ta

na
Pe

nn
sy

lv
an

ia
W

es
t V

irg
in

ia
W

is
co

ns
in

W
yo

m
in

g
N

or
th

 D
ak

ot
a

S
ou

th
 D

ak
ot

a
A

riz
on

a
M

ai
ne

R
ho

de
 Is

la
nd

Alabama
Arkansas
California

Florida
Georgia

Idaho
Louisiana

Nevada
New Mexico

North Carolina
Ohio

Oklahoma
Oregon

South Carolina
Tennessee

Texas
Utah

Washington
Connecticut

Maryland
Massachusetts

New Hampshire
New Jersey

New York
Vermont

District of Columbia
Illinois

Indiana
Kentucky

Minnesota
Nebraska

Virginia
Alaska

Colorado
Delaware

Hawaii
Iowa

Kansas
Michigan

Mississippi
Missouri
Montana

Pennsylvania
West Virginia

Wisconsin
Wyoming

North Dakota
South Dakota

Arizona
Maine

Rhode Island

www.wileyonlinelibrary.com


606  |      STOKELL et al.

7  |   DISCUSSION

In this work we have introduced a new penalty-based method for performing regression on categorical data. 
An attractive feature of a penalty-based approach is that it can be integrated easily with existing methods 
for regression with continuous data, such as the Lasso. Our penalty function is nonconvex, but in contrast to 
the use of nonconvex penalties in standard high-dimensional regression problems, the nonconvexity here is 
necessary in order to obtain sparse solutions, that is fusions of levels. While computing the global optimum 
of nonconvex problems is typically very challenging, for the case with a single categorical variable with 
several hundred levels, our dynamic programming algorithm can typically solve the resulting optimisation 
problem in less than a second on a standard laptop computer. The algorithm is thus fast enough to be em-
bedded within a block coordinate descent procedure for handling multiple categorical variables.

We give sufficient conditions for SCOPE to recover the oracle least squares solution when p = 1 
involving a minimal separation between unequal coefficients that is optimal up to constant factors. 
For the multivariate case where p > 1, we show that oracle least squares is a fixed point of our block 
coordinate descent algorithm, with high probability.

Our work offers several avenues for further work. On the theoretical front, it would be interesting 
to obtain guarantees for block coordinate descent to converge to a local optimum with good statistical 
properties, a phenomenon that we observe empirically. On the methodology side, it would be useful 
to generalise the penalty to allow for clustering multivariate coefficient vectors; such clustering could 
be helpful in the context of mixtures of regressions models, for example.
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APPENDIX A

A.1 Candidate minimiser functions

In this section we give explicit forms of the functions pk,r as defined in Section 3.1. We write 
qk,r(x) = arx

2 + brx + cr for simplicity, suppressing the subscript k. For S ⊆ ℝ and a, b ∈ ℝ, we write 
aS + b for the set {ax + b: x ∈ S}.

Recall from Section 3.1 that 

 For a function f :ℝ→ ℝ ∪ {∞}, we denote the effective domain of f by 

 For each r = 1, …, m(k), there are cases corresponding to t = 1 and t = 2. The formulas are as follows: 

 If gk(�k+1) = uk,r,1(�k+1), then 

 The second case is 

uk,r,t(𝜃k+1): = m̃in
𝜃k ∈Dk:𝜃k <𝜃k+1

{q̃k,r(𝜃k) + 𝜌̃t(𝜃k+1 − 𝜃k)}.

dom f : = {x ∈ ℝ: f (x) <∞}.

uk,r,1(x)=
2arx

2+2(br −2ar𝛾𝜆)x+ (br −2ar𝛾𝜆)2

2(1−2ar𝛾)
+cr,

with dom uk,r,1=

⎧⎪⎨⎪⎩

�
(1−2ar𝛾)Ik,r +𝛾(𝜆−br)

�
∩

�
4ar𝛾𝜆−br

2ar

,
𝜆−br

2ar

�
if 2ar −1∕𝛾 >0

∅ otherwise.

bk(�k+1) =
�k+1 + �(br − �)

1 − 2ar�
.

uk,r,2(x)=−
b2

r

4ar

+c+
1

2
𝛾𝜆2,

with dom uk,r,2=

⎧⎪⎨⎪⎩

�
−

br

2ar

+𝛾𝜆,∞

�
if ar >0 and−br∕2ar ∈ Ik,r

∅ otherwise.

https://doi.org/10.1111/rssb.12432
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 Here, if gk(�k+1) = uk,r,2(�k+1), then 

 Considering (16), we see that we can also have the case where gk(�k+1) = fk(�k+1). Thus we can form the 
set of quadratics pk,r and associated intervals as the set of uk,r,t as above for t = 1,2 and the qk,r themselves. 
Note that when gk(�k+1) = qk,r(�k+1), we have bk(�k+1) = �k+1.

A.2 Algorithm details

bk(�k+1) = −br∕2ar.
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Algorithm 1 describes in detail how the optimisation routine works. In the algorithm we make use of 
the following objects:

1.	 For x ∈ ℝ, A(x) is the active set at x;
2.	 E is the set of points at which the active set changes;
3.	 N(x) is the intersection set at x;
4.	 U is a set of tuples (I, r) where I ⊆ ℝ is an interval and r is an integer, which is dynamically updated as 

the algorithm progresses.

See Section 3.1.2 for definitions of the sets above. We also use the convention that if x = −∞ then 
[x,y) = (−∞,y).

All of the pk,1, …, pk,m(k) and Jk,m are computed at the start of each iterate k. We then initialise 

the set of all of the end-points of the intervals Jk−1,1, …, Jk−1,n(k).
Here x can be thought of as the ‘current position’ of the algorithm; ̃x is used to store when the minimising 

function pk−1,r(x) last changed. We initialise x̃ = −∞  and x = −1 + max{y ∈ Ik−1,1 : f �
k−1

(y−) ≤ 0}.  
This choice of x ensures that the active set A(x) contains only one element (as mentioned in Section 
3.1); this will always be the index corresponding to the function q̃k−1,1.

We initialise the output set U = ∅, which by the end of this algorithm will be populated with the 
functions q̃k,1, …, q̃k,m(k) and their corresponding intervals Ik,1, …, Ik,m(k) that partition ℝ. Finally, we 
initialise the set N(x) which will contain the intersections between pk−1,r(x) and other functions in the 
active set. As the active set begins with only one function, we set N(x) = ∅.

As mentioned in Section 3.1, there are several modifications that can speed up the algorithm. One 
such modification follows from the fact that for each r, uk,r,2 is a constant function over its effective 
domain, and their effective domain is a semi-infinite interval (see Section A.1 of the Appendix for 
their expressions). Therefore, for a given point x ∈ ℝ, we can remove all such functions from A(x) 
except for the one taking the minimal value.

E =

n ( k )⋃
r = 1

�Jk−1,r,
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We also note that in Algorithm 1, the set N(x) is not recomputed in its entirety at every point x at 
which A(x) is updated, as is described in Section 3.1. Line 13 shows how sometimes N(x) can instead 
be updated by adding or removing elements from it. Often, points 3 (i) and 3 (ii) from the description 
in the Section 3.1 will coincide, and in such instances some calls to ChooseFunction (Algorithm 2) 
can be skipped.


