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Abstract

Integral probability metrics (IPMs) constitute a general class of nonparametric two-sample tests that
are based on maximizing the mean difference between samples from one distribution P versus another Q,
over all choices of data transformations f living in some function space F . Inspired by recent work that
connects what are known as functions of Radon bounded variation (RBV) and neural networks (Parhi
and Nowak, 2021, 2023), we study the IPM defined by taking F to be the unit ball in the RBV space of a
given smoothness degree k ≥ 0. This test, which we refer to as the Radon-Kolmogorov-Smirnov (RKS)
test, can be viewed as a generalization of the well-known and classical Kolmogorov-Smirnov (KS) test to
multiple dimensions and higher orders of smoothness. It is also intimately connected to neural networks:
we prove that the witness in the RKS test—the function f achieving the maximum mean difference—is
always a ridge spline of degree k, i.e., a single neuron in a neural network. We can thus leverage the
power of modern neural network optimization toolkits to (approximately) maximize the criterion that
underlies the RKS test. We prove that the RKS test has asymptotically full power at distinguishing any
distinct pair P 6= Q of distributions, derive its asymptotic null distribution, and carry out experiments to
elucidate the strengths and weaknesses of the RKS test versus the more traditional kernel MMD test.

1 Introduction
In this paper, we consider the fundamental problem of nonparametric two-sample testing, where we observe
independent samples xi ∼ P , i = 1, . . . ,m and yi ∼ Q, i = 1, . . . , n, all samples assumed to be in Rd, and we
use the data to test the hypothesis

H0 : P = Q, versus H1 : P 6= Q.

This is not only a problem of core interest in the traditional literature on hypothesis testing in statistics, it
also has a key role in more modern applications in machine learning, such as out-of-distribution detection
(Hendrycks and Gimpel, 2017), transfer learning (Long et al., 2015), generative modeling (Goodfellow et al.,
2014), among others. Nonparametric two-sample testing in particular refers to the problem of testing P = Q
as above, without parametric assumptions on the forms of the distributions P,Q. Although there are many
nonparametric two-sample tests, we will focus on a class of tests called integral probability metrics (IPMs)
(Müller, 1997), which measure the discrepancy between two sets of samples by taking the maximum difference
in sample means over a function class F :

ρ(Pm, Qn;F) = sup
f∈F
|Pm(f)−Qn(f)|. (1)

Here Pm = 1
m

∑m
i=1 δxi is the empirical distribution and Pm(f) = 1

m

∑m
i=1 f(xi) the corresponding empirical

expectation operator based on xi, i = 1, . . . ,m; and likewise for Qn and Qn(f).
The discrepancy in (1) is quite general and certain choices of F recover well-known distances that give

rise to two-sample tests. A noteworthy univariate (d = 1) example is the Kolmogorov-Smirnov (KS) distance
(Kolmogorov, 1933; Smirnov, 1948). Though it is more typically defined in terms of cumulative distribution
functions (CDFs) or ranks, the KS distance can be seen as the IPM that results when F is taken to be the
class of functions with at most unit total variation (TV).
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Some attempts have been made to define a multivariate KS distance based on multivariate CDFs (Bickel,
1969) or ranks (Friedman and Rafsky, 1979), but the resulting tests have a few limitations, such as being
expensive to compute or exhibiting poor power in practice. In fact, even the univariate KS test is known to
be insensitive to certain kinds of alternatives, such as those P 6= Q which differ in the tails (Bryson, 1974).
This led Wang et al. (2014) to recently propose a higher-order generalization of the KS test, which uses the
IPM based on a class of functions whose derivatives are of bounded TV.

In this work we propose and study a new class of IPMs based on a kind of multivariate total variation
known as Radon total variation (RTV). The definition of RTV is necessarily technical, and we delay it until
Section 2. For now, we remark that if d = 1 then RTV reduces to the usual notion of total variation, which
means that our RTV-based IPM—the central focus of this paper—directly generalizes the KS distance to
multiple dimensions. We refer to this RTV-based IPM as the Radon-Kolmogorov-Smirnov (RKS) distance,
and the resulting two-sample test as the RKS test. We also will consider the IPM defined using a class of
functions whose derivatives are of bounded RTV, which in turn generalizes the higher-order KS distance of
Wang et al. (2014) to multiple dimensions. Sadhanala et al. (2019) recently showed that the higher-order KS
test can be more sensitive to departures in the tails, and we will give empirical evidence that our higher-order
RKS test can be similarly sensitive to tail behavior.

Our test statistic also has a simple but revealing characterization in terms of ridge splines. A ridge spline
of integer degree k ≥ 0 is defined for a direction w ∈ Sd−1 and an offset b ∈ R as the truncated polynomial
f(x) = (wTx− b)k+. Here we use Sd−1 to denote the unit `2 sphere in Rd (the set of vectors with unit `2
norm), and we use the abbreviation t+ = max{t, 0}. We prove (Theorem 3) that a kth degree ridge spline
witnesses the kth degree RKS distance: there exists a kth degree ridge spline f with unit Radon total variation
for which Pm(f)−Qn(f) equals the RKS distance. Thus the RKS test statistic can be written as

Td,k = max
(w,b)∈Sd−1×[0,∞)

∣∣∣∣ 1

m

m∑
i=1

(wTxi − b)k+ −
1

n

n∑
i=1

(wTyi − b)k+
∣∣∣∣. (2)

Ridge splines—and in particular the first-degree ridge spline f(x) = (wTx− b)+, also known as the rectified
linear (ReLU) unit—are fundamental building blocks of modern neural networks. From this perspective, the
representation (2) says that the RKS distance is achieved by a single neuron in a two-layer neural network.
In fact, the connections between Radon total variation and neural networks run deeper. The RKS distance
can be viewed as finding the maximum discrepancy between sample means over all two-layer neural networks
(of arbitrarily large width) subject to a weight decay constraint (Section 2). Although we focus throughout
on two-layer neural networks, the IPM defined over deeper networks can be viewed as the RKS distance in
the representation learned by the hidden layers.

The representation (2) also hints at some interesting statistical properties. Let X ∼ Pm and Y ∼ Qn be
random variables drawn from the empirical distributions of {xi}mi=1 and {yi}ni=1, respectively. The 0th degree
RKS distance finds the direction w ∈ Sd−1 along which the usual Kolmogorov-Smirnov distance—maximum
gap in CDFs—between the univariate random variables wTX and wTY is as large as possible. For k ≥ 1, the
kth degree statistic finds the direction w ∈ Sd−1 along which the higher-order KS distance—maximum gap in
truncated kth moments—between wTX and wTY is maximized.

Thus, speaking informally, we expect the RKS test to be particularly sensitive to the case when the laws
of wTX and wTY differ primarily in just a few directions w (since we are taking a maximum over all such
directions in (2)). In other words, we expect the RKS test to be sensitive to anisotropic differences between
P and Q. On the other hand, taking a larger value of k results in higher-order truncated sample moments,
which can be much more sensitive to small differences in the tails. Figure 1 gives an illustrative example. We
consider two normal distributions with equal means and covariances differing in just one direction (along the
x-axis). The figure displays the witnesses (ridge splines) for the RKS test when k = 0, 1, 2. For larger k, the
witness is more aligned with the direction in which P and Q vary, and also places more weight on the tails.

Summary of contributions. Our main contributions are as follows.

• We propose a new class of two-sample tests using a kth degree Radon total variation IPM. We prove a
representer theorem (Theorem 3) which shows that the IPM is witnessed by a ridge spline (establishing
the representation in (2)). This connects our proposal to two-sample testing based on neural networks,
and helps with optimization.
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Figure 1: Illustration of RKS tests for P = N2(0, I) and Q = N2(0, D), where D = diag(1.4, 1).

• Under the null P = Q, we derive the asymptotic distribution of the test statistic (Theorem 5).

• Under the alternative P 6= Q, we give upper bounds on the rate at which the test statistic concentrates
around the population-level IPM. Using the fact that the population-level IPM is a metric, we then
show that the RKS test is consistent against any fixed P 6= Q: it has asymptotic error (sum of type I
and type II errors) tending to zero (Theorem 6).

• We complement our theory with numerical experiments to explore the operating characteristics of the
RKS test compared to other popular nonparametric two-sample tests.

Related work. When F is the unit ball in a reproducing kernel Hilbert space (RKHS), the IPM in (1) is
known as a maximum mean discrepancy (MMD). Recently, there has been interest in studying multivariate
nonparametric two-sample testing using kernel MMDs (Gretton et al., 2012), as well as energy distances
(Baringhaus and Franz, 2004; Székely and Rizzo, 2005). The latter are in many cases equivalent to a kernel
MMD (Sejdinovic et al., 2013). It is worth emphasizing that the Radon bounded variation space is not an
RKHS, and as such, our test cannot be seen as a special case of a kernel MMD. There are also many other
kinds of multivariate nonparametric two-sample tests, such as graph-based tests using kNN graphs (Schilling,
1986; Henze, 1988) or spanning-trees (Friedman and Rafsky, 1979). The RKS test statistic (2) avoids the
need to construct a graph over the samples. However, we note that one could also use a graph to measure
(approximate) multivariate total variation of a different variety (often called measure-theoretic TV, which is
not the same as Radon TV), and one could then form a related two-sample test, accordingly.

From a different point of view, based on (2), the RKS test can be understood as a projection test which
uses the higher-order KS test statistic (Wang et al., 2014; Sadhanala et al., 2019) as its base univariate tool.
In general, projections are a natural way to lift univariate tools for statistical modeling (whether in testing,
estimation, or prediction) to multivariate data settings. The literature is rich with contributions studying
projection tests in two-sample settings, including Mueller and Jaakkola (2015); Ghosh and Biswas (2016);
Wei et al. (2016); Paty and Cuturi (2019); Lin et al. (2020); Niles-Weed and Rigollet (2022). Our paper
complements this line of work by connecting projection tests to IPMs over bounded variation spaces, which,
to our knowledge, has not been done before.

In machine learning, two-sample tests play a fundamental role in generative adversarial networks (GANs)
(Goodfellow et al., 2014), which have proven to be an effective way to generate new (synthetic) draws that
adhere to the distribution of a given high-dimensional set of samples. In short, GANs are trained to produce
synthetic data which a two-sample test cannot distinguish from “real” samples. However, optimizing a GAN
is notoriously unstable. It has been suggested that the stability of GANs can be improved if the underlying
two-sample test is based on an IPM, with constraints on, e.g., the Lipschitz constant (Arjovsky et al., 2017),
RKHS norm (Li et al., 2017), or Sobolev norm (Mroueh et al., 2018) of the witness. In practice, a neural
network is used to train the discriminator in the GAN, which only approximates the witness (the function
achieving the supremum) in IPMs over RKHS or Sobolev spaces. Interestingly, for RBV spaces, this is not an
approximation and a two-layer neural network captures the witness exactly, as shown in (2).

At a technical level, our paper falls into a line of work exploring neural networks from the functional
analytic perspective. The equivalences between weight decay of parameters in a two-layer neural network and

3



first-degree (k = 1) Radon total variation were discovered in Savarese et al. (2019); Ongie et al. (2020), and
further formalized and extended by Parhi and Nowak (2021) to the higher-degree case (k > 1). We make use
of these equivalences to prove results on the Radon TV IPM. Lastly, we note that the sensitivity of neural
networks to variation in only a few directions was observed even earlier, in Bach (2017).

2 The Radon-Kolmogorov-Smirnov test
For independent samples xi ∼ P , i = 1, . . . ,m and yi ∼ Q, i = 1, . . . , n, and a given integer k ≥ 0, the RKS
test statistic Td,k is defined as in (2). This statistic searches for a marginal (defined by projection onto the
direction w) with the largest discrepancy in a truncated kth moment. As with any two-sample test, we can
use permutations to compute a finite-sample valid p-value,

p =

∑B
b=1 1

{
Td,k(zπb) ≥ Td,k(z)

}
+ 1

B + 1
. (3)

Here we use z = (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n to denote the original data sequence, and we use Td,k(z) to
emphasize that the statistic in (2) is computed on z. Moreover, each πb is a permutation of {1, . . . ,m+ n},
drawn uniformly at random (from the set of all possible permutations), and we use Td,k(zπb) to denote the
test statistic computed on the permuted sequence zπb = (zπb(1), . . . , zπb(m+n)). Given any user-chosen level
α ∈ [0, 1], we reject H0 : P = Q if p ≤ α. By well-known results on permutation tests (see, e.g., Hemerik and
Goeman (2018), and references therein), this gives finite-sample type I error control, PH0(p ≤ α) ≤ α.

Finding the value of w and b achieving the supremum in (2) is a nonconvex problem. However, it bears a
connection to neural network optimization, which is of course among the most familiar and widely-studied
nonconvex problems in machine learning. We show in Corollary 1 that problem (2) can be equivalently cast
as finding the maximum discrepancy between sample means over all two-layer neural networks (of arbitrarily
large width) under a weight decay-like constraint. In particular, if we denote by f(aj ,wj ,bj)Nj=1

the N -neuron
two-layer neural network defined by

f(aj ,wj ,bj)(x) = aj(w
T
j x− bj)k+ and f(aj ,wj ,bj)Nj=1

(x) =

N∑
j=1

f(aj ,wj ,bj)(x), (4)

then the RKS test statistic is equivalently

Td,k = max
f=f

(aj,wj,bj)N
j=1

Pm(f)−Qn(f)

subject to
∑N
j=1 |aj |‖wj‖k2 ≤ 1, and bj ≥ 0, j = 1, . . . , N.

(5)

This equivalence holds for any number of neurons N ≥ 1, which is why we say that the network can be of
“arbitrarily large width”.

In Section 4, we use a Lagrangian form of this constrained optimization, allowing us to leverage existing
deep learning toolkits to compute the RKS distance. As with neural network optimization in general, we
cannot prove that any practical first-order scheme—such as gradient descent or any its variants—is able to
find the global optimum of (5), or its Lagrange form. However, we find empirically that the test statistic
resulting from first-order optimization has favorable behavior in practice, such as stability (with respect to
the choice of learning rate) and strong power (with respect to certain classes of alternatives). Further, we
recall that in practice we would typically use the permutation p-value (3), and as long as the same first-order
optimization algorithm is applied to the original data sequence and to every permuted sequence, this still
provides finite-sample type I error control. In effect, we can view this as redefining the RKS test to be the
output of the given first-order algorithm we have at our disposal.

2.1 Functions of Radon bounded variation
The RKS distance, like the univariate KS distance, can be viewed as the maximum mean discrepancy with
respect to a function class defined by a certain notion of smoothness. Whereas the univariate KS distance is
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the IPM over functions with total variation is bounded by 1, the RKS distance is the IPM over functions
with Radon total variation bounded by 1, subject to a boundary condition. This will be shown a bit later;
first, we must cover preliminaries needed to understand Radon total variation.

Heuristically, the kth degree Radon total variation of f : Rd → R measures the average smoothness of the
“marginals” of f . To be more concrete, consider a function f : Rd → R which is infinitely differentiable, and
whose derivatives of any order decay super-polynomially: f ∈ C∞(Rd) and supx∈Rd |xα∂βf(x)| <∞. Here
α = (α1, . . . , αd) and β = (β1, . . . , βd) are multi-indices (with nonnegative integer elements), and we use the
abbreviations

xα =

d∏
i=1

xαii , and ∂βf = ∂β1
x1
· · · ∂βdxd f.

The set of such functions is called the Schwartz class, and denoted by S(Rd). The Radon transform of a
function f ∈ S(Rd) is itself another function R{f} : Sd−1 × R→ R defined as

R{f}(w, b) =

∫
wTx=b

f(x) dx,

where the integral is with respect to the Lebesgue surface measure on the hyperplane {wTx = b}. As a
function of b, the Radon transform can be viewed as the marginal of the function f in the direction w. The
kth degree Radon total variation of f is then defined to be (Parhi and Nowak, 2021, 2023):1

‖f‖RTVk = cd

∫
Sd−1×R

∣∣∂k+1
b Λd−1R{f}(w, b)

∣∣dσ(w, b),

where σ is the Hausdorff measure on Sd−1 × R, cd = 1/(2(2π)d−1), and Λd−1 is the “ramp filter” defined by
Λd−1 = (−∂2

b )
d−1

2 with fractional derivatives interpreted in terms of Riesz potentials (see Parhi and Nowak
(2021, 2023) for details). Equivalently, if we define an operator by Rk{f}(w, b) = cd∂

k+1
b (−∂2

b )
d−1

2 R{f}(w, b),
then we can write kth degree Radon TV of f simply as ‖f‖RTVk = ‖Rk{f}‖L1 . The mapping f 7→ ‖f‖RTVk

is a seminorm, which we call the RTVk seminorm.
Parhi and Nowak (2021, 2023) and Parhi (2022) extend the RTVk seminorm beyond Schwartz functions

using functional analytic tools based on duality. The space of functions with bounded RTVk seminorm is
referred to as the RBVk space (where RBV stands for “Radon bounded variation”). After this extension, one
can still think of RTVk seminorm as measuring average higher-order smoothness of the marginals of f , but it
does not require that all derivatives and integrals exist in a classical sense. We refer the reader especially
to Parhi (2022) for the complete functional analytic definition of the RBVk space. For our purposes, it is
only important that RBVk functions enjoy the representation established by the following theorem. Note
that in order to define the RBVk space, Parhi and Nowak (2021); Parhi (2022) must view it as a space of
equivalence classes of functions under the equivalence relation f ∼ g if f(x) = g(x) for Lebesgue almost every
x ∈ Rd. We denote elements of RBVk as f, and the functions they contain as f ∈ f.

Proposition 1 (Adaptation of Theorem 22 in Parhi and Nowak (2021); Theorem 3.8 in Parhi (2022)). Fix
any k ≥ 0. For each f ∈ RBVk, there exists a representative f ∈ f which satisfies for all x ∈ Rd

f(x) =

∫
Sd−1×[0,∞)

(wTx− b)k+ dµ(w, b) + q(x),

for some finite signed Borel measure µ on Sd−1 × [0,∞) satisfying ‖µ‖TV = ‖f‖RTVk , and some polynomial q
of degree at most k, where we use ‖ · ‖TV for the total variation norm in the sense of measures.

Proposition 1 is the key result connecting the RBVk space to two-layer neural networks. It states that
any RBVk functions is equal almost everywhere to the sum of a (possibly infinite-width) two-layer neural
network and a polynomial. Furthermore, the `1 norm of coefficients in the last layer of this neural network
(formally, the total variation norm ‖µ‖TV of the measure µ defined over the coefficients) equals the RBVk

1A remark on notation and nomenclature: we use RBVk to refer to the space which Parhi and Nowak (2021); Parhi (2022);
Parhi and Nowak (2023) instead call RBVk+1. That is, we index based on the degree of the underlying ridge spline, whereas the
aforementioned papers index based on the order, traditionally defined as the degree plus one, m = k + 1.
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seminorm of the function in question. As stated, Proposition 1 is a slight refinement (and simplification) of
results in Parhi and Nowak (2021); Parhi (2022), which we show in Appendix A.

Parhi and Nowak (2021) consider the nonparametric regression problem defined by minimizing, over all
functions f , the squared loss incurred by f with respect to a given finite data set plus a penalty on ‖f‖RTVk .
They show this is solved by the sum of a finite-width two-layer neural network and a polynomial, and hence
provide a representation theorem for RTVk-penalized nonparametric regression analogous to that for kernel
ridge regression (Wahba, 1990). In a coming subsection, we will establish a similar connection in the context
of two-sample testing: the IPM under an RTVk constraint is realized by a single neuron.

Before moving on, it is worth providing some intuition for the results just discussed. First, the operator
Rk should be understood as transforming a function f into the Radon domain: namely, it specifies f via the
higher-order derivatives of its marginals. Then, the RTVk acts as the L1 norm in the Radon domain. Lastly,
the reason two-layer neural networks and ridge splines emerge as the solutions to nonparametric regression
and maximum mean discrepancy problems under an RTVk constraint is that ridge splines are sparse in the
Radon domain. In particular, for f(x) = (wTx− b)k+, we have (Parhi and Nowak, 2021):

Rk{f}(w, b) =
1

2

(
δ(w,b) + (−1)k+1δ(−w,−b)

)
,

where δ(±w,±b) denote point masses at (±w,±b). Thus, RTVk-penalized optimization problems are solved by
two-layer neural networks due to the tendency of the L1 norm to encourage sparse solutions.

2.2 Pointwise evaluation of RBV functions
Recall, the RBVk space contains equivalence classes of functions whose members differ on sets of Lebesgue
measure zero. Therefore, at face value, point evaluation is meaningless for elements of the RBVk space. This
poses a problem for defining an IPM with respect to RBV functions, since the IPM depends on empirical
averages, which require function evaluations over samples. Fortunately, we show that there is a natural way
to resolve point evaluation over the RBVk space: each equivalence class in RBVk has, possibly subject to a
mild boundary condition, a unique representative which satisfies a suitable notion of continuity. We can then
define point evaluation with respect to this representative.

For the case k = 0, we need to introduce a new notion of continuity, which we call radial cone continuity.
For k ≥ 1, we rely on the standard notion of continuity. Radial cone continuity is defined as follows.

Definition 1. A function f is said to be radially cone continuous if it is continuous at the origin, and for
any x ∈ Rd \ {0}, we have f(x+ εv)→ f(x) whenever (i) ε→ 0 and (ii) v ∈ Sd−1 and v → x/‖x‖2.

Radial cone continuity can be viewed as a generalization of right-continuity to higher dimensions. Indeed
a consequence of radial cone continuity is that for every v ∈ Rd, the restriction of the function f to the ray
emanating from the origin in the direction v is right-continuous (i.e., t 7→ f(tv), t > 0 is right-continuous).
The concept of radial cone continuity, however, is stronger than right-continuity along rays—it additionally
requires continuity along any path which is tangent to and approaches x from the same direction as the ray
that points from the origin to x. The following theorem shows that (subject to a boundary condition for the
case k = 0) every equivalence class f ∈ RBVk contains a unique continuous representative when k ≥ 1, and
radially cone continuous representative when k = 0.

Theorem 1. For k = 0, if f ∈ RBV0 contains a function that is continuous at the origin, then it contains a
unique representative that is radially cone continuous. Moreover, for k ≥ 1, each f ∈ RBVk contains a unique
representative that is continuous and this representative is in fact (k − 1)-times continuously differentiable.

Theorem 1, which as far as we can tell is a new result for RBV spaces, is proved in Appendix B. This
theorem motivates the definition of the function spaces:

RBV0
c =

{
f : f ∈ f for some f ∈ RBV0, f radially cone continuous

}
,

RBVk
c =

{
f : f ∈ f for some f ∈ RBVk, f continuous

}
, k ≥ 1.

(6)

Unlike RBVk, the space RBVk
c contains functions rather than equivalence classes of functions, so that

point evaluation is well-defined. The Radon total variation of a member f ∈ f is defined in the natural way
as the Radon total variation of the function class in RBVk to which it belongs.
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2.3 The RKS distance is an IPM
We are ready to show that the RKS distance is equivalent to the IPM over functions f with ‖f‖RTVk ≤ 1,
subject to a boundary condition. In this sense, it can be viewed as a generalization of the classical univariate
KS distance, which, as we have mentioned, is the IPM over the space of functions with total variation at
most 1. Precisely, the RKS distance is the IPM over the function space

Fk =
{
f ∈ RBVk

c : ‖f‖RTVk ≤ 1, ∂αf(0) exists and equals 0 for all |α| ≤ k
}
. (7)

The boundary condition ∂αf(0) = 0 for all multi-indices α = (α1, . . . , αd) with |α| =
∑d
j=1 αj ≤ k is needed

to guarantee that the IPM is finite. We can interpret this condition intuitively as requiring the polynomial q
to be zero in the representation in Proposition 1. Otherwise, q would be able to grow without bound under
the constraint ‖f‖RTVk ≤ 1, which we could then use to drive the IPM criterion to ∞, provided that P and
Q had any moment differences (in their first k moments).

The following result proves an important representation for functions in (7). Its proof is in Appendix C.

Theorem 2. Fix any k ≥ 0. For any f ∈ Fk, there exists a finite, signed Borel measure µ on Sd−1 × [0,∞)
such that for all x ∈ Rd,

f(x) =

∫
Sd−1×[0,∞)

(wTx− b)k+ dµ(w, b),

and ‖µ‖TV = ‖f‖RTVk . When k = 0, the measure µ may be taken to be supported on Sd−1 × (0,∞).

Note that the representation provided by Theorem 2 is similar to that in Proposition 1, except that the
former explicitly deals with point evaluation and sets the polynomial term to q = 0, which is a consequence
of the boundary condition imposed in the definition of Fk. (Theorem 2 also appears similar to results in
Parhi and Nowak (2021), but differs from their results for the same reasons.)

The next theorem establishes the equivalence between Td,k as defined in (2) and the IPM over Fk. Its
proof is in Appendix D.

Theorem 3. Fix any k ≥ 0. Define

Gk =
{

(wT · − b)k+ : (w, b) ∈ Sd−1 × [0,∞)
}
,

where by convention we take t0+ = 1{t ≥ 0}. Then for any P and Q with finite kth moments, we have

ρ(P,Q;Fk) = ρ(P,Q;Gk).

In particular, this implies that for the empirical distributions Pm and Qn over any sets of samples {xi}mi=1

and {yi}ni=1, we have ρ(Pm, Qn;Fk) = Td,k, where the latter is as defined in (2).

Lastly, as a consequence of the above result, we establish the representation claimed earlier in (5). Its
proof is simple enough that we present it here.

Corollary 1. Fix any k ≥ 0. For the empirical distributions Pm and Qn over any sets of samples {xi}mi=1

and {yi}ni=1, the RKS test statistic Td,k defined in (2) is equivalent to that in (4), (5), for any N ≥ 1.

Proof. For ‖w‖2 = 1 and b ∈ R, Parhi and Nowak (2021) show that ‖(wT · − b)k+‖RTVk = 1. Then, for any
w ∈ Rd and a ∈ R, by the kth order homogeneity of the ridge splines, ‖a(wT · − b)k+‖RTVk = |a|‖w‖k2 . By the
triangle inequality, ∥∥f(aj ,wj ,bj)Nj=1

‖RTVk ≤
N∑
j=1

|aj |‖wj‖k2 .

Thus, defining

Fk,N =

{
f(aj ,wj ,bj)Nj=1

: (aj , wj , bj) ∈ R× Rd × (0,∞),

N∑
j=1

|aj |‖wj‖k2 ≤ 1

}
,
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we have Fk,N ⊆ Fk. Defining also G+
k = {(wT · − b)k+ : (w, b) ∈ Sd−1 × (0,∞)}, we have G+

k ⊆ Fk,N , so

supf∈G+
k
|Pm(f)−Qn(f)| ≤ supf∈Fk,N |Pm(f)−Qn(f)| ≤ supf∈Fk |Pm(f)−Qn(f)|.

The leftmost supremum is unchanged if we include the origin, i.e., take the suprermum over f ∈ Gk, which
precisely defines Td,k. By Theorem 3, this is equal to supf∈Fk |Pm(f)−Qn(f)|, the rightmost supremum
above, so we conclude that all inequalities are equalities, thus Td,k = supf∈Fk,N |Pm(f)−Qn(f)|. Finally, we
can remove the absolute value sign in the criterion because Fk,N is symmetric (f ∈ Fk,N ⇐⇒ −f ∈ Fk,N ),
which completes the proof of (5) as an equivalent representation.

2.4 The RKS distance identifies the null hypothesis
An important property of the RKS distance for the purposes of two-sample testing is its ability to distinguish
any two distinct distributions. In particular, we have the following result, whose proof is in Appendix E.

Theorem 4. For any P,Q with finite kth moments, ρ(P,Q;Fk) = 0 if and only if P = Q, and is positive
otherwise.

Theorem 4 states that the RKS distance, in the population, perfectly distinguishes the null H0 : P = Q
from the alternative H1 : P 6= Q. Thus, the function space Fk is rich enough to make the IPM a metric at
the population level. As an interesting contrast, we remark that this is not true of the kernel MMD with a
polynomial kernel of degree k, as studied in Gretton et al. (2012). Indeed, if P and Q have the same moments
up to order k (where “moments” is to be interpreted in the appropriate multivariate sense) then the kernel
MMD in the population between P and Q is 0. In other words, we can see that the use of truncated moments,
as given by averages of ridge splines, is the key to the discrepancy being a metric.

3 Asymptotics
Given any probability distribution P on Rd with finite moments of order 2k + ∆ for any fixed ∆ > 0, let us
define the corresponding Gaussian process GP = {Gw,b : (w, b) ∈ Sd−1 × [0,∞)} by

Gw,b ∼ N
(

0, Ex∼P
[
(wTx− b)2k

+

])
, Cov(Gw,b, Gw′,b′) = Ex∼P

[
(wTx− b)k+(w′Tx− b′)k+

]
. (8)

The importance of this Gaussian process is explained in the next result, which shows that its supremum
provides the asymptotic null distribution of the RKS test statistic.

Theorem 5. Fix any k ≥ 0. Assume that P has finite moments of order 2k + ∆, for any fixed ∆ > 0. If
k = 0, then additionally assume P is absolutely continuous with respect to Lebesgue measure, and satisfies

sup
w∈Sd−1

∥∥pwTx

∥∥
∞ <∞, (9)

where pwTx denotes the density of wTx for x ∼ P , and ‖f‖∞ = supt∈R |f(t)| denotes the sup norm of f . The
condition (9) holds when P has a bounded density and bounded support, but also holds for many distributions
without bounded support, such as the multivariate Gaussian. Under these conditions, when P = Q, we have√

mn

m+ n
Td,k

d→ sup
(w,b)∈Sd−1×[0,∞)

|Gw,b|, as m,n→∞.

Moreover, with a proper rejection threshold, the RKS test can have asymptotically zero type I error and
full power against any fixed P 6= Q.

Theorem 6. Fix any k ≥ 0. Assume that P,Q each have finite moments of order 2k + ∆, for any fixed
∆ > 0. If k = 0, then additionally assume P,Q each have densities which satisfy (9). Let tm,n be such that
tm,n → 0 and tm,n

√
m+ n→∞ as m,n → ∞. Then the test which rejects when Td,k > tm,n rejects with

asymptotic probability 0 if P = Q and asymptotic probability 1 if P 6= Q, as m,n→∞.
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We prove Theorems 5 and 6 in Appendices F and G. Roughly, Theorem 5 follows from general uniform
central limit theorem results in Dudley (2014), after controlling the bracketing number of the function class
Gk. Theorem 6 follows from tail bounds that we establish for the concentration of the RKS distance around
its population value, combined with the fact that the population distance is a metric (Theorem 4).

Let us pause to discuss the above theorems and how they fit into our understanding of the RKS test at
large. While these results answer (what in our view are) standard and yet fundamental questions about the
asymptotic behavior of the RKS test, neither really guides practical usage of the test. If the asymptotic null
distribution in Theorem 5 had been pivotal, i.e., not depending on P , then we could have used this (at least
in principle, ignoring computational issues) to approximately control type I error in large samples. However,
the asymptotic null appears to depend on P except in the special case when k = 0 and d = 1, which recall,
coincides with classical KS test, whose asymptotic null distribution is well-known to be pivotal (defined in
terms of the supremum of a Brownian bridge).

In practice, as discussed at the start of Section 2, we would typically use permutations to calibrate the
RKS test, controlling type I error in finte-sample. Our next result shows that calibration via permutations
can indeed also achieve asymptotically zero type I error and full power against any fixed P 6= Q.

Theorem 7. Fix any k ≥ 0. Assume the conditions of Theorem 6 on P,Q, and assume further that each has
bounded support. Consider the permutation p-value in (3), for B + 1 = (m+ n)!, and let αm,n be such that
αm,n → 0 and log(1/αm,n)

√
1/m+ 1/n as m,n → ∞. Then the test which rejects when p > αm,n rejects

with asymptotic probability 0 if P = Q and asymptotic probability 1 if P 6= Q, as m,n→∞.

The proof of Theorem 7 is given in Appendix H. It follows techniques developed in Green et al. (2024).

4 Experiments
We conduct experiments to compare the power of the RKS test with other multivariate nonparametric tests
in multiple settings (different pairs of P and Q), both to investigate the strengths and weaknesses of the
RKS test, and to investigate its behavior as we vary the smoothness degree k.

4.1 Computation of the RKS distance
First, we discuss computation of the RKS distance, as initially defined in (2). This a difficult optimization
problem because of the nonconvexity of the criterion and the unit `2 norm constraint on w. Though we will
not be able to circumvent the challenge posed by nonconvexity entirely, we can ameliorate it by moving to
the overparametrized formulation in (5): this now casts the same computation as an optimization over the
N -neuron neural network f in (4), subject to a constraint on

∑N
j=1 |aj |‖wj‖k2 (which is sometimes called

the “path norm” of f). We call this problem “overparametrized” since any individual pair (wj , bj) would be
sufficient to obtain the global optimum in (2), and yet we allow the optimization to search over N such pairs
(wj , bj), j = 1, . . . , N . Perhaps unsurprisingly, we find that overparametrization (larger N) generally makes
optimization easier—more stable with respect to the initialization and choice of learning rate, discussed in
more detail in Appendix K.

Problem (5) is still more difficult than we would like it to be, i.e., not within scope for typical first-order
optimization techniques, due to the path norm constraint

∑N
j=1 |aj |‖wj‖k2 ≤ 1. Fortunately, it is easy to see

that any bound here suffices to compute the RKS distance: we can instead use
∑N
j=1 |aj |‖wj‖k2 ≤ C, for any

C > 0, rescale the criterion Pm(f)−Qn(f) by 1/C, and then the value of the criterion at its optimum (the
IPM value) is unchanged. This motivates us to instead solve a Lagrangian version of (5):

min
f=f

(aj,wj,bj)N
j=1

bj≥0, j=1,...,N

−1

k
log

(
1

N

∣∣Pm(f)−Qn(f)
∣∣)+

λ

kN

N∑
i=1

|ai|‖wi‖k2 , (10)

which is the focus in all of our experiments henceforth. The log transform for the mean difference in (10) is
used because we find that it leads to greater stability with respect to the choice of learning rate, which we
cover in Appendix J. Importantly, the choice of Lagrangian parameter λ > 0 in (10) can be arbitrary, by the
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same rescaling argument as explained above: given any (local) optimizer f∗ in (10), we can simply return the
mean difference over the rescaled witness f∗/‖f∗‖RTVk , where ‖f∗‖RTVk =

∑N
i=1 |a∗i |‖w∗i ‖k2 .

For k ≥ 1, we apply the torch.optim.Adam optimizer (a variation on gradient descent), as implemented
in PyTorch, to (10). We use a betas parameter (0.9, 0.99), learning rate 0.5, number of iterations T = 200,
penalty parameter λ = 1, and number of neurons N = 10. To enforce the nonnegativity condition on b, we
project b to [0,∞) after each gradient step. Rather than take the last iterate, we choose the maximal IPM
values among the iterates (after rescaling by the RTVk seminorm of each iterate so that it lies in the unit
seminorm ball). Further, we repeat this over three random initializations, and select the best resultant IPM
value to be the final output. While this optimization scheme does not come with guarantees on convergence
to a minimizer of the criterion (10), we reiterate that if we calibrate this test statistic using the permutation
null (i.e., we use permutations to calculate a p-value as in (3), where in each permutation we apply the same
optimization scheme), then we are still guaranteed to control type I error in finite-sample.

For k = 0, such a first-order scheme is not applicable due to the fact that the gradient of the 0th degree
ridge spline (wTx− b)0

+ = 1{wTx ≥ b} (with respect to w and b) is almost everywhere zero. As a surrogate,
we directly approximate the optimum (w∗, b∗) in (2) using logistic regression where the class labels identify
samples from P versus Q, as implemented in sklearn.linear_model.LogisticRegression in Python.

For concreteness, we summarize our computational approach below in Algorithm 1.

Algorithm 1 RKS test statistic
Input: Samples {xi}mi=1, {yi}ni=1 ⊆ Rd; smoothness degree k ≥ 0; number of neurons N ≥ 1; number of
iterations T ≥ 1; learning rate η > 0; regularization parameter λ > 0

Output: RKS test statistic Td,k
Run:
Step 1 (optional). Center the data to have sample mean zero:

µ̂ = 1
m+n (

∑m
`=1 x` +

∑n
`=1 y`); xi ← xi − µ̂; yi ← yi − µ̂

Step 2 (optional). Scale the data to have average `2 norm of 1:
L̂2 = 1

m+n (
∑m
`=1 ‖x`‖22 +

∑n
`=1 ‖y`‖22); xi ← xi/L̂; yi ← yi/L̂

Step 3. Apply optimization procedure:
if k ≥ 1 then

Run Adam on the criterion in (10) for T iterations with learning rate η to compute f∗

else
Run logistic regression on data {zi}m+n

i=1 = {xi}mi=1 ∪ {yi}ni=1, with class labels indicating whether
each zi ∈ {x`}m`=1 or zi ∈ {y`}n`=1. Given the solution (w∗, b∗), define f∗(x) = 1{w∗Tx ≥ b}
end if
Step 4. Rescale f∗/‖f∗‖RTVk , where ‖f∗‖RTVk =

∑N
i=1 |a∗i |‖w∗i ‖k2 , and compute

Td,k =
∣∣Pm(f∗)−Qn(f∗)

∣∣
return Td,k

4.2 Experimental setup
We compare the RKS tests of various degrees across several experimental settings, both to one another and
to other all-purpose nonparametric tests: the energy distance test (Székely and Rizzo, 2005) as well as kernel
MMD (Gretton et al., 2012) with a Gaussian kernel. Python code to replicate all of our experimental results
is available at https://github.com/100shpaik/.

We fix the sample sizes to m = n = 512 throughout, and study four choices of dimension: d = 2, 4, 8, 16.
For each dimension d, we consider five settings for P,Q, which are described in Table 1. In each setting, the
parameter v controls the discrepancy between P and Q, but its precise meaning depends on the setting. The
settings were broadly chosen in order to study the operating characteristics of the RKS test when differences
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between P and Q occur in one direction (settings 1–4), and in all directions (setting 5). Among the settings
in which the differences occur in one direction, we also investigate different varieties (settings 1 and 2: mean
shift under different geometries, setting 3: tail difference, setting 4: variance difference). Figure 2 visualizes
samples from drawn each task in d = 2 dimensions, whereas Figure 3 exaggerates the deviation between P,Q
(larger values of v) to better illustrate the geometry. Finally, we note that since the RKS test is rotationally
invariant,2 the fact that the chosen differences in Table 1 are axis-aligned is just a matter of convenience, and
the results would not change if these differences instead occurred along arbitrary directions in Rd.

Setting P Q v

Pancake mean shift
(“pancake-shift”)

one axis ∼ N (0, 1)
the others ∼ Nd−1(0, 9I)

one axis ∼ N (v, 1)
the others ∼ Nd−1(0, 9I)

0.3

Ball mean shift
(“ball-shift”) Nd(0, I)

one axis ∼ N (v, 1)
the others ∼ Nd−1(0, I)

0.2

t coordinate
(“t-coord”) Nd(0, I)

one axis ∼ t(v)
the others ∼ Nd−1(0, I)

3

Variance inflation
in one direction

(“var-one”)
Nd(0, I)

one axis ∼ N (0, v)
the others ∼ Nd−1(0, I)

1.4

Variance inflation
in all directions

(“var-all”)
Nd(0, I) Nd(0, vI) 1.2

Table 1: Experimental settings. Here Nd(µ,Σ) means the d-dimensional normal distribution with mean µ
and covariance Σ, and t(v) means the t distribution with v degrees of freedom.

P
Q

(a) pancake-shift

P
Q

(b) ball-shift

P
Q

(c) t-coord

P
Q

(d) var-one

P
Q

(e) var-all

Figure 2: Samples drawn from the settings in Table 1, with d = 2.

P
Q

(a) pancake-shift

P
Q

(b) ball-shift

P
Q

(c) t-coord

P
Q

(d) var-one

P
Q

(e) var-all

Figure 3: Samples drawn from the settings in Table 1, with d = 2, and exeggerated values of v.

2Meaning, ρ(Pm, Qn;Fk) is invariant to rotations of the underlying samples {xi}mi=1 and {yi}ni=1 by any arbitrary orthogonal
transformation U ∈ Rd×d. This is true because the RTVk seminorm is itself invariant to rotations of the underlying domain, as
can be seen directly from the representation in Proposition 1.
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For the RKS tests, we examine smoothness degrees k = 0, 1, 2, 3, and we center the input data to have the
sample mean zero jointly across both samples. That is, each xi is replaced by xi − 1

m+n

(∑m
`=1 x` +

∑n
`=1 y`

)
,

and likewise for yi. This makes the RKS test translationally-invariant. For kernel MMD, we set the Gaussian
kernel bandwidth according to a standard heuristic, based on the median of all pairwise squared distances
between the input samples (Caputo et al., 2002). (The energy distance test has no tuning parameters.) For
each setting, we compute these test statistics under the null where each xi and yi are sampled i.i.d. from
the mixture m

m+nP + n
m+nQ, and under the alternative where xi are i.i.d. from P and yi from Q. We then

repeat this 100 times (draws of samples, and computation of test statistics), and trace out ROC curves—true
positive versus false positive rates—as we vary the rejection threshold for each test.

In Appendix L, we also compare the RKS test to kernel MMD with a polynomial kernel. An important
remark is that the latter is not actually a nonparametric test, for any finite polynomial degree, because the
population IPM does not define a metric (it cannot distinguish distributions P,Q that agree up to some
number of moments, interpreted in the multivariate sense, but differ otherwise). We include comparisons to
polynomial kernels for completeness nonetheless.

4.3 Experimental results
Figure 4 displays the ROC curves from all tests across all settings (rows) and all dimensions (columns). We
see that in the first four settings (first four rows), the RKS tests exhibit generally strong performance: in each
case, one of the kth degree RKS tests performs either the best or near-best among the methods considered.
This supports the intuition discussed earlier, because in each of these settings, P and Q differ in only a small
number (in fact, one) direction. Conversely, in the last setting, “var-all”, the distributions P and Q differ by a
small amount in all directions, and the Gaussian kernel MMD and energy distance tests outperform the RKS
tests, especially for larger d.

Recalling that larger choices of k correspond to comparing higher-order truncated moments, we can look
further into the first four tasks (and their underlying data models) in order to try to learn something about
why and when different degree RKS tests perform better or worse. In the “pancake-shift” setting, the mean
shift occurs in a low-variance direction, which leads to nearly separable samples. The smallest choice k = 0
performs best (and also better than kernel-based tests). In the “var-one” and “t-coord” settings, P,Q have
the same mean, but different variance or tails, respectively, in one direction. We see that larger choices of k
perform better: k = 1 for “t-coord”, and k = 2, 3 for “var-one”. In the “ball-shift” setting, which is a mean
shift between isotropic Gaussians, all degrees k = 0, 1, 2 are reasonably competitive.

As the dimension d increases (across the columns), the performance of each test generally gets worse,
except for “var-all”, which will be explained shortly. However, when performance decreases, it does so at a
rate which depends on the task and the test. For example, in the “pancake-shift” task, the performance of
the RKS test with k = 0 decreases quite slowly as d increases, whereas all other methods quickly lose power.
(In experiments not shown, RKS with k = 0 continues to have nontrivial power in this setting even when d
is in the hundreds.) On the other hand, in the “var-one” task, all tests—including the leading RKS tests
with k = 2, 3—noticeably lose power by the last column, d = 16. Finally, in “var-all”, the problem actually
gets easier as d increases, recalling that v parametrizes a variance inflation in each of the d total directions.
Indeed, we can see that the kernel MMD and energy distance tests improve as d increases.

4.4 Aggregating RKS tests
Now we discuss how to aggregate the RKS test statistics, across various degrees k. In an ideal case, such an
aggregate RKS test could leverage the strengths of different degrees for different settings, and have more
robust power than any individual degree itself.

Suppose we consider RKS tests for degrees k = 0, . . . ,K, for some choice K ≥ 0 of maximum degree; in
most practical scenarios, it seems reasonable to choose to K = 3. A classical approach for aggregating these
RKS tests would be Bonferroni correction, which takes p-values pk, k = 0, . . . ,K, and returns

pmin = (K + 1) · min
k=0,...,K

pk

as an aggregate p-value. The controls type I error by the union bound: PH0((K + 1) ·mink=0,...,K pk ≤ α) ≤∑K
k=0 PH0

(pk ≤ α/(K + 1)) ≤ α.
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Figure 4: ROC curves across the experimental settings described in Table 1. Each row represents a different
setting, and each column a different dimension. The RKS, kernel MMD (“KMMD”) with a Gaussian kernel,
and energy distance tests are compared. Each is coded by a combination of color and line type.
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A variety of other aggregation strategies are available; for example,

pavg =
2

K + 1

K∑
k=0

pk

is also a valid p-value. Table 1 of Vovk and Wang (2020) lists a number of other examples. Interestingly, if
the p-values for individual RKS tests are computed via permutations (as have advocated for generally in this
paper), then we can take any aggregation function G, and calibrate the corresponding p-value

G(p0, . . . , pK)

itself via permutations at no additional computational cost, provided the same permutations πb, b = 1, . . . , B
were used to compute each p-value pk, and these permutations form a group. This can be explained as follows
(similar ideas appear in Solmi and Onghena (2014)). Abbreviating T (b, k) = Td,k(zπb) for the test statistic for
each b, k, and T (0, k) = Td,k(z) for the test statistic on the original sequence, it helps to visualize the matrix
of available test statistics:

T (0, 0) T (0, 1) · · · T (0,K)
T (1, 0) T (1, 1) · · · T (1,K)

...
T (B, 0) T (B, 1) · · · T (B,K)

The permutation p-value, per column (per degree), is given by the following computation:

pk =

∑B
b=0 1{T (b, k) ≥ T (0, k)}

B + 1
, k = 0, . . . ,K.

The aggregator, G(p0, . . . , pK), combines this information across the columns. To calibrate it, we can treat
this as yet another test statistic of the data, writing T̃ (0) = G(p0(z), . . . , pK(z)), and writing

T̃ (b) = G
(
p0(zπb), . . . , pK(zπb)

)
for the result when the original sequence z is replaced by zπb . Now comes the key realization: each pk(zπb)
can be computed from the same matrix of available test statistics as above, just given by swapping the bth
row with the first row:

pk(zπb) =

∑B
b′=0 1{T (b′, k) ≥ T (b, k)}

B + 1
, k = 0, . . . ,K.

This is true because the set of permutations generated by applying πb′ , b′ = 0, . . . , B to zπb is the same as
that generated by applying πb′ , b′ = 0, . . . , B to z (due to the group structure). Therefore each T̃ (b) can be
computed from the same matrix of available test statistics, as can the permutation p-value corresponding to
the aggregate statistic:

pG =

∑B
b=0 1{T̃ (b) ≥ T̃ (0)}

B + 1
.

This is a valid p-value in finite-sample, for the same reason that permutation p-values are valid whenever the
set of permutations used forms a group (see, e.g., Hemerik and Goeman (2018)).

Figure 5 examines two aggregation methods over the same setup as that in Figure 4. As before, we use a
mixture null as a proxy for the permutation null (for the sake of computational efficiency; our simulations use
100 repetitions). The aggregation rules considered are the min-rule: G(p0, . . . , pK) = mink=0,...,K pk, and the
so-called Fisher-rule: G(p0, . . . , pK) = −

∑K
k=0 log pk. For each task (row), Figure 5 displays the ROC curves

corresponding to these rules as dotted colored lines, and the ROC curve from the best RKS (single k) test as
a solid colored line; ROC curves from the other RKS tests (other values of k) are grayed-out as a visual aid.
We can see that either aggregation method frequently competes with the best RKS test, with the min-rule
performing slightly better overall.
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Figure 5: ROC curves across the same experimental settings as in Figure 4, along with ROC curves from
the min aggregation rule (“agg-min”) and Fisher aggregation rule (“agg-Fisher”). In each row, only the ROC
curve from the best-performing RKS test is drawn in color, and the rest are drawn in gray.
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5 Discussion
We proposed and analyzed a new multivariate nonparametric two-sample test, which is an integral probability
metric (IPM) test with respect to a class of functions having unit Radon total variation of a given smoothness
degree k ≥ 0. We call this the Radon-Kolmogorov-Smirnov (RKS) test, and it can be seen as a generalization
of the Kolmogorov-Smirnov (KS) test to multiple dimensions and higher orders of smoothness.

The RKS test, like any statistical test, is not expected to be most powerful in all scenarios. Roughly, we
expect the RKS test to be favorable in settings in which the given distributions P and Q differ in only a few
directions in the ambient space; and higher orders of smoothness k can be more sensitive to tail differences
along these few directions. When P and Q differ in many or all directions, the more traditional kernel MMD
test with (say) Gaussian kernel will probably perform better.

It is worth revisiting computation of the RKS distance and discussing some limitations of our work and
possible future directions. In this paper, we considered full batch gradient descent applied to (10) (we actually
used Adam, but the differences for this discussion are unimportant), i.e., in each update the entire data set
{xi}mi=1 ∪ {yi}ni=1 is used to calculate the gradient. This results in the following complexity: T iterations of
gradient descent costs O((n+m)dNT ) operations, where recall N is the number of neurons. However, mini
batch gradient descent should be also investigated, and is likely to be preferred in large problem sizes. That
said, implementing mini batch gradients for (10) is nontrivial due to the nonseparable nature of the criterion
across observations (due to the log and the absolute value in the first term), and pursuing this carefully is an
important direction for future work. For now, we note that by just subsetting Pm, Qn to a mini batch of size
b ≤ n+m, this results in a T -iteration complexity of O(bdNT ) operations. To compare kernel MMD: this
costs O((n+m)2d) operations, and thus we can see that for large enough problem sizes computation of the
RKS statistic via full batch and especially mini batch gradient descent can be more efficient, provided that
small or moderate values of N,T still suffice to obtain good performance.

Finally, another direction worth investigating is the use of deeper networks, which could be interpreted as
learning the feature representation in which there is the largest discrepancy in projected truncated moments.
This would help further distinguish the RKS test from kernel MMD, because the latter is “stuck with” the
representation provided by the choice of kernel, and it cannot learn the representation based on the data. A
deep RKS test could dovetail nicely with existing architectures (and even pre-trained networks) for related
tasks in areas such as generative modeling, and out-of-distribution detection.
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A Proof of Proposition 1
By Theorem 22 in Parhi and Nowak (2021), every f ∈ RBVk has a representative f ∈ f of the form

f(x) =

∫
Sd−1×R

[
(wTx− b)k+ −

∑
|α|≤k

cα(w, b)xα
]
dµ(w, b) + q0(x), (11)

for a finite Radon measure µ on Sd−1 × R such that: (i) µ is an odd (respectively even) measure if k is even
(respectively odd); (ii) the integrand is integrable in (w, b) with respect to µ for any x; (iii) ‖µ‖TV = ‖f‖RTVk ;
(iv) q0(x) is a polynomial of degree at most k; (v)

∑
|α|≤k

(
cα(w, b)xα + (−1)kcα(−w,−b)xα

)
= (wTx− b)k.

Using the conditions (i) and (v), we can show the following with a manual calculation and the change of
variables (w, b)→ (−w,−b):∫

Sd−1×(−∞,0)

[
(wTx− b)k+ −

∑
|α|≤k

cα(w, b)xα
]

dµ(w, b)

=

∫
Sd−1×(0,∞)

[
(−wTx+ b)k+ −

∑
|α|≤k

cα(−w,−b)xα
]

dµ(−w,−b)

=

∫
Sd−1×(0,∞)

(−1)2k+1
[
(wTx− b)k− −

∑
|α|≤k

(−1)kcα(−w,−b)xα
]

dµ(w, b)

=

∫
Sd−1×(0,∞)

(−1)2k+1
[
(wTx− b)k− − (wTx− b)k +

∑
|α|≤k

cα(w, b)xα
]

dµ(w, b)

=

∫
Sd−1×(0,∞)

[
(wTx− b)k+ −

∑
|α|≤k

cα(w, b)xα
]

dµ(w, b). (12)

Define a measure µ̃ by µ̃(E) = µ(E0) + 2µ(E+) where for an event E we denote E0 = (Sd−1 × {0}) ∩E and
E+ = (Sd−1 × (0,∞)) ∩ E. Then (12) rewrites (11) as

f(x) =

∫
Sd−1×[0,∞)

[
(wTx− b)k+ −

∑
|α|≤k

cα(w, b)xα
]

dµ̃(w, b) + q0(x) (13)

where ‖µ̃‖TV = ‖µ‖TV = ‖f‖RTVk . Note that (wTx− b)k+ is integrable in (w, b) with respect to µ̃ because
‖w‖2 = 1 and b ≥ 0. Thus,

∫
Sd−1×[0,∞)

(wTx − b)k+dµ̃ < ‖x‖k2‖µ̃‖TV, hence
∑
|α|≤k cα(w, b)xα is integrable

with respect to (w, b) for every x as well. Thus,

q1(x) =

∫
Sd−1×[0,∞)

(∑
|α|≤k

cα(w, b)xα
)

dµ̃(w, b)

is well-defined due to the condition (ii) and (13). Therefore (13) can be rewritten as

f(x) =

∫
Sd−1×[0,∞)

(wTx− b)k+ dµ̃(w, b) + q̃0(x)

where q̃0(x) = q0(x) + q1(x) is a polynomial of degree at most k. Also µ̃|Sd−1×{0} = µ|Sd−1×{0} by definition
of µ̃, and hence, µ̃|Sd−1×{0} is odd when k is even, and even when k is odd by the condition (i). Thus, we
have arrived at the desired representation.

B Proof of Theorem 1
We rely on the representation established by Proposition 1 and treat the cases k = 0 and k ≥ 1 separately.

Case k = 0. For this case, the boundary condition (continuity at the origin) implies that the integral may
be restricted to b > 0.
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Lemma 1. Consider f ∈ RBV0. There exists a representative f ∈ f which is continuous at 0 ∈ Rd if and
only if f admits a representation

f(x) =

∫
Sd−1×(0,∞)

1{wTx ≥ b}dµ(w, b) + q, (14)

where q is a constant and µ is a signed measure with ‖µ‖TV <∞.

Proof of Lemma 1. By Proposition 1, there exists f ∈ f such that for all x,

f(x) =

∫
Sd−1×[0,∞)

1{wTx ≥ b}dµ(w, b) + q = f=0(x) + f>0(x),

where
f>0(x) =

∫
Sd−1×(0,∞)

1{wTx ≥ b}dµ(w, b) + q,

f=0(x) =

∫
Sd−1×{0}

1{wTx ≥ 0}dµ(w, b).

If b > 0, then limx→0 1{wTx ≥ b} = 0. Thus, by dominated convergence,

lim
x→0

f>0(x) = q(x) = f>0(0).

Thus, f>0 is continuous at 0. We conclude that f is almost-everywhere equal to a function which is continuous
at 0 if and only if f=0 is almost-everywhere equal to a function which is continuous at 0.

For x 6= 0, wTx ≥ 0 if and only if wTx/‖x‖ ≥ 0. Thus, f=0(x) = f=0(x/‖x‖). Thus, f=0 is almost
everywhere equal to a function which is continuous at 0 if and only if there exists some c ∈ R such that for
almost every x ∈ Sd−1 (almost every with respect to Lebesgue surface measure), we have f=0(x) = c. But
this implies that f=0(x) = c for almost every x ∈ Rd. Thus, we get that for almost every x ∈ Rd,

f(x) = f>0(x) + c =

∫
Sd−1×(0,∞)

1{wTx ≥ b}dµ(w, b) + q + c.

The right-hand side is the desired representative.

Theorem 1 in the case k = 0 is now a consequence of the following lemma, which additionally gives an
explicit form for the radially cone continuous representative of f.

Lemma 2. Assume f ∈ RBV0 contains a representative which is continuous at 0. Then it contains a unique
representative which is radially cone continuous. This representative can be written in the form (14) where µ
is a signed measure with ‖µ‖TV <∞. Conversely, any function of the form (14) where µ is a signed measure
with ‖µ‖TV <∞ is the unique radial cone continuous representative of some f ∈ RBV0.

Proof of Lemma 2. Consider f ∈ RBV0 which contains a representative which is continuous at the origin. By
Lemma 1, there exists f ∈ f which satisfies (14) for all x ∈ Rd, for some constant q and signed measure µ
with ‖µ‖TV <∞.

Fix x 6= 0. Consider any sequence εj ∈ R such that εj ↓ 0, and vj ∈ Sd−1 such that vj → x/‖x‖. Consider
any (w, b) ∈ Sd−1 × (0,∞). If wTx < b, then wT(x+ εjvj) < b eventually because x+ εjvj → x. Alternatively,
wTx ≥ b gives wTx/‖x‖ > 0, whence wTvj > 0 eventually. In particular, wT(x+ εjvj) > wTx > 0 eventually.
Thus, in both cases with have 1{wT(x+ εjvj) ≥ b} → 1{wTx ≥ b}. By dominated convergence, we get that

f(x+ εjvj) =

∫
Sd−1×(0,∞)

1{wT(x+ εjvj) ≥ b}dµ(w, b) + q

→
∫
Sd−1×(0,∞)

1{wTx ≥ b}dµ(w, b) + q = f(x).

Thus, f is radially cone continuous and can be written in the form of (14).
By Theorem 22 in Parhi and Nowak (2021) and reversing the construction of µ̃ from µ in the proof of

Proposition 1, any function of the form (14) where µ is a signed measure with ‖µ‖TV <∞ is a represenative
of an equivalence class f ∈ RBV0. The argument above also shows that it is radially cone continuous. Thus,
we have shown the converse statement as well.
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Case k = 1. We begin with a lemma.

Lemma 3. For k ≥ 1 and every f ∈ RBVk, there exists a unique representative f ∈ f which is continuous.
This representative is in fact (k − 1)-times continuously differentiable and can be written in the form in
Proposition 1. Moreover, for any multi-index α with |α| ≤ k − 1, we have for all x ∈ Rd that

Dαf(x) =
k!

(k − |α|)!

∫
Sd−1×[0,∞)

wα(wTx− b)k−|α|+ dµ(w, b) +Dαq(x). (15)

where wα =
∏d
i=1 w

αi
i .

Proof of Lemma 3. For any f ∈ RBVk, let f ∈ f be a representative of the form in Proposition 1. We will
show that this representative f is (k − 1)-times continuously differentiable by inducting on the order m = |α|
of the multi-index α.

The base case is m = 0. In this case, the representation of the 0th derivative is equivalent to the
representation in the proposition. The continuity of f follows by Lemma 12 applied to this representation.

Now consider m ≥ 1, and assume we have established the result for m− 1. Consider α with |α| = m, and
without loss of generality, assume α1 ≥ 1 and let α̃ = (α1 − 1, α2, . . . , αd). By the inductive hypothesis,

Dαf(x) =
k!

(k − |α|+ 1)!
∂x1

∫
Sd−1×[0,∞)

wα̃(wTx− b)k−|α|+1
+ dµ(w, b) +Dαq(x).

Note that for x ∈ Rd, we have ∂x1

(
wα̃(wTx− b)k−|α|+1

+

)
= (k − |α|+ 1)wα(wTx− b)k−|α|. This function is

integrable in (w, b) with respect to µ for every x ∈ Rd, since ‖w‖2 = 1 and b ≥ 0. Moreover, the partial
derivative is uniformly bounded on {x′ : ‖x′‖ ≤ 2‖x‖} by 2k−|α|+1(k − |α| + 1)

(∏d
i=1 |wi|αi

)
(2‖x‖)k−|α|,

which is integrable with respect to µ. These conditions allow us to apply the Leibniz rule to conclude that we
can exchange differentiation and integration, which yields (15). The continuity of Dαf then follows from
Lemma 12, and hence, the induction is complete.

Thus we have shown that f is (k − 1)-times continuously differentiable. All that is left to show is that f
is the unique element of f which is (k − 1)-times continuously differentiable. This holds because any two
continuous functions which are equal almost everywhere are in fact equal everywhere.

Theorem 1 in the case k ≥ 1 is now a consequence of the following lemma, which additionally gives an
explicit form for the radially cone continuous representative of f.

Lemma 4. For k ≥ 1, let f ∈ RBVk be such that the unique continuous representative f ∈ f is k-times
classically differentiable at 0 ∈ Rd with Dαf(0) = 0 for all |α| ≤ k. Then f has representation of the form in
Proposition 1 with q(x) ≡ 0.

Proof of Lemma 4. Because wα(wT0−b)k−|α|+ = 0 for |α| ≤ k−1 and any (w, b) ∈ Sd−1 × [0,∞), (15) implies
that Dαf(0) = Dαq(0) for all |α| ≤ k − 1.

Next, we evaluate Dαf(0) for |α| = k, which, by assumption, exists. Without loss of generality, assume
α1 ≥ 1, and let α̃ = (α1 − 1, α2, . . . , αd). Note that for b > 0, ∂xiwα̃(wTx− b)+

∣∣
x=0

= 0. By (15), we can
write

Dαf(0) = k!∂x1

∫
Sd−1×[0,∞)

wα̃(wTx− b)+ dµ(w, b)
∣∣∣
x=0

+Dαq(0).

We compute the partial derivative in the first term manually:

∂x1

∫
Sd−1×[0,∞)

wα̃(wTx− b)+ dµ(w, b)
∣∣∣
x=0

= lim
h→0

1

h

∫
Sd−1×[0,∞)

wα̃(w1h− b)+ dµ(w, b).

For b > 0 and w ∈ Sd−1, we have (w1h− b)+ ≤ |h| · 1{w1h > b} because |w1| ≤ 1. Also |wα| ≤ 1 because
|wj | ≤ 1 for all j. Thus,∣∣∣∣ 1h

∫
Sd−1×(0,∞)

wα̃(w1h− b)+ dµ(w, b)

∣∣∣∣ ≤ 1

|h|

∫
Sd−1×(0,∞)

wα̃|h|1{wjh− b} dµ(w, b)

≤ |µ|
(

(w, b) ∈ Sd−1 × (0,∞) : wjh > b
)
.
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Because |µ| is a finite positive measure and
⋂
h>0

{
(w, b) ∈ Sd−1 × (0,∞) : wjh > b

}
= ∅, we conclude

|µ|
(
(w, b) ∈ Sd−1 × (0,∞) : wjh > b

)
→ 0 as h→ 0. Thus, we have that

Dαf(0) = k! lim
h→0

[ 1

h

∫
Sd−1×{0}

wα̃(w1h− b)+ dµ(w, b)
]

+Dαq(0), (16)

and in particular, the limit in the first term exists. For b = 0, (w1h− b)+ = w1h · 1{w1 > 0} when h > 0,
and (w1h− b)+ = w1h · 1{w1 < 0} when h < 0. Thus, for h > 0,

1

h

∫
Sd−1×{0}

wα̃(w1h− b)+ dµ(w, b) =

∫
Sd−1×{0}
w1>0

wα dµ(w, b),

and for h < 0,

1

h

∫
Sd−1×{0}

wα̃(w1h− b)+ dµ(w, b) =

∫
Sd−1×{0}
w1<0

wα dµ(w, b)

= (−1)|α|(−1)k+1

∫
Sd−1×{0}
w1>0

wα dµ(w, b),

where the second equality uses the change of variables w 7→ −w and that µ|Sd−1×{0} is odd when k is even
and even when k is odd (see Proposition 1). By differentiability, the quantities in the two previous displays
must be equal. Because (−1)|α|(−1)k+1 = −1, this implies that the quantities in the two previous displays
must be 0. That is, the limit in (16) must be 0, and we have 0 = Dαf(0) = Dαq(0).

We have thus shown that Dαq(0) = 0 for all |α| ≤ k, which, because q(x) is a polynomial of degree at
most k, implies q(x) ≡ 0.

C Proof of Theorem 2
Theorem 2 is an immediate consequence of Lemmas 2 and 4.

D Proof of Theorem 3
We again treat the cases k = 0 and k ≥ 1 separately.

Case k = 0. Let
G+

0 =
{
1{wT· ≥ b} : (w, b) ∈ Sd−1 × (0,∞)

}
.

Because G+
0 ⊆ G0, for any signed measure µ on Sd−1 × (0,∞) with ‖µ‖TV = 1 and q ∈ R,

sup
f∈G0

P (f)−Q(f) ≥ sup
f∈G+

0

P (f)−Q(f) ≥
∫
Sd−1×(0,∞)

∫
Rd
1{wTx ≥ b}d(P −Q)(x) dµ(w, b)

=

∫
Rd

(∫
Sd−1×(0,∞)

1{wTx ≥ b}dµ(w, b) + q
)

d(P −Q)(x).

Taking the supremum on the right-hand side over measure µ, we get that

supf∈G0
P (f)−Q(f) ≥ supf∈F0

P (f)−Q(f).

Because limb→∞ P (wTx ≥ b)−Q(wTx ≥ b), Sd−1 is compact, and P (wTx ≥ b)−Q(wTx ≥ b) is continuous,
the supremum on the left-hand side is achieved. Then, if the supremum is achieved at some (w, b) with b > 0,
since x 7→ 1{wTx ≥ b} ∈ F0, we also have

sup
f∈G0

P (f)−Q(f) ≤ sup
f∈F0

P (f)−Q(f).
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On the other hand, consider that the supremum is achieved at some (w, 0). Note that

lim
b↑0

Q(wTx ≤ b)− P (wTx ≤ b) = P (wTx ≥ 0)−Q(wTx ≥ 0).

But Q(wTx ≤ b)− P (wTx ≤ b) = P (f)b −Q(f)b for fb(x) = 1{−wTx ≥ −b}. Note that fb ∈ G+
0 , and there-

fore, fb ∈ F0. Thus, we have in this case also that supf∈G0
P (f)−Q(f) ≤ supf∈F0

P (f)−Q(f).
Having shown both directions of the inequality, we conclude supf∈G0

P (f)−Q(f) = supf∈F0
P (f)−Q(f).

The same result holds with the roles of P and Q reversed, which establishes the result with the supremum
over |P (f)− P (Q)|.

Case k ≥ 1. Because P and Q have finite kth moments, by dominated convergence

(w, b) 7→ EP [(wTx− b)k+]− EQ[(wTx− b)k+]

is continuous on Sd−1 × [0,∞). Thus,

sup
f∈Gk

P (f)−Q(f) = sup
(w,b)∈Sd−1×(0,∞)

EP [(wTx− b)k+]− EQ[(wTx− b)k+] ≤ sup
f∈Fk

P (f)−Q(f),

where the last inequality holds because x 7→ (wTx− b)k+ ∈ Fk for all w ∈ Sd−1 and b > 0 (Parhi and Nowak,
2021). On the other hand, for any f ∈ Fk,

P (f)−Q(f) =

∫
Rd

∫
Sd−1×[0,∞)

(wTx− b)k+ dµ(w, b) d(P −Q)(x)

=

∫
Sd−1×[0,∞)

∫
Rd

(wTx− b)k+ d(P −Q)(x) dµ(w, b) ≤ sup
f ′∈Gk

|P (f ′)−Q(f ′)|,

where the second equality uses Fubini’s theorem and the final inequality uses ‖µ‖TV = ‖f‖RTVk ≤ 1. Because
the previous display holds for all f ∈ Fk, we have supf∈Fk P (f) − Q(f) = supf∈Gk |P (f) − Q(f)|. Since
f ∈ Gk implies −f ∈ Gk, we have supf∈Gk |P (f)−Q(f)| = supf∈Gk P (f)−Q(f).

Thus, we have shown both that supf∈Gk |P (f)−Q(f)| ≤ supf∈Fk |P (f)−Q(f)| and the reverse inequality,
so that these are in fact equal.

E Proof of Theorem 4
If P = Q, then for any f ∈ Fk, P (f)−Q(f) = 0, whence ρ(P,Q;Fk) = 0. Alternatively, consider P 6= Q.
Then, by the uniqueness of the characteristic function, there exists w ∈ Rd such that the distribution of
wTX and wTY , where X ∼ P and Y ∼ Q, are different. This implies that there exists some t ∈ R such that
P (wTX ≥ t) 6= Q(wTY ≥ t).

In what follows, we treat the cases k = 0, k = 1, and k ≥ 2 separately.

Case k = 0. If P (wTX ≥ t) > Q(wTY ≥ t) for some t ≥ 0, then taking f(x) = 1{wTx ≥ t} gives

ρ(P,Q;F0) = ρ(P,Q;G0) ≥ P (f)−Q(f) > 0,

where we have used Theorem 3. If P (wTX ≥ t) > Q(wTY ≥ t) for some t ≤ 0, then because t 7→ P (wTX ≥ t)
is left-continuous, for s < t sufficiently close to t, we will have P (wTX > s) > Q(wTY > s). Then, taking
f(x) = −1{(−w)Tx ≥ −s} gives

ρ(P,Q;F0) = ρ(P,Q;G0) ≥ P (f)−Q(f) > 0,

where we have used Theorem 3.
Similarly, if P (wTX ≥ t) < Q(wTX ≥ t), then we can take f(x) = −1{wTx ≥ t} in the case t ≥ 0 and

f(x) = 1{(−w)Tx ≥ −s} for some s < t sufficiently close to t to conclude ρ(P,Q;F0) > 0.
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Case k = 1. Because EP [1{wTX ≥ s}] and EQ[1{wTY ≥ s}] are left-continuous in s, if wTX and wTy have
a different distribution, there is some open interval (α, β) ⊆ R on which EP [1{wTX ≥ s}] > EQ[1{wTY ≥ s}]
or EP [1{wTX ≥ s}] < EQ[1{wTY ≥ s}], uniformly over all s ∈ (α, β). Because either β > 0 or α < 0, this
interval contains an open interval entirely contained in either R>0 or R<0. In the former case, we have that
for b > 0, EP [(wTX − b)+] 6= EQ(wTY − b)+] because

EP
[
(wTX − b)+

]
=

∫ ∞
b

EP
[
1{wTX ≥ s}

]
ds, EQ

[
(wTY − b)+

]
=

∫ ∞
b

EQ
[
1{wTY ≥ s}

]
ds.

We then get ρ(P,Q;F1) = ρ(P,Q;G1) > 0 by taking f(x) = (wTx− b)+. In the latter case, we have that for
b > 0, EP [((−w)TX − b)+] 6= EQ[((−w)TY − b)+] because

EP
[
((−w)TX − b)+

]
=

∫ −b
−∞

EP
[
(1− 1{wTX ≥ s})

]
ds,

and likewise for Q. We then get ρ(P,Q;F1) = ρ(P,Q;G1) > 0 by taking f(x) = ((−w)Tx− b)+.

Case k ≥ 2. Note that the derivatives of the mappings b 7→ EP [(wTX − b)k+] and b 7→ EQ[(wTY − b)k+] are
b 7→ kEP [(wTX − b)k−1

+ ] and b 7→ kEQ[(wTY − b)k−1
+ ], respectively. If there is some (w, b) with b ≥ 0 such

that EP [(wTX − b)k−1
+ ] 6= EP [(wTX − b)k−1

+ ], by continuity, EP [(wTX − s)k−1
+ ] 6= EP [(wTX − s)k−1

+ ] for all
s in an open interval around b, whence, by integration, EP [(wTX − s)k+] 6= EP [(wTX − s)k+] for some s in
this interval. We can then conclude the result by induction, using k = 1 as a base case.

F Proof of Theorem 5
For a function class F , a probability measure P, and ε > 0, we say that {[li, ui] : i ∈ [N ]} is an (ε,P)-bracket
of F with cardinality N if for all i ∈ [N ] we have li(x) ≤ ui(x) for all x and

‖ui(X)− li(X)‖2L2(P) = EX∼P[(ui(X)− li(X))2] ≤ ε2,

and for all f ∈ F there exists i ∈ [N ] such that li(x) ≤ f(x) ≤ ui(x) for all x. The (ε,P)-bracketing number,
which we denote by N[ ](ε;F , ‖·‖L2(P)), is the minimum cardinality of an (ε,P)-bracket of F . Using standard
techniques from empirical process theory, we will be able to prove Theorem 5 by bounding the bracketing
number N[ ](ε;Gk, ‖·‖L2(P)).

F.1 Bracketing number for Gk, k ≥ 1

Theorem 8. Let k ≥ 1 and let P be a probability measure with finite moments of order 2k + ∆, for any fixed
∆ > 0, i.e., EX∼P‖X‖2k+∆

2 = M <∞. Then, for the class Gk, there is a constant C[ ] > 0 depending only on
M,d,∆, and k such that

logN[ ](ε;Gk, ‖·‖2) ≤ C[ ] log
(

1 +
1

ε

)
.

Proof of Theorem 8. We denote by Bdr(x) the ball of radius r centered at x ∈ Rd:

Bdr(x) = {z ∈ Rd | ‖z − x‖22 ≤ r2}.

We say a set S ⊆ Rd is a r-covering of a set A ⊆ Rd if A is contained in the union of the balls of radius r
centered at points x ∈ I:

A ⊆
⋃

x∈I
Bdr(x).

For a compact set I ⊆ Rd and real number b ∈ R, define functions

`I,b(x) = inf
{

(wTx− b)k+ : w ∈ I
}
, and uI,b(x) = sup

{
(wTx− b)k+ : w ∈ I

}
,

where we adopt the convention that `I,∞(x) = uI,∞(x) ≡ 0.
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Lemma 5. Consider S is an r-covering of Sd−1. Let I be the collection of sets {I = Sd−1 ∩ Bdr(x) : x ∈ S},
and let bj = jδ for j = −1, . . . , N , and bN+1 =∞ for some δ > 0 and integer N > 0. Then, the following is
a bracket of Gk {

[lI,bj+1
, uI,bj ] : I ∈ I, j = −1, . . . , N

}
. (17)

Proof of Lemma 5. Consider any (w, b) ∈ Sd−1 × [0,∞) and its corresponding function x 7→ (wTx− b)k+ ∈ Gk.
Because S is an r-covering, there exists I ∈ I such that w ∈ I. Also clearly there exists j ∈ {−1, 0, 1, . . . , N}
such that bj < b ≤ bj+1. Then `I,bj+1 ≤ (wTx− b)k+ from the following observation:

`I,bj+1
(x) = inf

{
(w̃Tx− bj+1)k+ : w̃ ∈ I

}
≤ (wTx− bj+1)k+ ≤ (wTx− b)k+.

Similarly, we can show (wTx− b)k+ ≤ (wTx− bj)k+ ≤ uI,bj (x).

Lemma 6. In the setting of Lemma 5, if we set r = δ = ε/3

k
√

1+max(1,M)
and N = d(Mε )1/∆ 1

δ e, then we have

‖uI,bj − lI,bj+1
‖L2(P ) ≤ ε for all j = −1, . . . , N and I ∈ I.

Proof of Lemma 6. We bound

|uI,bj (x)− lI,bj+1
(x)| ≤ max

w,v∈I
|(wTx− bj)k+ − (vTx− bj+1)k+|

≤ max
w,v∈I

|(wTx− bj)k+ − (vTx− bj)k+|+ max
v∈I
|(vTx− bj)k+ − (vTx− bj+1)k+|.

Using a telescoping sum, we may bound for j ≤ N , using Lemma 11:

|(wTx− bj)k+ − (vTx− bj)k+| = |(wTx− bj)+ − (vTx− bj)+| ×
∑k−1

i=0
(wTx− bj)i+(vTx− bj)k−1−i

+

≤ ‖w − v‖2‖x‖2 × k ·max{(wTx)+, (v
Tx)+}k−1

≤ k‖w − v‖2‖x‖k2
≤ 2kr‖x‖k2 .

Likewise, we may bound for j ≤ N − 1

|(vTx− bj)k+ − (vTx− bj+1)k+| = |(vTx− bj)+ − (vTx− bj+1)+| ×
∑k−1

i=0
(vTx− bj)i+(vTx− bj+1)k−1−i

+

≤ |bj − bj+1| × k · (vTx− bj)k−1
+

≤ kδ‖x‖k−1
2 .

Therefore, for j ≤ N − 1,

|uI,bj (x)− lI,bj+1
(x)| ≤ kδ‖x‖k−1

2 + 2kr‖x‖k2 ≤

{
k(δ + 2r) : ‖x‖2 ≤ 1

k(δ + 2r)‖x‖k2 ≤ k(δ + 2r)‖x‖k+∆/2
2 : ‖x‖2 > 1

,

which can be simplified to

|uI,bj (x)− lI,bj+1
(x)| ≤ k(δ + 2r) max{1, ‖x‖k+∆/2

2 }.

This gives for j ≤ N − 1,

‖uI,bj − lI,bj+1‖2L2(P) ≤ k
2(δ + 2r)2(1 + EX∼P ‖X‖2k+∆

2 ) ≤ k2(δ + 2r)2(1 +M) ≤ ε2,

where the final inequality is obtained by plugging in the values of r and δ specified in the statement of the
lemma. Meanwhile, for j = N , we have bj+1 =∞, so that lI,bj+1

= 0. Also, bj = Nδ ≥ (M/ε)1/∆. Thus,

‖uI,bN − lI,bN+1
‖2L2(P) =

∫
Rd
uI,bN (x)2dP(x)
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≤
∫
Rd

(‖x‖2 − bN )2k
+ dP(x) =

∫
Rd

(‖x‖2 −Nδ)2k
+ dP(x)

≤
(∫

Rd
(‖x‖2 −Nδ)2k+∆dP(x)

) 2k
2k+∆

(∫
Rd

1(‖x‖2 ≥ Nδ) dP(x)
) ∆

2k+∆

= M
2k

2k+∆ × P
(
‖X‖2 ≥ Cδ

) ∆
2k+∆

≤M
2k

2k+∆ ×
( M

(Nδ)2k+∆

) ∆
2k+∆

=
M

(Nδ)∆
,

where the second inequality uses Hölder’s inequality, and the last inequality used Markov inequality. With
the value of δ and N specified by the lemma, we conclude ‖uI,bN − lI,bN+1

‖2L2(P) ≤ ε
2.

We can now complete the proof of Theorem 8. By Dumer (2007), there exists an r-covering of Sd−1 with
cardinality at most (1 + 2/r)d. Thus, using the choices of r, δ, and N in Lemma 6 gives an (ε,P)-bracket of
Gk that has cardinality at most(

1 +
2k
√

1 + max(1,M)

ε/3

)d((M
ε

)1/∆ k
√

1 + max(1,M)

ε/3
+ 1
)
≤ C(1 + 1/ε)d+1+1/∆.

with some constant C. The proof is completed.

F.2 Bracketing number for G0
Theorem 9. Let P be a probability measure with finite ∆th moments, i.e., EX∼P‖X‖∆2 = M <∞, for any
fixed ∆ > 0. Suppose additionally that for the random vector X ∼ P and any w ∈ Sd−1, the random variable
wTX ∈ R has the density upper bounded by M∞, i.e.,

sup
w∈Sd−1

∥∥pwTx

∥∥
∞ < M∞, (18)

where pwTx denotes the density of wTx for x ∼ P , and ‖f‖∞ = supt∈R |f(t)| denotes the supremum norm of
f . Then, for the class G0, there is a constant C[ ] > 0 depending only on M , M∞, d, and ∆ such that

logN[ ](ε;G0, ‖·‖2) ≤ C[ ] log
(

1 +
1

ε

)
.

Proof of Theorem 9. We adopt the same notation used in the proof of Theorem 8. The set (17) is a bracket
of G0 by Lemma 5. Now we show that it is an ε-bracket for appropriate choices of r, δ, and N .

Select I ∈ I, j = −1, . . . , N − 1. There exists a w0 ∈ I such that ‖w − w0‖2 ≤ r for all w ∈ I, since S is
an r-cover of Sd−1. Consequently, for any x ∈ Rd

max
w∈I

1(wTx ≥ bj) ≤ 1(wT
0 x ≥ bj − r‖x‖2),

min
v∈I

1(vTx ≥ bj+1) ≥ 1(wT
0 x ≥ r‖x‖2 + bj+1)

Note that the random variable wT
0X ∈ R has a density that is upper bounded by M∞ as (18). Therefore, for

any R > 0,

‖uI,bj − lI,bj‖2L2(P) = P
(

max
w,v

∣∣∣1(wTx ≥ bj)−min
v∈I

1(vTx ≥ bj+1)
∣∣∣)

≤ P
(
wT

0X ∈ [bj − r‖X‖2, bj+1 + r‖X‖2]
)

≤ P
(
wT

0X ∈ [bj − rR, bj+1 + rR]
)

+ P
(
‖X‖2 ≥ R

)
≤M∞

(
δ + 2rR

)
+ P

(
‖X‖2 ≥ R

)
≤M∞

(
δ + 2rR

)
+

M

R∆
,
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with the last line following from Markov’s inequality. Taking R = (3M/ε2)1/∆, r = ε2

6RM∞
= ε2(1+1/∆)

6(3M)1/∆M∞
and δ = ε2

3M∞
makes the above upper bound equal to ε2.

On the other hand for I ∈ I, j = N , we have lw,bN+1 = 0, and

‖uI,bN − lI,bN+1
‖2P = P

(
max
w∈I

wTX ≥ bN
)

≤ P
(
‖X‖2 ≥ bN

)
≤ M

(Nδ)∆
.

Taking N = (M/ε2)1/∆

δ makes this upper bound equal to ε2. So for these choices of r, δ and N the bracket is
an ε-bracket.

Finally, arguing as in the proof of Theorem 7, we conclude that there exists an ε-bracket of G0 with
cardinality at most

N ×
(

1 +
2

r

)d
≤ C(1 +

1

ε
)2d(1+1/∆)+2(1+1/∆).

This completes the proof.

F.3 Proof of Theorem 5
Theorem 5 is a consequence of the (ε,P)-bracketing number bound of Theorem 8 (or Theorem 9, for k = 0)
and Theorems 7.6 and 9.1 in Dudley (2014), which we copy below for convenience.

Theorem 10. Let (Ω,Σ, P ) be a probability space and let F ⊆ L2(Ω,Σ, P ) be such that

J[ ](F , ‖·‖2) =

∫ 1

0

√
logN[ ](ε;F , ‖·‖L2(P )) dε <∞.

Then, under the P -null hypothesis, as m,n→∞,√
1

m
+

1

n
(Pm −Qn)

d→ GP , and hence

√
1

m
+

1

n
sup
f∈F

∣∣Pmf −Qnf ∣∣ d→ sup
f∈F
|GP (f)|.

Theorem 10 implies Theorem 5 because
∫ 1

0

√
log(1 + 1/ε) dε <∞.

G Proof of Theorem 6
Our proof follows closely the proof of the analogous result for the univariate higher-order KS test in Sadhanala
et al. (2019). We begin by recalling the following lemma, which appears as Theorem 2.14.2 and 2.14.5 in
van der Vaart and Wellner (1996), the statement of which we transcribe from Sadhanala et al. (2019).

Lemma 7. Let F be a class of functions with an envelope function F ; i.e., f ≤ F for all f ∈ F . Define

W =
√
n supf∈F |Pnf − Pf |,

and let J =
∫ 1

0

√
logN[](ε;F , ‖ · ‖L2(P ))dε. If for p ≥ 2, ‖F‖Lp(P ) <∞, then for a universal constant c1 > 0,

E[|W |p]1/p ≤ c1
(
‖F‖L2(P )J + n−1/2+1/p‖F‖Lp(P )

)
.

If, for 0 < p ≤ 1, the exponential Orlicz norm of F , i.e., ‖F‖Ψp = inf{t > 0 : E[exp(|F |p/tp)] ≤ 2}, is finite,
then

‖W‖Ψp ≤ c
(
‖F‖L2(P )J + n−1/2(1 + log n)1/2‖F‖Ψp

)
.

Using this lemma, we have the following theorem on the concentration of the the RKS test statistic on its
population value, from which the asymptotic result in Theorem 6 can be deduced.
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Theorem 11. We have the following tail bounds.

(i) Consider k = 0. Assume P and Q have ∆th moment bounded by M for M,∆ > 0, are absolutely
continuous with respect to Lebesuge measure, and satisfies the condition in (18). Then, for some constant
c0 depending only on M,∆,M∞, and d, the following holds with probability at least 1− α:

|Td,k − ρ(P,Q;Fk)| ≤ c0(log(1/α))
( 1√

m
+

1√
n

)
.

(ii) Consider k ≥ 1. Assume P and Q have finite pth moments bounded by M for p = 2k+ ∆ for M,∆ > 0.
Then, for some constant c0 depending only on M,∆, k, and d, the following holds with probability at
least 1− α:

|Td,k − ρ(P,Q;Fk)| ≤ c0
α1/p

( 1√
m

+
1√
n

)
.

Assume, on the other hand, that X and Y have Orlicz norm of order 0 < p ≤ 1 bounded by M when
X ∼ P and Y ∼ Q. Then, for some constant c0 depending only on M,p, k, and d, the following holds
with probability at least 1− α:

|Td,k − ρ(P,Q;Fk)| ≤ c0(log(1/α))1/p
( 1√

m
+

1√
n

)
.

Proof of Theorem 11. First consider k ≥ 1. Note that a bound on any Orlicz norm of order 0 < p ≤ q implies
a bound on the moments of order 2k + ∆ of P,Q for ∆ = 1. Thus, assuming either the moment bound or the
Orlicz norm bound, Theorem 8 implies J =

∫ 1

0

√
logN[](ε;Gk, ‖ · ‖L2(P ))dε has a finite upper bound depending

only on the moments of order 2k + ∆ of P,Q, and on d, k,∆. Take F (x) = ‖x‖k2 . If we only assume a bound
on the moments of order 2k + ∆ of P,Q, then take p = 2k + ∆ ≥ 2. In this case, n−1/2+1/p ≤ 1, whence using
Lemma 7 and Markov’s inequality, we see that supf∈F |Pnf − Pf | ≤ c0/(α1/p

√
n) and supf∈F |Qnf −Qf | ≤

c0/(α
1/p
√
m) with probability at least 1− α. The asserted bound then holds by the triangle inequality.

On the other hand, if we assume a bound on the Orlicz norm of order p, Lemma 7 implies a constant
upper bound on the Orlicz norm of order p of

√
n supf∈F |Pnf − Pf | and

√
m supf∈F |Qnf −Qf | because

(1 + log n)1/2/n1/2 ≤ 1. This gives us the desired tail bound by taking t = c0(log(1/α))1/p in the supremum
defining the Orlicz norm and Markov’s inequality.

Now consider k = 0. We take F as a constant 1 function, i.e., F = 1, and using Theorem 9 to bound the
integral J in this case. Because F = 1 has a finite Orlicz norm of order p = 1, the asserted tail bound follows
from Lemma 7.

We show how this result implies Theorem 6. By Theorem 5, if P = Q, then Td,k = Op(
√

(n+m)/(nm).
Because 1/tm,n = o(

√
n+m) = o(

√
(nm)/(n+m)), we see that the test rejects with asymptotic probability

0. On the other hand, if P 6= Q, then by Theorem 4, we have ρ(P,Q;Fk) > 0. By Theorem 11, we have
Td,k

p→ ρ(P,Q;Fk). Because tm,n → 0, this implies that the test rejects with asymptotic probability 1.

H Proof of Theorem 7
We will develop the following nonasymptotic statement about type II error control using permutations, from
which the asymptotic statement in Theorem 7 can be deduced.

Theorem 12. Assume P and Q have the bounded domains included in the L-radius Euclidean ball whose
center is the origin in Rd. If k = 0, additionally assume P and Q each has density satisfying (18). Then,
there exists a constant C which only depends on (L, d, k) when k ≥ 1 or (L, d, k,M∞) when k = 0, such that
if m,n ≥ 2 and β ∈ (0, 1] satisfies

ρ(P,Q;Fk) ≥ C
√

1

m
+

1

n
×
(

log(m+ n) + log
( 1

α

)
+

1

β1/(2k+1)

)
, (19)

then the permutation test with the p-value defined in (3) with the full permutations controls the type II error,
i.e., under the alternative hypothesis H1 : P 6= Q, the p-value p in (3) satisfies PH1

(p ≤ α) ≥ 1− β.
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We show how this can be used to prove Theorem 7. Choose any β ∈ (0, 1]. Due to the condition on αm,n,
we know that for large enough m and n, (19) is satisfied. Therefore,

lim
m,n→∞

PH1
(p ≤ αm,n) ≥ 1− β.

This implies limm,n→∞ PH1(p ≤ αm,n) = 1 since β is arbitrary in (0, 1]. Combined with the finite-sample
type I error property of permutation tests, and the condition αm,n → 0, this proves Theorem 7. The rest of
this section is devoted to proving Theorem 12.

H.1 Additional notation
Define Sm+n as a set of all possible permutations for (1, . . . ,m+ n). Recall the notations in (3): π denotes
a permutation such that π ∈ Sm+n; z = (z`)

m+n
`=1 = (x1, . . . , xm, y1, . . . , yn); applying permutation π to z

outputs zπ. To emphaisze the dependency on the data, we may use the notation Td,k(z) and Td,k(zπ). Define
a vector

a = (a`)
m+n
`=1 = (1/m, . . . , 1/m︸ ︷︷ ︸

m

,−1/n, . . . ,−1/n︸ ︷︷ ︸
n

).

Note that
∑m+n
`=1 a` = 0. With the permutation π, we have aπ = (aπ(`))

m+n
`=1 . Define θ(w, b) = (θ(w, b)`)

m+n
`=1

and θ(w, b)` = (wTz` − b)k+. For brevity, we write θ(w, b) instead of θ(w, b; z) although θ(w, b) is a function
of z. We can rewrite Td,k(z) with θ(w, b):

Td,k(z) = max
w,b∈Sd−1×[0,∞)

∣∣∣ 1

m

m∑
i=1

(wTxi − b)k+ −
1

n

n∑
i=1

(wTyi − b)k+
∣∣∣ = max

(w,b)∈Sd−1×[0,∞)

∣∣∣〈θ(w, b), a〉∣∣∣.
Moreover, we can rewrite the permuted test statistic Td,k(zπ) in a similar format:

Tπd,k(z) = Td,k(zπ) = max
(w,b)∈Sd−1×[0,∞)

∣∣∣〈θ(w, b), aπ〉∣∣∣. (20)

Note that Tπd,k(z) is a function of π when z is fixed. Define the (1− α)-quantile of all permuted test statistics
(Tπd,k(z))π∈Sm+n

, given z, as the following:

t1−α(z) = inf
{
t : Pπ∼Unif(Sm+n)

(
Tπd,k(z) ≤ t

∣∣∣ z) ≥ 1− α
}
. (21)

Define a random variable X(w, b) = 〈θ(w, b), aπ〉, which is a function of z ∼ Pm ×Qn and π ∼ Unif(Sm+n).
However, we use the notation X(w, b) instead of X(w, b; zπ), again for brevity. Then, Tπd,k(z) can be also
written as

Tπd,k(z) = max
(w,b)∈Sd−1×[0,∞)

∣∣∣X(w, b)
∣∣∣. (22)

H.2 Proof of Theorem 12
We need the following result, which will be proved later.

Lemma 8. Assume the same as Theorem 7. For k ≥ 0, define a constant

tm,n,α = CL,d,k

√
1

m
+

1

n

(
log
( 1

α

)
+ log (m+ n)

)
(23)

where CL,d,k(,M∞) is a constant which only depends on (L, d, k) for k ≥ 1 and (L, d, k,M∞) for k = 0. Recall
the definition of t1−α(z) in (21). Then, for any given samples z, we have t1−α(z) ≤ tm,n,α.

Assuming Lemma 8 holds, we can prove Theorem 12. Since P and Q have bounded domain, they have
finite moments of order 2k + 1. Also, for k = 0, we have additionally assumed the boundedness of the density
pwTx. Thus, by Theorem 11, there exists a constant cL,d,k(,M∞) which only depends on (L, d, k) for k ≥ 1 or
(L, d, k,M∞) for k = 0, such that∣∣∣Td,k − ρ(P,Q;Fk)

∣∣∣ ≤ cL,d,k(,M∞)

β1/(2k+1)

( 1√
m

+
1√
n

)
with probability at least 1− β.
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Note that the randomness from the above equation comes from xi
i.i.d.∼ P and yj

i.i.d.∼ Q. By choosing the
constant C in Theorem 7 as C = max{CL,d,k , cL,d,k(,M∞)}, we can easily observe that

tm,n,α ≤ ρ(P,Q;Fk)−
cL,d,k(,M∞)

β1/(2k+1)

( 1√
m

+
1√
n

)
.

Therefore, under the alternative hypothesis H1, we have

Pz
(
Td,k(z) < tm,n,α

)
≤ Pz

(
Td,k(z) ≤ ρ(P,Q;Fk)−

cL,d,k(,M∞)

β1/(2k+1)

( 1√
m

+
1√
n

))
≤ β. (24)

Finally combining (24) with Lemma 8, we have

Pz
(
t1−α(z) > Td,k(z)

)
≤ P

(
t1−α(z) > tm,n,α

)
+ P

(
Td,k(z) < tm,n,α

)
≤ 0 + β = β,

which concludes the proof of Theorem 12. Now to prove Lemma 8 is the only remaining part.

H.3 Proof sketch of Lemma 8
The proof Lemma 8 follows techniques developed in Green et al. (2024). Since the proof consists of multiple
steps, we introduce the outline of the proof here before we dive in.

1. Fix z. Find a “good” finite subset Cgood of Sd−1 × [0,∞), of cardinality Ngood = |Cgood| <∞. For any
C ⊆ Sd−1 × [0,∞), define

Tπd,k,C(z) = max
(w,b)∈C

∣∣∣〈θ(w, b), aπ〉∣∣∣ = max
(w,b)∈C

∣∣∣X(w, b)
∣∣∣. (25)

We control Ngood and the approximation error |Tπd,k,Cgood
(z)− Tπd,k(z)|.

2. Find a high-probability upper bound for X(w, b) for each (w, b) ∈ Cgood. Here z is fixed, and hence the
only randomness is rooted from π ∼ Unif(Sm+n).

3. Find a high-probability upper bound for Tπd,k,Cgood
(z). Again, π is the only source of randomness.

4. Lastly, we get a high-probability upper bound for Tπd,k(z), with the results from the first and third steps.

H.4 Proof of Lemma 8
The proof follows the steps explained in Appendix H.3. Throughout the whole proof, we consider z is fixed.

H.4.1 Cgood and the approximation error |Tπd,k,Cgood
(z)− Tπd,k(z)|

Here we will prove the following Lemma.

Lemma 9. We have the following finite subsets of C◦ and Cε of Sd−1 × [0,∞), whose sizes are N◦ = |C◦| and
Nε = |Cε|.

• Consider k = 0. There exists C◦ such that

logN◦ ≤ (d+ 1) log(1 +m+ n) and
∣∣∣Tπd,k(z)− Tπd,k,C◦(z)

∣∣∣ = 0. (26)

• Consider k ≥ 1. For any ε > 0, there exists Cε such that

logNε ≤ C ′L,d,k log
(

1 +
m+ n

ε

)
and

∣∣∣Tπd,k(z)− Tπd,k,Cε(z)
∣∣∣ ≤ ( 1

m
+

1

n

)
ε, (27)

where C ′L,d,k is a constant only depends on (L, d, k).

We will use Cgood to denote C◦ when k = 0 or Cε when k ≥ 1.
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Case k = 0. Define C◦ = {(wi, bi) : i = 1, . . . , N◦} to satisfy the following condition:

{θ(wi, bi) : (wi, bi) ∈ C◦} = {θ(w, b) : (w, b) ∈ Sd−1 × [0,∞)}.

Note that such C◦ exists since θ(w, b)` ∈ {0, 1} for any (w, b) ∈ Sd−1 × [0,∞) and 1 ≤ ` ≤ m+ n.
An upper bound for N◦ can be obtained from a simple observation about the Vapnik–Chervonenkis (VC)

dimension and the shattering number3 of H = {1(wTx+ b ≥ 0) : (w, b) ∈ Sd−1 × [0,∞)}. It is well known
that the VC dimension of {1(wTx+ b ≥ 0) : (w, b) ∈ Sd−1 × R} is at most d+ 1. Thus the VC dimension of
H, saying VH, is at most d+ 1 as well. Therfore the shattering number

SH(m+ n) = max
v1,...,vm+n∈Rd

∣∣∣{(h(v1), . . . , h(vm+n)
)T ∈ Rm+n : h ∈ H

}∣∣∣
= max
v1,...,vm+n∈Rd

∣∣∣{((wTv1 − b)0
+, . . . , (w

Tvm+n − b)0
)T ∈ Rm+n : (w, b) ∈ Sd−1 × [0,∞)

}∣∣∣
satisfies SH(m+ n) ≤ (1 +m+ n)VH ≤ (1 +m+ n)d+1. This implies that we can find C◦ such that

logN◦ = logSH(m+ n) ≤ (d+ 1) log(1 +m+ n).

Also, by the definition of C◦ it is clear that the approximation error with C◦ is zero:∣∣∣Tπd,k(z)− Tπd,k,C◦(z)
∣∣∣ = 0.

Case k ≥ 1. Recall that in Appendix F, we introduced the (ε,P)-bracketing number for a class F and a
measure P. Define a discrete measure Rm+n = 1

m+n

∑m+n
`=1 δ(z`). Since ‖zi‖2 ≤ L for any i ∈ {1, . . . ,m+ n},

the measure Rm+n has finite moments of order 2k + 1 for any k ≥ 1, upper bounded by L2k+1.
Thus we can apply Lemma 5 and Theorem 8 for (ε, Rm+n)-bracketing number. Following Lemma 5, we

can construct (ε, Pm)-bracket of Gk of the form [`I,bj+1 , uI,bj ] as (17). Denote such bracket Kε. Theorem 8
implies the following upper bound on |Kε|, where C ′L,d,k is a constant only depending on (L, d, k):

log |Kε| ≤ C ′L,d,k log
(

1 +
1

ε

)
.

Using Kε/(m+n), we can construct Cε, a subset of Sd−1 × [0,∞) which is going to be used instead of
Sd−1 × [0,∞) with certain approximation error (which will be controlled later). For each κ = [`I,bj+1

, uI,bj ] ∈
Kε/(m+n), choose any wκ ∈ I and bκ ∈ (bj , bj+1]. Then define Cε = {(wκ, bκ) : κ ∈ Kε/m+n}. Also, Nε = |Cε|
satisfies the following upper bound:

logNε = log |Kε/(m+n)| ≤ C ′L,d,k log
(

1 +
m+ n

ε

)
.

Now we will control the approximation error of using Cε instead of Sd−1 × [0,∞). Recall that Tπd,k,Cε
is defined as (25). Choose any (w, b) ∈ Sd−1 × [0,∞). By the definition of the bracket, there exists
κ = [`I,bj+1

, uI,bj ] ∈ Kε/(m+n) such that `I,bj+1
(x) ≤ (wTx− b)k+ ≤ uI,bj (x) for any x ∈ Rd. Meanwhile, by

the construction of (wκ, bκ), it is clear that `I,bj+1
(x) ≤ (wT

κx− bκ)k+ ≤ uI,bj (x). Therefore, by the definition
of the bracket,∥∥∥(wT · −b)k+ − (wT

κ · −bκ)k+

∥∥∥2

L2(Rm+n)
≤
∥∥∥`I,bj+1 − uI,bj

∥∥∥2

L2(Rm+n)
≤ ε2

(m+ n)
2 ,

and hence, due to Cauchy-Schwarz inequality,(∥∥∥θ(w, b)− θ(wκ, bκ)
∥∥∥

1

)2

=

(m+n∑
`=1

∣∣∣θ(w, b)` − θ(wκ, bκ)`

∣∣∣)2

≤ (m+ n)

m+n∑
`=1

∣∣∣θ(w, b)` − θ(wκ, bκ)`

∣∣∣2
3It is also called the growth function or the shatter coefficient.
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= (m+ n)

m+n∑
`=1

∣∣∣(wTz` − b)k+ − (wT
κz` − bκ)k+

∣∣∣2
= (m+ n)

2
∥∥∥(wT · −b)k+ − (wT

κ · −bκ)k+

∥∥∥2

L2(Rm+n)
≤ ε2.

Finally, we can check the upper bound for the approximation error of using (wκ, bκ) instead of (w, b):∣∣∣|X(w, b)| − |X(wκ, bκ)|
∣∣∣ ≤ |X(w, b)−X(wκ, bκ)| =

∣∣∣∑m+n

`=1

(
θ(w, b)` − θ(wκ, bκ)`

)
aπ`

∣∣∣
≤
∑m+n

`=1

∣∣∣(θ(w, b)` − θ(wκ, bκ)`

)
aπ`

∣∣∣
≤ max

( 1

m
,

1

n

)∥∥∥θ(w, b)− θ(wκ, bκ)
∥∥∥

1
≤
( 1

m
+

1

n

)
ε.

This directly implies ∣∣∣Tπd,k(z)− Tπd,k,Cε(z)
∣∣∣ ≤ ( 1

m
+

1

n

)
ε.

H.4.2 High-probability upper bound for |Xw,b| for each (w, b) ∈ Cgood

We need a following lemma from Corollary 2.2 in Albert (2019).

Lemma 10. Let {bij}Ni,j=1 be an N ×N array of numbers, and π be a permutation distributed Unif(SN ).
Define a random variable Ui = bi,π(i) for i ∈ {1, . . . , N}. Note that π is the only randomness in Ui. Assume
that (i) E[Ui] = 0, (ii) Var[

∑N
i=1 Ui] ≤ σ2, and (iii) |Ui| ≤ b with probability 1. Then for any t ≥ 0,

P
(∣∣∣ n∑

i=1

Ui

∣∣∣ ≥ t) ≤ 16e1/16 exp
(
− t2

256(σ2 + bt)

)
.

This implies that∣∣∣ n∑
i=1

Ui

∣∣∣ ≤ σ√256 · log
(16e1/16

δ

)
+ 256 · b log

(16e1/16

δ

)
with probabtility at least 1− δ.

In this subsection, we only considerX(w, b) with w, b ∈ Cgood. Recall the definitionX(w, b) =
∑m+n
`=1 θ(w, b)`a

π
` ,

and note that Eπ∼Unif(Sm+n)[a
π
` | z] = m · (1/m) + n · (−1/n) = 0. Write X(w, b)` = θ(w, b)`a

π
` . To use the

lemma we will check the following three statements, where z is fixed:

1. Eπ∼Unif(Sm+n)[X(w, b)` | z] = 0 for any `.

2. Var(X(w, b) | z) ≤ σ2 where σ = Lk
√

2( 1
m + 1

n ).

3. |X(w, b)`| ≤ b where b = Lk( 1
m + 1

n ) for any `.

First statement. Note that z is fixed. Easily observe that

Eπ∼Unif(Sm+n)[X(w, b)` | z] = θ(w, b)` · Eπ∼Unif(Sm+n)[a
π
` | z] = 0.

Second statement. We need to first calculate Var(aπ` | z) and Cov(aπ` , a
π
h | z) for ` 6= h.

Var(aπ` | z) = Eπ∼Unif(Sm+n)[(a
π
` )2] =

m

m+ n
· 1

m2
+

n

m+ n
· 1

n2
=

1

mn

Cov(aπ` , a
π
h | z) = Eπ∼Unif(Sm+n)[a

π
` a

π
h | z] =

(
m
2

)(
m+n

2

) · 1

m2
+

mn(
m+n

2

) · −1

mn
+

(
n
2

)(
m+n

2

) · 1

n2

= −1/(m+ n− 1)

mn

(28)
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We are now ready to observe Var(X(w, b) | z).

Var(X(w, b) | z) = Var

(m+n∑
`=1

θ(w, b)`a
π
`

∣∣∣ z) =

m+n∑
`=1

Var
(
θ(w, b)`a

π
`

)
+
∑
6̀=h

Cov
(
θ(w, b)`a

π
` , θ(w, b)ha

π
h

)

=

m+n∑
`=1

(θ(w, b)`)
2 1

mn
−
∑
` 6=h

θ(w, b)`θ(w, b)h
1/(m+ n− 1)

mn
(by (28))

=
1

mn(m+ n− 1)

(
(m+ n)

(m+n∑
`=1

(θ(w, b)
`
)2
)
−
(m+n∑
`=1

θ(w, b)`

)2
)

≤ m+ n

mn(m+ n− 1)

(m+n∑
`=1

(θ(w, b)`)
2

)
=

m+ n

mn(m+ n− 1)
(m+ n)L2k (since θ(w, b)` = (wTz` − b)k+ ≤ ‖z`‖k2 , as b ≥ 0)

≤ 2L2k
( 1

m
+

1

n

)
(since m,n ≥ 1).

Third statement. Easily check that |X(w, b)`| = |θ(w, b)`aπ` | ≤ (wTz` − b)k+ ·max( 1
m ,

1
n ) ≤ Lk( 1

m + 1
n ).

Conclusion. With the above three statements and Lemma 10, we obtain the following high-probability
upper bound for |X(w, b)| for each (w, b) ∈ Cgood, where z is fixed: with probability at least 1− δ,

∣∣∣X(w, b)
∣∣∣ =

∣∣∣m+n∑
`=1

X(w, b)`

∣∣∣ ≤ Lk√ 1

m
+

1

n

√
512 · log

(16e1/16

δ

)
+ 256Lk

( 1

m
+

1

n

)
log
(16e1/16

δ

)
. (29)

As a reminder, the randomness in the above statements only comes from π ∼ Unif(Sm+n).

H.4.3 High-probability upper bound for Tπd,k,Cε
First, for each (w, b) ∈ Cgood, apply (29) with δ ← δ/Ngood. Then, apply union bound over all (w, b) ∈ Cgood

to get an upper bound for Tπd,k,Cgood
(z) = max(w,b)∈Cgood

|X(w, b)|. This gives us the following, where z is
fixed: with probability at least 1− δ,

Tπd,k,Cgood
(z) ≤ Lk

√
1

m
+

1

n

√
512 ·

{
log
(16e1/16

δ

)
+ logNgood

}
+256Lk

( 1

m
+

1

n

){
log
(16e1/16

δ

)
+logNgood

}
.

Recall that we have already got the upper bound for Ngood in Lemma 9. Plugging in this upper bound, since
1
m + 1

n ≤ 1, we have the following statement: there exists a constant C ′′L,d,k only depending on (L, d, k) such
that with probability 1− δ,

• for k = 0,

Tπd,k,C◦(z) ≤ C
′′
L,d,k

√
1

m
+

1

n

{
log
(1

δ

)
+ log

(
1 +m+ n

)}
, (30)

• and for k ≥ 1,

Tπd,k,Cε(z) ≤ C
′′
L,d,k

√
1

m
+

1

n

{
log
(1

δ

)
+ log

(
1 +

m+ n

ε

)}
. (31)

H.4.4 High-probability upper bound for Tπd,k
Still z is fixed. Combining the approximation error in Lemma 9 and (31) gives us that, with probability at
least 1− δ,
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• for k = 0,

Tπd,k(z) ≤ 0 + C ′′L,d,k

√
1

m
+

1

n

{
log
(1

δ

)
+ log

(
1 +

m+ n

ε

)}
.

• for k = 1,

Tπd,k(z) ≤
( 1

m
+

1

n

)
ε+ C ′′L,d,k

√
1

m
+

1

n

{
log
(1

δ

)
+ log

(
1 +

m+ n

ε

)}
.

When we choose ε = ( 1
m + 1

n )−1/2, the above inequality is rewritten as

Tπd,k(z) ≤
√

1

m
+

1

n
+ C ′′L,d,k

√
1

m
+

1

n

(
log
(1

δ

)
+ log(1 +m+ n)

)
.

Then, by plugging in δ = α, we can rewrite the above two bullet points in one statement as the following:
there exists a constant CL,d,k only depending on (L, d, k) such that

Tπd,k(z) ≤ CL,d,k

√
1

m
+

1

n

(
log
( 1

α

)
+ log(m+ n)

)
= tm,n,α with probability at least 1− α,

where we recall the definition of tm,n,α in (23). In other words, t1−α(z) ≤ tm,n,α, which concludes the proof
of Lemma 8. Therefore, this completes the proof of Theorem 12, presented in Appendix H.2.

I Auxilliary technical lemmas
Lemma 11. For a, b ∈ R and integer k ≥ 1,∣∣ak+ − bk+∣∣ ≤ k(ak−1

+ + bk−1
+ )|a− b|,

with the convention that when k − 1 = 0, we set 00 = 1.

Proof of Lemma 11. Without loss of generality, assume a ≤ b. The function x 7→ xk+ has derivative kxk−1
+

almost everywhere (even under our convention for when k − 1 = 0). For every point x ∈ [a, b], we have
|kxk−1

+ | ≤ k(ak−1
+ + bk−1

+ ), because |x+| ≤ max{a+, b+}. Thus, integrating the derivative along the path
between a and b gives the result.

Lemma 12. Assume µ ∈ M(Sd−1 × [0,∞)). Then, for any 0 ≤ m ≤ k − 1 and any function c(w, b) :
Sd−1 × [0,∞)→ R which is bounded by |c(w, b)| ≤ C for some constant C, we have

x 7→
∫
Sd−1×[0,∞)

(
c(w, b)(wTx− b)k−m+

)
dµ(w, b) (32)

is continuous at every x ∈ Rd.

Proof of Lemma 12. Denote f(x) =
∫
Sd−1×[0,∞)

c(w, b)(wTx− b)k−m+ dµ(w, b). Let |µ| be the total variation
measure of the signed measure µ. Note that ‖µ‖TV = ‖ |µ| ‖TV. For x, y ∈ Rd,∣∣f(x)− f(y)

∣∣ ≤ ∫
Sd−1×[0,∞)

|c(w, b)|
∣∣(wTx− b)k−m+ − (wTy − b)k−m+

∣∣ d|µ|(w, b)

≤ (k −m)

∫
Sd−1×[0,∞)

|c(w, b)|
(
(wTx− b)k−m−1

+ + (wTy − b)k−m−1
+

)
|wT(x− y)| d|µ|(w, b)

≤ (k −m)‖x− y‖
∫
Sd−1×[0,∞)

|c(w, b)|
(
(‖w‖2‖x‖2)k−m−1 + (‖w‖2‖y‖2)k−m−1

)
dµ(w, b)

≤ (k −m)‖x− y‖C ‖µ‖TV

(
‖x‖k−m−1

2 + ‖y‖k−m−1
2

)
,

where in the second inequality we have used Lemma 11. Since the right-hand side goes to 0 as y → x, the
proof is complete.
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J Sensitivity analysis: log transform
In Equation (10), which is the basis for the experiments in the main paper, we use a log transform of the IPM
term in the criterion. The current section compares the performance of (local) optimizers of this problem,
which we call the “log” problem, for short, to those of

min
f=f

(aj,wj,bj)N
j=1

bj≥0, j=1,...,N

− 1

kN

∣∣Pm(f)−Qn(f)
∣∣+

λ

k

(
1

N

N∑
i=1

|ai|‖wi‖k2
)2

, (33)

which we call the “no-log” problem, for short. In the above display, we can see that there is no log transform
on the IPM term, but in addition, the penalty on the RTVk seminorm has been squared. This is done because
without such a transformation, one can show that the problem (IPM term plus RTVk seminorm) does not
attain its infimum, unless λ is chosen very carefully so that the infimum in zero. By squaring the penalty, the
criterion in (33) is coercive, which guarantees (since it is also continuous) that it will attain its infimum. In
both (10) and (33), we fix λ = 1, and use torch.optim.Adam with betas parameter (0.9, 0.99). We explore
the behavior for different learning rates and numbers of iterations. Throughout, we focus on the “var-one”
setting described in Table 1, and use N = 10 neurons. The summary of our findings is as follows.

• Optimizing the “log” problem typically results in a larger IPM value compared to the “no-log” problem,
especially for larger k, d, and especially under the null.

• Optimizing the “log” and “no-log” problems generally results in similar ROC curves, however, for larger
k, d, the “no-log” ROC curves can actually be slightly better. This actually appears to be driven by the
fact that “no-log” optimization is relatively worse in terms of the IPM values obtained under the null,
which gives it a slightly greater separation and slightly higher power.

• The “log” problem is more robust to the choice of learning rate, both in terms of the IPM values and
ROC curves obtained, especially for larger k, d.

• The “log” problem typically shows faster convergence (number of iterations required to approach a local
optimum), especially for larger k, d.

Figures 6–12 display the results from our sensitivity analyses. In each one, the figure caption explains the
salient points about the setup and takeaways. We remark that results for k = 4 (not included for brevity)
show qualitatively similar but even more extreme behavior.

K Sensitivity analysis: number of neurons
In this section, we now turn to investigate the role of the number of neurons N . We stick with the “log”
problem (10) as in the experiments in the main text (with the previous section providing evidence that the
log transform leads to greater robustness in many regards). The setup is essentially the same as that used in
the last section, except that we vary the number of neurons from N = 1 to N = 20. The summary of our
findings is as follows.

• Using a larger number of neurons often improves the achieved IPM value, especially for larger k, d;
however, going past N = 10 does not seem to make a big difference in our experiments.

• Using a larger number of neurons generally results in a better ROC curve, especially for larger k, d;
again, going past N = 10 does not seem to make a big difference in our experiments.

• Using a larger number of neurons can result in faster convergence, though not dramatically.

• Using a larger number of neurons is typically more robust to the choice of learning rate, both in terms
of the IPM values and ROC curves obtained, especially for larger k, d.

Figure 13–17 display the results from our sensitivity analyses. As before, each figure caption presents the
salient points about the setup and takeaways, and we remark that results for k = 4 (not included for brevity)
show qualitatively similar but even more extreme behavior.
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(b) k = 3

Figure 6: IPM values obtained by optimizing the “log” (x-axis) and “no-log” (y-axis) problems. Each point
represents a set of samples drawn from P,Q, and the result of running T = 1200 iterations with learning rate
0.01, for each criterion. (This learning rate was chosen to be favorable to the “no-log” problem.) Points below
the diagonal mean that the “log” criterion results in a larger IPM value, which we see is especially prominent
for larger k, d, and more prominent under the null.
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Figure 7: ROC curves from the “log” and “no-log” problems, for the same data as in Figure 6. They are very
similar except for the largest k, d pair, where the “no-log” ROC curve is slightly better. Inspecting Figure 6b,
this is likely due to the fact that the null IPM values here are relatively smaller (poorer optimization).
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Figure 8: IPM values corresponding to learning rates 0.01 (x-axis) and 10 (y-axis), for the same data as in
Figure 6. There is little to no difference for the “log” problem (points near the diagonal), and a much bigger
difference for the “no-log” problem, where in most cases the larger learning rate is worse (points below the
diagonal).
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Figure 9: IPM values corresponding to learning rates 0.01 (x-axis) and 10 (y-axis), for the same data as in
Figure 6. There is little to moderate for the “log” problem (points around the diagonal), and a much bigger
difference for the “no-log” problem, where in nearly all cases the larger learning rate is clearly much worse
(points below the diagonal).
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Figure 10: IPM values corresponding to learning rates from 0.01 to 10, for the same data as in Figure 6. In
all cases, the “log” problem results in much more stable ROC curves with respect to the choice of learning
rate, especially for larger k, d.
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(b) k = 3, lr = 0.01
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(c) k = 1, lr = 0.5
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(d) k = 3, lr = 0.5

Figure 11: IPM value as a function of iteration for the “log” and “no-log” problems. (cf. the y-axis says
the MMD instead of the IPM.) This is done over 20 repetitions (draws of samples from P,Q); solid lines
represent the median and shaded areas the interquartile range (computed over repetitions), at each iteration.
For smaller k, d, the “log” and “no-log” convergence speeds are fairly similar, but for larger k, d, the “no-log”
convergence speed is clearly slower. For the larger learning rate, we can also see that in many instances
the “no-log” iterations fail to converge, and bounce up and down in IPM value, without staying at a local
optimum.
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Figure 12: ROC curves for the “log” and “no-log” problems, at different iteration numbers, over the same data
in Figure 11. The “log” curves are quite robust to the choice of the number of iterations, whereas the “no-log”
ones are not, especially for larger k, d. In other words, the “log” problem typically shows faster convergence
(number of iterations required to approach a local optimum), especially for larger k, d.
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Figure 13: IPM values when N = 10 (x-axis) and N = 2 (y-axis). Each point represents a set of samples
drawn from P,Q, and the result of running T = 1200 iterations with learning rate 0.5, when k = 3. Points
below the diagonal mean that N = 10 results in a larger IPM value, which we see is especially prominent for
larger k, d, and more prominent under the null.
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Figure 14: IPM values when N = 10 (x-axis) and N = 20 (y-axis). The setup is as above. Here we see no
clear improvement in moving from N = 10 to N = 20 neurons.
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Figure 15: ROC curves as the number of neurons varies from N = 1 to N = 20, for the same data as in
Figure 13. The ROC curves look generally better for a larger number of neurons, especially for larger k, d.
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Figure 16: IPM value as a function of iteration for N = 10 and N = 2 neurons. This is carried out over 20
repetitions (draws of samples from P,Q); solid lines represent the median and shaded areas the interquartile
range (computed over repetitions), at each iteration. The convergence speed is sometimes slightly faster with
N = 10 neurons but the differences are not large.
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Figure 17: ROC curves as the number of neurons varies from N = 1 to N = 20, and for varying learning
rates, for the same data as in Figure 13. A larger number of neurons is typically more robust to the choice of
learning rate, especially for larger d.
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L Comparison to polynomial kernel MMD
Figure 18 compares the RKS tests to the polynomial kernel MMD tests using the data as in Figure 4 in the
main paper. We have chosen linear, quadratic, and cubic degree polynomials by (rough) analogy to the use
of k = 1, 2, 3 in RKS. The colors of the RKS test of degree k and kernel MMD with a polynomial kernel of
degree k are chosen to match. However, we can see that these two frameworks produce tests with generally
quite different behaviors: for example, compare the behavior of RKS with k = 1 to kernel MMD with linear
kernel, in the “t-coord” setting.

Altogether, the behavior of kernel MMD with polynomial kernel is as expected: it performs quite well
when P 6= Q differ according to the alternative (moment difference) that is anticipated by the test, and is
otherwise essentially powerless.
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Figure 18: ROC curves across the same experimental settings as in Figure 4, but now with kernel MMD using
a polynomial kernel of linear, quadratic, and cubic degrees. The ROC curve from the likelihood ratio test is
also shown, indicating the best possible performance in each case (it depends on oracle knowledge of P,Q).
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