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Abstract

Common practice in modern machine learning involves fitting a large number of parameters
relative to the number of observations. These overparameterized models can exhibit surprising
generalization behavior, e.g., “double descent” in the prediction error curve when plotted against
the raw number of model parameters, or another simplistic notion of complexity. In this paper,
we revisit model complexity from first principles, by first reinterpreting and then extending the
classical statistical concept of (effective) degrees of freedom. Whereas the classical definition is
connected to fixed-X prediction error (in which prediction error is defined by averaging over the
same, nonrandom covariate points as those used during training), our extension of degrees of
freedom is connected to random-X prediction error (in which prediction error is averaged over
a new, random sample from the covariate distribution). The random-X setting more naturally
embodies modern machine learning problems, where highly complex models, even those complex
enough to interpolate the training data, can still lead to desirable generalization performance
under appropriate conditions. We demonstrate the utility of our proposed complexity measures
through a mix of conceptual arguments, theory, and experiments, and illustrate how they can be
used to interpret and compare arbitrary prediction models.

1 Introduction

Model complexity is a key concept in statistics and machine learning, and is a core consideration in
prediction problems—a higher complexity allows for a better fit to the training data, but may result
in overfitting, whereas a lower complexity may lack the ability to capture sufficiently rich behavior,
and hence lead to underfitting. There are numerous different ways to quantify the complexity of a
prediction model. One such way is called the (effective) degrees of freedom (Efron, 1983, 1986; Hastie
and Tibshirani, 1987) of a model, which is a classical concept in statistics, and will play a central
role in our paper. This is often interpreted as the number of “free parameters” in the fitted model.

Meanwhile, driven by the enormous practical successes of neural networks and deep learning, there
has recently been great interest in the community in studying overparameterized models, where the
number of parameters is large relative to the number of observations. Overparameterized models can
exhibit surprising generalization behavior, in that they can generalize well even if they perfectly (or
nearly) interpolate noisy training data (Zhang et al., 2017; Belkin et al., 2019). As we will explain
later (Section 2.3), classical degrees of freedom fails to adequately explain this phenomenon. For
example, it is not able to distinguish between interpolating models: the degrees of freedom of any
interpolator is exactly n, the number of training observations.

TDepartment of Statistics, University of California, Berkeley.
#Department of Statistics and Data Science, Carnegie Mellon University.
$Machine Learning Department, Carnegie Mellon University.



Number of features

Number of features

——=- Random-X (p <n) Random-X (p > n) Fixed-X

1.8 1.8
5 100 / ) /
; . / : /
9]
c 1.6 S 80 / c 16 /
o © A o I
© o / © /
5 1.4 & 60 / 5 14 !
) Y— /] 0] 7
s © I’ 5 //
.12 § 40 / <12 o
£ 5 £ RN
310 g 20 f S1o0
5 / 5
o ol o

0.8 0.8

1 50 100 150 200 250 300 1 50 100 150 200 250 300 0 50 100

Random-X degrees of freedom

Figure 1: An illustration using ridgeless least squares regression as the prediction model, trained on n = 100
samples and p features, where p ranges from 1 to 300. The true conditional mean is a nonlinear function in
the features, and hence adding more features to the working linear model helps its approximation capacity
(The precise details are given in Appendix C.1). In the left panel, we can see that the random-X prediction
error curve exhibits “double descent” in p. In the middle panel, the classical (fixed-X) definition of degrees of
freedom increases linearly for p < n, but then it flattens out at the trivial answer of n degrees of freedom for
all p > n. The “intrinsic” random-X degrees of freedom, one of two basic versions of random-X degrees of
freedom to be defined later in Section 3, is decreasing when p > n, indicating that the ridgeless interpolator
is becoming less complex as the dimensionality grows. In the right panel, we plot the random-X prediction
error as a function of random-X degrees of freedom. The interpretation: our proposed complexity measure
maps every overparameterized model onto an equivalent underparameterized model, and the best-predicting
model (which lies in the overparameterized regime) actually has relatively low complexity.

The underlying limitation of degrees of freedom, as classically defined, is that it is tied to a measure
of prediction error which we refer to (following Rosset and Tibshirani 2020) as fized-X prediction
error. In this measure, prediction error is defined by averaging over the same fixed set of covariate
points as those used during training. In certain problem settings—that is, low-dimensional, smooth
prediction problems—this measure is a good proxy for random-X prediction error, which is given
by averaging over a new random sample from the covariate distribution. Yet, in high-dimensional
and/or nonsmooth prediction problems, fixed-X and random-X errors can behave quite differently.
A generalizing interpolator epitomizes this difference (Section 2.1): as n — o0, it has fixed-X excess
error converging to the noise level but random-X excess error converging to zero.

In nearly all modern machine learning prediction problems, random-X error is the perspective of
interest. Given its connection to fixed-X error, it should not be surprising that classical degrees of
freedom can break down for prediction models such as interpolators, where random-X and fixed-X
errors diverge. In this paper, we propose a new measure of degrees of freedom that connects directly
to random-X prediction error, and allows us to reason about complexity in a nontrivial way for any
predictive model, including interpolators. We provide a simple illustration in Figure 1.

1.1 Summary and outline
We provide a summary of our contributions and outline the structure of the paper below.
New random-X measures of degrees of freedom. After we review preliminary materials in

Section 2, we present new measures of model complexity in Section 3. In particular, we extend the
classical notion of degrees of freedom to the setting of random-X. We do so by first reinterpreting



the classical construction of degrees of freedom in a new light, then translating this to random-X
prediction error. We propose two basic versions of random-X degrees of freedom: one to capture
both bias and variance components of the error, and another based on variance alone.

Basic properties and theory for random-X degrees of freedom. In Section 4, we describe
basic properties of the proposed random-X degrees of freedom measures, and draw connections to
related ideas in the literature. Section 5 derives theory for a few standard prediction models, such
as ridge regression and the lasso, and demonstrates that degrees of freedom typically decreases as
the regularization strength increases, and typically increases as the number of features increases.

Numerical experiments for a diverse set of prediction models. In Section 6, we illustrate
the versatility of our complexity measures by presenting results from numerical experiments using
the lasso, k-nearest neighbors regression, and random forests.

Decomposing degrees of freedom under distribution shift. In Section 7, we discuss how
to decompose the random-X degrees of freedom of a prediction model into constituent parts, so as
to quantify the contribution of various components—such as bias, variance, and covariate shift—to
the final measure of model complexity. This is based on borrowing ideas from Shapley values.

1.2 Related work

There is a lot of literature related to the topic of our paper, which we discuss in two groups.

Model optimism and degrees of freedom. Optimism and (effective) degrees of freedom are
classical concepts and well-studied in statistics, with important references being Efron (1983, 1986,
2004). Degrees of freedom for linear regression and linear smoothers have a particular simple form,
as the trace of the smoother matrix, and have a long history of study, for example, Mallows (1973);
Craven and Wahba (1978); Hastie and Tibshirani (1987, 1990). Broadly related to this is the topic of
estimating risk for model selection, which is widely studied and itself carries quite a rich literature,
for example, Sclove (1969); Hocking (1976); Akaike (1973); Schwarz (1978); Thompson (1978a,b);
Golub et al. (1979); Breiman and Freedman (1983); Breiman and Spector (1992), and many others.

A landmark contribution in the study of degrees of freedom and unbiased risk estimation is known
as Stein’s unbiased risk estimator (SURE), due to Stein (1981). This has enabled the development
of numerous closed-form unbiased estimators of degrees of freedom (and fixed-X prediction error)
for methods such as wavelet denoising, shape-constrained regression, quantile regression, lasso and
various generalizations, and low-rank matrix factorization; see, for example, Donoho and Johnstone
(1995); Cai (1999); Meyer and Woodroofe (2000); Zou et al. (2007); Zou and Yuan (2008); Tibshirani
and Taylor (2012); Candes et al. (2013); Tibshirani (2015); Mikkelsen and Hansen (2018); Chen
et al. (2020), among others. For an alternative perspective based on auxiliary randomization (which
reduces to SURE in a limiting case), see Oliveira et al. (2021, 2022).

The above literature is all rooted in the fixed-X setting, which (as we will explain precisely in the
next section) measures prediction error at the same fixed covariate points as those used in training.
Rosset and Tibshirani (2020) compare and contrast the bias-variance tradeoff, prediction error, and
other core concepts in statistical decision theory in the fixed-X and random-X settings. Our work
builds on theirs and introduces a notion of random-X degrees of freedom. Though we believe that
this should be of general interest, it is of particular interest for interpolators.



Closely related to our proposed complexity measure is the recent work of Luan et al. (2021, 2022);
Curth et al. (2023). They propose a measure of random-X degrees of freedom that is suitable for
linear smoothers. It is related to our approach in this special case, and Section 4.4 provides details.
Broadly speaking, our approach is more general (accommodates arbitrary prediction models), and
also, allows for both bias and variance components of the random-X optimism to enter into the
complexity measure, whereas the previous proposals focus on variance alone.

Other complexity measures. There are many other criteria for measuring the complexity of a
model or an object. Broadly, this includes ideas from information theory and theoretical computer
science, such as Kolmogorov complexity (Kolmogorov, 1963), minimum message length (Wallace and
Boulton, 1968), and minimum description length (Rissanen, 1978). Closer to our study, coming from
machine learning theory, are Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971)
and Rademacher complexity (Bartlett and Mendelson, 2002). For a discussion of these concepts and
their role in generalization theory, see, for example, Shalez-Shwartz and Ben-David (2014) or Mohri
et al. (2018). An important point to clarify is that VC dimension and Rademacher complexity differ
from degrees of freedom in the following sense: the former measures apply to a class of prediction
models, whereas the latter applies to a particular fitted prediction model. In other words, degrees of
freedom as complexity measure is more finely-tuned to the way in which a given model is trained,
incorporating the action of the fitting algorithm, and the distribution of the underlying data. As an
example, a linear model trained via least squares and ridge regression (using strong regularization)
will have the same Rademacher complexity, but different degrees of freedom.

2 Preliminaries

We start with a review of fixed-X and random-X prediction error, and classical (fixed-X) optimism
and degrees of freedom. Then we discuss the limitations of classical degrees of freedom with respect
to understanding overparameterized models.

2.1 Fixed-X and random-X prediction error

Consider a standard regression setup, with independent and identically distributed (i.i.d.) training
samples (z;,y;) € RP x R, which follow the relationship

yi = f(z;) +&i, 1€[n], (1)

for f(x) = E[yi|z; = x|, and i.i.d. mean zero stochastic errors ¢;, i € [n]. We assume that each ¢; is
independent of z;. Here and throughout, we abbreviate [n] = {1,...,n}. Also, let 0® = Var[g;] > 0
denote the error variance, let X € R"*P denote the feature matrix (with i*" row x;), and let y € R™
denote the response vector (with i*" entry v;).

Suppose that we have a model fitting procedure fwhich produces the predictor f (:X,y):RP >R
when trained on the data (X,y). Thus, f(z; X,y) is an estimate of f(x). When the training data is
clear from the context, we will simply write this as f(z).

In fized-X prediction error, we measure the error of f at a set of new response values y, i € [n],
where each y; and y; are i.i.d. conditional on z;. Formally, this is

erre(f) = E[; i (v — flas)? ‘X} (2)
=1



In random-X prediction error, we measure the error of f at a new sample (z9,yp) € RP x R, which
is i.i.d. to the training samples (z;,y;), ¢ € [n]. Formally, this is

errn(f) = E[(yo — f(x0))°]. (3)

To be clear, the expectation in (2) is taken with respect to y,y*, and is conditional on X, whereas
that in (3) is taken with respect to X, y, o, yo.

While random-X prediction error is the central object of interest in machine learning theory and in
many modern statistics problems, fixed-X prediction error has a long history of study in statistics;
we refer to Rosset and Tibshirani (2020) (and references therein) for an in-depth discussion. For
our purposes, to motivate our study, it suffices to make only high-level comments to compare them.
For smooth funct’i\ons f, f in low dimensions (i.e., n large compared to p), one can generally expect
errp(f) and errg(f) to behave similarly. For example, empirical process theory offers uniform control
on the deviation between the L? norms based on taking a sample average over i.i.d. draws x;, i € [n],
and taking an expectation with respect to xg ~ P,. Such results can be used to derive an asymptotic

~

equivalence (and nonasymptotic bounds) between erry(f) and errg( 7 ) in certain settings.

However, for nonsmooth functions and/or high-dimensional problem settings, the two metrics can
behave quite differently. Consider, as an example, a generalizing interpolator: here, we would have
random-X excess error errg(f) —errg(f) — 0 as n — o0, but fixed-X excess error

ers(F) — (1) = B[ 1 Y07 — | X| - 0% = 0%
i=1

where recall 2 = Var[g;] in the data model (1). This represents a huge difference between the two
metrics: one vanishing, and the other pinned at the noise level.

2.2 Fixed-X optimism and degrees of freedom

The (effective) degrees of freedom of f is defined as
~ 1 & ~
() = 7 > Covfy, Fo)| X1, (1)
i=1

This is often motivated intuitively as follows: the more complex the fitting procedure f , the more
“self-influence” each response y; will have on the corresponding fitted value f(x;) (and hence the
higher the degrees of freedom in total). An important property of degrees of freedom is its intimate
connection to fixed-X optimism, which is defined as

~ ~ 1 & ~ 9

ovty () = ere(F) - B[ 1 3 o~ Fe)’| x . ®)
i=1

The second quantity on the right-hand side above is simply the training error (conditional on X).

The precise connection between (4) and (5) is given by what is sometimes called Efron’s optimism

theorem, attributed to Efron (1986, 2004):

~ 20’2 ~

opty (f) = ~-dfu( ). (6)

This holds without any assumptions on f , and can be checked via simple algebra (add and subtract
yF within the square in each summand in errp(f) in (2), then expand and simplify).



The rest of this subsection can be skipped without interrupting the flow of main ideas. We use it as
an opportunity to provide general context about classical interest in degrees of freedom, as alluded
to in the related work subsection. Stein’s lemma (Stein, 1981) says if f is weakly differentiable as a
function of y, and we assume Gaussian errors ¢;, ¢ € [n] in (1), then

dfF [an oftw

Based on (7), we are able to form an unbiased estimate of dfg(f), namely, dfy = D0 Flai)/oys (if
we are able to compute it). From (5) and (6), we see that this in turn provides an unbiased estimate
of fixed-X prediction error, namely, £ 37"  (y; — Fx:))? + 207%df,.

Jx]. 7)

Thus we can see that there is a clear interest in estimating degrees of freedom, and utilizing Stein’s
formula, in order to estimate fixed-X prediction error. However, this is not really aligned with the
general focus of our paper henceforth, and our paper actually proceeds in the opposite direction: we
will presume an estimate of prediction error in order to estimate degrees of freedom. As we will see
in Section 3, this is a fruitful way to extend degrees of freedom past the fixed-X setting.

2.3 Limitations of classical degrees of freedom

A critical limitation of classical (fixed-X) degrees of freedom, as defined in (4), is straightforward to
state. For any interpolator, satisfying f(x;) = yi, i € [n], we have the trivial answer:

1 n
dfe(f _72 [y, yi | X] = n. (8)

If characterizing fixed-X optimism is truly the end goal of degrees of freedom, then we should not
be bothered by this (seemingly) obvious fact since any interpolator has zero training error and the
same fixed-X prediction error. Yet, if we are to think of degrees of freedom as a general measure of
model complexity, then (8) leaves a lot to be desired. As we know from the recent wave of work in
machine learning and statistics (for example, see the review articles Belkin (2021); Bartlett et al.
(2021) and references therein), some interpolators—in particular, implicitly regularized ones—are
actually quite well-behaved and can generalize well to unseen data. In classical degrees of freedom,
thus, we are lacking a complexity measure that can distinguish between well-behaved interpolators,
which are smooth in between the covariate points, and wild ones, which are arbitrarily nonsmooth.

The next section develops an extension of the classical notion of degrees of freedom which connects
to random-X (rather than fixed-X) prediction error. As we will see, the extension will overcome the
limitation just described—the new notion will assign a meaningful complexity measure to every
prediction model, including interpolators.

3 Random-X degrees of freedom

In this section, we first present a fresh reinterpretation of fixed-X degrees of freedom. Then we show
how this leads to a generalization of degrees of freedom in the random-X setting.

3.1 Reinterpreting fixed-X degrees of freedom

We first recall a standard fact about fixed-X degrees of freedom: if the feature matrix X € R"*? has
linearly independent columns, then least squares regression of y on X, given by fls(:n) = 2" where



Bls = (XTX)7'X Ty, has degrees of freedom exactly p. This is simply the number of parameters in
B's. This fact is easily verified from (4), abbreviating Py = X(XTX)71XT:

dfe () = % tr(Cov[X 3%, y| X])

1

3 tr(Cov[Pyy,y| X))

= tr(Px) 9)
where we used Cov[Pxy,y|X] = Px Cov[y|X] = 0?Px in the second-to-last line, and we used the
cyclic property tr(Px) = tr(X X (X TX)™!) = p in the last line.

Now we show that the fact about least squares in (9), which is well-known in the literature, can be
used to reinterpret fixed-X degrees of freedom in a new light. Recalling Efron’s optimism formula
(6), the least squares regression predictor ]as has fixed-X optimism

20?2
OptF(JaS) = Tp-

Given an arbitrary predictor f, we know that it still satisfies (copying (6) here for convenience)

~ 2 ~

opte () = “Z-dfi ().

Comparing the last two displays, we see that we may hence interpret the degrees of freedom of f as
the value of d € [0, 0] for which least squares predictor on d linearly independent features has the
same fixed-X optimism as opt,(f). This is simply a reformulation of the original definition (4), and
the next proposition records this idea precisely.

Proposition 1. For each fized d < n, let X’d e R4 be an arbitrary feature matriz having linearly

independent columns, and consider ]as(-; )N(d, y), the predictor from least squares regression of y on

X4, which we call our “reference” model, and abbreviate as féef. This satisfies

N 9202
opty( Crlef) = %d, d=1,...,n. (11)

Let us extend these reference values so that we may write for all nonnegative d,
SN 202
opt, (fi") = —d, de[0,00]. (12)
n

Given an arbitrary predictor f: ]?(, X, y), define d to be the unique nonnegative number for which

~

opt,(f) = opt, (F5F). (13)

Then dfF(f) =d.

Proof. The proof is immediate. The left-hand side in (13) equals (202 /n)dfp(f) and the right-hand
side equals (202/n)d. Cancelling the common factor of 202 /n gives the result. O

Next we show how to lift this idea to the random-X setting.



3.2 Defining random-X degrees of freedom

The idea behind Proposition 1 is both fairly natural and fairly general. To cast the core idea at a
high level, in order to define the complexity of a given prediction model f, we require two things:

1. a metric met, which we assume (without loss of generahty) is negatively-oriented: the lower
the value of met(f ) the less complex we deem f;

ii. a reference class { f};ef : d € D}, which is a class of models indexed by a number of parameters
d, assumed to be “canonical” in some sense to the prediction task at hand.

We then assign to f a complexity of d where d is smallest value in D for which met( f ) < met( ﬁef).
In other words, it is defined to be the number of parameters in the smallest reference model whose
metric value is at least that of f.

Fixed-X degrees of freedom is a special case of this general recipe, in which the metric is implicitly
taken to be fixed-X optimism—but suitably extended so that this metric ranges over the full set
of nonnegative reals, and we can always achieve equality: met(f ) = met( ref) for some d = 0. The
reference class is taken to be least squares regression on an arbitrary full rank feature matrix.

Towards a random-X extension, a natural inclination would be to maintain least squares regression
as the reference class, and simply replace fixed-X optimism (5) with random-X optimism, defined as

ootu(F) = em(F)~E[ 3} 1 = Fle)| (1)

This is now the random-X prediction error (rather than the fixed-X error) minus the training error.
Before we pursue a random-X extension, it is important to note that the classical definition, which
uses least squares and fixed-X optimism in the equivalent characterization given in Proposition 1, is
special for two reasons. The metric assigned to the reference model here, i.e., the fixed-X optimism
(11) of least squares, depends neither on X nor on the law of y| X, beyond assuming isotropic errors
(as we have done throughout, i.e., Cov[y|X]| = oI, with I being the n x n identity matrix).

In comparison, the random-X optimism (14) of least squares regression of y on X depends on both
the distribution of X and of y|X. This means that we will have to be more precise in defining the
distribution of the data on which we measure the random-X optimism of least squares, so that this
quantity becomes well-defined. The next definition provides details.

Definition 1. Assume that n = 2. For each fired d < n — 1, let X, € R4 have i.i.d. rows from
N(0,%), with ¥ € R an arbitrary deterministic positive definite covariance matriz. Let

91 Xa ~ N (X4, 0%I), (15)

with § € R an arbitrary deterministic coefficient vector. Consider ]ﬂs( Xd, 7), the predictor from
least squares regression of § on Xd, as our reference model, which we abbreviate as fref We have

d d
t (fhef -+ ——], d=1,...,n—1. 16
opta (FiF) = <n+n_d_1) ean (16)
Let us extend these reference values so that we may write
d d
rref 2
t = -+ — d —1]. 1
st (i) = o2+ 1) defon-1] (17)



Then, given an arbitrary predictor fz f(, X,y), we define de(f) = d as the unique d € [0,n — 1]
for which

oty (f) = opt, (fi). (18)

The result in (16) is driven by the random-X prediction error of least squares regression for jointly
Gaussian data, which is well-known, and can be found in, e.g., Stein (1960); Tukey (1967); Hocking
(1976); Thompson (1978a,b); Dicker (2013); Rosset and Tibshirani (2020), among others. We give a
derivation in Appendix A.1 for completeness.

Several remarks are in order, to discuss random-X degrees of freedom as defined in Definition 1 and
compare it to the classical notion of fixed-X degrees of freedom.

« Fixed-X degrees of freedom ranges from 0 to co.! That is, we cannot rule out arbitrarily large
values of fixed-X degrees of freedom, a property that has been criticized by some authors (e.g.,
Janson et al. (2015)). In contrast, random-X degrees of freedom ranges from 0 to n — 1. The
reason for this is that the random-X optimism of least squares diverges at d = n — 1, whereas
the fixed-X optimism does not (and only diverges as d — o). In other words, the random-X
optimism of least squares sweeps the entire range of possible optimism values as we vary the
number of features from 0 to n — 1, and this places a finite upper limit on random-X degrees
of freedom of n — 1, achieved when the given predictor has infinite random-X optimism.

e The two metrics used in defining fixed-X and random-X degrees of freedom, namely, fixed-X
and random-X optimism, scale differently with the number of parameters d in the underlying
reference model, least squares regression. As we can see, (12) scales linearly with d, whereas
(17) scales nonlinearly. For large d (close to n), the latter demonstrates “diminishing returns”:
large increases in random-X optimism only contribute small increases in random-X degrees of
freedom. Figure 2 gives an illustration.
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Figure 2: An illustration of the metrics that underlie fixed-X and random-X degrees of freedom: fixed-X and
random-X optimism of least squares regression on d features.

e The choice of Gaussian features X’d in Definition 1 facilitates the calculation of the random-X
optimism of least squares regression (16), since we can leverage well-known properties of the
(inverse) Wishart distribution. Interestingly, we can see that the result (16) does not depend
on the feature covariance X. By standard arguments in random matrix theory, as explained in
Section 3.4, the formula (16) remains asymptotically valid (as d/n — £ < 1) for a broad class
of feature models.

In fact, negative values are also allowed, but we implicitly rule this out in Proposition 1.



« The linear mean E[§|X4] = X4/ in Definition 1 is important, but the assumption of Gaussian
errors in (15) is not. The calculations in Appendix A.1 actually only assume isotropic errors
(i.e., g = )Z'dﬂ + v, where v\)N(d has mean zero and covariance o2I). Moreover, the random-X
optimism (16) does not depend on the underlying signal vector 5 (due to the unbiasedness of
underparameterized least squares regression), and only depends on the noise level o2

3.3 An intrinsic version of model complexity

The reference model we use in Definition 1 is least squares regression on well-specified data, where
the mean is linear in the covariates, as can be seen in (15). As previously commented (and verified
in Appendix A.1), the least squares predictor is unbiased in this case, and its random-X prediction
error and thus random-X optimism is comprised of pure variance.

Therefore, when we match the observed optimism to the reference one in (18), we are comparing
optg ( I3 )—which is generically comprised of both bias and variance, to TMR(Eef)—Which is made up
of variance alone. This is intentional. The notion of random-X degrees of freedom from Definition 1
determines the complexity of the given predictor f by incorporating the “full effect” of the data at
hand, allowing for potential model misspecification to enter into the calculation of optimism. To

emphasize, we will sometimes refer to this as the emergent random-X degrees of freedom.

Alternatively, we might want to match variance to variance in determining degrees of freedom, i.e.,
we might want to exclude bias effects in calculating the random-X optimism of the given model f.
This gives rise to a different notion of model complexity, which we define next.

Definition 2. Under the exact same setup as in Definition 1, draw v ~ N(0,0%I), independent of
everything else. We define df,(f) = d to be the unique d € [0,n — 1] for which

~

opt, (f(- X, v)) = opt, (f5). (19)

The difference between (18), (19) is that the latter measures the random-X optimism of f when it
is being trained and tested on “pure noise” v ~ N'(0,0I). Because the random-X optimism of least
squares does not depend on 3 in (15), note that we may set 8 = 0 and write (19) equivalently as

opt,, (f(5 X, v)) = opty (F* (s X, 0)).

We call the quantity df?( f ) in Definition 2 the intrinsic random-X degrees of freedom of f . It can
be interpreted as the model complexity that is intrinsic or inherent to the model f, a reflection of
its ability to overfit to pure noise (calibrated to that of least squares).

In what follows, we will further examine the relationship between emergent and intrinsic random-X
degrees of freedom, and learn through theory and experiments that the emergent notion is generally
larger than the intrinsic one. In short, the presence of bias generally “adds complexity”.

3.4 Universality of random-X optimism for least squares

As is well-known to those versed in random matrix theory, the random-X prediction error of least
squares regression, for well-specified, underparameterized data models, displays a remarkable degree
of universality. This is studied in, e.g., Girko (1990, 1995); Verdu and Shamai (1997); Verdu (1998);
Tse and Hanly (1999); Tse and Zeitouni (2000); Serdobolskii (2001, 2002), among others. Thus, the
random-X optimism also has a universal limit under proportional asymptotics, as noted in Rosset
and Tibshirani (2020). For completeness, we relay this precisely below.
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Theorem 2. Assume )N(d = Z3Y2 where Z € R™ 4 has i.i.d. entries with zero mean, unit variance,
and bounded moments up to order 4 + § for some § > 0, and ¥ € R¥™? is an arbitrary deterministic
positive definite covariance matriz. Also assume for an arbitrary deterministic signal vector B € RY,

J=XyB+v, where E[v|X4] =0 and Cov[v|X4] = o°I.
Then as n,d — o such that d/n — £ € (0,1), we have, almost surely with respect to Xd,

opty (P X | ) — (£ 154 ).

where optR(]aS(-; X4, 9) | Xa) = E[(7o — HNC(T@S)Q — |y — )?d@sH%/n | X4] denotes the random-X opti-
mism conditional on X4 (and (Zo,Yo) s a test point that is i.i.d. to the training data (Xg4,7)).

Proof. Following the calculations in Appendix A.1 leads to
opty (/*(: X0, 9) | Xa) = 0 (d/n + [ (X] X))
=o?(d/n+tr[(Z272)7Y)).

Under the assumptions in the theorem, the quantity

(%) ]

has a universal limit, almost surely with respect to Z; see, e.g., Theorem 3.10 of Bai and Silverstein
(2010). Again from the calculations in Appendix A.1, if the entries of Z are i.i.d. standard Gaussian,
then

w272y = £

SN

4
n—d—1
This converges to /(1 — &) as d/n — £, which must thus also be the universal almost sure limit in

the general case, regardless of the distribution of entries of Z. This yields the almost sure limit of
the conditional optimism

E[t](272)1]] =

ovty (P X | ) = o (€4 15 ).

as claimed. n

Theorem 2 reveals that the choice of Gaussian features in the reference optimism calculation, for
either Definition 1 or Definition 2, is in a certain sense unimportant, because all feature models of
the form described in the theorem lead to the same asymptotic answer anyway.

3.5 Practical calculation of random-X degrees of freedom

The concept of random-X degrees of freedom, from Definition 1, is a population-level quantity—it
depends on the random-X optimism opt,(f), which of course itself depends on the (unknown) joint
distribution of the features and response. To estimate dfr(f) in practice, we need to first estimate
opt, (f), which we can do by estimating random-X prediction error using (say) cross-validation and
then subtracting off the observed training error. We also need to estimate the noise level o2, which

is an equally (if not more) difficult task, but as a proxy we can use the random-X prediction error
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of the best-predicting model we have for the task at hand. Given such estimates opt,,( f ) and 62, we
set up the sample analog of the matching equation (18),

awta(f) = 0°(5 + oty ). (20)

solve for d, and set cﬂcﬁ(f) =d.

To estimate intrinsic random-X degrees of freedom, from Definition 2, we can follow the analogous
steps. The only difference is that we train the predictor f on pure noise v ~ A(0,5%I) (instead of
the original response y) which alters our estimates of both random-X prediction error and training
error. We set up the sample analog of the matching equation (19),

apta(Fsxo) =524 ) (21)

n

solve for d, and set cﬁ;(f) =d.

Lastly, just to emphasize, we do not require the (estimated) random-X degrees of freedom to be an
integer in any of (18), (19), (20), (21). If desired, then one could of course achieve this taking the
integer ceiling [d] of the solution d to the given matching equation. We find this unnecessary; note
that fixed-X degrees of freedom as originally defined in (4) is also not restricted to be an integer.

4 Properties and connections

We develop some basic properties of the random-X degrees of freedom proposals from the previous
section, and make connections to related ideas in the literature.
4.1 Mapping optimism to degrees of freedom
Reflecting on the matching equations (18), (19), (20), (21), each one is an equation of the form
d N d
r=—+—.
n n—d-—1

The above is a quadratic equation in d. It is straightforward to check that it has a unique solution
in [0,n — 1] which we can write as d = wy(x), where

2n —1+nx —/(2n — 1 +nx)2 —4(n — )nx

() = g (22)
The function wy,(x) is a map from normalized optimism x to degrees of freedom d. It is increasing,
concave, and ranges from 0 (at x = 0) to n — 1 (as x — o). Each of the definitions of (estimated)
random-X degrees of freedom from the last section, given by solving (18), (19), (20), or (21), can be

written concisely in terms of w,, and differ only in the form of normalized optimism that they use:

dfu(f) = wa(opty(f)/0?),  dfi(f) = wn(opti(f)/0?),

~ ~ ~

df(f) = wa(opte (F)/32).  dfu(F) = wn(opte(f)/3?).

Here and henceforth we write optl, ( I ) = optR(f(; ., X4,v)) for convenience, and will refer to this as
intrinsic random-X optimism (and similarly for the estimated version).
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Figure 3: Plot of w in (23), which maps from normalized optimism (optimism divided by ¢?) to normalized
degrees of freedom (degrees of freedom divided by n — 1).

For large n, the function wy, in (23) is well-approximated by wy,(z) ~ n - w(z), where

wiw) =142 —/1+ 2 (23)
This function is increasing, concave, and ranges from 0 (at x = 0) to 1 (as  — o). See Figure 3 for
a visualization. The precise relationship between w, and w is that, for any fixed x,
lwn(x)/n —w(x)| — 0, asn— o, (24)
which is verified in Appendix A.2.

Finally, a calculation involving L’Hopital’s rule can be used to show w(z)/(z/2) — 1 as x — 0%, In
other words, for small values of normalized optimism z and large n we have d = w,(z) ~ nw(x) ~
nx /2, which mirrors the relationship in the fixed-X setting (6).

4.2 Linear smoothers

Let fbe a linear smoother, which means that we can write
fla; X, y) = Lx(2) 'y, (25)

for a weight function Lx : RP — R” that is allowed to depend on the training features X, but not
the training response y. For convenience, we will write
Lx(x1)"
Lx(X) = : e R™™,
L X (a;n)T
Similarly, for a function g : R? — R, we will write ¢(X) = (g(x1),...,g9(zyn)) € R™ for the row-wise
application of g to X. In this notation, we can rewrite the data model (1) more compactly as

y=f(X)+e, (26)
where E[¢] = 0 and Covl[e] = o?1I.

The following proposition provides closed-form expressions for random-X optimism and degrees of
freedom for linear smoothers.
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Proposition 3. For the linear smoother (25), its intrinsic and emergent random-X optimism are
opth(7) = 0°E| 2 r[L.x (X)] + ElLx (an) L (a) | X] - L0lLx (0T L0121
opty (7) = o9t () + | B[(F(a0) ~ Lux(an) SCOPR X] = 11T = LxCOMCOR]. (29

Consequently, the intrinsic and emergent random-X degrees of freedom are given by dividing by o>
and applying wy, in (22).

The calculations to derive (27), (28) are standard; they are based on the bias-variance decomposition
of random-X prediction error for linear smoothers, which is found in many places in the literature.
In the next subsection, we draw a connection to Rosset and Tibshirani (2020), whose work provides
a framework that allows us to easily verify the optimism results (27), (28).

It is worth noting that the intrinsic optimism for a linear smoother (27) is directly proportional to

o2. As a result, the intrinsic random-X degrees of freedom does not depend on o2.

It is also worth noting that for an interpolating linear smoother, we have Lx(X) = I. In this case,
intrinsic and emergent optimism simplify to

opty,(f) = o (1 + E[Lx (o) " Lx (20)]),

~ ~

opty (f) = opty(f) + E[(f(z0) — Lx (w0)  f(X))?].

As a result we can see that intrinsic and emergent random-X degrees of freedom (given by dividing
by o2 and applying w,) are each able to distinguish between interpolating linear smoothers, unlike
fixed-X degrees of freedom, which always equals n for an interpolator, recalling (8).

4.3 Connection to Rosset and Tibshirani (2020)

Rosset and Tibshirani (2020) proposed the following decomposition of random-X optimism, for an
arbitrary predictor f:

opty(f) = Elopty(f)] + BT (f) + V' (f). (29)
The first expectation on the right-hand side above is with respect to the training covariates X, and

the next two terms B ( 7 ), VH( I3 ) are called the excess bias and excess variance of £, respectively,
defined as:

B(7) = B[ o) = Flan)?] - E| 11700 - FCOIR), (30)
V() = B[ Varl o) X, an]] ~ E| - w(Con F)1D) | 31)

where we abbreviate f(X) = E[f(X)\X] and f(xg) = E[f(:vo)|XA, xo]. The relationship (29) follows
from expressing the random-X and fixed-X prediction errors of f into bias and variance terms, and

then comparing the two decompositions: BT (f) represents the difference in random-X and fixed-X

~

squared bias, and V7 (f) the difference in random-X and fixed-X variance.

Though the decomposition (29) is general, we now describe its implications for linear smoothers in
particular. For f as in (25), fixed-X degrees of freedom is simple to compute:

~

dfe () = 1 tr(Cov[Lx(X)y,y| X] = tr[Lx (X))
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Based on (6), this gives a simple formula for fixed-X optimism: opt,(f) = (202/n) tr[Lx(X)]. We
can plug this into (29) (after integrating over X ), along with excess bias and variance calculations,
to verify the random-X optimism claims in (27), (28): beginning with the intrinsic case, where we
set f = 0, it is not hard to see the excess bias is zero and we only need to compute VT (f), which is
given by the latter two terms in (27); as for the emergent case, we add in BT ( ]? ), which is given by

the latter two terms in (28). This completes the proof of Proposition 3.

It is worth emphasizing a result that appears in passing in the arguments from the last paragraph:
for a linear smoother,

opt, (f) = optl(f) + BT(f). (32)

This is not true for a general predictor f For linear smoothers, it holds for any distribution of the
error vector ¢ in the original data model (26) (provided we maintain E[e] = 0 and Cov[e] =