
Flexible Model Aggregation for Quantile Regression

Rasool Fakoor1, Taesup Kim2, Jonas Mueller3, Alexander Smola1, and Ryan J. Tibshirani1,4

1Amazon Web Services, 2Seoul National University, 3Cleanlab, 4Carnegie Mellon University

Abstract

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify
uncertainty in predictions, or to model a diverse population without being overly reductive. For instance,
epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify
the range of possible values accurately. As such, many models have been developed for this problem
over many years of research in statistics, machine learning, and related fields. Rather than proposing yet
another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for
aggregating any number of conditional quantile models, in order to improve accuracy and robustness.
We consider weighted ensembles where weights may vary over not only individual models, but also over
quantile levels, and feature values. All of the models we consider in this paper can be fit using modern
deep learning toolkits, and hence are widely accessible (from an implementation point of view) and
scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we
develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration
methods. These can be used without any modification of the original library of base models. We also
review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a
few new results to this literature (for example, the fact that post sorting or post isotonic regression can
only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons
across 34 data sets from two different benchmark repositories.

1 Introduction
Consider the problem of assessing the height of a child. Common practice is to consult a growth chart, such
as the ones provided by the CDC (Kuczmarski, 2000) and to review the distribution of heights, as relevant to
the age and sex of the child. In doing so, the medical practitioner performs quantile regression, conditioning
their estimates on covariates (age, sex) to obtain a conditional height distribution. While it would be possible
to employ more standard regression methods for this problem, which would deliver an estimate of the mean
height as a function of the covariates, quantile regression provides something more: it gives us a sense of
what to expect in the spread of the response variable (height) as a function of the covariates.

The development of tools for conditional quantile estimation has a rich history in both econometrics and
statistics. These tools are widely-used for quantifying uncertainty, and also for characterizing heterogeneous
outcomes across diverse populations. As this is an important problem, many methods to arrive at quantile
estimates abound. It stands to reason that a combination of different techniques can improve on the accuracy
offered by individual base estimates. Precisely in this vein, the current paper considers the problem of model
aggregation, i.e., the task of combining any number of quantile regression models into a unified estimator.

To fix notation, let Y ∈ R be a response variable of interest, and X ∈ X be an input feature vector used
to predict Y . A generic way to approach uncertainty quantification is to estimate the conditional distribution
of Y |X = x. However, this can be a formidable challenge, especially in high dimensions (X = Rd, where d is
large). A simpler alternative is to estimate conditional quantiles of Y |X = x across a discrete set of quantile
levels T ⊆ [0, 1], that is, to estimate g∗(x; τ) = F−1Y |X=x(τ) for τ ∈ T . Here, for a random variable Z with a
cumulative distribution function (CDF) FZ , we denote its level τ quantile by

F−1Z (τ) = inf{z : FZ(z) ≥ τ}.

For example, we might choose T = {0.01, 0.02, . . . , 0.99} to finely characterize the spread of Y |X = x.

1

The aggregation problem can be motivated as follows. Suppose we have a number of conditional quantile
estimates, for instance, through a set of different quantile regression methods, or various teams submitting
their estimates to a consensus board or as entries in a prediction competition. In all of these cases, we need
an automated strategy to determine which estimate(s) of which quantile level(s) should be combined into a
consensus model.

More formally, suppose we have a collection {ĝj}pj=1 of conditional quantile models, parametrized by a set
of common quantile levels T . Each model ĝj , which we refer to as a base model, provides an estimate of the
true conditional quantile function g∗. It is convenient to view g∗, and each ĝj , as functions from X to Rm, so
that g∗(x) outputs a vector of dimension m = |T |, the number of quantile levels. We denote the components
of this vector by g∗(x; τ) for τ ∈ T , and similarly for each ĝj(x). Given p×m estimates of m quantile levels
by p base models, each one a function of x ∈ X , we will study ensemble estimates, of the generic form:

ĝ = H(ĝ1, . . . , ĝp) : X → Rm.

In this paper, we focus on linear aggregation procedures H, though we allow the aggregation weights in these
linear combinations to be themselves functions of input feature values x, as in:

ĝw(x) =

p∑
j=1

wj(x) · ĝj(x), x ∈ X . (1)

This form may seem overly restrictive. That said, each term ĝj on its own can be quite powerful. Moreover,
as we show later, a sufficiently flexible parametrization for the weight functions can provide all the modeling
power that we need. In particular, we will consider various aggregation strategies in which each weight wj(x)
is a scalar, vector, or matrix. The product “ ·” between wj(x) and ĝj(x) in (1) is to be interpreted accordingly
(more below).

Our main purpose in what follows is to provide a guided tour of how one might go about fitting quantile
aggregation models of the form (1), of varying degrees of flexibility, and to walk through some of the major
practical considerations that accompany fitting and evaluating such models. The aggregation strategies that
we consider can be laid out over the following two dimensions.

1. Coarse versus medium versus fine: this dimension determines the resolution for the parametrization of
the weights in (1).

• A coarse aggregator uses one weight wj per base model ĝj , and we accordingly interpret “·” in (1)
as a scalar-vector product.

• A medium aggregator uses one weight wτj per base model ĝj and quantile level τ , and we interpret
“·” in (1) as a Hadamard (elementwise) product between vectors. This allows us to place a higher
amount of weight for a given model in the tails versus the center the distribution.

• A fine aggregator uses one weight wτ,νj per base model ĝj , output quantile level τ (for the output
quantile), and input quantile level ν (from a base model), and we interpret “·” in (1) as a matrix-
vector product. This allows us to use all of the quantiles from all base models in order to form an
estimate at a single quantile level for the aggregate model (e.g., the aggregate median is informed
by all quantiles from all base models, not just their medians).

2. Global versus local : this dimension determines whether or not the weights in (1) depend on x. A global
aggregator uses constant weights, wj(x) = wj for all x ∈ X , whereas a local aggregator allows these to
vary locally (and typically smoothly) in x.

Apart from model frameworks, the considerations we give the most attention to revolve around ensuring
quantile noncrossing : ĝ(x; τ) ≤ ĝ(x; τ ′) for any x and τ < τ ′; and calibration: ĝ(x; τ ′)− ĝ(x; τ) contains the
response variable with probability ≈ τ ′ − τ , at least in some average sense over x ∈ X . Finally, we approach
all of this work through the lens of the deep learning, designing methodology to be compatible with standard
deep learning optimization toolkits so as to leverage their convenience of implementation and scalability.

Before delving into any further details, we present some of our main empirical results in Figure 1. Here
and henceforth we use the term deep quantile aggregation (DQA) to refer to the aggregation model in our

2

0 5 10 15 20 25 30 35
Data set index

0

1

2

3

4

5

R
el

at
iv

e
W

IS

0.00 0.02 0.06 0.08
0.25 0.33 0.36

0.55 0.57 0.60 0.62
0.72 0.65 0.67 0.66 0.71 0.75 0.76

0.86 0.91 0.92 0.93 0.92 0.93 0.94 0.95 0.96 0.98 0.98 0.99 1.00 1.00 1.00 1.00

DQA
PVE

CGN
SQR

DQR
RandomForest

ExtraTrees
LightGBM

Average
Median

QRA
FQRA

Figure 1: Weighted interval score (WIS), averaged over out-of-sample predictions, for deep quantile aggregation (DQA)
and various quantile regression methods. DQA is the most flexible aggregation model of the form (1) that we consider
in this paper. The comparison is made over 34 data sets, ordered along the x-axis by proportion of variance explained
(PVE), as in (2). The y-axis displays the WIS of each method relative to DQA, so that 1 indicates equal performance
to DQA, and a number greater than 1 indicates worse performance than DQA. We can see that DQA performs very
well overall, especially for larger PVE values (problems with higher signal-to-noise ratios).

framework with the greatest degree of flexibility, a local fine aggregator where the local weights are fit using
a deep neural network, and we use an adaptive noncrossing penalty, along with gradient propogation of the
min-max sweep isotonization operator, to ensure quantile noncrossing (Section 4 provides more details). The
figure compares DQA and various other quantile regression methods across 34 data sets (Section 6 gives more
details). The error metric we use is weighted interval score (WIS), averaged over out-of-sample predictions
(lower WIS is better; more details are given in the next section).

Shown on the y-axis is the relative WIS of each quantile regression method to DQA, where 1 indicates
equal WIS performance to DQA, and a number greater than 1 indicates worse performance than DQA. Each
point on the x-axis represents a data set, and we order them by increasing proportion of variance explained
(PVE), measured with respect to DQA ĝ (as a proxy for g∗) and test samples (X∗i , Y

∗
i), i = 1, . . . ,m by:

PVE(ĝ) = 1−
∑m
i=1(Y ∗i − ĝ(X∗i ; 0.5))2∑m

i=1(Y ∗i − Ȳ ∗)2
, (2)

where ĝ(x; 0.5) denotes the estimate of the conditional median of Y |X = x from DQA, and Ȳ ∗ = 1
m

∑m
i=1 Y

∗
i

is the sample mean of the test responses. The PVE curve itself is drawn in blue on the figure. The bottom
four methods, according to the legend ordering, represent different aggregators, and the rest are individual
base models (some are highly nonlinear and flexible themselves) that are fed into each aggregation procedure.
As we can see, DQA performs very well across the board, and particularly for higher PVE values (which we
can think of as problems that have higher signal-to-noise ratios, presenting a greater promise for the flexibility
embodied by DQA), it can provide huge improvements on the base models and other aggregators. We should
be clear that DQA is not uniformly better than all methods on all data sets—some points in the figure lie
below 1. We provide an alternate visualization in in Appendix B.3 in which this is more clearly visible.

3

1.1 Related work
Quantile regression. Statistical modeling of quantiles dates back to Galton in the 1890s, however, many
facts about quantiles were known long before (Hald, 1998). The modern view on conditional quantile models
was pioneered by Koenker’s work on quantile regression in the 1970s (Koenker and Bassett, 1978); e.g., see
Koenker and Hallock (2001); Koenker (2005) for nice overviews. This has remained a topic of great interest,
with developments in areas such as kernel machines (Takeuchi et al., 2006), additive models (Koenker, 2011),
high-dimensional regression (Belloni and Chernozhukov, 2011), and graphical models (Ali et al., 2016), just
to name a few. Important developments in distribution-free calibration using quantile regression were given
in Romano et al. (2019); Kivaranovic et al. (2020) (which we will return to later). The rise of deep learning
has spurred on new progress in quantile regression with neural networks, e.g., Hatalis et al. (2017); Dabney
et al. (2018); Xie and Wen (2019); Tagasovska and Lopez-Paz (2019); Benidis et al. (2020).

Model aggregation. Ensemble methods occupy a central place in machine learning (both in theory and in
practice). Seminal work on this topic arose in the 1990s on Bayesian model averaging, bagging, boosting, and
stacking; e.g., see Dietterich (2000) for a review. While the machine learning literature has mostly focused
on ensembling point predictions, distributional ensembles have a long tradition in statistics, with a classic
reference being Stone (1961). Combining distributional estimates is also of great interest in the forecasting
community, see Raftery et al. (2005); Timmermann (2006); Ranjan and Gneiting (2010); Gneiting and Ranjan
(2013); Gneiting and Katzfuss (2014); Kapetanios et al. (2015); Rasp and Lerch (2018); Cumings-Menon and
Shin (2020) and references therein.

To the best of our knowledge, the majority of work here has focused on combining probability densities,
and there has been less systematic practical exploration of how to best combine quantile functions, especially
from a flexible (nonparametric) perspective. Nowotarski and Weron (2015) proposed an aggregation method
they call quantile regression averaging (QRA), which simply performs quantile linear regression on the output
of individual quantile-parametrized base models. Variants of QRA have since been developed, for example,
factor QRA (FQRA) (Maciejowska et al., 2016) which applies PCA to reduce dimensionality in the space of
base model outputs before fitting the QRA aggregator. As perhaps evidence for the dearth of sophisticated
aggregation models1, simple quantile-averaging-type approaches have won various distributional forecasting
competitions (Gaillard et al., 2016; Smyl and Hua, 2019; Browell et al., 2020). Lastly, we note that the study
of quantile averaging actually dates back work by to Vincent (1912), and hence some literature refers to this
method as Vincentization. See also Ratcliff (1979) for relevant historical discussion.

1.2 Outline
An outline for the remainder of this paper is as follows.

• Section 2 presents background material on quantile regression, error metrics, and quantile aggregation.
This is primarily a review of relevant facts from the literature, but we do contribute a few small new
results, in Propositions 2 and 5.

• Section 3 gives the framework for aggregation methods that we consider in this paper (parametrized by
coarse/medium/fine weights on one axis, and global/local weights on the other, as explained earlier in
the introduction).

• Section 4 investigates methods for ensuring quantile noncrossing while fitting aggregation models, both
through explicit penalization, and use of differentiable isotonization operators.

• Section 5 discusses the use of conformal prediction (specifically, conformal quantile regression and CV+)
to improve calibration post-aggregation.

• Section 6 provides a broad empirical evaluation of the proposed aggregation methods alongside various
other aggregators and base models. Code to reproduce our all of experimental results is available at:
https://github.com/amazon-research/quantile-aggregation.

1To be fair, this could also be a reflection of the intrinsic difficulty of the forecasting problems in these competitions; for a
hard problem (low PVE), simple aggregators can achieve competitive performance with more complex ones, as seen in Figure 1.

4

https://github.com/amazon-research/quantile-aggregation

2 Background
We cover important background material that will help to understand our contributions presented later.

2.1 Quantile regression and scoring rules
Quantile regression. We begin by recalling the definition of the pinball loss, also called the tilted-`1 loss,
at a given quantile level τ ∈ [0, 1]. To measure the error of a level τ quantile estimate q against an observation
Z, the pinball loss is defined by (Koenker and Bassett, 1978):

ψτ (Z − q) =

{
τ |Z − q| Z − q ≥ 0

(1− τ)|Z − q| Z − q < 0.
(3)

For a continuously-distributed random variable Z, the expected pinball loss E[ψτ (Z − q)] is minimized over q
at the population-level quantile q∗τ = F−1Z (τ). This motivates estimation of q∗τ given samples Zi, i = 1, . . . , n
by minimizing the sample average of the pinball loss:

minimize
q

1

n

n∑
i=1

ψτ (Zi − q).

Quantile regression does just this, but applied to the conditional distribution of Y |X. Given samples (Xi, Yi),
i = 1, . . . , n, it estimates the true quantile function g∗(x; τ) = F−1Y |X=x(τ) by solving:

minimize
g∈G

1

n

n∑
i=1

ψτ (Yi − g(Xi)),

over some class of functions G (possibly with additional regularization in the above criterion). For example,
quantile linear regression takes G to be the class of all linear functions of the form g(x) = xTβ.

As we can see, quantile linear regression is quite a natural extension of ordinary linear regression—and
quantile regression a natural extension of nonparametric regression more generally—where the focus moves
from the conditional mean to the conditional quantile, but otherwise remains the same. The pinball loss (3)
is convex in q but not differentiable at zero (unlike the squared loss, associated with mean estimation), which
makes optimization slightly harder.

To model multiple quantile levels simultaneously, we can simply use multiple quantile regression, where
we solve

minimize
g∈G

1

n

n∑
i=1

∑
τ∈T

ψτ (Yi − g(Xi; τ)) (4)

over a discrete set T ⊆ [0, 1] of quantile levels. We will generally drop the qualifier “multiple”, and refer to (4)
as quantile regression.

Scoring rules. Another appeal of the pinball loss and the quantile regression framework is its connection
to proper scoring rules from the forecasting literature, which we detail in what follows.

With Y as our response variable of interest, let P be a predicted distribution (forecast distribution) and
S be a score function, which applied to P and Y , produces S(P, Y). Adopting the notation of Gneiting and
Raftery (2007), we write S(P,Q) = EQS(P, y), where EQ denotes the expectation under Y ∼ Q. Assuming
that S is negatively oriented (lower values are better), recall that S is said to be proper if S(P,Q) ≥ S(Q,Q)
for all P and Q. As Gneiting and Raftery put it: “In prediction problems, proper scoring rules encourage the
forecaster to make careful assessments and to be honest.”

For Y ∈ R, denote by F the cumulative distribution function (CDF) associated with P . The continuous
ranked probability score (CRPS) is defined by (Matheson and Winkler, 1976):

CRPS(F, Y) =

∫ ∞
−∞

(F (y)− 1{Y ≤ y})2 dy. (5)

5

This is a well-known proper score, and is popular in various forecasting communities (e.g., in the atmospheric
sciences), in part because it is considered more robust than the traditional log score. We also remark that
CRPS is equivalent to the Cramér-von Mises divergence between F and the empirical CDF 1{Y ≤ ·} based
on just a single observation Y . As such, it is intimately connected to kernel scores, and more generally, to
integral probability metrics (IPMs) for two-sample testing. For more, see Section 5 of Gneiting and Raftery
(2007).

The following reveals an interesting relationship between CRPS (5) and the pinball loss function (3):∫ ∞
−∞

(F (y)− 1{Y ≤ y})2 dy = 2

∫ 1

0

ψτ (Y − F−1(τ)) dτ. (6)

This appears to have been first noted by Laio and Tamea (2007). Their argument uses integration by parts,
but it ignores a few subtleties, so we provide a self-contained proof of (6) in Appendix A.1. We can see from
(6) that CRPS is equivalent (up to the constant factor of 2) to an integrated pinball loss, over all quantile
levels τ ∈ [0, 1]. This is quite interesting because these two error metrics are motivated from very different
perspectives, not to mention different parametrizations (CDF space versus quantile space).

A natural approximation to the integrated the pinball loss is given by discretizing, as in:∑
τ∈T

ψτ (Y − F−1(τ)),

for a discrete set of quantile levels T ⊆ [0, 1].2 The interesting connections now continue, in that the above
is equivalent to what is known as the weighted interval score (WIS), a proper scoring rule for forecasts
parametrized by a discrete set of quantiles. We assume the underlying quantile levels are symmetric around
0.5. The collection of predicted quantiles F−1(τ), τ ∈ T can then be reparametrized as a collection of central
prediction intervals (`α, uα) = (F−1(α/2), F−1(1− α/2)), α ∈ A (each interval here is parametrized by its
exclusion probability), and WIS is defined by:

WIS(F−1, Y) =
∑
α∈A

{
α(uα − `α) + 2 · dist(Y, [`α, uα])

}
, (7)

where dist(a, S) is the distance between a point a and set S (the smallest distance between a and an element
of S). This scoring metric appears to have been first proposed in Bracher et al. (2021), though the interval
score (an individual summand in (7)) dates back to Winkler (1972). WIS measures an intuitive combination
of sharpness (first term in each summand) and calibration (second term in each summand). The equivalence
between WIS and pinball loss is now as follows:∑

α∈A

{
α(uα − `α) + 2 · dist(Y, [`α, uα])

}
= 2

∑
τ∈T

ψτ (Y − F−1(τ)), (8)

where T = ∪α∈A{α/2, 1− α/2}. This is the result of simple algebra and is verified in Appendix A.2.
In summary, we have shown that in training a quantile regression model by optimizing pinball loss as in

(4), we are already equivalently optimizing for WIS (7), and approximately optimizing for CRPS (5), where
the quality of this approximation improves as the number of discrete quantile levels increases.

2.2 Noncrossing constraints and post hoc adjustment
An important consideration in fitting conditional quantile models is ensuring quantile noncrossing, that is,
ensuring that the fitted estimate ĝ satisfies:

ĝ(x; τ) ≤ ĝ(x; τ ′) for all x and τ < τ ′. (9)

Two of the most common ways to approach quantile noncrossing are to use noncrossing constraints during
estimation, or to use some kind of post hoc adjustment rule. In the former approach, we first specify a set X0

2We have omitted the adjustment of the summands for spacing between discrete quantile levels; note that this only contributes
a global scale factor for evenly-spaced quantile levels.

6

at which we want to enforce noncrossing, and then solve a modified version of problem (4):

minimize
g∈G

1

n

n∑
i=1

∑
τ∈T

ψτ (Yi − g(Xi; τ))

subject to g(x; τ) ≤ g(x; τ ′) for all x ∈ X0 and τ < τ ′,

(10)

as considered in Takeuchi et al. (2006); Dette and Volgushev (2008); Bondell et al. (2010), among others (and
even earlier in Fung et al. 2002 in a different context). The simplest choice is to take X0 = {Xi}ni=1, so as to
enforce noncrossing at the training feature values; but in a transductive setting where we have unlabeled test
feature values at training time, these could naturally be included in X0 as well.

The latter strategy, post hoc adjustment, has been studied in Chernozhukov et al. (2010); Kuleshov et al.
(2018); Song et al. (2019) (and even earlier in Le et al. 2006 in a different context). In this approach, we solve
the original multiple quantile regression problem (4), but then at test time, at any input feature value x ∈ X ,
we output

g̃(x) = S(ĝ(x)), (11)

where S : Rm → Km is a user-chosen isotonization operator. Here, recall m = |T | is the number of discrete
quantile levels, and Km = {v ∈ Rm : vi ≤ vi+1, i = 1, . . . ,m− 1} denotes the isotonic cone in m dimensions.
Two widely-used isotonization operators are sorting :

Sort(v) = (v(1), . . . , v(m)), (12)

where we use the classic order statistic notation (here v(i) denotes the ith largest element of v), and isotonic
projection:

IsoProj(v) = argmin
u∈Km

‖v − u‖2. (13)

The set Km is a closed convex cone, which means the `2 projection operator onto Km is well-defined (the
minimization in (13) has a unique solution), and well-behaved (it is nonexpansive, i.e., Lipschitz continuous
with Lipschitz constant L = 1, and therefore almost everywhere differentiable). Furthermore, there are fast
linear-time algorithms for isotonic projection, such as the famous pooled adjacent violators algorithm (PAVA)
of Barlow et al. (1972). Note that while Sort(v) ∈ Km, this does not mean that ‖Sort(v)−v‖2 is the shortest
distance between v and Km. As such, the solutions to (12) and (13) differ in general.

The constrained approach (10) has the advantage that the constraints offer a form of regularization and
for this reason, may help improve accuracy over post hoc techniques. It has the disadvantage of increasing
the computational burden (depending on the nature of the model class G, these constraints can actually be
highly nontrivial to incorporate), and of only ensuring noncrossing over some prespecified finite set X0. By
comparison, the post hoc approach (11) is computationally trivial (in the case of sorting (12) and isotonic
projection (13)), and by construction, ensures noncrossing at each x ∈ X .

Moreover, the post hoc approach is simple enough that it is possible to prove some general guarantees
about its effect. The following is a transcription of some important results along these lines from the literature,
for sorting and isotonic projection.

Proposition 1 (Chernozhukov et al. 2010; Robertson et al. 1998). Let T ⊆ [0, 1] be an arbitrary finite set,
and denote by

g∗(x) =
{
g∗(x; τ)

}
τ∈T and ĝ(x) =

{
ĝ(x; τ)

}
τ∈T

an arbitrary true and estimated conditional quantile function at a point x (that is, g∗(x) and ĝ(x) are arbitary
vectors in Km and Rm, respectively, where m = |T |). Then the following holds for the post-adjusted estimate
g̃(x) in (11).

(i) If S = Sort, the sorting operator (12), then the `p norm error between the estimate and g∗(x) can only
improve for any p ≥ 1, that is, ‖g̃(x)− g∗(x)‖p ≤ ‖ĝ(x)− g∗(x)‖p for any p ≥ 1. Moreover, if sorting
is nontrivial: g̃(x) 6= ĝ(x), and p > 1, then the `p error inequality is strict.

(ii) If S = IsoProj, the isotonic projection operator (13), then the same result holds as in part (i).

7

Part (i) of this proposition is due to Chernozhukov et al. (2010) and is an application of the classical
rearrangement inequality (Hardy et al., 1934). Part (ii) is due to Robertson et al. (1998).

In our ensemble setting, metrics on predictive accuracy are more relevant. Towards this end, the next
proposition contributes a new but small result on post hoc adjustment and WIS.

Proposition 2. As in the last proposition, let T ⊆ [0, 1] be an arbitrary finite set, and ĝ(x) = {ĝ(x; τ)}τ∈T
be an estimate of the conditional quantile function at a point x. Then the following holds for the post-adjusted
estimate g̃(x) in (11), and for any y ∈ R.

(i) If S = Sort, the sorting operator (12), then the pinball loss can only improve:∑
τ∈T

ψτ (y − g̃(x; τ)) ≤
∑
τ∈T

ψτ (y − ĝ(x; τ)).

When T is symmetric around 0.5, this means WIS(g̃(x), y) ≤WIS(ĝ(x), y) as well (by the equivalence
between pinball loss and WIS in (8)). Moreover, if sorting is nontrivial: g̃(x) 6= ĝ(x), then the pinball
or WIS improvement is strict.

(ii) If S = IsoProj, the isotonic projection operator (13), then the same result holds as in part (i).

The proof of Proposition 2 elementary and given in Appendix A.3. Interestingly, the proof makes use of
particular algorithms for sorting and isotonic projection (bubble sort and PAVA, respectively).

Note that, as the inequalities in Propositions 1 and 2 hold pointwise for each x ∈ X , they also hold in an
average (integrated) sense, with respect to an arbitrary distribution on X . Later in Section 4, we compare
and combine these and other noncrossing strategies, through extensive empirical evaluations. Analogous to
noncrossing constraints in (10), we consider a crossing penalty (which is similar, but more computationally
efficient); and as for rules like sorting and isotonic projection, we evaluate them not only post hoc, but also
as layers in training.

2.3 Quantile versus probability aggregation
When it comes to combining uncertainty quantification models, we have a number of options: we can either
average over probabilities or over quantiles. These strategies are quite different, and often lead to markedly
different outcomes. This subsection provides some theoretical background comparing the two strategies. We
see it as important to review this material because it is a useful guide to thinking about quantile aggregation,
which is likely less familiar to most readers (than probability aggregation).

In this subsection only, the term average refers to a weighted linear combination where the weights are
nonnegative and sum to 1. For each j = 1, . . . , p, let Fj be a cumulative distribution function (CDF); fj = F ′j
be its probability density function; let Qj = F−1j denote the corresponding quantile function; and qj = Q′j
the quantile density function. A standard fact that relates these objects:

qj(u) =
1

fj(Qj(u))
and fj(v) =

1

qj(Fj(v))
. (14)

The first fact can be checked by differentiating Qj(Fj(v)) = v, applying the chain rule, and reparametrizing
via u = Fj(v). The second follows similarly via Fj(Qj(u)) = u.

We compare and contrast two ways of averaging distributions. The first way is in probability space, where
we define for weights wj ≥ 0, j = 1, . . . , p such that

∑p
j=1 wj = 1,

F =

p∑
j=1

wjFj .

The associated density is simply f =
∑p
j=1 wjfj since differentiation is a linear operator. The second way to

average is in quantile space, defining

Q̄ =

p∑
j=1

wjQj ,

8

where now q̄ =
∑p
j=1 wjqj is the associated quantile density, again by linearity of differentiation. Denote the

CDF and probability density associated with the quantile average by F̄ = Q̄−1, and f̄ = F̄ ′. Note that from
(14), we can reason that f̄ is a highly nonlinear function of fj , j = 1, . . . , p.

A simple example can go a long way to illustrate the differences between the distributions resulting from
probability and quantile averaging. In Figure 2, we compare these two ways of averaging on a pair of normal
distributions with different means and variances. Here we see that probability averaging produces the familiar
mixture of normals, which is bimodal. The result of quantile averaging is very different: it is always unimodal,
and instead of interpolating between the tail behaviors of f1 and f2 (as f does), it appears that both tails of
f̄ are generally thinner than those of f1 and f2.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

fm
at

2

Figure 2: Densities that result from a probability average (left) or quantile average (right) of two normal distributions
N(1, 0.252) and N(3, 0.52), as the weight on the first density varies from 1 (orange) to 0 (blue).

It seems that quantile averaging is doing something that is both like translation and scaling in probability
density space. Next we explain this phenomenon precisely by recalling a classic result.

Shape preservation. An aggregation procedure H is said to be shape-preserving if, for any location-scale
family P (such as Normal, t, Laplace, or Cauchy) whose elements differ only by scale and location parameters,
we have

Fj ∈ P, j = 1, . . . , p =⇒ F = H(F1, . . . , Fp) ∈ P.

Probability averaging is clearly not shape-preserving, however, interestingly, quantile averaging is: if each Fj
a member of the same location-scale family with a base CDF L, then we can write Fj(v) = L((v − θj)/σj),
thus Qj(u) = θj + σjL

−1(u), so Q̄ is still of the form θ+ σL−1 and F̄ is also in the location-scale family. The
next proposition collects this and related results from the literature.

Proposition 3 (Thomas and Ross 1980; Genest 1992).

(i) Quantile averaging is shape-preserving.

(ii) Location-scale families P are the only ones with respect to which quantile averaging is a closed operation
(meaning Fj ∈ P, j = 1, . . . , p implies F̄ ∈ P).

(iii) Quantile averaging is the only aggregation procedure H, of those satisfying (for h not depending on u):

H(F1, . . . , Fp)
−1(u) = h(Q1(u), . . . , Qp(u)),

that is shape-preserving.

9

Part (ii) is due to Thomas and Ross (1980). Part (iii) is due to Genest (1992), following from an elegant
application of Pexider’s equation.

The parts of Proposition 3, taken together, suggest that quantile averaging is somehow “tailor-made” for
shape preservation in a location-scale family—which can be seen as either a pro or a con, depending on the
application one has in mind. To elaborate, suppose that in a quantile regression ensembling application, each
base model outputs a normal distribution for its predicted distribution at each x (with different means and
variances). If the normal assumption is warranted (i.e., it actually describes the data generating distribution)
then we would want our ensemble to retain normality, and quantile averaging would do exactly this. But if
the normal assumption is used only as a working model, and we are looking to combine base predictions as a
way to construct some flexible and robust model, then the shape-preserving property of quantile averaging
would be problematic. In general, to model arbitrary distributions without imposing strong assumptions, we
are therefore driven to use linear combinations of quantiles that allow different aggregation weights to be used
for different quantile levels, of the form Q̄(u) =

∑p
j=1 wj(u)Qj(u).

Moments and sharpness. We recall an important result about moments of the distributions returned by
probability and quantile averages. For a distribution G, we denote its uncentered moment of order k ≥ 1 by
mk(G) = EG[Xk], where the expectation is under X ∼ G.

Proposition 4 (Lichtendahl et al. 2013).

(i) A probability and quantile average always have equal means: m1(F) = m1(F̄).

(ii) A quantile average is always sharper than a probability average: mk(F̄) ≤ mk(F) for any even k ≥ 2.

Note that sharpness is only a desirable property if it does not come at the expense of calibration. With
this in mind, the above result cannot be understood as a pro or con of quantile averaging without any context
on calibration. That said, the relative sharpness of quantile averages to probability averages is an important
general phenomenon to be aware of.

Tail behavior. Lastly, we study the action of quantile averaging on the tails of the subsequent probability
density. Simply starting from q̄ =

∑p
j=1 wjqj , differentiating, and using (14), we get

1

f̄(Q̄(u))
=

p∑
j=1

wj
fj(Qj(u))

.

That is, the probability density f̄ at the level u quantile is a (weighted) harmonic mean of the densities fj at
their respective level u quantiles. Since harmonic means are generally (much) smaller than arithmetic means,
we would thus expect f̄ to have thinner tails than f . The next result formalizes this. We use g(v) = o(h(v))
to mean g(v)/h(v)→ 0 as v →∞, and g(v) � h(v) to mean g(v)/h(v)→ c ∈ (0,∞) as v →∞.

Proposition 5. Assume that p = 2, f2(v) = o(f1(v)), and the weights w1, w2 are nontrivial (they lie strictly
between 0 and 1). Then the density from probability averaging satisfies f(v) � f1(v). Assuming further that
f1 is log-concave, the density from quantile averaging satisfies f̄(v) = o(f1(v)).

The proof is based on (14), and is deferred to Appendix A.4. The assumption that f1 is log-concave for
the quantile averaging result is stronger than it needs to be (as is the restriction to p = 2), but is used to
simplify exposition. Proposition 5 reiterates the importance of allowing for level-dependent weights in a linear
combination of quantiles. For applications in which there is considerable uncertainty about extreme events
(especially ones in which there is disagreement in the degree of uncertainty between individual base models),
we would not want an ensemble to de facto inherit a particular tail behavior—whether thin or thick—but
want to endow the aggregation procedure with the ability to adapt its tail behavior as needed.

3 Aggregation methods
In what follows, we describe various aggregation strategies for combining multiple conditional quantile base
models into a single model. Properly trained, the ensemble should be able to account for the strengths and

10

weaknesses of the base models and hence achieve superior accuracy to any one of them. This of course will
only be possible if there is enough data to statistically identify such weaknesses and enough flexibility in the
aggregation model to adjust for them.

3.1 Out-of-sample base predictions
To avoid overfitting, a standard model ensembling scheme uses out-of-fold predictions from all base models
when learning ensemble weights; see, e.g., Van der Laan et al. (2007); Erickson et al. (2020). As in cross-
validation, here we randomly partition the training data {(Xi, Yi)}ni=1 into K disjoint and equally-sized folds
(all of our experiments use K = 5), where the folds {Ik}Kk=1 form a partition of the index set {1, . . . , n}. For
each fold Ik, we retrain each base model on the other folds {I1, . . . , IK} \ {Ik} to obtain an out-of-sample
prediction at each Xi, i ∈ Ik, denoted ĝ−k(i)j (Xi) (where we use k(i) for the index of the fold containing the
ith data point, and the superscript −k(i) on the base model estimate indicates that the model is trained on
folds excluding the ith data point). When fitting the ensemble weights, we only consider quantile predictions
from each model that are out-of-sample:

ĝw(Xi) =

p∑
j=1

wj(Xi) · ĝ−k(i)j (Xi), i = 1, . . . , n. (15)

Once the ensemble weights have been learned, we make predictions at any new test point x ∈ X via (1),
where the base models {ĝj}pj=1 have been fit to the full training set {(Xi, Yi)}ni=1.

3.2 Global aggregation weighting schemes
For now, we assume that each weight is constant with respect to x ∈ X , i.e., wj(x) = wj for all j = 1, . . . , p.
This puts us in the category of global aggregation procedures; we will turn to local aggregation procedures
in the next subsection. All strategies described below can be cast in the following general form. We fit the
global aggregation weights w by solving the optimization problem:

minimize
w

1

n

n∑
i=1

∑
τ∈T

ψτ

(
Yi −

p∑
j=1

wj · ĝ−k(i)j (Xi; τ)

)
subject to Aw = 1, w ≥ 0,

(16)

Note that each base model prediction used in (16) is an out-of-fold prediction, as in (15). Moreover, A is a
linear operator that encodes the unit-sum constraint on the weights (further details on the parametrization
for each case is described below):

Aw =


∑p
j=1 wj coarse case{∑p
j=1 w

τ
j

}
τ∈T medium case{∑p

j=1

∑
ν∈T w

τ,ν
j

}
τ∈T fine case.

Lastly, in the second line of (16), we use 1 to denote the vector of all 1s (of appropriate dimension), and the
constraint w ≥ 0 is to be interpreted elementwise.

Within this framework, we can consider various weighted ensembling strategies of increasing flexibility
(akin to coffee grind sizes). These were covered briefly in the introduction, and we expand on them below.

• Coarse. To each base model ĝj , we allocate a weight wj , shared over all quantile levels. With p base
models, a coarse aggregator learns p weights, satisfying

∑p
j=1 wj = 1. The product “ ·” in (16) is just a

scalar-vector product, so that ensemble prediction for level τ is
p∑
j=1

(
wj · ĝj(x)

)
τ

=

p∑
j=1

wj ĝj(x; τ).

This appears to be the standard way to build weighted ensembles, including quantile ensembles, see,
e.g., Nowotarski and Weron (2018); Browell et al. (2020); Zhang et al. (2020); Uniejewski and Weron

11

(2021). However, it has clear limitations in the quantile setting, as outlined in Section 2.3. To recap,
coarsely-aggregated distributions will generally have thinner tails than the thickest of the base model
tails (Proposition 5), and if all base models produce quantiles according to some common location-scale
family, then the coarsely-aggregated distribution will remain in this family (Proposition 3). Medium
and fine strategies, described next, are free of such restrictions.

• Medium. To each base model ĝj and quantile level τ , we allocate a weight wτj . With p base models and
m quantile levels, a medium aggregator learns p×m weights, satisfying

∑p
j=1 w

τ
j = 1 for each quantile

level τ . The weight assigned to each base model is a vector wj ∈ Rp, and the product “ ·” in (16) is the
Hadamard (elementwise) product between vectors, so that ensemble prediction for level τ is

p∑
j=1

(
wj · ĝj(x)

)
τ

=

p∑
j=1

wτj ĝj(x; τ).

This approach enables the ensemble to account for the fact that different base models may be better
or worse at predicting certain quantile levels. It has been considered in quantile aggregation by, e.g.,
Nowotarski and Weron (2015); Maciejowska et al. (2016); Lima and Meng (2017); Tibshirani (2020).

• Fine. To each base model ĝj , output (ensemble) quantile level τ , and input (base model) quantile level
ν, we allocate a weight wτ,νj . Thus with p base models and m quantile levels, a fine aggregator learns
p×m×m weights, satisfying

∑p
j=1

∑
ν∈T w

τ,ν
j = 1 for each quantile level τ . The weight assigned to

each base model is a matrix wj ∈ Rm×m, and “·” in (16) is a matrix-vector product, so the ensemble
prediction for level τ is

p∑
j=1

(
wj · ĝj(x)

)
τ

=

p∑
j=1

∑
ν∈T

wτ,νj ĝj(x; ν).

This strategy presumes that for a given quantile level τ , base model estimates for other quantile levels
ν 6= τ could also be useful for aggregation purposes. Note that this is particularly pertinent to a setting
which some base models are poorly calibrated or produce unstable estimates for one particular quantile
level. To the best of our knowledge, this type of aggregation is not common and has not been thoroughly
studied in the literature.

As a way of comparing the flexibility offered by the three strategies, denote the ensemble prediction at x
by ĝw(x) =

∑p
j=1

(
wj · ĝj(x)

)
τ
, and note that (where we abbreviate ranges∈S as = [mins∈S as, maxs∈S bs]):

ĝw(x; τ) ∈

{
rangej=1,...,p ĝj(x; τ) coarse and medium cases
rangej=1,...,p, ν∈T ĝj(x; ν) fine case.

In the medium and fine cases, and any element in the respective ranges above is achieveable (by varying the
weights appropriately). In the coarse case, this is not true, and ĝw is restricted by the shape of the individual
quantile functions (recall Section 2.3).

Furthermore, it is not hard to see that problem (16) is equivalent to a linear program (LP), and can be
solved with any standard convex optimization toolkit. While conceptually tidy, solving this LP formulation
can be overly computationally intensive at scale. In this paper, rather than relying on LP formulations, we
fit global aggregation weights by optimizing (16) via stochastic gradient descent (SGD) methods, which are
much more scalable to large data sets through their use of subsampled mini-batches and backpropagation in
deep learning toolkits that can leverage hardware accelerators (GPUs). Outside of computational efficiency,
the use of SGD also provides implicit regularization to avoid overfitting (which we can further control using
early stopping). To circumvent the simplex constraints in (16), we reparametrize the weights {wj}pj=1 using
a softmax layer applied to (unconstrained) parameters {φj}pj=1, which for the coarse case we can write as:

w = SoftMax(φ) =

{
eφj∑p
`=1 e

φ`

}p
j=1

.

The other cases (medium and fine) follow similarly.
Yet another advantage of using SGD and deep learning toolkits to solve (16) is that this extends more

fluidly to the setting of local aggregation weights, which we described next.

12

3.3 Local aggregation via neural networks
To fit local aggregation weights that vary with x ∈ X , we use a neural network approach. For concreteness,
we describe the procedure in the context of fine aggregation weights, and the same idea applies to the other
cases (coarse and medium) as well. We will refer to the local-fine approach, described below, as deep quantile
aggregation or DQA.

To fit weight functions wτ,νj : X → R, we model these jointly over all base models j ∈ {1, 2, . . . , p} and all
pairs of quantile levels (τ, ν) ∈ T × T using a single neural network G. All but the last layer of G forms a
feature extractor fθ : X → Rd that maps input feature values x ∈ X to a hidden representation h ∈ Rd. In
our experiments, we take fθ to be a standard feed-forward network parametrized by θ. The last layer of G is
defined, for each output quantile level τ ∈ T , by a matrix W τ ∈ Rpm×d that maps the hidden representation
h, followed by a softmax operation (to ensure the simplex constraints are met), to fine aggregation weights
wτ (x) ∈ Rpm, as in:

wτ (x) = G(x; θ,W τ) = SoftMax
(
W τfθ(x)

)
, τ ∈ T . (17)

The parameters θ and {W τ}τ∈T can be jointly optimized via SGD, applied to the optimization problem:

minimize
θ, {W τ}τ∈T

1

n

n∑
i=1

∑
τ∈T

ψτ

(
Yi −

p∑
j=1

∑
ν∈T

G(x; θ,W τ)j,ν ĝ
−k(i)
j (Xi; ν)

)
. (18)

Note that there are no explicit constraints because the softmax parametrization in (17) implicitly fulfills the
appropriate constraints.

Why would we want to move from using global aggregation weights (16), which do not depend on the
feature values x, to using local aggregation weights (17), (18), which do? Aside from the general perspective
of increasing model flexibility, local weights can be motivated by the observation that, in any given problem
setting, it may well be the case that that certain constituent models perform better (output more accurate
quantile estimates) in some parts of the feature space, while others perform better in other parts. In such
cases, a local aggregation scheme will be able to adapt its weights accordingly, whereas a global scheme will
not, and will be stuck with attributing some global level of preference between the models.

3.4 Interpreting the local aggregation scheme
We can interpret our proposal in (17), (18) as a mixture of experts ensemble (Jacobs et al., 1991) where the
gating network G emits predictions about which “experts” will be most accurate for any particular x. In the
local-fine setting (DQA), the “experts” correspond to estimates of individual quantiles from individual base
models, and we define a separate gating scheme for each target quantile level τ .

We can also view our local-fine aggregator through the lens of an attention mechanism (Bahdanau et al.,
2015), which adaptively attends to the different quantile estimates from each base model, and uses a different
attention map for each τ and each x. In terms of the architecture design, we use a representation of the tuple
(τ, x) both as a key and as a query. The individual quantiles ĝj(x; τ) are then used as values in the (query,
key, value) mechanism commonly used.

Visualizing these attention maps—see Figures 3 and 4—can help address natural questions, e.g., for any
particular x and τ , which base estimates are most useful? Or, how do estimates at different quantile levels
interact with each other to achieve accuracy in the ensemble? While this conveys only qualitative information,
we note that interpretations such as these would be far more difficult to obtain for nonlinear aggregators like
stacked ensembles (Wolpert, 1992).

3.5 New base model: deep quantile regression
Finally, we remark that the optimization in (18) can be used to itself define a standalone neural network
quantile regressor, which we refer to as deep quantile regression or DQR. This is given by taking p = 1 in (18)
with a trivial base model that outputs ĝ1(x; τ) = 1, for any x and τ . DQR can be useful as a base model (to
feed into an aggregation method like DQA), and will be used as a point of comparison and/or illustration at
various points in what follows. For example, Figure 5 illustrates DQR on a real data set.

13

(a)

Quantile levels from 0.01 and 0.99

(b)

(c)

(d)

(e)

(f)

Figure 3: Heatmaps of aggregation weights fit by the local-medium aggregator to the concrete data set, at 6 different
input feature values. Each heatmap in (a)–(f) corresponds to a particular input feature value x. Its rows correspond to
the p = 6 base models, and columns to the m = 99 quantile levels. A black color means that a given base prediction is
essentially ignored by the aggregator. We can see that for different xi the algorithm chooses different base models but
also that it then mostly uses the estimates of these base models in a consistent fashion across quantile levels.

Figure 4: Heatmaps of aggregation weights fit by the local-fine (DQA) aggregator to the concrete data set (left) and
the power data set (right). In the current fine setting, we have one m×m = 99× 99 weight matrix per base model;
the heatmaps have therefore been averaged over the p = 6 base models. Their rows correspond to the output quantiles
(for the aggregator), and the columns to the input quantiles (from the base model). The right heatmap displays clear
concentration around the diagonal: here each input quantile is on average the most reliable estimate used to define its
corresponding output quantile. This is much less true on the left, which also has more pronounced vertical “streaks”:
output quantiles use input quantiles from many neighboring quantile levels. The left heatmap also has notably more
dispersion in the tails.

14

4 Quantile noncrossing
Here we discuss methods for enforcing quantile noncrossing in the predictions produced by the aggregation
methods from the last section. We combine and extend the ideas introduced in Section 2.2.

4.1 Crossing penalty and quantile buffering
As an alternative to enforcing hard noncrossing constraints during training, as in (10), we consider a crossing
penalty of the form:

ρ(g) =
∑
x∈X0

∑
τ<τ ′

(
g(x; τ)− g(x; τ ′) + δτ,τ ′

)
+
, (19)

where a+ = max{a, 0}, and δτ,τ ′ ≥ 0, for τ < τ ′ are constants (not depending on x) that encourage a buffer
between pairs of quantiles at different quantile levels. In the simplest case, we can reduce this to just a single
margin δτ,τ ′ = δ across all quantile levels, that we can tune as a hyperparameter (e.g., using a validation set).
We will cover a slightly more advanced strategy shortly, for fitting adaptive margins which vary with quantile
levels (as well as the training data at hand).

The advantage of using a penalty (19) over constraints is primarily computational: we can add it to the
criterion defining the aggregation model, and we can still use SGD for optimization. Note that the penalty is
applied at the ensemble level, to g = ĝw =

∑p
j=1 wj · ĝj ; to be precise, the global optimization (16) becomes

minimize
w

1

n

n∑
i=1

∑
τ∈T

ψτ

(
Yi −

p∑
j=1

wj · ĝ−k(i)j (Xi; τ)

)
+ λ ρ

(p∑
j=1

wj · ĝj
)

subject to Aw = 1, w ≥ 0,

(20)

where λ ≥ 0 is a hyperparameter to be tuned. The modification of the local optimization (18) to include the
penalty term is similar. Figure 5 gives an illustration of the crossing penalty in action.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

Figure 5: Conditional quantile estimates fit by a neural network quantile regressor (DQR) to the bone mineral data
set, used in Takeuchi et al. (2006), where X is univariate. The left panel displays estimates that were fit without any
crossing penalty or isotonization operator, and the right panel displays estimates fit using the crossing penalty (19) and
post sorting. (This is the simplest combination among all the methods that we consider to address quantile crossing.)
Crossing quantile curves are highlighted in red.

Adaptive margins. One of the problems with choosing a fixed margin δ (of using the reduction δτ,τ ′ = δ
for all τ, τ ′) is that it may not accurately reflect the scale or shape of the quantile gaps in the data at hand.
We propose the following heuristic for tuning margin parameters δτ,τ ′ , over all pairs of distinct levels τ < τ ′.
We begin with any pilot estimator of the conditional mean or median of Y |X, call it ĝ0, and form residuals

15

Ri = Yi − ĝ0(Xi), i = 1, . . . , n. The closer these residuals are to the true error distribution, of Y − E(Y |X)
(or similar for the median), the better. Thus we typically want to use cross-validation residuals for this pilot
step. We then take, for each τ < τ ′, the margin to be

δτ,τ ′ = δ0
(
Qτ ′({Ri}ni=1)−Qτ ({Ri}ni=1)

)
+
. (21)

where Qτ gives the empirical level τ quantile of its argument. The motivation behind the proposal in (21)
is that Qτ ′({Ri}ni=1)−Qτ ({Ri}ni=1) is itself the gap between quantile estimates from a basic but properly
(monotonically) ordered quantile regressor, namely, that defined by:

ĝ0(x; τ) = ĝ0(x) +Qτ ({Ri}ni=1), x ∈ X , τ ∈ T .

We note that δ0 ≥ 0 in (21) is a single hyperparameter to be tuned. In our experiments, we take the pilot
estimator to be the simple average of base model predictions at the median, ĝ0(x) = 1

p

∑p
j=1 ĝj(x; 0.5), and

we use the same cross-validation scheme for the base models as in Section 3.1 to produce out-of-fold residuals
Ri, i = 1, . . . , n around ĝ0, that are used in (21).

4.2 Isotonization: post hoc and end-to-end
Next we consider different isotonization operators that can be used in conjunction with the crossing penalty
in (19). This is important because it will guarantee quantile noncrossing for the ensemble predictions at all
points x ∈ X , as in (9), whereas the crossing penalty alone is not sufficient to ensure this. The added benefit
of this approach is that we are able to satisfy the constraint at out-of-sample points without having to invest
unreasonable amounts of function complexity into the model, simply by applying isotonization as a form of
prior knowledge (see Le et al. 2006 for a detailed general discussion of this aspect).

Generally, an isotonization operator S can be used in one of two ways. The first is post hoc, as explained
in Section 2.2, where we simply apply it to quantile predictions after the ensemble ĝ =

∑p
j=1 ŵj · ĝj has been

trained, as in (11). The second way is end-to-end, where S gets used a layer in training, and we now solve,
instead of (20),

minimize
w

1

n

n∑
i=1

∑
τ∈T

ψτ

(
Yi −

[
S
(p∑
j=1

wj · ĝ−k(i)j (Xi)

)]
τ

)
+ λ ρ

(p∑
j=1

wj · ĝj
)

subject to Aw = 1, w ≥ 0,

(22)

where we denote by [S(v)]τ the element of S(v) corresponding to a quantile level τ . The modification for the
local aggregation problem is similar. For predictions, we still post-apply S, as in (11).

One might imagine that the end-to-end approach can help predictive accuracy, since in training we are
leveraging the knowledge of what we will be doing at prediction time (applying S). Furthermore, by treating
S as a differentiable layer, we can still seamlessly apply SGD for optimization (end-to-end training). Note
that sorting (12) and isotonic projection (13) are almost everywhere differentiable (they are in fact almost
everywhere linear maps). We will propose an additional isotonization operator shortly that is also almost
everywhere differentiable, and particularly convenient to implement in modern deep learning toolkits.

To be clear, the end-to-end approach is not free of downsides; while sorting and isotonic projection are
guaranteed to improve WIS when applied post hoc (Proposition 2), the same cannot be said when they are
used end-to-end. Thus we give up on a formal guarantee, to potentially gain accuracy in practice.

Min-max sweep. In addition to sorting (12) and isotonic projection (13), we propose and investigate a
simple isotonization operator that we call the min-max sweep. It works as follows: starting at the median, it
makes two outward sweeps: one upward and one downward, where it replaces each value with a cumulative
max (upward sweep) or cumulative min (downward sweep). To be more precise, if we have sorted quantile
levels τ1 < · · · < τm with τm0 = 0.5, and corresponding values v1, . . . , vm, then we define the min-max sweep
operator according to:

MinMaxSweep(v)k =


vk k = m0

max{vk, MinMaxSweep(v)k−1} k = m0 + 1, . . . ,m

min{vk, MinMaxSweep(v)k+1} k = m0 − 1, . . . , 1.

(23)

16

Like sorting and isotonic projection, the min-max sweep is almost everywhere a linear map, and thus almost
everywhere differentiable. The primary motivation for it is that it can be implemented highly efficiently in
modern deep learning frameworks via cumulative max and cumulative min functions—these are vectorized
operations that can be efficiently applied in parallel over a mini-batch, in each iteration of SGD (when it
is used in an end-to-end manner). Unlike sorting and isotonic projection, however, it is not guaranteed to
improve WIS (Proposition 2) when applied in post.

5 Conformal calibration
Informally, a conditional quantile estimator is said to be calibrated provided that its quantile estimates have
the appropriated nominal one-sided coverage, for example, an estimated 90% quantile covers the target from
above 90% of the time, and the same for the other quantile levels being estimated. Equivalently, we can view
this in terms of central prediction intervals: the interval whose endpoints are given by the estimated 5% and
95% quantiles covers the target 90% of the time. Formally, let ĝ be an estimator trained on samples (Xi, Yi),
i = 1, . . . , n, with ĝ(x; τ) denoting the estimated level τ quantile of Y |X = x. Assume that the set of quantile
levels T being estimated is symmetric around 0.5, so we can write it as T = ∪α∈A{α/2, 1− α/2}. Then ĝ is
said to be calibrated, provided that for every α ∈ A, we have

P
(
Yn+1 ∈

[
ĝ(Xn+1;α/2), ĝ(Xn+1; 1− α/2)

])
= 1− α, (24)

where (Xn+1, Yn+1) is a test sample, assumed to be i.i.d. with the training samples (Xi, Yi), i = 1, . . . , n. To
be precise, the notion of calibration that we consider in (24) is marginal over everything: the training set and
the test sample. We remark that a stronger notion of calibration, which may often be desirable in practice, is
calibration conditional on the test feature value:

P
(
Yn+1 ∈

[
ĝ(Xn+1;α/2), ĝ(Xn+1; 1− α/2)

] ∣∣∣Xn+1 = x
)

= 1− α, x ∈ X . (25)

Conditional calibration, as in (25), is actually impossible to achieve in a distribution-free sense; see Lei and
Wasserman (2014); Vovk (2012); Barber et al. (2021a) for precise statements and developments. Meanwhile,
marginal calibration (24) is possible to achieve using conformal prediction methodology, without assuming
anything about the joint distribution of (X,Y). The definitive reference on conformal prediction is the book
by Vovk et al. (2005); see also Lei et al. (2018), which helped popularize conformal methods in the statistics
and machine learning communities. The conformal literature is by now somewhat vast, but we will only need
to discuss a few parts of it that are most relevant to calibration of conditional quantile estimators.

In particular, we very briefly review conformalized quantile regression or CQR by Romano et al. (2019)
and CV+ by Barber et al. (2021b). We then discuss how these can be efficiently applied in combination to
any of the quantile aggregators studied in this paper.

CQR. We first describe CQR in a split-sample setting. Suppose that we have reserved a subset indexed by
I1 ⊆ {1, . . . , n} as the proper training set, and I2 = {1, . . . , n} \ I1 as the calibration set. (Extending this to
a cross-validation setting, via the CV+ method, is discussed next.) In this split-sample setting, CQR from
Romano et al. (2019) can be explained as follows.

1. First, fit the quantile estimator ĝI1 on the proper training set {(Xi, Yi) : i ∈ I1}.

2. Then, for each α ∈ A, compute lower and upper residuals on the calibration set,

R−i,α = ĝI1(Xi;α/2)− Yi and R+
i,α = Yi − ĝI1(Xi; 1− α/2), i ∈ I2.

3. Finally, adjust (or conformalize) the original estimates based on residual quantiles, yielding for α ∈ A
and x ∈ X ,

g̃(x;α/2) = ĝI1(x;α/2)− Q̃1−α/2
(
{R−i,α : i ∈ I2}

)
,

g̃(x; 1− α/2) = ĝI1(x; 1− α/2) + Q̃1−α/2
(
{R+

i,α : i ∈ I2}
)
,

(26)

where Q̃τ is a slightly modified empirical quantile function, giving the empirical level dτ(n2 + 1)e/n2
quantile of its argument, with n2 = |I2|.

17

A cornerstone result in conformal prediction theory (see Theorems 1 and 2 in Romano et al. (2019) for
the application of this result to CQR) says that for any estimator, its conformalized version in (26) has the
finite-sample marginal coverage guarantee

P
(
Yn+1 ∈

[
g̃(Xn+1;α/2), g̃(Xn+1; 1− α/2)

])
≥ 1− α. (27)

In fact, the coverage of the level 1−α central prediction interval is also upper bounded by 1−α+ 1/(n2 + 1),
provided that the residuals are continuously distributed (i.e., there are almost surely no ties).

CV+. Now we describe how to extend CQR to a cross-validation setting. Let {Ik}Kk=1 denote a partition
of {1, . . . , n} into disjoint folds. We can map steps 1–3 used to produce the CQR correction in (26) onto the
CV+ framework of Barber et al. (2021b), as follows.

1. First, for each fold k = 1, . . . ,K, fit the quantile estimator ĝ−k on all data points but those in the kth

fold, {(Xi, Yi) : i /∈ Ik}.

2. Then, for each i = 1, . . . , n and each α ∈ A, compute lower and upper residuals on the calibration fold
k(i) (where k(i) denotes the index of the fold containing the ith data point),

R−i,α = ĝ−k(i)(Xi;α/2)− Yi and R+
i,α = Yi − ĝ−k(i)(Xi; 1− α/2), i ∈ Ik(i).

3. Finally, adjust (or conformalize) the original estimates based on residual quantiles, yielding for α ∈ A
and x ∈ X ,

g̃(x;α/2) = Q̃−1−α/2

({
ĝ−k(i)(x;α/2)−R−i,α : i ∈ k(i)

})
,

g̃(x; 1− α/2) = Q̃+
1−α/2

({
ĝ−k(i)(x; 1− α/2) +R+

i,α : i ∈ k(i)
})
,

(28)

where now Q̃−τ , Q̃
+
τ are modified lower and upper level τ empirical quantiles: for any set Z, we define

Q̃+
τ (Z) to be the level dτ(|Z|+ 1)e/|Z| empirical quantile of Z, and Q̃−τ (Z) = −Q̃+(−Z).

According to results from Barber et al. (2021b) and Vovk et al. (2018) (see Theorem 4 in Barber et al.
(2021b) for a summary), for any estimator, its conformalized version in (28) has the finite-sample marginal
coverage guarantee

P
(
Yn+1 ∈

[
g̃(Xn+1;α/2), g̃(Xn+1; 1− α/2)

])
≥ 1− 2α−min

{
2(1− 1/K)

n/K + 1
,

1−K/n
K + 1

}
≥ 1− 2α−

√
2/n.

(29)

We can see that the guarantee from CV+ in (29) is weaker than that in (27) from sample-splitting, though
CV+ has the advantage that it utilizes each data point for both training and calibration purposes, and can
often deliver shorter conformalized prediction intervals as a result. Moreover, Barber et al. (2021b) argue
that for stable estimation procedures, the empirical coverage from CV+ is closer to 1− α (and provide some
theory to support this as well).

Nested implementation for quantile aggregators. We discuss the application of CQR and CV+ to
calibrate the quantile aggregation models developed in Section 3 and 4. An additional level of complexity in
this application arises because the quantile aggregation model is itself built using cross-validation: recall, as
discussed in Section 3.1, that the aggregation weights are trained using out-of-sample (out-of-fold) predictions
from the base models. Thus, application of CV+ here requires a nested cross-validation scheme, where in the
inner loop, the aggregator is trained using cross-validation (for the base model predictions), and in the outer
loop, the calibration residuals are computed for the ultimate conformalization step.

In order to make this as computationally efficient as possible, we introduce a particular nesting scheme
that reduces the number of times base models are trained by roughly a factor of 2. We first pick a number of
folds K for the outer loop, and define folds Ik, k = 1, . . . ,K. Then for each k = 1, . . . ,K, we fit the quantile
aggregation model ĝ−kw on {(Xi, Yi) : i /∈ Ik} (using any one of the approaches described in Sections 3 and 4),

18

with the key idea being how we implement the inner cross-validation loop to train the base models: we use
folds I`, ` 6= k for this inner loop, so that we can later avoid having to refit the base models when the roles of
k and ` are reversed. To see more clearly why this is the case, we describe the procedure in more detail below.

1. For k = 1, . . . ,K:

a. For ` 6= k, train each base model ĝ−k,`j on {(Xi, Yi) : i /∈ Ik ∪ I`}.
b. Train the aggregation weights w on {(Xi, Yi) : i /∈ Ik} (using the base model predictions ĝ−k,`j (Xi)

from Step a), to produce the aggregator ĝ−kw .

c. Compute lower and upper calibration residuals of ĝ−kw on {(Xi, Yi) : i ∈ Ik}, as in Step 2 of CV+.

2. Conformalize original estimates using residual quantiles, as in Step 3 of CV+.

The computational savings comes from observing that ĝ−k,`j = ĝ−`,kj : the base model we train when k is
the calibration fold and ` is the validation fold is the same as that we would train when the roles of k and `
are reversed. Therefore we only need to train each base model in Step 1a, across all iterations of the outer
and inner loops, a total of K(K − 1)/2 times, as opposed to K(K − 1) times if we were ignorant to this fact
(or K2 times, the result of a more typical nested K-fold cross-validation scheme).

6 Empirical comparisons
We provide a broad empirical comparison of our proposed quantile aggregation procedures as well as many
different established regression and aggregation methods. We examine 34 data sets in total: 8 from the UCI
Machine Learning Repository (Dua and Graff, 2017) and 26 from the AutoML Benchmark for Regression from
the Open ML Repository (Vanschoren et al., 2013). These have served as popular benchmark repositories in
probabilistic deep learning and uncertainty estimation, see, e.g., Lakshminarayanan et al. (2017); Mukhoti
et al. (2018); Jain et al. (2020); Fakoor et al. (2020). To the best of our knowledge, what follows is the most
comprehensive evaluation of quantile regression/aggregation methods published to date.

Training, validation, and testing setup. For each of the 34 data sets studied, we average all results
over 5 random train-validation-test splits, of relative size 72% (train), 18% (validation), and 10% (test). We
adopt the following workflow for each data set.

1. Standardize the feature variables and response variable on the combined training and validation sets, to
have zero mean and unit standard deviation.

2. Fit the base models on the training set.

3. Find the best hyperparameter configuration for each base model by minimizing weighted interval score
(WIS) on the validation set. Fix these henceforth.

4. Divide the training set into 5 random folds. Record out-of-fold (OOF) predictions for each base model;
that is, for fold k, we fit each base model ĝ−kj by training on data from all folds except k, and use it to
produce ĝ−kj (Xi) for each i such that k(i) = k.

5. Fit the aggregation models on the training set, using the OOF base predictions from the last step.

6. Find the best hyperparameter configuration for each aggregation model by again minimizing validation
WIS. Fix these henceforth.

7. Report the test WIS for each aggregation model (making sure to account for the initial standardization
step, in the test set predictions).

All base and aggregation models are fit using m = 99 levels, T = {0.01, 0.02, . . . , 0.99}; the specific base
and aggregation models we consider are described below. The initial standardization step is convenient for
hyperparameter tuning. For more details on hyperparameter tuning, see Appendix B.1 and B.2.

19

Base models. We consider p = 6 quantile regression models as base models for the aggregators, described
below, along with the abbreviated names we give them henceforth. The first three are neural network models
with different architectures and objectives. More details are given in Appendix B.1.

1. Conditional Gaussian network (CGN, Lakshminarayanan et al., 2017).

2. Simultaneous quantile regression (SQR, Tagasovska and Lopez-Paz, 2019);

3. Deep quantile regression (DQR), which falls naturally out of our framework, as explained in Section 3.3.

4. Quantile random forest (RandomForest, Meinshausen, 2006).

5. Extremely randomized trees (ExtraTrees, Geurts et al., 2006).

6. Quantile gradient boosting (LightGBM, Ke et al., 2017).

Aggregation models. We study 4 aggregation models outside of the ones defined in our paper, described
below, along with their abbreviated names. More details are given in Appendix B.2.

1. Average: a straight per-quantile average of base model predictions.

2. Median: a straight per-quantile median of base model predictions.

3. Quantile regression averaging (QRA, Nowotarski and Weron, 2015).

4. Factor QRA (FQRA, Maciejowska et al., 2016).

The rest of this section proceeds as follows. We first discuss the performance of the local-fine aggregator
from our framework in Section 3, called DQA, to other methods (all base models, and the other aggregators
defined outside of this paper). In the subsections that follow, we move on to a finer analysis, comparing the
different weighted ensembling strategies to each other, comparing the different isotonization approaches to
each other, and evaluating the gains in calibration made possible by conformal prediction methodology.

6.1 Continuation of Figure 1
Recall that in Figure 1, we already described some results from our empirical study, comparing DQA to all
other methods. To be precise, for DQA—in Figure 1, here, and henceforth—we use the simplest strategy to
ensure quantile noncrossing among the options discussed in Section 4: the crossing penalty along with post
sorting (CrossPenalty + PostSort in the notation that we will introduce shortly). To give an aggregate view
of the same results, Figure 6 shows the average relative WIS over all data sets. Relative WIS is the ratio of
the WIS of given method to that of DQA, hence 1 indicates equal performance to DQA, and larger numbers
indicate worse performance. (Standard error bars are also drawn.) These results clearly show the favorable
average-case performance of DQA, to complement the per-data-set view in Figure 1. We can also see that
QRA and FQRA are runners up in terms of average performance; while they are fairly simple aggregators,
based on quantile linear regression, they use inputs here the predictions from flexible base models. Going
back to the results in Figure 1, it is worth noting that there are data sets for which QRA and FQRA perform
clearly worse than DQA (up to 50% worse, a relative factor of 1.5), but none where they perform better. In
Appendix B.3, we provide an alternative visualization of these same results (differences in WIS rather than
ratios of WIS).

6.2 Comparing ensembling strategies
Now we compare different ensembling strategies of varying flexibility, as discussed in Section 3. Recall that
we have two axes: global or local weighting; and coarse, medium, or fine parameterization. This gives a total
of 6 approaches, which we denote by global-coarse, global-medium, and so on. Figure 7 displays the relative
WIS of each method to global-fine per data set (left panel), and the average relative WIS over all data sets
(right panel). The data sets here and henceforth are indexed by increasing PVE, as in Figure 1. We note that
global-fine is like a “middle man” in terms of its flexibility, among the 6 strategies considered. The overall
trend in Figure 7 is that greater flexibility leads to better performance, especially for larger PVE values.

20

CGN SQR DQR RandomForest ExtraTrees LightGBM Average Median QRA FQRA

Method

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e
W

IS
DQA
CGN
SQR

DQR
RandomForest

ExtraTrees
LightGBM

Average
Median

QRA
FQRA

Figure 6: Average relative WIS over all data sets for deep quantile aggregation (DQA) and various quantile regression
methods. (The per-data-set results are given in Figure 1). Numbers larger than 1 indicate a worse average performance
than DQA. We see that DQA performs the best overall, and QRA and FQRA are somewhat close runners up.

0 5 10 15 20 25 30 35
Data set index

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
el

at
iv

e
W

IS

Global-Fine
Global-Coarse

Global-Medium
Local-Coarse

Local-Medium
Local-Fine

Method

Figure 7: Comparing the relative WIS of various ensembling strategies to global-fine. The left panel shows the relative
WIS per data set (ordered by increasing PVE), and the right panel shows the average relative WIS over all data sets. In
general, the more flexible aggregation strategies tend to perform better, and local-fine (DQA) performs the best overall.

21

0 5 10 15 20 25 30 35
Data set index

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
W

IS
None
GradSort + AdaptCrossPenalty
GradPAVA + AdaptCrossPenalty

GradMinMax + AdaptCrossPenalty
GradSort + CrossPenalty
GradPAVA + CrossPenalty

GradMinMax + CrossPenalty
AdaptCrossPenalty
CrossPenalty

Method

Figure 8: Comparing the relative WIS of various isotonization strategies on top of pure DQA, with no penalty and no
isotonization operator (“none”). The display is as in Figure 7 (individual results per data set on left panel, averaged
results on right panel). We can see that all isotonization methods offer consistent but small improvements on “none”,
with AdaptCrossPenalty + GradMinMax achieving the best average-case performance.

6.3 Comparing isotonization approaches
We compare the various isotonization approaches discussed in Section 4, applied to DQA. In Figure 8, the
legend label “none” refers to DQA without any penalty and any isotonization operator; all WIS scores are
computed relative to this method. CrossPenalty and AdaptCrossPenalty, respectively, denote the crossing
penalty and adaptive cross penalty from Section 4.1. PostSort and GradSort, respectively, denote the sorting
operator applied in post-processing and in training (see (22) for how this works in the global models), as
described in Section 4.2. We similarly use PostPAVA, GradPAVA, and so on. Lastly, we use “+” to denote
the combination of a penalty and isotonization operator, as in CrossPenalty + PostSort. The main takeaway
from Figure 8 is that all of the considered methods improve upon “None”. However, it should be noted that
these are second-order improvements in relative WIS compare to the much larger first-order improvements in
Figures 1 and 6, of DQA over base models and other aggregators—compare the y-axis range in Figure 8 to
that in Figures 1 and 6.

A second takeaway from Figure 8 might be to generally recommend AdaptCrossPenalty + GradMinMax
for future aggregation problems, which had the best average performance across our empirical suite. That
said, given the small relative improvement this offers, we generally stick to using the simpler CrossPenalty +
PostSort in the current paper.

Finally, Figure 9 gives an empirical verification of Proposition 2, which recall, showed that sorting and
PAVA applied in post-processing can never make WIS worse. We can see that for each of the 34 data sets,
combining PostSort or PostPAVA with CrossPenalty (left panel) or AdaptCrossPenalty (right panel) never
hurts WIS, and occasionally improves it. This is not true for PostMinMax, as we can see that PostMinMax
hurts WIS in a few data sets across the panels, the most noticeable instance being data set 19 on the left.

6.4 Evaluating conformal calibration
We examine the CQR-CV+ method from Section 5 applied to DQA, to adjust its central prediction intervals
to have proper coverage. Figures 10 and 11 summarize empirical coverage and interval length at the nominal
0.8 coverage level, respectively. (The results for other nominal levels are similar.) Here, the coverage and

22

0 5 10 15 20 25 30 35
Data set index

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
W

IS

CrossPenalty
PostSort + CrossPenalty

PostPAVA + CrossPenalty
PostMinMax + CrossPenalty

0 5 10 15 20 25 30 35
Data set index

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
W

IS

AdaptCrossPenalty
AdaptCrossPenalty + PostSort

AdaptCrossPenalty + PostPAVA
AdaptCrossPenalty + PostMinMax

Figure 9: Comparing post isotonization strategies applied on top of CrossPenalty on the left, and AdaptCrossPenalty
on the right. As we can see in either panel, PostSort and PostPAVA can only improve WIS; verifying Proposition 2.
This is not true of PostMinMax, the most noticeable example being data set 19 on the left panel.

length of a quantile regressor ĝ at level 1− α are defined as

1

m

m∑
i=1

1
{
ĝ(X∗i ;α/2) ≤ Y ∗i ≤ ĝ(xi; 1− α/2)

}
,

1

m

m∑
i

[
ĝ(X∗i ; 1− α/2)− ĝ(X∗i ;α/2)

]
,

respectively, where (X∗i , Y
∗
i), i = 1, . . . ,m denotes the test set. The figures show DQA (denoted CrossPenalty

+ PostSort), its conformalized version based on (28) (denoted CrossPenalty + PostSort + Conformalization),
and the Average, Median, QRA, and FQRA aggregators.

We can see in Figure 10 that DQA achieves fairly close to the desired 0.8 coverage when this is averaged
over all data sets, but it fails to achieve this per data set. Crucially, its conformalized version achieves at least
0.8 coverage on every individual data set. Generally, the Average and Median aggregators tend to overcover,
but there are still data sets where they undercover. QRA and FQRA have fairly accurate average coverage
over all data sets, but also fail to cover on several individual data sets.

As for length, we can see in Figure 11 that conformalizing DQA often inflates the intervals, but never by
more than 75% (a relative factor of 1.75), and typically only in the 0-30% range. The Average and Median
aggregators, particularly the former, tend to have longer intervals by comparison. QRA and FQRA tend to
output slightly longer intervals than DQA, and slightly shorter intervals than conformalized DQA.

It is worth emphasizing that conformalized DQA is the only method among those discussed here that is
completely robust to the calibration properties of the constituent quantile regression models (as is true of
conformal methods in general). The coverage exhibited by the other aggregators will generally be a function
of that of the base models, to varying degrees (e.g., the Median aggregator is more robust than the Average
aggregator).

7 Discussion
We studied methods for aggregating any number of conditional quantile models with multiple quantile levels,
introducing weighted ensemble schemes with varying degrees of flexibility, and allowing for weight functions
that vary over the input feature space. Being based on neural network architectures, our quantile aggregators
are easy and efficient to implement in deep learning toolkits. To impose proper noncrossing of estimated
quantiles, we examined penalties and isotonization operators that can be used either post hoc or during
training. To guarantee proper coverage of central prediction intervals, we gave an efficient nested application
of the conformal prediction method CQR-CV+ within our aggregation framework.

Finally, we carried out a large empirical comparison of all of our proposals and others from the literature
across 34 data sets from two popular benchmark repositories, the most comprehensive evaluation quantile

23

0 5 10 15 20 25 30 35
Data set index

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

0.8
PostSort + CrossPenalty
PostSort + CrossPenalty + Conformalization

Average
Median

QRA
FQRA

Method

Figure 10: Comparing coverage of DQA, conformalized DQA, and other aggregators at the nominal 0.8 level. The
display is as in Figure 7 (individual results per data set on left panel, averaged results on right panel). The key point is
that conformalized DQA manages to achieve valid coverage on each individual data set.

0 5 10 15 20 25 30 35
Data set index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e
le

ng
th

PostSort + CrossPenalty
PostSort + CrossPenalty + Conformalization

Average
Median

QRA
FQRA

Method

Figure 11: Comparing prediction interval lengths from DQA, conformalized DQA, and others at the nominal 0.8 level.
The display is again as in Figure 7 (individual results on the left, averaged results on the right). Conformalized DQA
inflates interval lengths compared to DQA (in order to achieve valid coverage), but not by a huge amount, making it
still clearly favorable to the Average and Median aggregators, and comparable to QRA.

24

regression/aggregation methods that we know of. The conclusion is roughly that the most flexible model in
our aggregation family, which we call DQA (deep quantile aggregation), combined with the simplest penalty
and simplest post processor (just post sorting the quantile predictions), and conformalized using CQR-CV+,
is often among the most accurate and well-calibrated aggregation methods available, and should be a useful
method in the modern data scientist’s toolbox.

References
A. Ali, J. Kolter, and R. J. Tibshirani. The multiple quantile graphical model. In Advances in Neural
Information Processing Systems, 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
In Proceedings of the International Conference on Learning Representations, 2015.

R. F. Barber, E. J. Candès, A. Ramdas, and R. J. Tibshirani. The limits of distribution-free conditional
predictive inference. Information and Inference, 10(2):455–482, 2021a.

R. F. Barber, E. J. Candès, A. Ramdas, and R. J. Tibshirani. Predictive inference with the jackknife+.
Annals of Statistics, 49(1):486–507, 2021b.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference Under Order
Restrictions: The Theory and Application of Isotonic Regression. Wiley, 1972.

A. Belloni and V. Chernozhukov. `1-penalized quantile regression in high-dimensional sparse models. Annals
of Statistics, 39(1):82–130, 2011.

K. Benidis, S. S. Rangapuram, V. Flunkert, B. Wang, D. Maddix, C. Turkmen, J. Gasthaus, M. Bohlke-
Schneider, D. Salinas, L. Stella, L. Callot, and T. Januschowski. Neural forecasting: Introduction and
literature overview. arXiv: 2004.10240, 2020.

H. D. Bondell, B. J. Reich, and H. Wang. Noncrossing quantile regression curve estimation. Biometrika, 97
(4):825–838, 2010.

J. Bracher, E. L. Ray, T. Gneiting, and N. G. Reich. Evaluating epidemic forecasts in an interval format.
PLOS Computational Biology, 17(2):1–15, 2021.

J. Browell, C. Gilbert, R. Tawn, and L. May. Quantile combination for the eem20 wind power forecasting
competition. In Proceedings of the International Conference on the European Energy Market, 2020.

V. Chernozhukov, I. Fernández-Val, and A. Galichon. Quantile and probability curves without crossing.
Econometrica, 78(3):1093–1125, 2010.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential
linear units (ELUs). In International Conference on Learning Representations, 2016.

R. Cumings-Menon and M. Shin. Probability forecast combination via entropy regularized Wasserstein
distance. Entropy, 22(9), 2020.

W. Dabney, M. Rowland, M. Bellemare, and R. Munos. Distributional reinforcement learning with quantile
regression. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

H. Dette and S. Volgushev. Non-crossing non-parametric estimates of quantile curves. Journal of the Royal
Statistical Society: Series B, 70(3):609–627, 2008.

T. G. Dietterich. Ensemble methods in machine learning. In International Workshop on Multiple Classifier
Systems, 2000.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

25

http://archive.ics.uci.edu/ml

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. J. Smola. AutoGluon-Tabular:
Robust and accurate AutoML for structured data. arXiv: 2003.06505, 2020.

R. Fakoor, J. Mueller, N. Erickson, P. Chaudhari, and A. J. Smola. Fast, accurate, and simple models for
tabular data via augmented distillation. In Advances in Neural Information Processing Systems, 2020.

G. Fung, O. Mangasarian, and J. Shavlik. Knowledge-based support vector machine classifiers. In Advances
in Neural Information Processing Systems, 2002.

P. Gaillard, Y. Goude, and R. Nedellec. Additive models and robust aggregation for GEFCom2014 proba-
bilistic electric load and electricity price forecasting. International Journal of forecasting, 32(3):1038–1050,
2016.

C. Genest. Vincentization revisited. Annals of Statistics, 20(2):1137–1142, 1992.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 6:3–42, 2006.

T. Gneiting and M. Katzfuss. Probabilistic forecasting. Annual Review of Statistics and Its Application, 1:
125–151, 2014.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the
American Statistical Association, 102(477):359–378, 2007.

T. Gneiting and R. Ranjan. Combining predictive distributions. Electronic Journal of Statistics, 7:1747–
1782, 2013.

A. Hald. A History of Mathematical Statistics from 1750 to 1930. Wiley, 1998.

G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Camrbridge, 1934.

K. Hatalis, A. J. Lamadrid, K. Scheinberg, and S. Kishore. Smooth pinball neural network for probabilistic
forecasting of wind power. arXiv: 1710.01720, 2017.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural
Computation, 3(1):79–87, 1991.

S. Jain, G. Liu, J. Mueller, and D. Gifford. Maximizing overall diversity for improved uncertainty estimates
in deep ensembles. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

G. Kapetanios, J. Mitchell, S. Price, and N. Fawcett. Generalised density forecast combinations. Journal of
Econometrics, 188(1):150–165, 2015.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. LightGBM: A highly efficient
gradient boosting decision tree. In Advances in Neural Information Processing Systems, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

D. Kivaranovic, K. D. Johnson, and H. Leeb. Adaptive, distribution-free prediction intervals for deep
networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2020.

R. Koenker. Quantile Regression. Cambridge University Press, 2005.

R. Koenker. Additive models for quantile regression: Model selection and confidence bandaids. Brazilian
Journal of Probability and Statistics, 25(3):239–262, 2011.

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978.

R. Koenker and K. F. Hallock. Quantile regression. Journal of economic perspectives, 15(4):143–156, 2001.

R. J. Kuczmarski. CDC growth charts: United States. US Department of Health and Human Services,
Centers for Disease Control and Prevention, 2000.

26

V. Kuleshov, N. Fenner, and S. Ermon. Accurate uncertainties for deep learning using calibrated regression.
In International Conference on Machine Learning, 2018.

F. Laio and S. Tamea. Verification tools for probabilistic forecasts of continuous hydrological variables.
Hydrology and Earth System Sciences, 11:1267–1277, 2007.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation
using deep ensembles. In Advances in Neural Information Processing Systems, 2017.

Q. V. Le, A. J. Smola, and T. Gärtner. Simpler knowledge-based support vector machines. In Proceedings of
the International Conference on Machine Learning, 2006.

J. Lei and L. Wasserman. Distribution-free prediction bands for non-parametric regression. Journal of the
Royal Statistical Society: Series B, 76(1):71–96, 2014.

J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman. Distribution-free predictive inference
for regression. Journal of the American Statistical Association, 113(523):1094–1111, 2018.

K. C. Lichtendahl, Y. Grushka-Cockayne, and R. L. Winkler. Is it better to average probabilities or quan-
tiles? Management Science, 59(7):1594–1611, 2013.

L. R. Lima and F. Meng. Out-of-sample return predictability: A quantile combination approach. Journal of
Applied Econometrics, 32(4):877–895, 2017.

K. Maciejowska, J. Nowotarski, and R. Weron. Probabilistic forecasting of electricity spot prices using factor
quantile regression averaging. International Journal of Forecasting, 32(3):957–965, 2016.

J. E. Matheson and R. L. Winkler. Scoring rules for continuous probability distributions. Management
Science, 22(10):1087–1096, 1976.

N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7(35):983–999, 2006.

J. Mukhoti, P. Stenetorp, and Y. Gal. On the importance of strong baselines in Bayesian deep learning. In
Advances in Neural Information Processing Systems, 2018.

J. Nowotarski and R. Weron. Computing electricity spot price prediction intervals using quantile regression
and forecast averaging. Computational Statistics, 30(3):791–803, 2015.

J. Nowotarski and R. Weron. Recent advances in electricity price forecasting: A review of probabilistic
forecasting. Renewable and Sustainable Energy Reviews, 81:1548–1568, 2018. ISSN 1364–0321.

A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski. Using bayesian model averaging to calibrate
forecast ensembles. Monthly Weather Review, 133(5):1155–1174, 2005.

R. Ranjan and T. Gneiting. Combining probability forecasts. Journal of the Royal Statistical Society: Series
B, 72(1):71–91, 2010.

S. Rasp and S. Lerch. Neural networks for postprocessing ensemble weather forecasts. Monthly Weather
Review, 146(11):3885–3900, 2018.

R. Ratcliff. Group reaction time distributions and an analysis of distribution statistics. Psychological
Bulletin, 86(3):446–461, 1979.

T. Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical Inference. Wiley, 1998.

Y. Romano, E. Patterson, and E. J. Candès. Conformalized quantile regression. In Advances in Neural
Information Processing Systems, 2019.

S. Smyl and N. G. Hua. Machine learning methods for GEFCom2017 probabilistic load forecasting. Interna-
tional Journal of Forecasting, 35(4):1424–1431, 2019.

27

H. Song, T. Diethe, M. Kull, and P. Flach. Distribution calibration for regression. In International Confer-
ence on Machine Learning, 2019.

M. Stone. The opinion pool. Annals of Mathematical Statistics, 32(4):1339–1342, 1961.

N. Tagasovska and D. Lopez-Paz. Single-model uncertainties for deep learning. In Advances in Neural
Information Processing Systems, 2019.

I. Takeuchi, Q. V. Le, T. D. Sears, and A. J. Smola. Nonparametric quantile estimation. Journal of Machine
Learning Research, 7:1231–1264, 2006.

E. A. C. Thomas and B. H. Ross. On appropriate procedures for combining probability within the same
family. Journal of Mathematical Psychology, 21:136–152, 1980.

R. J. Tibshirani. quantgen: Tools for generalized quantile modeling, 2020. URL https://github.com/
ryantibs/quantgen.

A. Timmermann. Forecast combinations. Handbook of Economic Forecasting, 1:135–196, 2006.

B. Uniejewski and R. Weron. Regularized quantile regression averaging for probabilistic electricity price
forecasting. Energy Economics, 95(C):S0140988321000268, 2021.

M. J. Van der Laan, E. C. Polley, and A. E. Hubbard. Super learner. Statistical Applications in Genetics
and Molecular Biology, 6(1), 2007.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.
SIGKDD Explorations, 15(2):49–60, 2013.

S. B. Vincent. The function of the vibrissae in the behavior of the white rat. Behavior Monographs, 1(5),
1912.

V. Vovk. Conditional validity of inductive conformal predictors. Asian Conference on Machine Learning,
2012.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a Random World. Springer, 2005.

V. Vovk, I. Nouretdinov, V. Manokhin, and A. Gammerman. Cross-conformal predictive distributions. In
Conformal and Probabilistic Prediction and Applications, 2018.

R. L. Winkler. A decision-theoretic approach to interval estimation. Journal of the American Statistical
Association, 67(337):187–191, 1972.

D. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

Z. Xie and H. Wen. Composite quantile regression long short-term memory network. In International
Conference on Artificial Neural Networks, 2019.

S. Zhang, Y. Wang, Y. Zhang, D. Wang, and N. Zhang. Load probability density forecasting by transform-
ing and combining quantile forecasts. Applied Energy, 277:115600, 2020.

28

https://github.com/ryantibs/quantgen
https://github.com/ryantibs/quantgen

A Proofs

A.1 Proof of equivalence (6)
At the outset, we assume two conditions on F : it has a derivative f , and it yields an expectation. Starting
with the right-hand side in (6), we can substitute y = F−1(τ) to rewrite the integral as

2

∫ 1

0

(1{Y ≤ F−1(τ)} − τ)(F−1(τ)− Y) dτ = 2

∫ ∞
−∞

(1{Y ≤ y} − F (y))(y − Y)f(y) dy.

Let u′(y) = 2(1{Y ≤ y}−F (y))f(y) and v(y) = y−Y . The idea is now to use integration by parts, but there
are two subtleties. First, one has to be careful about framing the antiderivative u of u′, since y 7→ 1{Y ≤ y}
is not classically differentiable. Note that we can actually redefine u′ to be

u′(y) = 2(1{Y ≤ y} − F (y))(f(y)− δY (y)),

where δY is the Dirac delta function centered at Y , because the “extra” piece integrates to zero:∫ ∞
−∞

2(1{Y ≤ y} − F (y))(y − Y)δY (y) dy = 2(1{Y ≤ y} − F (y))(y − Y)
∣∣∣
y=Y

= 0.

With this new definition of u′, its antiderivative is rigorously

u(y) = −(1{Y ≤ y} − F (y))2,

because, in the distributional sense, the derivative of the heavyside function y 7→ 1{Y ≤ y} is indeed the
delta function δY . Thus we have∫ ∞

−∞
u′(y)v(y) dy = u(y)v(y)

∣∣∣∞
−∞
−
∫ ∞
−∞

u(y)v′(y) dy

= −(1{Y ≤ y} − F (y))2(y − Y)
∣∣∣∞
−∞

+

∫ ∞
−∞

(1{Y ≤ y} − F (y))2 dy.

The second subtlety is to show that the first term above is indeed zero. This is really a question of how fast
the tails of F decay. As F yields an expectation, note that we must have 1−F (y) . y−p for p > 1 (since 1/y
is not integrable on any one-sided interval [a,∞) for a > 0). Hence

(1− F (y))2y . y−2p+1 → 0 as y →∞,

and the other limit, as y → −∞, is similar.

A.2 Proof of equivalence (8)
Starting with the right-hand side in (8), consider the two summands corresponding to τ ∈ {α/2, 1− α/2}:

2ψα/2(Y − `α) + 2ψα/2(Y − uα), (30)

where we have used `α = F−1(α/2) and uα = F−1(1− α/2). If Y > uα, then (30) is

α(Y − `α) + 2(1− α/2)(Y − uα) = α(uα − `α) + 2(Y − uα).

Meanwhile, if Y < `α, then (30) is

2(1− α/2)(`α − Y) + α(uα − Y) = α(uα − `α) + 2(`α − Y).

Lastly, if Y ∈ [`α, uα], then (30) is

α(Y − `α) + α(uα − Y) = α(uα − `α).

In each case, it matches the summand in the left-hand side of (8) corresponding to exclusion probability α,
which completes this proof.

29

A.3 Proof of Proposition 2
In this proof we denote the pinball loss, for a vector of quantiles q ∈ Rm across quantiles levels τ1, . . . , τm, by

L(q, y) =

m∑
i=1

ψτi(y − qi).

Proof of part (i). Suppose that there are only two quantile levels τ1 < τ2, and abbreviate qi = ĝ(x; τi) for
i = 1, 2. We will prove in this special case that sorting can only improve the pinball loss. Importantly, this
suffices to prove the result in the general case as well, since sorting can always be achieved by a sequence of
pairwise swaps (via bubble sort).

Assume q1 > q2, otherwise there is nothing to prove. Denote the pinball loss by

L(q, y) = ψτ1(y − q1) + ψτ2(y − q2).

We now break the argument down into three cases. In each case, when we speak of the loss difference, we
mean the pre-sort minus the post-sort pinball loss (first line minus second line in each display that follows).

Case 1: y > q1. Denoting a = y − q1 and b = y − q2 (and noting b ≥ a), we have

L((q1, q2), y) = τ1a+ τ2b,

L((q2, q1), y) = τ1b+ τ2a,

so the loss difference is (τ2 − τ1)(b− a) ≥ 0. I

Case 2: y ∈ [q2, q1]. Denoting a = q1 − y and b = y − q2, we have

L((q1, q2), y) = (1− τ1)a+ τ2b,

L((q2, q1), y) = τ1b+ (1− τ2)a,

so the loss difference is (τ2 − τ1)(a+ b) ≥ 0.

Case 3: y < q2. Denoting a = q1 − y and b = q2 − y (and noting a ≥ b), we have

L((q1, q2), y) = (1− τ1)a+ (1− τ2)b,

L((q2, q1), y) = (1− τ1)b+ (1− τ2)a,

so the loss difference is (τ2 − τ1)(a− b) ≥ 0. This completes the proof.

Proof of part (ii). As in the proof of part (i), we will prove the result in a special case, and argue that it
suffices to prove the result in general. Given k + ` quantile levels τ1 < · · · < τk+`, we abbreviate qi = ĝ(x; τi)
for i = 1, . . . , k + `. We suppose, in what follows, that q1 = · · · = qk and qk+1 = · · · = qk+`. We then show
that averaging can only improve the pinball loss, where by averaging, we mean replacing the original vector
(q1, . . . , qk+`) by (q̄, . . . , q̄), with q̄ = 1

k+`

∑k+`
i=1 qi. This suffices to prove the desired result, because isotonic

projection can be solved using PAVA, which carries out a sequence of steps (whenever there is a violation of
the monotonicity condition) that are precisely of the form we study here.

Assume qk > qk+1, otherwise there is nothing to prove. We break the argument down into four cases. In
each case, as in the proof of part (i), when we speak of the loss difference below, we mean the pre-sort loss
minus the post-sort loss.

Case 1: y ≥ qk. We have

L((q1, . . . , qk+`), y) =

k∑
i=1

τi(y − qk) +

k+∑̀
i=k+1

τi(y − qk+1),

L((q̄, . . . , q̄), y) =

k+∑̀
i=1

τi(y − q̄),

30

so the loss difference is

k∑
i=1

τi(q̄ − qk) +

k+∑̀
i=k+1

τi(q̄ − qk+1) =
k`

k + `

(
1

`

k+∑̀
i=k+1

τi −
1

k

k∑
i=1

τi

)
(qk − qk+1) ≥ 0.

Case 2: y ∈ [qk+1, qk] and y > q̄. We have

L((q1, . . . , qk+`), y) =

k∑
i=1

(1− τi)(qk − y) +

k+∑̀
i=k+1

τi(y − qk+1),

L((q̄, . . . , q̄), y) =

k+∑̀
i=1

τi(y − q̄),

so the loss difference is

k(qk − y) +

k∑
i=1

τi(q̄ − qk) +

k+∑̀
i=k+1

τi(q̄ − qk+1) = k(qk − y) +
k`

k + `

(
1

`

k+∑̀
i=k+1

τi −
1

k

k∑
i=1

τi

)
(qk − qk+1) ≥ 0.

Case 3: y ∈ [qk+1, qk] and y ≤ q̄. We have

L((q1, . . . , qk+`), y) =

k∑
i=1

(1− τi)(qk − y) +

k+∑̀
i=k+1

τi(y − qk+1),

L((q̄, . . . , q̄), y) =

k+∑̀
i=1

(1− τi)(q̄ − y),

so the loss difference is

`(y − qk+1) +

k∑
i=1

(1− τi)(qk − q̄) +

k+∑̀
i=k

(1− τi)(qk+1 − q̄)

= `(y − qk+1) +
k`

k + `

(
1

k

k∑
i=1

(1− τi)−
1

`

k+∑̀
i=k+1

(1− τi)
)

(qk − qk+1) ≥ 0.

Case 4: y < qk. Then

L((q1, . . . , qk+`), y) =

k∑
i=1

(1− τi)(qk − y) +

k+∑̀
i=k+1

(1− τi)(qk+1 − y),

L((q̄, . . . , q̄), y) =

k+∑̀
i=1

(1− τi)(q̄ − y),

so the loss difference is

k∑
i=1

(1− τi)(qk − q̄) +

k+∑̀
i=k

(1− τi)(qk+1 − q̄) =
k`

k + `

(
1

k

k∑
i=1

(1− τi)−
1

`

k+∑̀
i=k+1

(1− τi)
)

(qk − qk+1) ≥ 0.

This completes the proof.

A.4 Proof of Proposition 5
Proof of part (i). This is immediate from the fact that f(v) = w1f1(v) + w2f2(v) and f2(v)/f1(v)→ 0.

31

Proof of part (ii). This part is more subtle. Using (14), note that we may write

1

f̄(Q̄(u))
=

w1

f1(Q1(u))
+

w2

f2(Q2(u))
.

For v = Q̄(u), consider
f1(v)

f̄(v)
=
w1f1(Q̄(u))

f1(Q1(u))
+
w2f1(Q̄(u))

f2(Q2(u))
.

It will be convenient to work on the log scale. Introduce p1 = log f1 and p2 = log f2. Then it suffices to show
that as u→ 1,

p1(Q̄(u))− p1(Q1(u))→∞, and
p1(Q̄(u))− p2(Q2(u)) remains bounded away from −∞,

or

p1(Q̄(u))− p2(Q2(u))→∞, and
p1(Q̄(u))− p1(Q1(u)) remains bounded away from −∞.

We now divide the argument into two cases. Without a loss of generality, we set w1 = w2 = 1/2.

Case 1: p1(Q1(u))−p2(Q2(u)) remains bounded away from −∞. Denoting v = Q̄(u), v1 = Q1(u), v2 = Q2(u),
we have, using log-concavity of p1,

p1(v)− p2(v2) = p1(v1/2 + v2/2)− p2(v2)

≥ p1(v1)/2 + p1(v2)/2− p2(v2)

=
(
p1(v1)− p2(v2)

)
/2 +

(
p1(v2)− p2(v2)

)
/2.

The first term above is bounded below by assumption; the second term diverges to ∞ (under our hypothesis
that f2(v)/f1(v)→ 0).

Case 2: p1(Q1(u))− p2(Q2(u))→ −∞. We have, just as in the first case,

p1(v)− p1(v1) = p1(v1/2 + v2/2)− p1(v1)

≥ p1(v1)/2 + p1(v2)/2− p2(v2) + p2(v2)− p1(v1)

= −
(
p1(v1)− p2(v2)

)
/2 +

(
p1(v2)− p2(v2)

)
/2.

Now both terms above diverge to ∞, and this completes the proof.

B More experimental details and results
In the following, we provide further details about models: the hyperparameter space, optimization details, etc.
In our experiments, for each method described below, we perform hyperparameter tuning over a randomly
chosen subset of 20 values from the full Cartesian product of possibilities.

B.1 Base models
We consider p = 6 base models in total. The first 3 are neural network models, that each compute quantile
estimates differently. Each use a standard feed-forward (multilayer perceptron) architecture.

• Conditional Gaussian network (CGN, Lakshminarayanan et al., 2017): this model assumes that the
conditional distribution of Y |X = x is Gaussian. It therefore outputs estimates of sufficient statistics,
namely the conditional mean µ(x) and variance σ2(x). It is optimized by minimizing the negative
log-likelihood, and subsequent quantile estimation is done based on the normal distribution.

32

• Simultaneous quantile regression (SQR, Tagasovska and Lopez-Paz, 2019): this model takes as input
a target quantile level τ concatenated with a feature vector x, and outputs a corresponding quantile
estimate. It is trained by minimizing a pinball loss for many different randomly sampled quantile levels
τ . To estimate multiple quantile levels with SQR, we must thus feed in the same x numerous times,
each paired with a different quantile level τ .

• Deep quantile regression (DQR): this model falls naturally out of our neural aggregation framework, as
explained in Section 3.3. It is the only neural network based model considered in this paper that can
easily utilize different isotonization approaches discussed in Section 4. For DQR as a base model in all
experiments, we use the simplest method for ensuring noncrossing among the all options: the crossing
penalty along with post sorting.

We optimize each of these neural network models using Adam (Kingma and Ba, 2015), and using ELU
activation function (Clevert et al., 2016). We adaptively vary the mini-batch size depending on the data set
size. They also share the same architecture/optimization hyperparameter search space: # of fully connected
layers: {2, 3}, # of hidden units: {64, 128}, dropout ratio: {0.0, 0.05, 0.1}, learning rate: {1e-3, 3e-4}, weight
decay: {1e-5, 1e-7}. In all settings, we use early stopping where the validation loss is evaluated every epoch
and if it has not decreased for the last 500 updates, the optimization is stopped by returning the epoch with
the lowest validation loss.

The next 3 base models are not neural networks.

• Quantile random forest (RandomForest, Meinshausen, 2006) and extremely randomized trees (Extra-
Trees, Geurts et al., 2006): both models are based on random forests trained as regular (conditional
mean) regressors. After training, quantile estimates are computed via empirical quantiles of the data in
relevant leaf nodes of the trees.

• Quantile gradient boosting (LightGBM, Ke et al., 2017): this model is a gradient boosting framework
that uses tree-based base learners. As a boosting framework, it can optimize the pinball loss, and thus
be directly used for quantile regression. It handles multiple quantile levels by simply using a separate
model for each level.

For the random forests models, we use the scikit-garden (https://scikit-garden.github.io/) im-
plementation for both, and both have the same hyperparameter search space: minimum # of samples for
splitting nodes: {8, 16, 64}, minimum # of sample for leaf nodes: {8, 16, 64} .

For the gradient boosting model, the hyperparameter space is: # of leaves: {10, 50, 100}, minimum child
samples: {3, 9, 15}, minimum child weight: {1e-2, 1e-1, 1}, subsample ratio: {0.4, 0.6, 0.8}, subsample ratio
of columns: {0.4, 0.6}, `1 regularization weight: {1e-1, 1, 5}, `2 regularization weight: {1e-1, 1, 5}.

B.2 Aggregation models
We consider 4 aggregation models from outside framework: Average, Median, quantile regression averaging
(QRA, Nowotarski and Weron, 2015), and factor QRA (FQRA, Maciejowska et al., 2016). The first 3 do not
require tuning. For FQRA, we tune over the number of factors, between 1-6 (the number of base models).

We also study a total of 6 aggregation models within our framework: three global aggregators and three
local ones (each having coarse, medium, or fine weight parameterizations). For the global aggregators, the
hyperparameter search space we use is: crossing penalty weight λ: {0.5, 1.0, 2.0, 5.0, 10.0}, crossing penalty
margin scaling δ0: {1e-1, 5e-2, 1e-2, 1e-3, 1e-4}. For the local aggregators, the hyperparameter search space
additionally includes: # of layers: {2, 3}, # of hidden units: {64, 128}, dropout ratio: {0.0, 0.05, 0.1}. All
are optimized using the Adam optimizer (Kingma and Ba, 2015), ELU activation function (Clevert et al.,
2016), and adaptively-varied mini-batch size. We also employ the same early stopping strategy as described
above.

B.3 Revisiting Figure 1
Figure 12 plots the same results in Figure 1 but it displays a difference in WIS values, rather than a ratio of
WIS values (which is how we define relative WIS). That is, shown on the y-axis is the difference of the WIS

33

https://scikit-garden.github.io/

0 5 10 15 20 25 30 35
Data set index

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
iff

er
en

ce
 in

 W
IS

DQA
CGN

SQR
DQR

RandomForest
ExtraTrees

LightGBM
Average

Median
QRA

FQRA

Figure 12: As in Figure 1, but with WIS differences (of each method to DQA) on the y-axis rather than WIS ratios.

of each quantile regression minus that of DQA, where now 0 indicates equal WIS performance to DQA, and
a number greater than 0 indicates worse performance than DQA. In general, WIS will be on the scale of
the response variable, but recall that we have standardized the response variable in each data set, thus the
comparison in Figure 12 makes sense across data sets. The story in this figure is very much similar to that in
Figure 1, except that we can more clearly see that for some data sets with low PVE values (e.g., at index 5),
there are a handful of models that perform a little better than DQA.

34

	Introduction
	Related work
	Outline

	Background
	Quantile regression and scoring rules
	Noncrossing constraints and post hoc adjustment
	Quantile versus probability aggregation

	Aggregation methods
	Out-of-sample base predictions
	Global aggregation weighting schemes
	Local aggregation via neural networks
	Interpreting the local aggregation scheme
	New base model: deep quantile regression

	Quantile noncrossing
	Crossing penalty and quantile buffering
	Isotonization: post hoc and end-to-end

	Conformal calibration
	Empirical comparisons
	Continuation of Figure 1
	Comparing ensembling strategies
	Comparing isotonization approaches
	Evaluating conformal calibration

	Discussion
	Proofs
	Proof of equivalence (6)
	Proof of equivalence (8)
	Proof of Proposition 2
	Proof of Proposition 5

	More experimental details and results
	Base models
	Aggregation models
	Revisiting Figure 1

