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S.1 Proof of Lemma 4.1

If the conditional quantiles satisfy QU |V,W (α) = QU |W (α) for all α ∈ [0, 1], then the conditional
CDF must obey the same property, i.e., FU |V,W (t) = FU |W (t) for all t in the support of U . This
is simply because any CDF may be expressed in terms of its corresponding quantile function (i.e.,
inverse CDF), as in

FU |V,W (t) = sup{α ∈ [0, 1] : QU |V,W (α) ≤ t},
and the right-hand side does not depend on V , so neither can the left-hand side. But this precisely im-
plies that the distribution of U |V,W equals that of U |W , i.e., U and V are conditionally independent
given W . We note that the converse of the statement in the lemma is true as well, by just reversing all
the arguments here.

S.2 Proof of Lemma 4.2

This result can be seen as a generalization of Theorem 3 in [5].

First, we define an iteration of Gibbs sampling to be a single pass through all the variables (without a
loss of generality, we take this order to be y1, . . . , yd). Now, consider a particular iteration of Gibbs
sampling; let ỹ1, . . . , ỹd be the values assigned to the variables on the previous iteration. Then the
transition kernel for our Gibbs sampler is given by

Pr(y1, . . . , yd|ỹ1, . . . , ỹd) = Pr(yd|yd−1, . . . , y1, ỹ1, . . . , ỹd)Pr(yd−1, . . . , y1|ỹ1, . . . , ỹd) (S.1)
= Pr(yd|yd−1, . . . , y1)Pr(yd−1, . . . , y1|ỹ1, . . . , ỹd) (S.2)
= Pr(yd|yd−1, . . . , y1)Pr(yd−1|yd−2, . . . y1, ỹd) · · ·Pr(y1|ỹ2, . . . , ỹd),

(S.3)

where (S.1) follows by the definition of conditional probability, (S.2) by conditional independence,
and (S.3) by repeated applications of these tools. Since each conditional distribution is assumed
to be (strictly) positive, we have that the transition kernel is also positive, which in turn implies [2,
page 544] that the induced Markov chain is ergodic with a unique stationary distribution that can be
reached from any initial point.

S.3 Statement and discussion of regularity conditions for Theorem 4.3

For each k = 1, . . . , r, ` = 1, . . . , r, let us define the “effective” (independent) error terms
ε`ki = y

(i)
k − b∗`k −

∑
j 6=k φ(y

(i)
j )T θ∗`kj , over i = 1, . . . , n. Denote by Fε`k the conditional CDF of
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ε`ki|y(i)
¬k, i = 1, . . . , n, which by construction satisfies Fε`k(0) = α`. Also define the underlying

support
S`k =

{
j ∈ {1, . . . , d} : θ∗`kj 6= 0

}
.

Here we take a moment to explain a somewhat subtle indexing issue with the columns of the feature
matrix Φ ∈ Rn×dm. For a single fixed index j = 1, . . . , d, we will extract an appropriate block of
columns of Φ ∈ Rn×dm, corresponding to the basis expansion of variable j, by writing Φj . More
precisely, we use Φj to denote the block of m columns

[Φ(j−1)m+1,Φ(j−1)m+2, . . . ,Φjm]. (S.4)

We do this because it simplifies notation considerably. (Occasionally, to be transparent, we will use
the more exhaustive notation on the right-hand side in (S.4), but this is to be treated as an exception,
and the default is to use the concise notation as in Φj .) The same rule will be used for subsets of
indices among 1, . . . , d, so that ΦS`k

denotes the appropriate block of m|S`k| columns corresponding
to the basis expansions of the variables in S`k.

For all k = 1, . . . , d, ` = 1, . . . , r, we will assume the following regularity conditions.

A1. Groupwise irrepresentability: for j ∈ Sc`k, we require that ‖ΦTj ΦS`k
‖F < λ1/(6fε`k(0)γ),

where S`k = {j ∈ {1, . . . , dm} : θ∗`kj 6= 0}, fε`k is the density of Fε`k , and γ > 0 is a
quantity prescribed by Lemma S.5.

A2. Distributional smoothness: we assume that |Fε`k(x)− Fε`k(0)− xfε`k(0)| ≤ C1x
2 for all

|x| ≤ C2, where C1, C2 > 0 are constants.

A3. Correlation restriction: we assume that C3 ≤ (fε`k(0)/n)λmin(ΦTS`k
ΦS`k

) ≤ C4 for con-
stants C3, C4 > 0, where λmin(A) denotes the minimum eigenvalue of A.

A4. Basis and support size restrictions: we assume that m = O(n1/9) and s = O(n1/21),
where s = |S`k|. We also assume, with probability tending to one, that Φmax = Ω(1) and
Φmax = o(n1/21/ log1/2 n), where we write Φmax to denote the maximum absolute entry
of the basis matrix Φ.

Next, we provide some intuition for these conditions.

Condition A1. Fix some j ∈ Sc`k. For notational convenience, we let

A = ΦTj ΦS`k
∈ Rm×sm.

Observe that each entry of A can be expressed as

Aip = nρi,p‖Φ(j−1)m+i‖2‖Φp‖2, (S.5)

for i = 1, . . . ,m, p denoting an index into the basis expansion of the columns ΦS`k
, and ρi,p denoting

the sample correlation coefficient for the columns Φi and Φp. Since ‖Ap‖F ≤
√
m‖Ap‖∞, we have

that

max
i,p

ρi,p <
λ1

6n2fε`k(0)
√
m

is sufficient for condition A1; here, we have also used the column scaling assumption ‖Φp‖2 ≤
√
n.

So, roughly speaking, bounded correlation between each pair of columns in the submatrices Φj
and ΦS`k

is enough for condition A1 to hold; note that this is trivially satisfied when ΦTi Φp = 0,
for i = 1, . . . ,m, and p as defined above. Condition A1 is therefore similar to, e.g., the mutual
incoherence condition of [7] for the lasso, which is given by∥∥∥ΦTScΦS

(
ΦTSΦS

)−1
∥∥∥
∞
≤ 1− γ̃ ⇐⇒ max

j∈Sc

∥∥∥(ΦTSΦS
)−1

ΦTSΦj

∥∥∥
1
≤ 1− γ̃,

where again ΦS extracts the appropriate block of columns of Φ, ‖ · ‖∞ here denotes the `∞ operator
norm (maximum `1 norm of a row), ‖ · ‖1 here denotes the elementwise `1 norm, and γ̃ ∈ (0, 1] is a
constant. This condition can be seen as requiring bounded correlation between each column in the
submatrix ΦSc and all columns in the submatrix ΦS .
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Condition A2. This condition is similar to requiring that fε`k(x) be Lipschitz, over some x in a
neighborhood of 0. We can show that the Laplace distribution, e.g., satisfies this condition.

The density and distribution functions for the Laplace distribution with location zero and unit scale
are given by

fε`k(x) = (1/2) exp(−|x|)
and

Fε`k(x) =

{
1− (1/2) exp(−x) if x ≥ 0

(1/2) exp(x) if x < 0,

respectively.

Now, suppose 0 ≤ x ≤ C2. Then we can express condition A2 as

|fε`k(x)− fε`k(0)− xfε`k(0)| ≤ C1x
2 ⇐⇒ −2C1x

2 ≤ exp(−x) + x− 1 ≤ 2C1x
2.

For the first inequality, since 1− x ≤ exp(−x), it is sufficient to check that 0 ≤ C1x
2, which is true

for C1 > 0 and all x. For the second inequality, by differentiating and again using 1− x ≤ exp(−x),
we have that the function

2C1x
2 − exp(−x)− x+ 1 (S.6)

is nondecreasing in x ≥ 0; thus, it is sufficient to check that this function is nonnegative for x = 0,
which is true.

Now, suppose −C2 ≤ x < 0. Then we can express condition A2 as

|fε`k(x)− fε`k(0)− xfε`k(0)| ≤ C1x
2 ⇐⇒ −2C1x

2 ≤ exp(x)− x− 1 ≤ 2C1x
2.

By symmetry with the preceding case, the first inequality here holds. The second inequality here also
holds, since exp(x)− 2C1x

2− x− 1 is continuous and increasing in x < 0; taking the limit as x ↑ 0
gives that this function is nonpositive as required.

Condition A3. This condition is a generalization of the minimum eigenvalue condition of [7], i.e.,
cmin ≤ λmin

(
(1/n)ΦTSΦS

)
, for some constant cmin > 0, and where we write ΦS to extract the

appropriate block of columns of Φ.

Condition A4. This condition allows the number of basis functions m in the expansion to grow with n,
at a polynomial rate (with fractional exponent). This is roughly in line with standard nonparametric
regression; e.g., when estimating a continuous differentiable function via a spline expansion, one
typically takes the number of basis functions m to scale as n1/3 [4]. The condition also restricts,
for any given variable, the number of variables s that contribute to its neighborhood model to be
polynomial in n (with a smaller fractional exponent).

Finally, the condition assumes that the entries of the basis matrix Φ (i.e., the matrix of transformed
variables) to be at least of constant order, and at most of polynomial order (with small fractional
exponent), with n. We note that this implicitly places a restriction on the tails of distribution governing
the data y(i)

j , i = 1, . . . , n, j = 1, . . . , d. However, the restriction is not a strong one, because it
allows the maximum to grow polynomially large with n (whereas a logarithmic growth would be
expected, e.g., for normal data). Furthermore, it is possible to trade off the restrictions on m, s, Φmax,
and d (presented in the statement of the theorem), making each of these restrictions more or less
stringent, if required.

S.4 Proof of Theorem 4.3

The general strategy that we use here for support recovery is inspired by that in [3], for `1-penalized
quantile regression.

Fix some k = 1, . . . , d and ` = 1, . . . , r. We consider the conditional distribution yk|y¬k, whose
α`-quantile is assumed to satisfy (3). Hence, to be perfectly clear, all expectations and probability
statements in what follows are to be interpreted with respect to the observations y(i)

k , i = 1, . . . , n
conditional on y(i)

j , i = 1, . . . , n, for j 6= k (and thus we can treat the feature matrix Φ as fixed
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throughout). In the setting assumed by the theorem, the conditional quantile model in (3) is, more
explicitly,

Qyk|y¬k(α`) = b∗`k +

d∑
j 6=k

(θ∗`kj)
Tφj(yj),

for some unknown parameters b∗`k and θ∗`kj , j = 1, . . . , d. For simplicity, in this proof, we will drop
the intercept term completely both from the model (denoted b∗`k) and the optimization problem in (4)
(here denoted b`k) that defines the estimator in question. Including the intercept is not at all difficult,
and it just requires some extra bookkeeping at various places. Recall that we define

S`k =
{
j ∈ {1, . . . , d} : θ∗`kj 6= 0

}
,

and analogously define
Ŝ`k =

{
j ∈ {1, . . . , d} : θ̂`kj 6= 0

}
,

where θ̂`k = (θ̂`k1, . . . , θ̂`kd) ∈ Rdm is the solution in (5).

We will show that, with probability at least 1− δ/(dr), it holds that S`k = Ŝ`k. A union bound (over
all choices k = 1, . . . , d and ` = 1, . . . , r) will then tell us that E∗ = Ê with probability at least
1− δ, completing the proof.

To certify that S`k = Ŝ`k, we will show that the unique solution in (5) is given by

θ̂`k(S`k) = θ̃`k(S`k), θ̂`k(Sc
`k) = 0, (S.7)

where θ̃`k(S`k) solves the “restricted” optimization problem:

minimize
θ`k(S`k)

ψα`

(
Yk − ΦS`k

θ`k(S`k)

)
+ λ1

∑
j∈S`k

‖θ`kj‖2 +
λ2

2
‖θ`k(S`k)‖22. (S.8)

Now, to prove that θ̂`k as defined above in (S.7) indeed the solution in (5), we need to check that it
satisfies the KKT conditions for (5), namely

ΦTS`k
v`

(
Yk − ΦS`k

θ̃`k(S`k)

)
− λ2θ̃`k(S`k) = λ1u`k(S`k), (S.9)

ΦTSc
`k
v`

(
Yk − ΦS`k

θ̃`k(S`k)

)
= λ1u`k(Sc

`k), (S.10)

where v`(Yk − ΦS`k
θ̃`k(S`k)) ∈ Rn is a subgradient of ψα`

(·) at Yk − ΦS`k
θ̃`k(S`k), i.e.,[

v`

(
Yk − ΦS`k

θ̃`k(S`k)

)]
i

= α` − I−
(
y

(i)
k − Φi(S`k)θ̃`k(S`k)

)
, i = 1, . . . , n

where I−(·) is the indicator function of the nonpositive real line, and where each u`kj ∈ Rm is a
subgradient of ‖ · ‖2 at θ̃`kj , i.e.,

u`kj ∈
{
{θ̃`kj/‖θ̃`kj‖2} if θ`kj 6= 0

{x ∈ Rm : ‖x‖2 ≤ 1} if θ`kj = 0,

for j = 1, . . . , d. Note that, since θ̃`k(S`k) is optimal for the restricted problem (S.8), we know that
there exists a collection of subgradients u`k(S`k) to satisfy (S.9), from the KKT conditions for (S.8)
itself.

It remains to satisfy (S.10), and for this, we can use u`kj = ΦTj v`(Yk − ΦS`k
θ̃`k(S`k)) as a valid

choice of subgradient, for each j ∈ Sc`k, provided that∥∥∥ΦTj v`

(
Yk − ΦS`k

θ̃`k(S`k)

)∥∥∥
2
< λ1, for j ∈ Sc`k. (S.11)

Define zj(ϑ) = ΦTj v`(Yk − ΦS`k
ϑ), for j ∈ Sc`k, and define a ball

B∗ =
{
ϑ ∈ Rsm : ‖ϑ− θ∗`k(S`k)‖2 ≤ γ

}
,

where we write s = |S`k|. To show (S.11), then, it suffices to show that

θ̃`k(S`k) ∈ B∗︸ ︷︷ ︸
E1

, and max
j∈Sc

`k

sup
ϑ∈B∗

‖zj(ϑ)‖2 < λ1︸ ︷︷ ︸
E2

. (S.12)
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In Lemma S.5.1, given in Section S.5, it is shown that the event E1 defined above occurs with
probability at least 1− δ/(2dr), with a choice of radius

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

for a constant C > 0. Below we show that E2 occurs with probability at least 1− δ/(2dr), as well.

For j = 1, . . . , d, let us expand

zj(ϑ) = ΦTj v`(ε`k)︸ ︷︷ ︸
∆j

1

+ ΦTj E
[
v`

(
Yk − ΦS`k

ϑ
)
− v`(ε`k)

]
︸ ︷︷ ︸

∆j
2

+

ΦTj

(
v`

(
Yk − ΦS`k

ϑ)− v`(ε`k
)
−E

[
v`(Yk − ΦS`k

ϑ)− v`(ε`k)
])

︸ ︷︷ ︸
∆j

3

, (S.13)

where ε`k = (ε`k1, . . . , ε`kn) ∈ Rn is a vector of the effective error terms, which recall, is defined by
ε`k = Yk − Φθ∗`k. Therefore, to show that the event E2 in (S.12) holds, we can show that for each
p = 1, 2, 3,

max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
p‖2 <

λ1

3
.

Further, to show that E2 holds with probability at least 1−δ/(2dr), we can show that the above holds
for p = 1, 3 each with probability at least 1− δ/(4dr), as the statement for p = 2 is deterministic.
We now bound the terms ∆j

1,∆
j
2,∆

j
3 one by one.

Bounding ‖∆j
1‖2. Fix j ∈ Sc`k, and write

ΦTj v`(ε`k) =

( n∑
i=1

Φi,(j−1)m+1v`(ε`ki), . . . ,

n∑
i=1

Φi,jmv`(ε`ki)

)
,

where, as a reminder that the above quantity is a vector, we have returned momentarily to the more
exhaustive notation for indexing the columns of Φ, as in the right-hand side of (S.4).

Straightforward calculations reveal that, for each i = 1, . . . , n, and p = 1, . . . ,m,

EΦi,(j−1)m+pv`(ε`ki) = 0, and − |Φi,(j−1)m+p| ≤ Φi,(j−1)m+pv`(ε`ki) ≤ |Φi,(j−1)m+p|.

Hence,

Pr
(
‖ΦTj v`(ε`ki)‖2 ≥

√
mt
)
≤ Pr

(∣∣∣∣ n∑
i=1

Φi,(j−1)m+pv`(ε`ki)

∣∣∣∣ ≥ t, some p = 1, . . . ,m

)

≤
m∑
p=1

2 exp

(
− t2

2
∑n
i=1 Φ2

i,(j−1)m+p

)

≤ 2m exp

(
− t2

2n

)
.

Above, the first inequality used the simple fact that ‖x‖2 ≤
√
m‖x‖∞ for x ∈ Rm; the second used

Hoeffding’s bound and the union bound; and the third used our assumption that the columns of Φ
have norm at most

√
n. Therefore, taking t = λ1/(3

√
m), we see that, by the above and the union

bound,

Pr

(
max
j∈Sc

`k

‖∆j
1‖2 <

λ1

3

)
≥ 1− 2dm exp

(
− λ2

1

18mn

)
.

By choosing λ1 = C ′
√

18mn log(8d2mr/δ) for a constant C ′ > 0, we see that the probability in
question is at least 1− δ/(4dr), as desired.
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Bounding ‖∆j
2‖2. Recall that Fε`k(·) is used to denote the CDF of the effective error distribution,

and fε`k(·) is used for its its density. By construction, Fε`k(0) = α`. Direct calculation, using the
definition of v`(·), shows that, for any ϑ ∈ B∗, and each i = 1, . . . , n,

E
[
v`(ε`k)− v`

(
Yk − ΦS`k

ϑ
)]

= Fε`k

(
ΦS`k

(
ϑ− θ∗`k(S`k)

))
− Fε`k(0),

where we apply Fε`k componentwise, and so

ΦTj E
[
v`(ε`k)− v`

(
Yk − ΦS`k

ϑ
)]

= fε`k(0)ΦTj ΦS`k

(
ϑ− θ∗`k(S`k)

)
+ ∆j

4

with ∆j
4 ∈ Rm being the appropriate remainder term, i.e.,[

∆j
4

]
t

=

n∑
i=1

Φit

[
Fε`k

(
Φi(S`k)

(
ϑ− θ∗`k(S`k)

))
− Fε`k(0)− fε`k(0)Φi(S`k)

(
ϑ− θ∗`k(S`k)

)]
,

for t = j(m− 1) + 1, . . . , jm.

Now, we have that∥∥fε`k(0)ΦTj ΦS`k

(
ϑ− θ∗`k(S`k)

)∥∥
2
≤ fε`k(0)

∥∥ΦTj ΦS`k

∥∥
F

∥∥ϑ− θ∗`k(S`k)

∥∥
2
≤ λ1

6
,

where we have used ‖ϑ− θ∗`k(S`k)‖2 ≤ γ and the groupwise irrepresentability condition in A1.

We also have the following two facts, which we will use momentarily:

Φ3
maxnsγ

2 = o(λ1) (S.14)
√
sΦmaxγ → 0. (S.15)

Note that (S.14) can be obtained as follows. Since (1/2)(x+ y)2 ≤ x2 + y2 for x, y ∈ R, we can
plug in

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

and check that both terms on the right-hand side of

Φ3
maxns

λ1

(
λ2

1s
2m

n2
+
s log n

n

)
=

Φ3
maxs

3λ1m

n
+

Φ3
maxs

2 log n

λ1

tend to zero. For the first term on the right-hand side, it is enough to show that

Φ6
maxs

6m3 log(d2mr)(log3 n)/n→ 0,

where we have plugged in λ1 = C ′
√
mn log(d2mr/δ) log3 n. Using the assumptions in condition

A4, we get that log(d2mr) = O(log d+ logm) = O(n2/21), and furthermore that

Φ6
maxs

6m3 log(d2mr)(log3 n)/n = o

(
n1/3 · n2/21 · n6/21 · n6/21

log3 n

)
log3 n

n
→ 0,

as required. A similar calculation shows that the second term on the right-hand side also tends to
zero, i.e., Φ3

maxs
2(log n)/λ1 → 0, which establishes (S.14). Lastly, (S.15) follows since its left-hand

side is dominated by the left-hand side of (S.14).

So, we now compute

‖∆j
4‖2 ≤

√
mmax

t

n∑
i=1

∣∣∣∣Φit[Fε`k(Φi(S`k)

(
ϑ− θ∗`k(S`k)

))
−

Fε`k(0)− fε`k(0)Φi(S`k)

(
ϑ− θ∗`k(S`k)

)]∣∣∣∣
≤ C1Φmax

√
m

n∑
i=1

(
Φi(S`k)

(
ϑ− θ∗`k(S`k)

))2
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≤ C1Φmax

√
m

n∑
i=1

‖Φi(S`k)‖22‖ϑ− θ∗`k(S`k)‖
2
2

≤ C1Φ3
max

√
mnsγ2

= o(λ1).

Here the first inequality follows from the fact that ‖x‖2 ≤
√
m‖x‖∞ for x ∈ Rm, and the triangle

inequality; the second follows from the distributional smoothness condition in A2, which is applicable
since (S.15) holds; the third uses Cauchy-Schwarz; the fourth uses our column norm assumption on
Φ, and ‖ϑ− θ∗`k(S`k)‖2 ≤ γ; the last uses (S.14). As ‖∆j

4‖2 = o(λ1), it will certainly be strictly less
than λ1/6 for n large enough. We have hence shown, noting that none of our above arguments have
depended on the particular choice of j = 1, . . . , d or ϑ ∈ B∗,

max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
2‖2 <

λ1

3
.

Bounding ‖∆j
3‖2. For this part, we can use the end of the proof of Lemma 2 in [3], which uses classic

entropy-based techniques to establish a bound very similar to that which we are seeking. By carefully
looking at the conditions required for this lemma, we see that under the distributional smoothness
condition in A2, condition A3, and also √

n log(dm) = o(λ1)

nΦmaxγ
2 = o(λ1)

(1 + γΦ2
maxs

3/2) log2 n = o(λ2
1/n),

all following directly from condition A4 by calculations similar to the ones we used when bounding
‖∆j

2‖, we have

Pr

(
max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
3‖2 ≥

λ1

3

)
≤ Pr

(
max
j∈Sc

`k

sup
ϑ∈B∗

‖∆j
3‖∞ ≥

λ1

3
√
m

)
;

the probability on the right-hand side can be made arbitrarily small for large n, by the arguments at
the end of Lemma 2 in [3], and hence clearly smaller than the desired δ/(4dr) level.

Putting it together. Returning to the logic in (S.11), (S.12), (S.13), we have shown that the subgradient
condition in (S.11) holds with probability at least 1− (δ/(2dr) + δ/(4dr) + δ/(4dr)) = 1− δ/(dr).
Taking a union bound over k = 1, . . . , d and ` = 1, . . . , r, which were considered fixed at the start of
our analysis, gives the result stated in the theorem.

S.5 Statement and proof of Lemma S.5.1

We show that with probability at least 1− δ/(2dr), it holds that θ̃`k(S`k) ∈ B∗, where θ̃`k(S`k) is the
solution to the restricted problem (S.8), for some fixed k = 1, . . . , d and ` = 1, . . . , r, and B∗ is a
ball defined in the proof of Theorem 4.3 in Section S.4. This fact is used a few times in the proof of
Theorem 4.3.

Lemma S.5.1. Fix some k = 1, . . . , d and ` = 1, . . . , r. Define the ball

B∗ = {ϑ ∈ Rsm : ‖ϑ− θ∗`k(S`k)‖2 ≤ γ}

centered at the underlying coefficients θ∗`k(S`k) with radius

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

for some constant C > 0. Then, with probability at least 1− δ/(2dr), it holds that θ̃`k(S`k) ∈ B∗,
where θ̃`k(S`k) is the solution to the restricted problem (S.8).
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Proof. We will follow the strategy for the proof of Theorem 1 in [3] closely. We begin by considering
the ball

B = {ϑ ∈ Rsm : ‖ϑ− θ∗`k(S`k)‖2 ≤ R}
with center θ∗`k(S`k) and radius R. We also introduce some useful notational shorthand, and write the
quantile loss term in the restricted problem (S.8) as

L`k(ϑ) = ψα`
(Yk − ΦS`k

ϑ) .

Below, we show that a particular function of R serves as an upper bound for the quantity
E[L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))], where the expectation here is taken over draws of the data, and
ϑ̃`k(S`k) is a particular point in B that we define in a moment. This in turn implies, with probability
at least 1− δ/(2dr), that θ̃`k(S`k) ∈ B∗, as claimed.

First, we define ϑ̃`k(S`k) more precisely: it is a point on the line segment between the solution to the
restricted problem θ̃`k(S`k) and the underlying coefficients θ∗`k(S`k), i.e.,

ϑ̃`k(S`k) = βθ̃`k(S`k) + (1− β)θ∗`k(S`k),

for a particular choice

β =
R

R+ ‖θ̃`k(S`k) − θ∗`k(S`k)‖2
,

which guarantees that ϑ̃`k(S`k) ∈ B even if θ̃`k(S`k) /∈ B , as we establish next. Observe that we
always have

‖θ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ R+ ‖θ̃`k(S`k) − θ∗`k(S`k)‖2

⇐⇒ R
‖θ̃`k(S`k) − θ∗`k(S`k)‖2

R+ ‖θ̃`k(S`k) − θ∗`k(S`k)‖2
≤ R

⇐⇒ β‖θ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ R

⇐⇒ ‖βθ̃`k(S`k) − βθ∗`k(S`k) + θ∗`k(S`k) − θ
∗
`k(S`k)‖2 ≤ R

⇐⇒ ‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ R,

as claimed. The second line here follows by rearranging and multiplying through by R; the third by
using the definition of β above; the fourth by adding and subtracting the underlying coefficients; and
the fifth by using the definition of ϑ̃`k(S`k).

Now, the beginning of the proof of Theorem 1 in [3] establishes, for any ϑ̃`k(S`k) ∈ B, for some
constant C5 > 0, and using condition A3, that

E
[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
≥ C5n‖ϑ̃`k(S`k) − θ∗`k(S`k)‖

2
2, (S.16)

and so, by direct calculation, since

‖ϑ̃`k(S`k)−θ∗`k(S`k)‖2 ≤ R ⇐⇒ β‖θ̃`k(S`k)−θ∗`k(S`k)‖2 ≤ R ⇐⇒ ‖θ̃`k(S`k)−θ∗`k(S`k)‖2 ≤ R/2,
(S.17)

it suffices to obtain a suitable upper bound for E[L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))], in order to get the
result in the statement of the lemma. To this end, we introduce one more piece of shorthand, and
denote the objective for the restricted problem (S.8) as J`k(ϑ).

We proceed with the following chain of (in)equalities:

E
[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
= E

[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
+ J`k(ϑ̃`k(S`k))− J`k(ϑ̃`k(S`k)) +

J`k(θ∗`k(S`k))− J`k(θ∗`k(S`k))

(S.18)
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= L`k(θ∗`k(S`k))−EL`k(θ∗`k(S`k))− L`k(ϑ̃`k(S`k)) + EL`k(ϑ̃`k(S`k))︸ ︷︷ ︸
∆(θ∗

`k(S`k)
,ϑ̃`k(S`k))

+

J`k(ϑ̃`k(S`k))− J`k(θ∗`k(S`k)) + λ1

∑
j∈S`k

‖θ∗`kj‖2 − λ1

∑
j∈S`k

‖ϑ̃`kj‖2

− (λ2/2)‖ϑ̃`k(S`k)‖22 + (λ2/2)‖θ∗`k(S`k)‖
2
2

(S.19)

≤ ∆(θ∗`k(S`k), ϑ̃`k(S`k)) + J`k(ϑ̃`k(S`k))− J`k(θ∗`k(S`k)) + λ1

∑
j∈S`k

‖θ∗`kj − ϑ̃`kj‖2 + o(1)

(S.20)

≤ ∆(θ∗`k(S`k), ϑ̃`k(S`k)) + J`k(ϑ̃`k(S`k))− J`k(θ∗`k(S`k)) + λ1sR
√
m+ o(1) (S.21)

≤ ∆(θ∗`k(S`k), ϑ̃`k(S`k)) + 2λ1sR
√
m (S.22)

≤ sup
ϑ̃`k(S`k)∈B

|∆(θ∗`k(S`k), ϑ̃`k(S`k))|+ 2λ1sR
√
m. (S.23)

Here, (S.18) follows by adding and subtracting like terms, and (S.19) by rearranging (S.18). In (S.20)
we use the triangle inequality and the following argument to show that the terms involving λ2 are o(1).
Under the assumption that λ2 = o(n41/42/θ∗max), combined with the restriction that s = o(n1/21),
we have λ2 = o(n/(

√
sθ∗max)). Therefore, under our choice of R = 1/n (as specified below), we

have
λ2

√
sθ∗maxR→ 0.

This in turn is used to argue that

−(λ2/2)‖ϑ̃`k(S`k)‖22 + (λ2/2)‖θ∗`k(S`k)‖
2
2 = (λ2/2)‖ϑ̃`k(S`k) − θ∗`k(S`k)‖

2
2

− λ2‖ϑ̃`k(S`k)‖22 + λ2ϑ̃
T
`k(S`k)θ

∗
`k(S`k)

≤ (λ2/2)R2 − λ2‖ϑ̃`k(S`k)‖2(‖ϑ̃`k(S`k)‖2 − ‖θ∗`k(S`k)‖2)

≤ (λ2/2)R2 + λ2‖ϑ̃`k(S`k)‖2R
≤ (λ2/2)R2 + λ2‖θ∗`k(S`k)‖2R

≤ (λ2/2)R2 + λ2

√
sθ∗maxR→ 0.

In the second to last line, we have applied ‖ϑ̃`k(S`k)‖2 ≤ ‖θ∗`k(S`k)‖2, as, outside of this case, the
term in question −(λ2/2)‖ϑ̃`k(S`k)‖22 + (λ2/2)‖θ∗`k(S`k)‖

2
2 would be negative, anyway.

Continuing on, (S.21) holds because ‖θ∗`k(S`k) − ϑ̃`k(S`k)‖2 ≤ R implies ‖θ∗`kj − ϑ̃`kj‖2 ≤ R. Fi-
nally, (S.22) follows because of the following argument. Since J`k is convex, we can use the definition
of ϑ̃`k(S`k) and get

J`k(ϑ̃`k(S`k)) ≤ βJ`k(θ̃`k(S`k))+(1−β)J`k(θ∗`k(S`k)) = J`k(θ∗`k(S`k))+β(J`k(θ̃∗`k(S`k))−J`k(θ∗`k(S`k)));

notice that the last term here is nonpositive, since θ̃`k(S`k) is the solution to the restricted problem
(S.8), and thus we have that

J`k(ϑ̃`k(S`k)) ≤ J`k(θ∗`k(S`k)),

which lets us move from (S.21) to (S.22).

Lemma 1 in [3] states, with probability at least 1 − δ, where δ = exp(−C6s log n) and C6 > 0 is
some constant, that

sup
ϑ̃`k(S`k)∈B

|∆(θ∗`k(S`k), ϑ̃`k(S`k))| ≤ 6R
√
sn log n,

so from (S.23), with probability at least 1− δ, we see that

E
[
L`k(ϑ̃`k(S`k))− L`k(θ∗`k(S`k))

]
≤ 6R

√
sn log n+ 2λ1sR

√
m

9



and, using (S.16), that

n‖ϑ̃`k(S`k) − θ∗`k(S`k)‖
2
2 ≤ C ′

(
R
√
sn log n+ λ1sR

√
m
)
,

for some constant C ′ > 0.

Plugging in R = 1/n, dividing through by n, and using the fact that the square root function is
subadditive, we get, with probability at least 1− δ, that

‖ϑ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ C
′
(

(s log n)1/4

n3/4
+

(λ1s)
1/2m1/4

n

)
≤ C ′

(√
s log n

n
+
λ1s
√
m

n

)
.

Finally, we complete the proof by applying (S.17), in order to get that

‖θ̃`k(S`k) − θ∗`k(S`k)‖2 ≤ γ,

where we have defined

γ = C

(
λ1s
√
m

n
+

√
s log n

n

)
,

and C > 0 is some constant, with probability at least 1− δ/(2dr), for large enough n.

S.6 Proof of Lemma 5.1

The prox operator proxλψA(A) is separable in the entries of its minimizer X , so we can focus on
minimizing over Xij the expression

max{αjXij , (αj − 1)Xij}+ (1/(2λ)) (Xij −Aij)2

= αj max{0, Xij}+ (1− αj) max{0,−Xij}+ (1/(2λ)) (Xij −Aij)2
. (S.24)

Suppose Xij > 0. Then differentiating (S.24) gives Xij = Aij − λαj and the sufficient condition
Aij > λαj . Similarly, assuming Xij < 0 gives Xij = Aij + λ(1 − αj) when Aij < λ(αj − 1).
Otherwise, we can take Xij = 0. Putting these cases together gives the result.

S.7 ADMM for the MQGM

A complete description of our ADMM-based algorithm for fitting the MQGM to data is given in
Algorithm 1.

S.8 Additional details on Gibbs sampling

In the MQGM, there is no analytic solution for parameters like the mean, median, or quantiles of
these marginal and conditional distributions, but the pseudolikelihood approximation makes for a
very efficient Gibbs sampling procedure, which we highlight in this section. As it is relevant to
the computational aspects of the approach, in this subsection we will make explicit the conditional
random field, where yk depends on both y¬k and fixed input features x.

First, note that since we are representing the distribution of yk|y¬k, x via its inverse CDF, to sample
from from this conditional distribution we can simply generate a random α ∼ Uniform(0, 1). We
then compute

Q̂yk|y¬k(α`) = φ(y)T θ`k + xT θx`k

Q̂yk|y¬k(α`+1) = φ(y)T θ(`+1)k + xT θx(`+1)k

for some pair α` ≤ α ≤ α`+1 and set yk to be a linear interpolation of the two values,

10



Algorithm 1 ADMM for the MQGM

Input: observations y(1), . . . , y(n) ∈ Rd, feature matrix Φ ∈ Rn×dm, quantile levels A, constants
λ1, λ2 > 0
Output: fitted coefficients Θ̂ = (θ̂`kj , b̂`k)
for k = 1, . . . , d (in parallel, if possible) do

initialize Θk, Bk, V,W,Z,UV , UW , UZ
repeat

update Θk using (13)
update Bk using (13)
update V using (10)
update W using (11)
update Z using (12) and Lemma 5.1
update UV , UW , UZ :

UV ← UV + (1BTk + ΦkΘ− V )

UW ← UW + (Θk −W )

UZ ← UZ + (Yk1
T − 1BTk − ΦkΘ− Z)

until converged
end for

yk ← Q̂yk|y¬k(α`) +

(
Q̂yk|y¬k(α`+1)− Q̂yk|y¬k(α`)

)
(α− α`)

α`+1 − α`
.

This highlights the desirability of having a range of nonuniformly spaced α terms that reach values
close to zero and one as otherwise we may not be able to find a pair of α’s that lower and upper bound
our random sample α. However, in the case that we model a sufficient quantity of α, a reasonable
approximation (albeit one that will not sample from the extreme tails) is also simply to pick a random
α` ∈ A and use just the corresponding column θ`k to generate the random sample.

Computationally, there are a few simple but key points involved in making the sampling efficient.
First, when sampling from a conditional distribution, we can precompute xTΘx

k for each k, and use
these terms as a constant offset. Second, we maintain a “running” feature vector φ(y) ∈ Rdm, i.e.,
the concatenation of features corresponding to each coordinate φ(yk). Each time we sample a new
coordinate yk, we generate just the new features in the φ(yk) block, leaving the remaining features
untouched. Finally, since the Θk terms are sparse, the inner product φ(y)T θ`k will only contain a
few nonzeros terms in the sum, and will be computed more efficiently if the Θk are stored as a sparse
matrices.

S.9 Additional numerical results for the ring data

S.9.1 Conditional independencies recovered by the nonparanormal skeptic, TIGER, and
Laplace

We present the conditional independencies recovered by the nonparanormal skeptic, TIGER, and
Laplace on the ring data in Figure S.1; results for the remaining methods are presented in Section 6.1.

S.9.2 Evaluation of fitted conditional CDFs

Here, we elaborate on the evaluation of the conditional CDFs given by the MQGM, MB, GLasso,
SpaceJam, TIGER, and Laplace, when run on the ring data. (We omit the nonparanormal skeptic from
our evaluation as it is not clear how to sample from its conditionals, due to the nature of a particular
transformation that it uses.)

For each of these methods, we essentially averaged the total variation distances and Kolmogorov-
Smirnoff statistics between the fitted and true conditional CDFs across all variables, and then reported

11
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Figure S.1: Conditional independencies recovered by the nonparanormal skeptic, TIGER, and Laplace on the
ring data; black means conditional dependence.

Table S.1: Total variation (TV) distance and Kolmogorov-Smirnoff (KS) statistic values for the MQGM, MB,
GLasso, SpaceJam, TIGER, and Laplace on the ring data; lower is better, best in bold.

TV KS
MQGM 20.873 0.760
MB 92.298 1.856
GLasso 92.479 1.768
SpaceJam 91.568 1.697
TIGER 88.284 1.450
Laplace 127.406 1.768

the best values obtained across a range of tuning parameters (more details below). We present the
results in Table S.1; we see that the MQGM outperforms all its competitors, in both metrics.

We now describe the evaluation in more detail; for simplicity, we describe everything that follows in
terms of the conditional CDF y1|y2 only, with everything being extended in the obvious way to other
conditionals.

First, we carried out the following steps in order to compute the true (empirical) conditional CDF.

1. We drew n = 400 samples from the ring distribution, by following the procedure described
in Section 6.1; these observations are plotted across the top row of Figure S.2.

2. We then partitioned the y2 samples into five equally-sized bins, and computed the true
empirical conditional CDF of y1 given each bin of y2 values.

Next, we carried out the following steps in order to compute the estimated (empirical) conditional
CDFs, for each method.

3. We fitted each method to the samples obtained in step (1) above.

4. Then, for each method, we drew a sample of y1 given each y2 sample, using the method’s
conditional distribution; these conditionals are plotted across the second through fifth rows
of Figure S.2 (for representative values of λ1).
Operationally, we drew samples from each method’s conditionals in the following ways.

• MQGM: we used the Gibbs sampler described in Section S.8.

• MB: we drew y1 ∼ N (θ̂T1 y
(i)
2 , σ̂2

1|2), where θ̂1 is the fitted lasso regression coefficient

of y1 on y2; y(i)
2 for i = 1, . . . , n is the ith observation of y2 obtained in step (1) above;

and σ̂2
1|2 = var(Y1 − Y2θ̂1) denotes the sample variance of the underlying error term

Y1 − Y2θ̂1 with Yi = (y
(1)
i , . . . , y

(n)
i ) ∈ Rn collecting all observations along variable

i.
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• SpaceJam: we drew y1 ∼ N (θ̂T1 φ(y
(i)
2 ), σ̂2

1|2), where φ is a suitable basis function,

and θ̂1 as well as σ̂2
1|2 are defined in ways analogous to the neighborhood selection

setup.
• GLasso: we drew y1 ∼ N (µ̂1|2, σ̂

2
1|2), where

µ̂1|2 = µ̂1 + Σ̂12Σ̂−1
22 (y

(i)
2 − µ̂2)

σ̂2
1|2 = Σ̂11 − Σ̂12Σ̂−1

22 Σ̂21

with µ̂i denoting the sample mean of Yi, and Σ̂ denoting the estimate of the covariance
matrix given by GLasso (subscripts select blocks of this matrix).

5. Finally, we partitioned the y2 samples into five equally-sized bins (just as when computing
the true conditional CDF), and computed the estimated empirical conditional CDF of y1

given each bin of y2 values.

Having computed the true as well as estimated conditional CDFs, we measured the goodness of fit of
each method’s conditional CDFs to the true conditional CDFs, by computing the total variation (TV)
distance, i.e.,

(1/2)

q∑
i=1

∣∣∣F̂methodj
y1|y2 (z(i)|ζ)− F̂ true

y1|y2(z(i)|ζ)
∣∣∣ ,

as well as the (scaled) Kolmogorov-Smirnoff (KS) statistic, i.e.,

max
i=1,...,q

∣∣∣F̂methodj
y1|y2 (z(i)|ζ)− F̂ true

y1|y2(z(i)|ζ)
∣∣∣ .

Here, F̂ true
y1|y2(z(i)|ζ) is the true empirical conditional CDF of y1|y2, evaluated at y1 = z(i) and

given y2 = ζ, and F̂methodj
y1|y2 (z(i)|ζ) is a particular method’s (“methodj” above) estimated empirical

conditional CDF, evaluated at y1 = z(i) and given y2 = ζ. For each method, we averaged these TV
and KS values across the method’s conditional CDFs. Table S.1 reports the best (across a range of
tuning parameters) of these averaged TV and KS values.

S.10 Additional numerical results for modeling flu epidemics

Here, we plot samples from the marginal distributions of the percentages of flu reports at regions
one, five, and ten throughout the year, which reveals the heteroskedastic nature of the data (just as in
Section 6.2, for region six).

S.11 Sustainable energy application

We evaluate the ability of MQGM to recover the conditional independencies between several wind
farms on the basis of large-scale, hourly wind power measurements; wind power is intermittent, and
thus understanding the relationships between wind farms can help farm operators plan. We obtained
hourly wind power measurements from July 1, 2009 through September 14, 2010 at seven wind farms
(n = 877, see [6, 8, 1] for details). The primary variables here encode the hourly wind power at a
farm over two days (i.e., 48 hours), thus d = 7×48 = 336. Exogenous variables were used to encode
forecasted wind power and direction as well as other historical measurements, for a total of q = 3417.
We set m = 5 and r = 20. Fitting the MQGM here hence requires solving 48× 7 = 336 multiple
quantile regression subproblems each of dimension ((336− 1)× 5 + 3417)× 20 = 101, 840. Each
subproblem took roughly 87 minutes, comparable to the algorithm of [8].

Figure S.4 presents the recovered conditional independencies; the nonzero super- and sub-diagonal
entries suggest that at any wind farm, the previous hour’s wind power (naturally) influences the
next hour’s, while the nonzero off-diagonal entries, e.g., in the (4,6) block, uncover farms that may
influence one another. [8], whose method placed fifth in a Kaggle competition, as well as [1] report
similar findings (see the left panels of Figures 7 and 3 in these papers, respectively).
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Figure S.2: Conditional distributions for MQGM, MB, GLasso, and SpaceJam, fitted to samples from the ring
distribution (TIGER and Laplace’s conditionals both look similar to MB’s). First row: samples from the ring
distribution, where each plot highlights the samples falling into a particular shaded bin on the y2 axis. Second
through fifth rows: conditional distributions of y1 given y2 for each method, where each plot conditions on the
appropriate y2 bin as highlighted in the first row. The MQGM’s conditional distributions are intuitive, appearing
bimodal for bin 3, and more peaked for bins 1 and 5. MB, GLasso, and SpaceJam’s densities appear (roughly)
Gaussian, as expected.

14



30 40 50 8 18 28
Week

0

1

2

3

4

5

6

7

8

9

%
 o

f 
fl
u
-l

ik
e
 s

y
m

p
to

m
s

Region 1

30 40 50 8 18 28
Week

0

1

2

3

4

5

6

7

8

9

%
 o

f 
fl
u
-l

ik
e
 s

y
m

p
to

m
s

Region 3

30 40 50 8 18 28
Week

0

1

2

3

4

5

6

7

8

9

%
 o

f 
fl
u
-l

ik
e
 s

y
m

p
to

m
s

Region 9

Figure S.3: Samples from the fitted marginal distributions of the weekly flu incidence rates at several regions of
the U.S.; samples at larger quantile levels shaded lighter, median in darker blue.
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Figure S.4: Conditional independencies recovered by the MQGM on the wind farms data; each block corre-
sponds to a wind farm, and black indicates dependence.
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