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Abstract

Distributional forecasts are important for a wide variety of applications, including forecasting

epidemics. Often, forecasts are miscalibrated, or unreliable in assigning uncertainty to future

events. We present a recalibration method that can be applied to a black-box forecaster

given retrospective forecasts and observations, as well as an extension to make this method

more effective in recalibrating epidemic forecasts. This method is guaranteed to improve

calibration and log score performance when trained and measured in-sample. We also

prove that the increase in expected log score of a recalibrated forecaster is equal to the

entropy of the PIT distribution. We apply this recalibration method to the 27 influenza fore-

casters in the FluSight Network and show that recalibration reliably improves forecast accu-

racy and calibration. This method, available on Github, is effective, robust, and easy to use

as a post-processing tool to improve epidemic forecasts.

Author summary

Epidemics of infectious disease cause millions of deaths worldwide each year, and reliable

epidemic forecasts can allow public health officials to respond to mitigate the effects of

epidemics. However, because epidemic forecasting is a difficult task, many epidemic fore-

casts are not calibrated. Calibration is a desired property of any forecast, and we provide a

post-processing method that recalibrates forecasts. We demonstrate the effectiveness of

this method in improving accuracy and calibration on a wide variety of influenza forecast-

ers. We also show a quantitative relationship between calibration and a forecaster’s

expected score. Our recalibration method is a tool that any forecaster can use, regardless

of model choice, to improve forecast accuracy and reliability. This work provides a bridge

between forecasting theory, which rarely deals with applications in domains that are new

or have little data, and some recent applications of epidemic forecasting, where forecast

calibration is rarely analyzed systematically.
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1 Introduction

Epidemic forecasting is an important tool to inform the public health response to outbreaks of

infectious diseases. Often, decision makers can take more effective action with an estimate of

the uncertainty in a forecasted target. For this reason, distributional forecasts are more desir-

able than point forecasts. A distributional forecast is a probability distribution over the target

variable and measures the uncertainty in the prediction, as opposed to a point forecast, which

is just a scalar value for each target and has no measure of uncertainty. A desired property of

distributional forecasts is calibration, or reliability between forecasts and the true distribution

of the variable forecasted (a mathematical definition is given in Section 2). Along with uncer-

tainty and resolution, calibration is one of three components of a forecaster’s accuracy as mea-

sured by any proper score [1], with better calibration resulting in a better score. It is therefore

important for a forecaster to produce calibrated forecasts.

Previous work has described general forecasting theory and calibration and evaluated the

calibration of certain forecasts [2–5]. Later work has gone beyond just describing calibration,

presenting post-processing algorithms to recalibrate forecasts that were previously miscali-

brated. Nonparametric techniques for recalibration of ensemble forecasts include rank histo-

gram correction [6], Bayesian model averaging [7], linear pooling [8], and probability anomaly

correction [9]. Brocklehurst et al. [10] provide a nonparametric approach using the empirical

CDF, which can recalibrate any forecast of a scalar target. Parametric approaches include

logistic regression [11], extended linear regression [12] and beta-transform linear pooling [8].

Wilks and Hamill [13] compare the performance of different recalibration techniques for dif-

ferent meteorological targets with different amounts of training data.

Much of the work in recalibration has been applied to weather forecasting, and thus many of

the techniques are not applicable in other forecasting domains. The most popular weather fore-

casting models create a distribution from a series of point predictions, with each point being the

result of a simulation under varying initial conditions. Many of the existing recalibration meth-

ods are defined only for this type of ensemble forecaster. For example, Bayesian model averag-

ing assumes that an ensemble forecast is comprised of the same N forecasts in each observation.

This method cannot be extended trivially to a domain where the forecaster itself outputs a dis-

tribution. Additionally, weather forecasts usually have a plethora of training data on which to

train recalibration methods. For example, recalibration has been applied to a set of weather fore-

casts generated daily from 1979 to at least 2006, almost 10,000 days [14]. In settings like these,

techniques need not be robust to small amounts of recalibration training data.

To be clear on nomenclature, throughout this paper, we use the term forecast to refer to the

predicted probability distribution of a variable and the term forecaster to refer to an algorithm

that produces a forecast for a variable given a context. Common examples of forecasters are an

algorithm that forecasts the amount of precipitation two days in advance given current meteo-

rological information, one that forecasts the price of a certain stock given the stock’s historical

trend, or one that forecasts the statewide influenza incidence given historical incidence data.

We also distinguish between calibration and recalibration; calibration refers to the property of

a forecaster, and recalibration refers to a method whose goal is to make a forecaster more cali-

brated. Specifically, recalibration takes as input a set of a forecaster’s forecasts and correspond-

ing observations (“training data”), and outputs a forecaster which should be more calibrated

on a different set of forecasts and observations (“test data”).

In what follows, we present a generalized approach to forecast recalibration and show its

performance when applied to forecasters in the FluSight Network. We demonstrate that across

the diverse set of FluSight forecasters, recalibration consistently improves not just calibration

but accuracy as well.
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2 Methods

Consider the following setup. At each i = 1, 2, 3. . ., a forecaster M outputs a density forecast fi
given features xi for a continuously distributed scalar random variable yi whose true distribu-

tion is hi. As a regularity condition, we assume that the corresponding cumulative distribution

functions (CDFs) Fi and Hi are continuous and strictly increasing. The forecaster M is evalu-

ated according to a proper scoring rule, such as the quadratic score [15] or the logarithmic

score [16].

The goal of a forecaster is to produce ideal forecasts, i.e., to forecast fi = hi, the true distribu-

tion of yi, for each i, though this is usually unattainable. We can inspect how close a forecaster

is to being ideal with the distribution of the probability integral transform (PIT) values [17].

For each forecast fi and observed value yi, the PIT is defined as

PITðfi; yiÞ ¼ FiðyiÞ;

where Fi is the CDF of fi. A necessary (but not sufficient) condition for a forecaster to be ideal

is probabilistic calibration [3]:

1

N

XN

i¼1

Hi � F
� 1

i ðpÞ ! p as N !1; for all p 2 ð0; 1Þ:

(Here and throughout we interpret convergence in the almost sure sense.) An example of a

probabilistically calibrated forecaster that is not ideal is the so-called climatological forecaster,

which for each i outputs the marginal distribution of yi over i = 1, 2, 3, . . .. To make this con-

crete, suppose each yi is distributed as N ðmi; 1Þ, a normal distribution with mean μi and vari-

ance 1, and each μi itself follows N ð0; 1Þ, then the climatological forecaster simply outputs

N ð0; 2Þ for each i.
Note that the PIT distribution of a probabilistically calibrated forecaster is close to uniform

in large samples. The expected CDF of the PIT distribution is

GðpÞ ¼ E½P½FiðyiÞ � p�� ¼ E½P½yi � F� 1

i ðpÞ�� ¼ E½Hi � F
� 1

i ðpÞ�;

where here E denotes the sample average operator over i = 1, . . ., N. This expression converges

to p as N!1 when the forecaster is probabilistically calibrated. Thus an examination of the

distribution of PIT values—looking for potential deviations from uniformity—serves as a good

diagnostic tool to assess probabilistic calibration. Many use a PIT histogram to examine the

PIT distribution because it is easy to read and understand [3]. For example, if the PIT distribu-

tion is bell-shaped, then the forecaster does not put enough weight in the middle of its distri-

bution and is underconfident. In general, we can compare the PIT density to the horizontal

line at 1, which corresponds to the uniform density. The greater the deviation from this line

(which can be quantified via Kullback-Leibler divergence from the uniform distribution to the

PIT distribution, or equivalently, negative entropy of the PIT distribution), the greater the mis-

calibration; see Fig 1 for examples.

Our recalibration method uses G as a CDF-CDF transform. The recalibrated forecaster,

denoted M�, is defined by a recalibrated forecast CDF of F�i ðyÞ ¼ GðFiðyÞÞ, for each i. By the

chain rule, the recalibrated forecast density is f �i ðyÞ ¼ gðFiðyÞÞ � fiðyÞ, for each i. Thus the recal-

ibrated forecast f �i is the original forecast fi weighted by the PIT density g. An illustration of

this method is provided in Fig 2. In practice, of course, we do not have access to the true distri-

butions Hi, so we need to estimate G from PIT values. A key assumption is that the PIT distri-

bution of the training forecasts is the same as that of the test forecasts. Otherwise, applying G
as a CDF-CDF transform will not produce probabilistically calibrated forecasts. The ultimate

PLOS COMPUTATIONAL BIOLOGY Recalibrating probabilistic forecasts of epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010771 December 15, 2022 3 / 16

https://doi.org/10.1371/journal.pcbi.1010771


estimate of G that we propose in this paper will be an ensemble (weighted linear combination)

of three estimates: a nonparametric method, a parametric method, and a null method. First,

we will motivate calibration as a tool to increase forecast accuracy, and then, we explain the

individual estimation methods.

2.1 Calibration and log score

In order to quantify how well a forecaster is calibrated, we calculate the entropy of the distribu-

tion of PIT values. As above, G is the CDF of the PIT distribution of M. The entropy of the PIT

density g is defined as

HðgÞ ¼ �
Z 1

p¼0

gðpÞ log gðpÞ dp:

If M is probabilistically calibrated, then (asymptotically, as N!1) the PIT values are uni-

form and the entropy is zero because g(p) is 1 everywhere. When the PIT values are not uni-

form, the entropy is negative.

Entropy is also useful because it provides an understanding of how miscalibration penalizes

the expected log score, as shown below. First observe that

gðpÞ ¼
d
dp

GðpÞ ¼
d
dp

E½Hi � F
� 1

i ðpÞ� ¼ E
hiðF� 1

i ðpÞÞ
fiðF� 1

i ðpÞÞ

� �

;

Fig 1. Densities of PIT distributions for five sample forecasters, when the true distribution is a standard normal.

https://doi.org/10.1371/journal.pcbi.1010771.g001
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where the last step assumes the smoothness and integrability conditions on hi, fi needed to

exchange expectation and differentiation (the Leibniz rule). Next observe that

E½ log f �i ðyiÞ� � E½ log fiðyiÞ� ¼ E½ log gðFiðyiÞÞ�

¼ E
� Z 1

� 1

log gðFiðyiÞÞhiðyiÞ dyi

�

¼ E
Z 1

0

log gðFiðF
� 1

i ðpÞÞÞ
hiðF� 1

i ðpÞÞ
fiðF� 1

i ðpÞÞ
dp

� �

¼

Z 1

0

E log gðpÞ
hiðF� 1

i ðpÞÞ
fiðF� 1

i ðpÞÞ

� �

dp

¼

Z 1

p¼0

gðpÞ log gðpÞ ¼ � HðgÞ;

ð1Þ

where the third line is obtained by a variable substitution, and fourth by applying the Leibniz

rule again assuming the needed regularity conditions.

For any forecaster, if the PIT distribution is the same for the training data and the test data,

then the improvement of the recalibrated forecast’s log score can be estimated by estimating

the negative entropy of g (note that the entropy of any distribution on [0, 1] is nonpositive).

Fig 2. An illustration of recalibration. The original, underconfident forecast density is f ðyÞ ¼ N ð0; 2Þ while the true density is hðyÞ ¼ N ð0; 1Þ. By

calculating the PIT density g and producing a recalibrated forecast as the product g(F(y)) � f(y), we recover the true h(y).

https://doi.org/10.1371/journal.pcbi.1010771.g002

PLOS COMPUTATIONAL BIOLOGY Recalibrating probabilistic forecasts of epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010771 December 15, 2022 5 / 16

https://doi.org/10.1371/journal.pcbi.1010771.g002
https://doi.org/10.1371/journal.pcbi.1010771


We can explain this intuitively as well: the more negative H(g) is, the more it indicates that

there is information lying in the structure of g that can be extracted to improve forecasts.

2.2 Nonparametric correction

Given an observed training set of PIT values for a forecaster, Fi(yi), i = 1, . . ., N, the empirical

PIT CDF is

ĜðxÞ ¼
1

N

XN

i¼1

I½FiðyiÞ � x�:

As Ĝ is discrete, it does not admit a well-defined density, and hence to use this for recalibra-

tion we can first smooth Ĝ using a monotone cubic spline interpolant, and then it will have a

bonafide density ĝ , which is itself smooth (twice continuously differentiable, to be precise).

Using this for recalibration produces f �i ðyÞ ¼ ĝ iðFiðyÞÞ � fiðyÞ.
In practice, with a large amount of training data, recalibration using the empirical CDF as

described above can be effective. However, with little training data, or a lot of diversity within

the training data among the distributions of yi, it can be ineffective for assuring calibration on

the test set. This is in line with the practical difficulties of using nonparametric, distribution-

free methods in general.

2.3 Parametric correction

Gneiting and Ranjan [8] present a recalibration method originally motivated by redistributing

weights on the components of an ensemble forecast, but their method can applied generally

to recalibrate any black box forecaster. Given an observed training set of PIT values, Fi(yi),
i = 1, . . ., N, we fit a beta density ĝ via maximum likelihood estimation. This in fact corre-

sponds to the beta transform that maximizes the log score of the recalibrated forecaster on the

training data [8].

This parametric model is more resilient to minimal training data, and a beta distribution

is usually an effective estimate of the PIT distribution: because a beta density can be either

convex or concave, it is flexible enough to fit the PIT distribution of overconfident and under-

confident forecasters; and because the mean can be in the interval (0, 1), it can fit biased fore-

casters as well. However, problematic behaviors arise at the tails. Except in exceptional cases

(one or both of its two shape parameters is exactly 1), the beta density is 0 or1 at the end-

points of its support, which can cause problems for recalibration (there can be a big gap

between the true PIT density and ĝ in the tails).

2.4 Null correction

The final component of the recalibration ensemble is a null correction, in which there is no

recalibration at all, i.e., we simply set f �i ðyÞ ¼ fiðyÞ. This prevents overfitting and decreases var-

iance of the overall ensemble correction, to be described next.

2.5 Recalibration ensemble

The final recalibration system uses the three components described previously and weights

them in an ensemble. The ensemble weights are calculated to maximize the overall log score.

Letting f �ij denote the forecast density for sample i and component j, the weights ensemble w
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are defined by solving the optimization problem:

minmize
w

1

N

XN

i¼1

log
Xp

j¼1

wj f
�

ij ðyiÞ

 !

subject to w � 0;
Xp

j¼1

wj ¼ 1; ð2Þ

where p is the number of ensemble components (for us, p = 3) and the constraint w� 0 is to

be interpreted componentwise.

A component’s weight in the ensemble is not necessarily proportional to that component’s

performance. For example, if the two best components are very similar to each other, one may

have a very small weight because that component’s information is effectively represented by

the other component.

2.6 Recalibration under seasonality

Epidemic forecasting presents a new challenge for recalibration. The methodology discussed

above assumes that the previous behavior of a forecaster is indicative of future behavior, or

more concretely, that the PIT distribution on the training set will be similar to that on the

test set. However, this is not necessarily the case in epidemic forecasting, due to the fact that

a forecaster’s behavior generally changes across the different phases of an epidemic. For

example, some forecasters do not predict enough of a change in disease incidence from one

week to the next. For such a forecaster, the PIT values are usually too high between a season’s

onset and peak, because incidence increases more quickly than forecasted. Conversely, after

the season peaks, the PIT values are too low, because incidence decreases more quickly than

forecasted.

In order to account for such nonstationarity in the PIT distribution, we would like to form

and use a special training set based on forecasts made at similar points in the epidemic curve

in different seasons. This is not a straightforward task to do in real-time, since one cannot

always be sure whether the peak has passed yet or not. However, for seasonal epidemics, we

can take advantage of seasonality and build this training set based on the calendar weeks in

which the forecasts were made. For example, a forecast made in week 6 can be recalibrated

based on forecasts in other seasons made in weeks in between 3 and 9. This is what we do in

our experiments in this paper, with more details given in the next section.

3 Results

We apply this ensemble recalibration method to data from influenza forecasting in the US. In

an effort to better prepare for seasonal influenza, the US CDC has organized a seasonal influ-

enza forecasting challenge every year since 2013, called the FluSight Challenge [18]. In 2017, a

group of forecasters formed the FluSight Network [19] and began submitting an ensemble

forecast of 27 component forecasters. As part of this collaboration, each of these forecasters

produced and stored retrospective forecasts spanning 9 seasons, from 2010–11 to 2018–19.

The retrospective forecasts were produced at the same time, with each forecaster using the

same method for all seasons. Had the forecaster modified its algorithm from season to season,

the previous forecast performance would not be predictive of future forecast performance,

violating the assumptions behind this recalibration method. These forecasters include mecha-

nistic and non-mechanistic forecasters, as well as baseline forecasters. They are diverse in

behavior, accuracy, and calibration, and therefore provide an interesting challenge for our

recalibration method, which treats the forecaster as a black box.
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First, we summarize the retrospective forecasts in the FluSight data set. Each week, a fore-

cast is produced for seven forecasting targets, all of which are based on weighted ILI (wILI), a

population-weighted average of the percentage of outpatient visits with influenza-like illness

derived from reports to the CDC from a network of healthcare providers called ILINet [20].

The forecasting targets are:

• season onset (the first week where wILI is above a predefined baseline for three consecutive

weeks);

• season peak week (week of maximum wILI);

• season peak percentage (maximum wILI value);

• the wILI value at 1, 2, 3, and 4 weeks ahead of the current week.

The first three targets are referred to as seasonal targets and the last four targets are referred

to as short-term targets. Each forecast is discretized over predetermined bins, forming a histo-

gram distribution. For the season onset and season peak week targets, the width of each bin is

one week, and for the other targets, the width of each bin is 0.1% wILI. Forecasts are produced

for each of the 10 HHS Regions as well as the US as a whole, for a total of 9 seasons, from

2010–11 to 2018–19. Thus to be clear, the forecasts in this FluSight data set are indexed by

forecaster, target, season, forecast week, and location.

Next, we describe the training setup we use for recalibrating the forecasts in this data set,

which is a kind of nested leave-one-season-out cross-validation. This is laid out in the steps

below for a given forecaster and forecasting target, and a particular season s.

1. Create recalibrated forecasts for all seasons r 6¼ s, using each of the three methods: nonpara-

metric, parametric, and null. For a forecast in season r at week i and at location ℓ, we build

a training set using PIT values from all seasons other than r and s, all available forecast

weeks in [i − 3, i + 3] (within three weeks of i), and all locations. These recalibrated forecasts

are only used for training the ensemble weights in the following step.

2. Optimize the ensemble weights w by solving (2) using the recalibrated forecasts from Step 1.

3. Create recalibrated forecasts for season s, again using each of the three methods: nonpara-

metric, parametric, and null. This is just as in Step 1, except we use one more season in the

training set. Explicitly, for a forecast in season s at week i and at location ℓ, we build a train-

ing set using PIT values from all seasons other than s, all forecast weeks in [i − 3, i + 3]

(within three weeks of i), and all locations.

4. Create ensemble recalibrated forecasts from season i, using the recalibration components

from Step 3 and the weights from Step 2.

In what follows, we present and discuss the results. The code and data used to produce all

of these results is publicly available online [21].

3.1 Effect of varying window size

The training procedure just presented assumes a window of k = 3 weeks on either side of a

given week i in order to build the set of PIT values used for recalibration (using forecast data

from other seasons). However, we could consider varying k, which would navigate something

like a bias-variance tradeoff. We would expect the optimal window k to be larger for the non-

parametric recalibration method versus the parametric one. It turns out that k = 3 is typically a

reasonable choice for both, as displayed in Fig 3.
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3.2 Forecast accuracy and calibration

For the short-term targets, the ensemble recalibration method improves the mean log score for

almost all forecasters. Both the nonparametric and parametric recalibration methods signifi-

cantly improve the mean log score, and the ensemble improves it even further. For the seasonal

targets, some component recalibration methods do not improve accuracy, although the

ensemble method does improve accuracy, averaged over all forecasters. However, the ensem-

ble improves accuracy for seasonal targets in only about three-quarters of forecasters. See Figs

4 and 5.

Fig 6 gives a more direct comparison of improvements in accuracy versus calibration, i.e.,

in mean log score versus entropy, for the short-term forecasts. (Note that we estimate the

entropy of the distribution of PIT values using a simple histogram estimator with 100 equal

bins along the interval [0, 1].) We see a clear linear trend, with slope approximately 1, confirm-

ing our expectations from (1).

Finally, in Fig 7, we show that our ensemble recalibration method increases the entropy of

the PIT distribution to nearly zero for nearly every forecaster. The two exceptions, the line seg-

ments towards the bottom of Fig 7, correspond to particularly poor forecasters (so poor that

are outperformed by a baseline forecaster that outputs a uniform distribution).

3.3 Effect of number of training seasons

We chose to apply our recalibration to the FluSight Challenge because there are many forecast-

ers available over many seasons for testing and training. When recalibrating forecasts of other

Fig 3. Mean log score, averaged over all forecasters, for the different recalibration methods. A window size of k corresponds to

training recalibration on forecasts within k weeks of the given forecast week, where available, inclusive. Log score is averaged over 9

seasons, 11 locations, and 29 weeks (higher log score is better). The largest window sizes slightly hurt the performance of the

parametric model, and the smallest window sizes significantly hurt the nonparametric model. Averaged over all forecasters, the

improvement in performance due to calibration is roughly equal to the improvement in performance by reducing the forecast

horizon by a week.

https://doi.org/10.1371/journal.pcbi.1010771.g003
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epidemics, there may be significantly less training data available. Fortunately, these methods

are robust to recalibrating FluSight Challenge forecastssituations with little training data. The

parametric recalibration method improves the mean log score, averaged over all 27 forecasts,

with just two training seasons, and the nonparametric recalibration improves average perfor-

mance with four training seasons, as shown in Fig 8.

Because we train selectively based on seasonality, as discussed in Section 2.6, each training

season and location contributes only 7 PIT values to estimate G. We pool 11 locations together,

so the parametric method can improve performance with roughly 150 PIT values, and the

nonparametric method can improve performance with roughly 300 PIT values.

3.4 Recalibrating the FluSight ensemble

As we just saw, recalibration improves the performance of the individual forecasters in the Flu-

Sight Network. A natural follow up is therefore to investigate whether it can improve the

Fig 4. Improvement in mean log score, for the different recalibration methods. Log score is averaged over all 27 forecasters in the FluSight, 9

seasons, 11 locations, and 29 weeks (higher log score is better). The ensemble recalibration method improves accuracy for every target.

https://doi.org/10.1371/journal.pcbi.1010771.g004
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performance of the FluSight ensemble, a forecaster that combines 27 component forecasters

(the individual FluSight forecasters), whose construction is described in [19].

As both recalibration and ensembling are post-processing methods (i.e., that can be applied

in post-processing of forecast data), we are left with two options to explore. We can recalibrate

the component forecasters and then ensemble (C-E), or ensemble the components and then

recalibrate (E-C). In the C-E model, we train ensemble weights in a leave-one-season-out for-

mat, on the recalibrated component forecasts. In the E-C model, we train ensemble weights in

a leave-one-season-out format on the original component forecasts, and then recalibrate the

ensemble forecasts.

Fig 9 reveals that E-C model performs better than the C-E model. This is in line with

established forecasting theory, which states that linear ensembles (which take a linear combi-

nation of component forecasters, such as the FluSight ensemble approach) themselves are

generally miscalibrated, even when the individual component forecasters are themselves cali-

brated [5, 8, 22].

4 Discussion

Even in a domain as complex as epidemic forecasting, relatively simple recalibration methods

such as those described in this paper can significantly improve both calibration and accuracy.

A forecaster’s performance for any proper score can be decomposed into three components:

the inherent uncertainty of the target itself, the resolution of the forecaster (concentration of

the forecasts), and the reliability of the forecaster to the target (calibration) [1]. In epidemic

forecasting, without seasonality-aware recalibration training (such as that proposed and imple-

mented in this paper), recalibration will not affect the resolution term, which is left to the

Fig 5. Proportion of forecasters for which recalibration improves mean log score (left) and entropy of the PIT values (right). The ensemble

method improves accuracy for the short-term targets for all forecasters, and most forecasters for the seasonal targets. It also improves calibration (as

measured by entropy) for most forecasters and most targets. The ensemble method outperforms both the nonparametric and parametric methods.

https://doi.org/10.1371/journal.pcbi.1010771.g005
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individual forecasters, but it will improve the reliability term. However, using seasonality-

aware recalibration, it can also improve the resolution term.

Over 9 seasons of forecast data from 27 forecasters in the FluSight Challenge, we found

that recalibration was especially helpful for the short-term targets (1–4 week ahead forecasts).

With the exception of two very similar forecasters that have poor performance, the ensemble

recalibration method was able to reduce the entropy of the PIT distribution to nearly zero

(not or barely statistically significantly different than a uniform distribution). The recalibrated

forecasts are therefore more accurate and more reliable. This is true across a diverse set of fore-

casters, including mechanistic, statistical, baseline, and ensemble models; indeed, as our recali-

bration method treats the forecaster as a black box, it can be applied to any forecaster, given

access to suitable training data (retrospective historical forecasts).

Recalibrating influenza forecasts avoids challenges present in other forecasting environ-

ments, such as nonseasonality, a lack of consistent forecasters spanning many seasons, and

little training datalittle training data, nonseasonality, and consistent forecasting models span-

ning many seasons. Although this makes recalibrating influenza forecasts a relatively easier

task, we believe that this recalibration method can be applied to forecasting other diseases as

well. For example, dengue fever is a seasonal disease with training data since 2014 available for

forecasting [23]. Aedes mosquito counts are another seasonal target of interest to the CDC,

which has released several years of training data for some counties for the purpose of forecast-

ing [24]. This recalibration method, with its seasonal component, can be applied to these

forecasts.

Fig 6. Improvement in mean log score versus improvement in entropy for each of the 27 FluSight forecasters and short-term targets. There is a

clear linear trend (with slope approximately 1) between the improvement in calibration and the improvement in accuracy.

https://doi.org/10.1371/journal.pcbi.1010771.g006
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In application to nonseasonal diseases, such as COVID-19 (currently), this method can eas-

ily be modified to use all available PIT values, as opposed to the selective training used for

influenza forecasts. Alternatively, selective training could be done not by calendar week but by

some other feature(s) that differentiates a forecaster’s behavior (e.g., whether cases are increas-

ing or decreasing). While this allows for a flexible approach to recalibrate a variety of seasonal

and nonseasonal diseases, this may be difficult to implement effectively in practice. In other

cases where the PIT distribution changes slowly over time, training could be done only on the

most recent forecasts to improve the estimate of Ĝ. This selective training approach has been

successful in recalibrating COVID-19 forecasts [25]. The ensemble approach allows for the

incorporation of multiple models trained on different historical forecasts, or even different

recalibration methods altogether.

Regarding a lack of consistent forecasters, even if a forecaster has been modified continu-

ously over many years and previous performance is not indicative of current performance,

recalibration can be trained on retrospective forecasts produced by the current forecaster.

A lack of training data is a more difficult problem to solve. An obvious problem of limited

training data is the variance in estimating Ĝ, but an additional challenge is that it is difficult to

confirm our assumption that the PIT distribution is stationary over time. If we cannot detect

Fig 7. Entropy and mean log score before and after recalibration, for each of the 27 FluSight forecasters and short-term targets. The tail of arrow

represents a quantity before recalibration, and the head after recalibration. The dotted lines show the central 90% interval of the entropy of a

comparably-sized sample of standard uniform random variables for comparison. For all but two forecasters (the eight bottom-most line segments), the

ensemble recalibration method achieves almost perfect calibration as evidenced by a near-zero PIT entropy, and this is accompanied by significant

improvements in accuracy.

https://doi.org/10.1371/journal.pcbi.1010771.g007
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that the PIT distribution changes over time, we will make inappropriate “corrections” to the

forecasts that could harm calibration and accuracy. In practice, recalibration improved perfor-

mance of the FluSight Challenge forecasts with relatively little training data, as shown in Fig 8.

In less well-behaved applications, however, performance could decrease. We have made these

recalibration methods available online so that a user can experiment with his or her own fore-

casts and determine whether or not recalibration improves performance [21].

The performance of recalibration with respect to the seasonal targets (onset, peak week,

and peak percentage) was less conclusive than that of the short-term targets. Although the

mean log score averaged over all of the forecasters was improved, recalibration only improved

the performance of about three-quarters of the forecasters. Seasonal targets are inherently

more difficult to recalibrate because at the end of the season, the true value has almost certainly

been observed, and the forecasts are highly confident. For these forecasts, the correct bin has a

mass of almost 1, and the observed PIT value then is approximately 0.5. At the end of the sea-

son, the PIT distribution is very concentrated at 0.5, which indicates underconfidence and

poor calibration. If these PIT values of 0.5 are used to train forecasts for recalibration earlier

in the season, before the target is observed, then recalibration incorrectly makes the forecast

more confident. Because one is unsure whether the season peak has occurred or not for several

weeks after the peak occurs, recalibration training is a nontrivial task. In general, more work is

required to reliably improve accuracy and calibration for seasonal targets, which is a topic for

future work.

Fig 8. Improvement in mean log score after recalibration, averaged over all 27 FluSight forecasters, by number of training seasons. We perform

three runs for each of the nine available seasons and n 2 {1, 2, 4, 8}, where a run consists of randomly sampling n other seasons to train recalibration for

each of the 27 FluSight forecasters. Each point in the plot is averaged over 9 × 3 = 27 runs. As expected, the parametric method is more robust to limited

training data than the nonparametric method.

https://doi.org/10.1371/journal.pcbi.1010771.g008
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