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Modal regression estimates the local modes of the distribution of
Y given X = x, instead of the mean, as in the usual regression sense,
and can hence reveal important structure missed by usual regres-
sion methods. We study a simple nonparametric method for modal
regression, based on a kernel density estimate (KDE) of the joint dis-
tribution of Y and X. We derive asymptotic error bounds for this
method, and propose techniques for constructing confidence sets and
prediction sets. The latter is used to select the smoothing bandwidth
of the underlying KDE. The idea behind modal regression is con-
nected to many others, such as mixture regression and density ridge
estimation, and we discuss these ties as well.

1. Introduction. Modal regression (Sager and Thisted, 1982; Lee, 1989; Yao et al., 2012;
Yao and Li, 2013) is an alternate approach to the usual regression methods for exploring the
relationship between a response variable Y and a predictor variable X. Unlike conventional
regression, which is based on the conditional mean of Y given X = x, modal regression
estimates conditional modes of Y given X = x.

Why would we ever use modal regression in favor a conventional regression method? The
answer, at a high-level, is that conditional modes can reveal structure that is missed by the
conditional mean. Figure 1 gives a definitive illustration of this point: we can see that, for
the data examples in question, the conditional mean both fails to capture the major trends
present in the response, and produces unecessarily wide prediction bands. Modal regression
is an improvement in both of these regards (better trend estimation, and narrower prediction
bands). In this paper, we rigorously study and develop its properties.

Modal regression has been used in transportation (Einbeck and Tutz, 2006), astronomy
(Rojas, 2005), meteorology (Hyndman et al., 1996) and economics (Huang and Yao, 2012;
Huang et al., 2013). Formally, the conditional (or local) mode set at x is defined as

(1) M(x) =

{
y :

∂

∂y
p(y|x) = 0,

∂2

∂y2
p(y|x) < 0

}
,

where p(y|x) = p(x, y)/p(x) is the conditional density of Y given X = x. As a simplification,
the set M(x) can be expressed in terms of the joint density alone:

(2) M(x) =

{
y :

∂

∂y
p(x, y) = 0,

∂2

∂y2
p(x, y) < 0

}
.

MSC 2010 subject classifications: Primary 62G08; secondary 62G20, 62G05
Keywords and phrases: nonparametric regression, modes, mixture model, confidence set, prediction set,
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Fig 1. Examples of modal regression versus a common nonparametric regression estimator, local linear regres-
sion. In the top row, we show local regression estimate and its associated 95% prediction bands alongside the
modal regression and its 95% prediction bands. The bottom row does the same for a different data example.
The local regression method fails to capture the structure, and produces prediction bands that are too wide.
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At each x, the local mode set M(x) may consist of several points, and so M(x) is in general
a multi-valued function. Under appropriate conditions, as we will show, these modes change
smoothly as x changes. Thus, local modes behave like a collection of surfaces which we call
modal manifolds.

We focus on a nonparametric estimate of the conditional mode set, derived from a kernel
density estimator (KDE):

(3) M̂n(x) =

{
y :

∂

∂y
p̂n(x, y) = 0,

∂2

∂y2
p̂n(x, y) < 0

}
,

where p̂n(x, y) is the joint KDE of X,Y . Scott (1992) proposed this plug-in estimator for
modal regression, and Einbeck and Tutz (2006) proposed a fast algorithm. We extend the
work of these authors by giving a thorough treatment and analysis of nonparametric modal
regression. In particular, our contributions are as follows.

1. We study the geometric properties of modal regression.
2. We prove consistency of the nonparametric modal regression estimator, and furthermore

derive explicit convergence rates, with respect to various error metrics.
3. We propose a method for constructing confidence sets, using the bootstrap, and prove

that it has proper asymptotic coverage.
4. We propose a method for constructing prediction sets, based on plug-in methods, and

prove that the population prediction sets from this method can be smaller than those
based on the regression function.

5. We propose a rule for selecting the smoothing bandwidth of the KDE (used to form the
modal set M̂(x)) based on minimizing the size of prediction sets.

6. We draw enlightening comparisons to mixture regression (which suggests a clustering
method using modal regression) and to density ridge estimation.

We begin by reviewing basic properties of modal regression and recalling previous work,
in Section 2. Sections 3 through 8 then follow roughly the topics described in items 1–6
above. In Section 9 we end with some discussion. Simple R code for the modal regression and
some simulation data sets used in this paper can be found at http://www.stat.cmu.edu/

~yenchic/ModalRegression.zip.

2. Review of modal regression. Consider a response variable Y ∈ K ⊆ R and covariate
or predictor variableX ∈ D ⊆ Rd, whereD is a compact set. A classic take on modal regression
(Sager and Thisted, 1982; Lee, 1989; Yao and Li, 2013) is to assume a linear model

Mode(Y |X = x) = β0 + βTx,

where β0 ∈ R, β ∈ Rd are unknown coefficients, and Mode(Y |X = x) denotes the (singular)
mode of Y given X = x. This is the same as the assuming that the set M(x) in (1) is a
singleton for each x, and that M(x) depends linearly on x. Nonparametric modal regression
is of course more flexible, because it allows M(x) to be multi-valued, and also it models the
components of M(x) as smooth functions of x (not necessarily linear). As another nonlinear
generalization of the above model, Yao et al. (2012) propose an interesting local polynomial
smoothing method for mode estimation; however, they focus on Mode(Y |X = x) rather than
M(x), the collection of all conditional modes.

http://www.stat.cmu.edu/~yenchic/ModalRegression.zip
http://www.stat.cmu.edu/~yenchic/ModalRegression.zip
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The estimated local mode set M̂n(x) in (3) from Scott (1992) relies on an estimated joint
density function p̂n(x, y), most commonly computed using a KDE. Let (X1, Y1), . . . , (Xn, Yn)
be the observed data samples. Then the KDE of the joint density p(x, y) is

(4) p̂n(x, y) =
1

nhd+1

n∑
i=1

K

(
‖x−Xi‖

h

)
K

(
y − Yi
h

)
.

Here K is a symmetric, smooth kernel function, such as the Gaussian kernel (i.e., K(u) =
e−u

2/2/
√

2π), and h > 0 is a parameter called the smoothing bandwidth. For simplicity, we
have used the same kernel function K and bandwidth h for the covariates and the response,
but this is not necessary. For brevity, we will write the estimated modal set as

(5) M̂n(x) =
{
y : p̂y,n(x, y) = 0, p̂yy,n(x, y) < 0

}
,

where the subscript notation denotes partial derivatives, as in fy = ∂f(x, y)/∂y and fyy =
∂2f(x, y)/∂y2.

In general, calculating M̂n(x) can be challenging, but for special kernels K, Einbeck and
Tutz (2006) proposed a simple and efficient algorithm for computing local mode estimates.
Their approach is based on the mean-shift algorithm (Cheng, 1995; Comaniciu and Meer,
2002). Mean-shift algorithms can be derived for any KDEs with radially symmetric kernels
(Comaniciu and Meer, 2002), but for simplicity we assume here that K is Gaussian. The
“partial” mean-shift algorithm of Einbeck and Tutz (2006), to estimate conditional modes, is
described in Algorithm 1.

Algorithm 1 Partial mean-shift
Input: Data samples D = {(X1, Y1), . . . , (Xn, Yn)}, bandwidth h. (The kernel K is chosen to be Gaussian.)

1. Initialize mesh points M⊆ Rd+1 (a common choice is M = D, the data samples).

2. For each (x, y) ∈M, fix x, and update y using the following iterations until convergence:

(6) y ←−

n∑
i=1

YiK

(
‖x−Xi‖

h

)
K

(
y − Yi

h

)
n∑
i=1

K

(
‖x−Xi‖

h

)
K

(
y − Yi

h

) .

Output: The setM∞, containing the points (x, y∞), where x is a predictor value as fixed inM, and y∞ is
the corresponding limit of the mean-shift iterations (6).

A straightforward calculation shows that the mean-shift update (6) is indeed a gradient
ascent update on the function f(y) = p̂n(x, y) (for fixed x), with an implicit choice of step
size. Because this function f is generically nonconcave, we are not guaranteed that gradient
ascent will actually attain a (global) maximum, but it will converge to critical points under
small enough step sizes (Arias-Castro et al., 2013).

3. Geometric properties. In this section, we study the geometric properties of modal
regression. Recall that M(x) is a set of points at each input x. We define the modal manifold
collection as the union of these sets over all inputs x,

(7) S = {(x, y) : x ∈ D, y ∈M(x)}.
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By the implicit function theorem, the set S has dimension d; see Figure 2 for an illustration
with d = 1 (univariate x).
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Fig 2. Examples of modal manifolds.

We will assume that the modal manifold collection S can be factorized as

(8) S = S1 ∪ . . . ∪ SK ,

where each Sj is a connected manifold that admits a parametrization

(9) Sj = {(x,mj(x)) : x ∈ Aj},

for some function mj(x) and open set Aj . Note that A1, . . . , AK form an open cover for the
support D of X. We call Sj the jth modal manifold, and mj(x) the jth modal function. By
convention we let mj(x) = ∅ if x /∈ Aj , and therefore we may write

(10) M(x) = {m1(x), . . . ,mK(x)}.

That is, at any x, the values among m1(x), . . . ,mK(x) that are nonempty give local modes.
Under weak assumptions, each mj(x) is differentiable, and so is the modal set M(x), in a

sense. We discuss this next.

Lemma 1 (Derivative of modal functions). Assume that p is twice differentiable, and let
S = {(x, y) : x ∈ D, y ∈ M(x)} be the modal manifold collection. Assume that S factorizes
according to (7), (8). Then, when x ∈ Aj,

(11) ∇mj(x) = −pyx(x,mj(x))

pyy(x,mj(x))
,

where pyx(x, y) = ∇x ∂
∂yp(x, y) is the gradient over x of py(x, y).
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Proof. Since we assume that x ∈ Aj , we have py(x,mj(x)) = 0 by definition. Taking a
gradient over x yields

0 = ∇xpy(x,mj(x)) = pyx(x,mj(x)) + pyy(x,mj(x))∇mj(x).

After rearrangement,

∇mj(x) = −pyx(x,mj(x))

pyy(x,mj(x))
.

Lemma 1 links the geometry of the joint density function to the smoothness of the modal
functions (and modal manifolds). The formula (11) is well-defined as long as pyy(x,mj(x)) is
nonzero, which is guaranteed by the definition of local modes. Thus, when p is smooth, each
modal manifold is also smooth.

To characterize smoothness of M(x) itself, we require a notion for smoothness over sets.
For this, we recall the Hausdorff distance between two sets A,B, defined as

(12) Haus(A,B) = inf{r : A ⊆ B ⊕ r, B ⊆ A⊕ r},

where A⊕ r = {x : d(x,A) ≤ r} with d(x,A) = infy∈A ‖x− y‖.

Theorem 2 (Smoothness of the modal manifold collection). Assume the conditions of
Lemma 1. Assume furthermore all partial derivatives of p are bounded by C, and there exists
λ2 > 0 such that pyy(x, y) < −λ2 for all y ∈M(x) and x ∈ D. Then

(13) lim
|ε|→0

Haus(M(x),M(x+ ε))

|ε|
≤ max

j=1,...,K
‖m′j(x)‖ ≤ C

λ2
<∞.

The proof of this result follows directly from Lemma 1 and the definition of Hausdorff
distance, so we omit it. Since M(x) is a multi-valued function, classic notions of smoothness
cannot be applied, and Theorem 2 describes its smoothness in terms of Hausdorff distance.
This distance can be thought of as a generalized `∞ distance for sets, and Theorem 2 can be
interpreted as a statement about Lipschitz continuity with respect to Hausdorff distance.

Modal manifolds can merge or bifurcate as x varies. Interestingly, though, the merges or
bifurcations do not necessarily occur at points of contact between two modal manifolds. See
Figure 3 for an example with d = 1. Shown is a modal curve (manifold with d = 1), starting at
x = 0 and stopping at about x = 0.35, which leaves a gap between itself and the neighboring
modal curve. We take a closer look at the joint density contours, in panel (c), and inspect the
conditional density along four slices X = x1, . . . , x4, in panel (d). We see that after X = x2,
the conditional density becomes unimodal and the first (left) mode disappears, as it slides
into a saddle point.

Lastly, the population quantities defined above all have sample analogs. For the estimate
M̂n(x), we define

(14) Ŝn =
{

(x, y) : y ∈ M̂n(x), x ∈ R
}

= Ŝ1 ∪ . . . ∪ ŜK̂ ,
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Fig 3. A look at bifurcation. As X moves x1 to x4, we can see that a local mode disappears after X = x2.
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where each Ŝj is a connected manifold, and K̂ is the total number. We also define m̂j(x) in
a similar way for j = 1, . . . , K̂. Thus, we can write

(15) M̂n(x) =
{
m̂1(x), . . . , m̂

K̂
(x)
}
.

A subtle point: in practice, determining the manifold memberships and the total number
of manifolds K̂ is not entirely trivial. In principle, the sample manifolds Ŝ1, . . . , ŜK̂ are well-
defined in terms of the sample estimate M̂n(x); but even with a perfectly convergent mean-shift
algorithm, we would need to run mean-shift iterations at every input x in the domain D to
determine these manifold components. Clearly this is not an implementable strategy. Thus
from the output of the mean-shift algorithm over a finite mesh, we usually employ some type
of simple post-processing technique to determine connectivity of the outputs and hence the
sample manifolds. This is discussed further in Section 7.

4. Asymptotic error analysis. In this section we present asymptotic results about the
convergence of the estimated modal regression set M̂n(x) to the underlying modal set M(x).
Let BCk(C) denote the collection of k times continuously differentiable functions with all
partial derivatives bounded in absolute value by C. (The domain of these functions should be
clear from the context.) Given a kernel function K : R→ R, denote the collection of functions

K =

{
v 7→ K(α)

(
z − v
h

)
: z ∈ R, h > 0, α = 0, 1, 2

}
,

where K(α) denotes the α-th order derivative of K.
Our assumptions are as follows.

(A1) The joint density p ∈ BC4(Cp) for some Cp > 0.
(A2) The collection of modal manifolds S can be factorized into S = S1 ∪ . . . ∪ SK , where

each Sj is a connected curve that admits a parametrization Sj = {(x,mj(x)) : x ∈ Aj}
for some mj(x), and A1, . . . , AK form an open cover for the support D of X.

(A3) There exists λ2 > 0 such that for any (x, y) ∈ D×K with py(x, y) = 0, |pyy(x, y)| > λ2.
(K1) The kernel function K ∈ BC2(CK) and satifies∫

R
(K(α))2(z) dz <∞,

∫
R
z2K(α)(z) dz <∞,

for α = 0, 1, 2.
(K2) The collection K is a VC-type class, i.e. there exists A, v > 0 such that for 0 < ε < 1,

sup
Q
N
(
K, L2(Q), CKε

)
≤
(
A

ε

)v
,

where N(T, d, ε) is the ε-covering number for a semi-metric space (T, d) and Q is any
probability measure.

The assumption (A1) is an ordinary smoothness condition; we need fourth derivatives since
we need to bound the bias of second derivatives. The assumption (A2) is to make sure the
collection of all local modes can be represented as finite collection of manifolds. (A3) is a
sharpness requirement for all critical points (local modes and minimums) and assumes no
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saddle point; similar conditions appear in Romano (1988); Chen et al. (2014b) for estimating
density modes. Assumption (K1) is assumed for the kernel density estimator to have the usual
rates for its bias and variance. (K2) is for the uniform bounds on the kernel density estimator;
this condition can be found in Gine and Guillou (2002); Einmahl and Mason (2005); Chen
et al. (2014c). We study three types of error metrics for regression modes: pointwise, uniform,
and mean integrated squared errors. We defer all proofs to Appendix A.

First we study the pointwise case. Recall that p̂n is the KDE in (4) of the joint density
based on n samples, under the kernel K, and M̂n(x) is the estimated modal regression set in
(5) at a point x. Our pointwise analysis considers

∆n(x) = Haus
(
M̂n(x),M(x)

)
,

the Hausdorff distance between M̂n(x) and M(x), at a point x. For our first result, we define
the quantities:

‖p̂n − p‖(0)
∞ = sup

x,y
‖p̂(x, y)− p(x, y)‖

‖p̂n − p‖(1)
∞ = sup

x,y
‖p̂y(x, y)− py(x, y)‖

‖p̂n − p‖(2)
∞ = sup

x,y
‖p̂yy(x, y)− pyy(x, y)‖

‖p̂n − p‖∗∞,2 = max
{
‖p̂n − p‖(0)

∞ , ‖p̂n − p‖(1)
∞ , ‖p̂n − p‖(2)

∞

}
.

Theorem 3 (Pointwise error rate). Assume (A1-3) and (K1-2). Then when

‖p̂n − p‖∗∞,2 = max
{
‖p̂n − p‖(0)

∞ , ‖p̂n − p‖(1)
∞ , ‖p̂n − p‖(2)

∞

}
is sufficiently small, we have

sup
x∈D

1

∆n(x)

∣∣∣∣∆n(x)− max
z∈M(x)

{
|p−1
yy (x, z)||p̂y,n(x, z)|

}∣∣∣∣ = O(‖p̂n − p‖∗∞,2).

Moreover, at any fixed x ∈ D,

∆n(x) = O(h2) +OP

(√
1

nhd+3

)
.

This shows that if the curvature of joint density function along y is bounded away from
0, then the error can be approximated by the error of p̂y,n(x, z) after scaling. The rate of
convergence follows from the fact that p̂y,n(x, z) is converging to 0 at the same rate (note that
as z is a conditional mode, the partial derivative of the true density is 0).

For our next result, we define the uniform error

∆n = sup
x∈D

∆n(x) = sup
x∈D

Haus
(
M̂n(x),M(x)

)
.

This is an `∞ type error for estimating regression modes (and is also closely linked to confi-
dence sets; see Section 5).
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Theorem 4 (Uniform error rate). Assume (A1-3) and (K1-2). Then as nhd+5

logn →∞ and
h→ 0,

∆n = O(h2) +OP

(√
log n

nhd+3

)
.

Compared to the pointwise error rate in Theorem 3, we have an additional
√

log n factor in
the second term. One can view this as the price we need to pay for getting an uniform bound
over all points. See Gine and Guillou (2002); Einmahl and Mason (2005) for similar findings
in density estimation.

The last error metric we consider is the mean integrated squared error (MISE), defined as

MISE
(
M̂n

)
= E

(∫
x∈D

∆2
n(x) dx

)
.

Note that the MISE is a nonrandom quantity, unlike first two error metrics considered.

Theorem 5 (MISE rate). Assume (A1-3) and (K1-2). Then as nhd+5

logn →∞ and h→ 0,

MISE
(
M̂n

)
= O(h2) +O

(√
1

nhd+3

)
.

If we instead focus on estimating the regression modes of the smoothed joint density
p̃(x, y) = E (p̂n(x, y)), then we obtain much faster convergence rates. Let M̃(x) = E(M̂n(x))
be the smoothed regression modes at x ∈ D. Analogously define

∆̃n(x) = Haus
(
M̂n(x), M̃(x)

)
∆̃n = sup

x∈D
∆̃n(x)

M̃ISE
(
M̂n

)
= E

(∫
x∈D

∆̃2
n(x) dx

)
.

Corollary 6 (Error rates for smoothed conditional modes). Assume (A1-3) and (K1-2).

Then as nhd+5

logn →∞ and h→ 0,

√
nhd+3 sup

x∈D

∣∣∆̃n(x)− max
z∈M̃(x)

{p̃−1
yy (x, z)p̂y,n(x, z)}

∣∣ = OP(εn,2)

∆̃n(x) = OP

(√
1

nhd+3

)

∆̃n = OP

(√
log n

nhd+3

)

M̃ISE
(
M̂n

)
= O

(√
1

nhd+3

)
,

where εn,2 = supx,y |p̂yy,n(x, y)− p̃yy(x, y)| = supx,y |p̂yy,n(x, y)− E(p̂yy,n(x, y))|.
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5. Confidence sets. In an idealized setting, we could define a confidence set at x by

Ĉ0
n(x) = M̂n(x)⊕ δn,1−α(x),

where
P
(
∆n(x) > δn,1−α(x)

)
= α.

By construction, we have P(M(x) ∈ Ĉ0
n(x)) = 1− α. Of course, the distribution of ∆n(x) is

unknown, but we can use the bootstrap (Efron, 1979) to estimate δn,1−α(x).
Given the observed data samples (X1, Y1), . . . , (Xn, Yn), we denote a bootstrap sample as

(X∗1 , Y
∗

1 ), . . . , (X∗n, Y
∗
n ). Let M̂∗n(x) be the estimated regression modes based on this bootstrap

sample, and
∆̂∗n(x) = Haus

(
M̂∗n(x), M̂n(x)

)
.

We repeat the bootstrap sampling B times to get ∆̂∗1,n(x), . . . , ∆̂∗B,n(x). Define δ̂n,1−α(x) by

1

B

B∑
j=1

I
(

∆̂∗j,n(x) > δ̂n,1−α(x)
)
≈ α.

Our estimated confidence set for M(x) is then given by

Ĉn(x) = M̂n(x)⊕ δ̂n,1−α(x).

Note that this is a pointwise confidence set, at x ∈ D.
Alternatively, we can use ∆n = supx∈D ∆n(x) to build a uniform confidence set. Define

δn,1−α by

P
(
M(x) ⊆ M̂n(x)⊕ δn,1−α, ∀x ∈ D

)
= 1− α.

As above, we can use bootstrap sampling to form an estimate δ̂n,1−α, based on the quantiles
of the bootstrapped uniform error metric

∆̂∗n = sup
x∈D

Haus
(
M̂∗n(x), M̂n(x)

)
.

Our estimated uniform confidence set is then

Ĉn =
{

(x, y) : x ∈ D, y ∈ M̂n(x)⊕ δ̂n,1−α
}
.

In practice, there are many possible flavors of the bootstrap that are applicable here. This
includes the ordinary (nonparametric) bootstrap, the smoothed bootstrap and the residual
bootstrap. See Figure 4 for an example with the ordinary bootstrap.

Theoretically, we focus on the asymptotic coverage of uniform confidence sets built with
the ordinary bootstrap. We consider coverage of the smoothed regression mode set M̃(x) (to
avoid issues of bias), and we employ tools developed in Chernozhukov et al. (2013a,b); Chen
et al. (2014c).
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Fig 4. An example with pointwise (left) and uniform (right) confidence sets. The significance level is 90%.

Consider a function space F defined as

(16)

F =

{
(u, v) 7→ fx,y(u, v) : fx,y(u, v) = p̃−1

yy (x, y) ×

K

(
‖x− u‖

h

)
K(1)

(
y − v
h

)
, x ∈ D, y ∈ M̃(x)

}
,

and let B be a Gaussian process defined on F such that

(17) Cov(B(f1),B(f2)) = E (f1(Xi, Yi)f2(Xi, Yi))− E (f1(Xi, Yi))E (f2(Xi, Yi)) ,

for all f1, f2 ∈ F .

Theorem 7 (Limiting Distribution). Assume (A1-3) and (K1-2). Define the random

variable B = 1√
hd+3

supf∈F |B(f)|. Then as nhd+5

logn →∞, h→ 0,

sup
t≥0

∣∣∣P(√nhd+3∆̃n < t
)
− P (B < t)

∣∣∣ = O

((
log4 n

nhd+3

)1/8
)
.

This theorem shows that the smoothed uniform discrepancy ∆̃n is distributed asymptoti-
cally as the supremum of a Gaussian process. In fact, it can be shown that the two random
variables ∆̃n and B are coupled by

∣∣∣√nhd+3∆̃n −B
∣∣∣ = OP

((
log4 n

nhd+3

)1/8
)
.
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Now we turn to the limiting behavior for the bootstrap estimate. LetDn = {(X1, Y1), . . . , (Xn, Yn)}
be the observed data and denote the bootstrap estimate

∆̂∗n = sup
x∈D

Haus
(
M̂∗n(x), M̂n(x)

)
where M̂∗n(x) is the the bootstrap regression mode set at x.

Theorem 8 (Bootstrap Consistency). Assume conditions (A1-3) and (K1-2). Also as-

sume that nh6

logn → ∞, h → 0. Define B = 1√
hd+3

supf∈F |B(f)|. There exists Xn such that

P(Xn) ≥ 1−O( 1
n) and, for all Dn ∈ Xn,

sup
t≥0

∣∣∣P(√nhd+3∆̂∗n < t
∣∣Dn)− P (B < t)

∣∣∣ = O

((
log4 n

nhd+3

)1/8
)
.

Theorem 8 shows that the limiting distribution for the bootstrap estimate ∆̂∗n is the same
as the limiting distribution of ∆̃n (recall Theorem 7) with high probability. (Note that ∆̂∗n,
given the data samples Dn, is a random quantity.) Using Theorems 7 and 8, we conclude the
following.

Corollary 9 (Uniform confidence sets). Assume conditions (A1-3) and (K1-2). Then

as nh6

logn →∞ and h→ 0,

P
(
M̃(x) ⊆ M̂n(x)⊕ δ̂n,1−α, ∀x ∈ D

)
= 1− α+O

((
log4 n

nhd+3

)1/8
)
.

6. Prediction sets. Modal regression can be also used to construct prediction sets. De-
fine

ε1−α(x) = inf
{
ε ≥ 0 : P

(
d(Y,M(X)) > ε |X = x

)
≤ α

}
ε1−α = inf

{
ε ≥ 0 : P

(
d(Y,M(X)) > ε

)
≤ α

}
.

Recall that d(x,A) = infy∈A |x− y| for a point x and a set A. Then

P1−α(x) = M(x)⊕ ε1−α(x) ⊆ R

P1−α =
{

(x, y) : x ∈ D, y ∈M(x)⊕ ε1−α
}
⊆ D × R

are pointwise and uniform prediction sets, respectively, at the population level, because

P
(
Y ∈ P1−α(x) |X = x

)
≥ 1− α

P(Y ∈ P1−α) ≥ 1− α.

At the sample level, we use a KDE of the conditional density p̂n(y|x) = p̂n(x, y)/p̂n(x), and
estimate ε1−α(x) via

ε̂1−α(x) = inf

{
ε ≥ 0 :

∫
M̂n(x)⊕ε

p̂n(y|x) dy ≥ 1− α

}
.
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An estimated pointwise prediction set is then

P̂1−α(x) = M̂n(x)⊕ ε̂1−α(x).

This has the proper pointwise coverage with respect to samples drawn according to p̂n(y|x),
so in an asymptotic regime in which p̂n(y|x)→ pn(y|x), it will have the correct coverage with
respect to the population distribution, as well.

Similarly, we can define

(18) ε̂1−α = Quantile
({
d
(
Yi, M̂n(Xi)

)
: i = 1, . . . , n

}
, 1− α

)
,

the (1−α) quantile of d(Yi, M̂n(Xi)), i = 1, . . . , n, and then the estimated uniform prediction
set is

(19) P̂1−α =
{

(x, y) : x ∈ D, y ∈ M̂n(x)⊕ ε̂1−α
}
.

The estimated uniform prediction set has proper coverage with respect to the empirical dis-
tribution, and so certain conditions, it will have valid limiting population coverage.

6.1. Bandwidth selection. Importantly, prediction sets can be used to select the smoothing
bandwidth of the underlying KDE, as we describe here. We focus on uniform prediction
sets, and we will use a subscript h throughout to denote the dependence on the smoothing
bandwidth. From its definition in (19), we can see that the volume (Lebesgue measure) of the
estimated uniform prediction set is

Vol
(
P̂1−α,h

)
= ε̂1−α,h

∫
x∈D

K̂h(x) dx,

where K̂h(x) is the number of estimated local modes at X = x, and ε̂1−α,h is as defined in
(18). Roughly speaking, when h is small, ε̂1−α,h is also small, but the number of estimated
manifolds is large; on the other hand, when h is large, ε̂1−α,h is large, but the number of
estimated manifolds is small. This is like the bias-variance trade-off: small h corresponds to
less bias (ε̂1−α,h) but higher variance (number of estimated manifolds).

Our proposal is to select h by

h∗ = argmin
h≥0

Vol
(
P̂1−α,h

)
.

Figure 5 gives an example this rule when α = 0.05, i.e., when minimizing the size of the
estimated 95% uniform prediction set. As can be seen, there is a clear trade-off in the size
of the prediction set versus h in the left plot. The optimal value h∗ = 0.11 is marked by
a vertical line, and the right plot displays the corresponding modal regression estimate and
uniform prediction set on the data samples.

In the same plot, we also display a local regression estimate and its corresponding 95%
uniform prediction set. We can see that the prediction set from the local regression method
is much larger than that from modal regression. (To even the comparison, the bandwidth for
the local linear smoother was also chosen to minimize the size of the prediction set.) This
illustrates a major strength of the modal regression method: because it is not constrained to
modeling conditional mean structure, it can produce smaller prediction sets than the usual
regression methods when the conditional mean fails to capture the main structure in the data.
We investigate this claim theoretically, next.
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Fig 5. An example of bandwidth selection based on the size of the prediction sets.

6.2. Theory on the size of prediction sets. We will show that, at the population level,
prediction sets from modal regression can be smaller than those based on the underlying
regression function µ(x) = E(Y |X = x). Defining

η1−α(x) = inf
{
η ≥ 0 : P

(
d(Y, µ(X)) > η |X = x

)
≤ α

}
η1−α = inf

{
η ≥ 0 : P

(
d(Y, µ(X)) > η

)
≤ α

}
,

pointwise and uniform prediction sets based on the regression function are

R1−α(x) = µ(x)⊕ η1−α(x) ⊆ R

R1−α =
{

(x, µ(x)⊕ η1−α) : x ∈ D
}
⊆ D × R,

respectively.
For a pointwise prediction set A(x), we write length(A(x)) for its Lebesgue measure on R;

note that in the case of modal regression, this is somewhat of an abuse of notation because
the Lebesgue measure of A(x) can be a sum of interval lengths. For a uniform prediction set
A, we write Vol(A) for its Lebesgue measure on D × R.

We consider the following assumption.

(GM): The conditional density satisfies

p(y|x) =

K(x)∑
j=1

πj(x)φ
(
y;µj(x), σ2

j (x)
)

with µ1(x) < µ2(x) < . . . < µK(x)(x) by convention, and φ( · ;µ, σ2) denoting the
Gaussian density function with mean µ and variance σ2.
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The assumption that the conditional density can be written as a mixture of Gaussians is only
used for the next result. It is important to note that this is an assumption made about the
population density, and does not reflect modeling choices made in the sample. Indeed, recall,
we are comparing prediction sets based on the modal set M(x) and the regression function
µ(x), both of which use true population information.

Before stating the result, we must define several quantities. Define the minimal separation
between mixture centers

∆min(x) = min{|µi(x)− µj(x)| : i 6= j}

and

σ2
max(x) = max

j=1,...,K(x)
σ2
j (x), πmax(x) = max

j=1,...,K(x)
πj(x), πmin(x) = min

j=1,...,K(x)
πj(x).

Also define
∆min = inf

x∈D
∆min(x), σ2

max = sup
x∈D

σ2
max(x),

and
πmax = sup

x∈D
πmax(x), πmin = inf

x∈D
πmin(x),

and

K =

∫
x∈DK(x) dx∫

x∈D dx
, Kmin = inf

x∈D
K(x), Kmax = inf

x∈D
K(x).

Theorem 10 (Size of prediction sets). Assume (GM). Let α < 0.1 and assume that
π1(x), πK(x)(x) > α. If

∆min(x)

σmax(x)
> max

{
1.1 · K(x)

K(x)− 1
z1−α/2,

√
6.4 ∨ 2 log (4(K(x) ∨ 3− 1)) + 2 log

(
πmax(x)

πmin(x)

)}
,

where zα is the upper α-quantile value of a standard normal distribution and A ∨ B =
max{A,B}, then

length
(
P1−α(x)

)
< length

(
R1−α(x)

)
.

Moreover, if

∆min

σmax
> max

{
1.1 ·

(
2K

Kmin − 1

)
z1−α/2,

√
6.4 ∨ 2 log (4(Kmax ∨ 3− 1)) + 2 log

(
πmax

πmin

)}
,

then
Vol(P1−α) < Vol(R1−α).

In words, the theorem shows that when the signal-to-noise ratio is sufficiently large, the
modal-based prediction set is smaller than the usual regression-based prediction set.
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7. Comparison to mixture regression. Mixture regression is in some ways similar
to modal regression. The literature on mixture regression, also known as mixture of experts
modeling, is vast; see, e.g., Jacobs et al. (1991); Jiang and Tanner (1999); Bishop (2006); Viele
and Tong (2002); Khalili and Chen (2007); Hunter and Young (2012); Huang and Yao (2012);
Huang et al. (2013). In mixture regression, we assume that the conditional density function
takes the form

p(y|x) =

K(x)∑
j=1

πj(x)φj(y;µj(x), σ2
j (x)),

where each φj(y;µj(x), σ2
j (x)) is a density function, parametrized by a mean µj(x) and vari-

ance σ2
j (x). The simplest and most common usage of mixture regression makes the following

assumptions:

(MR1) K(x) = K,
(MR2) πj(x) = πj for each j,
(MR3) µj(x) = βTj x for each j

(MR4) σ2
j (x) = σ2

j for each j, and
(MR5) φj(x) is Gaussian for each j.

This is called linear mixture regression (Viele and Tong, 2002; Chaganty and Liang, 2013).
Many authors have considered relaxing some subset of the above assumptions, but as far we
can tell, no work has been proposed to effectively relax all of (MR1-5).

Modal regression is a fairly simple tool that achieves a similar goal to mixture regression
models, and uses fewer assumptions. At a high level, mixture regression is inherently a model-
based method, stemming from a model for the joint density p(y|x); modal regression hunts
directly for conditional modes, which can be estimated without a model for p(y|x). Another
important difference: the number of mixture components K in the mixture regression model
plays a key role, and estimating K is quite difficult; in modal regression we do not need to
estimate anything of this sort (e.g., we do not specify a number of modal manifolds). Instead,
the flexibility of the estimated modal regression set is driven by the bandwidth parameter h of
the KDE, which can be tuned by inspecting the size of prediction sets, as described in Section
6.1. Table 1 summarizes the comparison between mixture-based and mode-based methods.

Mixture-based Mode-based

Density estimation Gaussian mixture Kernel density estimate

Clustering K-means Mean-shift clustering

Regression Mixture regression Modal regression

Algorithm EM Mean-shift

Complexity parameter K (number of components) h (smoothing bandwidth)

Type Parametric model Nonparametric model
Table 1

Comparison for methods based on mixtures versus modes.

Figure 6 gives a comparison between linear mixture regression and modal regression. We
fit the linear mixture model using the R package mixtools, specifying k = 3 components,
over 10,000 runs of the EM algorithm (choosing eventually the result the highest likelihood
value). The modal regression estimate used a bandwidth value that minimized the volume of
the corresponding prediction set, as characterized in Figure 5. The figure reveals yet another
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important difference between the two methods: the estimated modal regression trends do not
persist across the whole x domain, while the linear mixture model (in its default specifica-
tion) carries the estimated linear trends across the entirety of the x domain. This is due to
assumption (MR2), which models each component probability πj as a constant, independent
of x. As a result, the prediction set from the linear mixture model has a much larger volume
than that from modal regression, since it vacuously covers the extensions of each linear fit
across the whole domain. Relaxing assumption (MR2) would address this issue, but it would
also make the mixture estimation more difficult.
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Fig 6. A comparison between mixture regression, on the left, and modal regression, on the right.

7.1. Clustering with modal regression. We now describe how modal regression can be used
to conduct clustering, conditional on x. This clustering leads us define to modal proportions
and modal dispersions, which are roughly analogous to the component parameters πj(x) and
σ2
j (x) in mixture regression.
Mode-based clustering (Cheng, 1995; Comaniciu and Meer, 2002; Chen et al., 2014a) is a

nonparametric clustering method which uses local density modes to define clusters. A similar
idea applies to modal regression. In words, at each point x, we find the modes of p(y|x) and
we cluster according to the basins of attractions of these modes. Formally, at each (x, y), we
define an ascending path by

γ(x,y) : R+ → K×D, γ(x,y)(0) = (x, y), γ′(x,y)(t) = (0, py(x, y)).

That is, γ(x,y) is the gradient ascent path in the y direction (with x fixed), starting at the
point y. Denote the destination of the path by dest(x, y) = limt→∞ γ(x,y)(t). By Morse theory,
dest(x, y) = mj(x) for one and only one regression mode mj(x), j = 1, . . . ,K. Thus, we assign
the cluster label j to the point (x, y).

The above was a population-level description of the clusters. In practice, we use the mean-
shift algorithm (Algorithm 1) to estimate clusters and assign points according to the output
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Fig 7. Two examples of clustering based on modal regression.

of the algorithm. That is, by iterating the mean-sfhit update (6) for each point (Xi, Yi),
with Xi fixed, we arrive at an estimated mode m̂j(Xi) for some j = 1, . . . , K̂, and we hence
assign (Xi, Yi) to cluster j. An issue is that determination of the estimated modal functions
m̂j , j = 1, . . . , K̂, or equivalently, of the modal manifolds Ŝ1, . . . , ŜK̂ , is not immediate from
the data samples. These are well-defined in principle, but require running the mean-shift
algorithm at each input point x. In data examples, therefore, we run mean-shift over a fine
mesh (e.g., the data samples themselves) and apply hierarhical clustering to find the collection
Ŝ1, . . . , ŜK̂ . It is important to note that the latter clustering task, which seeks a clustering of
the outputs of the mean-shift algorithm, is trivial compared to the original task (clustering
of the data samples). Some examples are shown in Figure 7.

The clustering assignments give rise to the concepts of modal proportions and modal dis-
persions. The modal proportion of cluster j is defined as

q̂j = Nj/n,

where Nj =
∑n

i=1 1(i ∈ Ĉj) is the number of data points belonging to the jth cluster Ĉj . The
modal disperson of cluster j is defined as

ρ̂2
j =

1

Nj

∑
i∈Ĉj

(
Yi − m̂(Yi)

)2
,

where m̂(Yi) denotes the sample destination at (Xi, Yi) (i.e., the output of the mean-shift
algorithm at (Xi, Yi)). This is a measure of the spread of the data points around the jth
estimated modal manifold.

In a mixture regression model, when we assume each density φj to be Gaussian, the local
modes of p(y|x) behave like the mixture centers µ1(x), . . . , µK(x). Thus, estimating the local
modes is like estimating the centers the Gaussian mixtures. The clustering based on modal
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regression is like the recovery process for the mixing mechnism. Each cluster can be thought
of a mixture component and hence the quantities q̂j , ρ̂

2
j are analogous to the estimates π̂j , σ̂

2
j

in mixture regression (assuming (MR2) and (MR4), so that to the mixture proportions and
variances do not depend on x).

8. Comparison to density ridges. Another concept related to modal regression esti-
mation is that of density ridge estimation. Relative to mixture regression, the literature on
density ridges is sparse; see Eberly (1996); Genovese et al. (2012); Chen et al. (2014c,b).

For simplicity of comparison, assume that the predictor X is univariate (d = 1). Let
v1(x, y), v2(x, y) be the eigenvectors corresponding to the eigenvalues λ1(x, y) ≥ λ2(x, y) of
H(x, y) = ∇2p(x, y), the Hessian matrix of density function p at (x, y). Each point in the
ridge set at x is the local mode of the the local mode of subspace spanned by v2(x, y) with
λ2(x, y) < 0. We can express this as

R(x) = {y : v2(x, y)T∇p(x, y) = 0, vT2 (x, y)H(x, y)v2(x, y) < 0}.

Note that we can similarly express the modal set at x as

M(x) = {y : 1TY∇p(x, y) = 0, 1TYH(x, y)1Y < 0},

where 1TY = (0, 1) is the unit vector in the y direction. As can be seen easily, the key difference
lies in the two vectors 1Y and v2(x, y). Every point on the density ridge is local mode with
respect to a different subspace, while every point on the modal regression is the local mode
with respect to the same subspace, namely, that aligned with the y-axis. The following simple
lemma describes cases in which these two sets coincide.

Lemma 11 (Equivalence of modal and ridge sets). Assume that d = 1, fix any point x,
and let y ∈M(x). Then provided that

1. px(x, y) = 0, or
2. pxy(x, y) = 0,

it also holds that y ∈ R(x).

The lemma asserts that a conditional mode where the density is locally stationary, i.e.,
px(x, y) = 0, or the density is locally isotropic, i.e., pxy(x, y) = 0, is also a density ridge. More
explicitly, the first condition states that saddle points and local maximums are both local
modes and ridge points, and the second condition states that when modal manifolds moving
along the x-axis, they are also density ridges.

We compare modal regression, density ridges, and density modes in Figure 8. Both the
estimated density ridges and modal manifolds pass through the density modes, as predicted
by Lemma 11. Furthermore, at places in which the joint density is locally isotropic (i.e.,
spherical), the modal regression and density ridge components roughly coincide.

From a general perspective, modal regression and density ridges are looking for different
types of structures; modal regression examines the conditional structure of Y |X, and density
ridges seek out the joint structure of X,Y . Typically, density ridge estimation is less stable
than modal regression estimation because in the former, both the modes and the subspace of
interest (the second eigenvector v2(x, y) of the local Hessian) must be estimated.
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Fig 8. A comparison between modal regression, density ridges and density modes using the old faithful data
set. The background color represents the joint density (red: high density).

9. Discussion. We have investigated a nonparametric method for modal regression esti-
mation, based on a KDE of a joint sample of data points (X1, Y1), . . . , (Xn, Yn). We studied
some of the geometry underlying the modal regression set, and described techniques for con-
fidence set estimation, prediction set estimation, and bandwidth selection for the underlying
KDE. Finally, we compared the proposed method to the well-studied mixture of regression
model, and the less well-known but also highly relevant problem of density ridge estimation.
The main message is that nonparametric modal regression offers a relatively simple and use-
able tool to capture conditional structure missed by conventional regression methods. The
advances we have developed in this paper, such those for constructing confidence sets and
prediction sets, only add to its usefulness as a practical tool.

Though the discussion in this paper treated the dimension d of the predictor variable X
as arbitrary, all examples used d = 1. We finish by giving two simple examples for d = 2. In
the first example, the data points are normally distributed around two parabolic surfaces; in
the second example, the data points come from five different components of two-dimensional
structure. We apply both modal regression (in blue) and local regression (in green) to the two
examples, shown in Figure 9. The estimated modal regression set identifies the appropriate
structure, while local regression does not (most of the local regression surface does not lie
near any of the data points at all).

Acknowledgements. YC is supported by DOE Grant DE-FOA-0000918. CG is sup-
ported in part by DOE Grant DE-FOA-0000918 and NSF Grant DMS-1208354. RT is sup-
ported by NSF Grant DMS-1309174. LW is supported by NSF Grant DMS-1208354.
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Fig 9. Two examples for d = 2. Modal regression estimates are shown in blue, and local regression in green.

APPENDIX A: PROOFS

Before we proceed, we first recall a useful theorem.

Theorem 12. Assume (A1,K1-3). Then

‖p̂n − p‖∗∞,k = O(h2) +OP

(√
log n

nhd+1+2k

)
.

Moreover, when n is sufficiently large and logn
nhd+1+2k → 0,

P
(
‖p̂n − p‖∗∞,k > ε

)
≤ (k + 1)eAnh

d+1+2k

for some constant A > 0.

The first assertion can be proved by the same method in Einmahl and Mason (2000, 2005);
Gine and Guillou (2002) and the second assertion is an application of the Talagrand’s inequal-
ity (Talagrand, 1996). Thus we omit the proof. Similar results for the kernel density estimator
can be found in Chen et al. (2014c).

Proof of Theorem 3. In this proof we will write denote elements of M(x) as yj . It
can be shown that when ‖p̂n − p‖∗∞,2 is sufficiently small, for every x, each the local mode
yj ∈ M(x) corresponds to an unique close estimated local mode ŷj by assumption (A3). See
the proof to Theorem 4 in Chen et al. (2014b).

Part 1: Empirical Approximation. Let x be a fixed point in D. Let yj be a local mode
and ŷj be the estimator to yj . By definition,

py(x, yj) = 0, p̂y,n(x, ŷj) = 0.
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By Taylor Theorem,

(20)
p̂y,n(x, yj) = p̂y,n(x, yj)− p̂y,n(x, ŷj)

= (yj − ŷj)p̂yy,n(x, y∗j ),

where y∗j is a point between yj and ŷj .
Thus, after dividing p̂yy,n(x, y∗j ) in both sides,

(21)
ŷj − yj = −p̂yy,n(x, y∗j )

−1p̂y,n(x, yj)

= −pyy(x, yj)−1p̂y,n(x, yj) +O(‖p̂− p‖∗∞,2)p̂y,n(x, yj).

Note that we use ∣∣p̂yy,n(x, y∗j )
−1 − pyy(x, yj)−1

∣∣ = O(‖p̂− p‖∗∞,2).

This is valid since both pyy, p̂yy,n are bounded away from 0 when x, y is closed to S by
assumption (A3). Thus, the inverse is bounded above by (A1) and (K1)

Therefore, by taking absolute values we obtain

(22) |ŷj − yj | − |pyy(x, yj)−1||p̂y,n(x, yj)| = O(‖p̂− p‖∗∞,2 × |p̂y,n(x, yj)|).

Now taking max for all local modes and use the fact that ∆n(x) = max |ŷj − yj |,

(23)

∆n(x)−max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}
= O

(
‖p̂− p‖∗∞,2 ×max

j
{|p̂y,n(x, yj)|}

)
.

This implies

max
j
{|p̂y,n(x, yj)|}−1

∣∣∣∣∆n(x)−max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}∣∣∣∣ = O
(
‖p̂− p‖∗∞,2

)
.

Thus, ∆n(x) can be approximated by maxj
{
|pyy(x, yj)−1||p̂y,n(x, yj)

}
.

Note that |pyy(x, yj)−1| is bounded from the above and below by assumption (A1-3). This
shows that maxj{|p̂y,n(x, yj)|} is at the same rate as maxj

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}
. Thus,

equation (23) implies

1

∆n(x)

∣∣∣∣∆n(x)−max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}∣∣∣∣ = O
(
‖p̂− p‖∗∞,2

)
which proves the first assertion.

Part 2: Rate of Convergence. For each j, we focus on p̂y,n(x, yj) since pyy(x, yj)
−1 is

bounded:

|p̂y,n(x, yj)| = |p̂y,n(x, yj)− py(x, yj)|
≤ |p̂y,n(x, yj)− E (p̂y,n(x, yj))|+ |E (p̂y,n(x, yj))− py(x, yj)|

= OP

(√
1

nhd+3

)
+O(h2).
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The rate follows from the bias-variance tradeoff theory for the kernel density estimator. By
repeating the above argument for each mode, the rate works for every local mode. Since there
are at most K < ∞ local modes for fixed x, the rate is the same as we take the maximum
over all local modes. Thus, we have proved the second assertion.

Proof of Theorem 4. By Theorem 3,

∆n(x) = max
j

{
|pyy(x, yj)−1||p̂y,n(x, yj)|

}
+ oP (1)

= max
j

{
|pyy(x, yj)−1| (|p̂y,n(x, yj)− E (p̂y,n(x, yj))|+B(x, yj))

}
+ oP (1),

where B(x, yj) = |E (p̂y,n(x, yj))− py(x, yj)| = O(h2) is the bias and the oP (1) is from O(‖p̂−
p‖∗∞,2∆n(x)).

Since |pyy(x, yj)−1| is bounded, the above implies

∆n(x) = max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
+O(h2) + oP (1).

Note the big O term involves the bias and is independent of x. Thus, taking supremum over
x ∈ D yields

(24) ∆n = Z +O(h2) + oP (1),

where
Z = sup

x∈D
max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
is the maximum over a stochastic process.

Now we show that Z is the maximum of an empirical process. Let

(25)

F0 =

{
(u, v) 7→ fx,y(u, v) : fx,y(u, v) = p−1

yy (x, y)×

K

(
‖x− u‖

h

)
K(1)

(
y − v
h

)
, y ∈M(x), x ∈ R

}
.

be a functional space similar to the one defined in (16). We define the empirical process Gn

to be

(26) Gn(f) =
1√
n

(
n∑
i=1

f(Zi)− E(f(Zi))

)
f ∈ F0,

where Zi = (Xi, Yi) is the observed data.
Thus,

(27)

Z = sup
x∈D

max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
=

1√
nhd+3

sup
f∈F0

|Gn(f)|.
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By assumption (A1) and (K1–2), F0 is a VC-type class with constant envelope C2
K/λ2. Thus,

applying Theorem 2.3 in Gine and Guillou (2002) gives

Z = sup
x∈D

max
j

{
|pyy(x, yj)−1| |p̂y,n(x, yj)− E (p̂y,n(x, yj))|

}
| = OP

(√
log n

nhd+3

)
.

Now by equation (24), we conclude the result.

Proof of Theorem 5. The proof of this theorem is obtained by applying to Theorem 3
so that the expected square of local error can be written as

E
(
∆2
n(x)

)
= O(h4) +O

(
1

nhd+3

)
= Bias2(x) + Variance(x).

Then use the same arguments in Chacón et al. (2011); Chacón and Duong (2013) to show
that integrating bias and variance over x still yield the same rate of convergence. We omit
the details of this proof.

Proof of Theorem 7. We prove this Theorem by the similar technique in the proof of
Theorem 6 of Chen et al. (2014c).

Let F be the functional space defined in (16). We define Gn be an empirical process on
F and also define B to be a Gaussian process on F . Denote Gn = 1√

hd+3
supf∈F |Gn(f)| and

B = 1√
hd+3

supf∈F |B(f)|.
Our proof consists of three steps.

1. Coupling between
√
nhd+3∆n and Gn.

2. Coupling between Gn and B.
3. Anti-concentration Chernozhukov et al. (2013a,c) to convert the coupling into the desire

Berry-Esseen bound.

Step 1. Our goal is to show

(28) P
(∣∣∣√nhd+3∆n −Gn

∣∣∣ > ε
)
≤ D1e

−D2nhd+5ε2

for some constants D1, D2.
Recall Corollary 6,∣∣∣√nhd+3∆n −Gn

∣∣∣ = O(εn,2) = O

(
sup
x,y
|p̂yy,n(x, y)− E (p̂yy,n(x, y)) |

)
.

Thus, there exists a constant D0 > 0 such that∣∣∣√nhd+3∆n −Gn

∣∣∣ ≤ D0 sup
x,y
|p̂yy,n(x, y)− E (p̂yy,n(x, y)) |.
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By Talagrand’s inequality (Theorem A.4 in Chernozhukov et al. (2013a); see also Talagrand
(1996), Massart (2000) and Gine and Guillou (2002) ),

(29)

P
(∣∣∣√nhd+3∆n −Gn

∣∣∣ > ε
)

≤ P
(

sup
x,y
|p̂yy,n(x, y)− E (p̂yy,n(x, y)) | > ε/D0

)
≤ D1e

−D2nhd+5ε2

for some constants D1, D2 > 0. This gives the desire result.

Step 2. We will show

(30) P

(
|Gn −B| > A1

b0 log2/3 n

γ1/3(nhd+3)1/6

)
≤ A2γ.

for some constants A1, A2.
We first recall a useful Theorem in Chernozhukov et al. (2013a):

Theorem 13 (Theorem 3.1 in Chernozhukov et al. (2013a)). Let G be a collection of
functions that is a VC-type class (see condition (K2)) with a constant envelope function b.
Let σ2 be a constant such that supg∈G E[g(Xi)

2] ≤ σ2 ≤ b2. Let B be a centered, tight Gaussian
process defined on G with covariance function

(31) Cov(B(g1),B(g2)) = E[g1(Xi)g2(Xi)]− E[g1(Xi)]E[g2(Xi)]

where g1, g2 ∈ G. Then for any γ ∈ (0, 1) as n is sufficiently large, there exist a random

variable B
d
= supf∈G |B(g)| such that

(32) P

(∣∣∣∣∣sup
f∈G
|Gn(g)| −B

∣∣∣∣∣ > A1
b1/3σ2/3 log2/3 n

γ1/3n1/6

)
≤ A2γ

where A1, A2 are two universal constants. Note that A
d
= B for random variables A,B means

that A and B has the same distribution.

To apply Theorem 13, we need to verify conditions. By assumption (K3) and (A2), F is a
VC-type class with constant envelope b0 = C2

K λ̃2 < ∞. Note that 1/λ̃2 is the bound on the
inverse second derivative of p̃yy(x, y) as y is closed to a local mode.

Now we find σ2. By definition,

sup
f∈F

E[f(Xi)
2] ≤ hd+3b20.

Thus, we can pick σ2 = hd+3b20 ≤ b20 if h ≤ 1. Hence, applying Theorem 13 gives

(33) P

(∣∣∣∣∣sup
f∈F
|Gn(f)| −B′

∣∣∣∣∣ > A1
b0h

2/3h2 log2/3 n

γ1/3n1/6

)
≤ A2γ
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for some constants A1, A2 and γ < 1 and B′
d
= supf∈F |B(f)|, where B is a Gaussian process

defined on F .
Now multiply

√
h−d−3 in the both side of the above expression and use the definition of

Gn and the fact that 1√
hd+3

B′ = B,

(34) P

(
|Gn −B| > A1

b0 log2/3 n

γ1/3(nhd+3)1/6

)
≤ A2γ

which is the desire result (30).

Step 3. We first show the coupling between
√
nhd+3∆n and B. We pick ε = (nhd+5)−1/4

in (28) so that

(35) P
(∣∣∣√nhd+3∆n −Gn

∣∣∣ > (nhd+5)−1/4
)
≤ D1e

−D2

√
nhd+5

.

As n is sufficiently large, and by triangular inequality along with (30),

(36) P

(∣∣∣√nhd+3∆n −B
∣∣∣ > A3

log2/3 n

γ1/3(nhd+3)1/6

)
≤ A4γ,

for some constants A3, A4 > 0. Note that we absorb the rate (nhd+5)−1/4 in (35) into

A3
log2/3 n

γ1/3(nhd+3)1/6 . This is valid since (nhd+5)−1/4 converges faster. Also, we absorbD1e
−D2

√
nhd+5

into A4γ. We allow γ → 0 as long as γ converges at rate slower than (nhd+5)−1/4.
Now applying the anti-concentration inequality (version of Lemma 16 in Chen et al. (2014c);

see also Corollary 2.1 in Chernozhukov et al. (2013a) and Chernozhukov et al. (2013b,c)), we
conclude

sup
t

∣∣∣P(√nhd+3∆n < t
)
− P (B < t)

∣∣∣ ≤ A5

(
A3

log2/3 n

γ1/3(nhd+3)1/6
+A4γ

)

for some A5 > 0. Now by taking γ =
(

logn
nhd+1

)1/8
, we obtain the desire result.

Proof of Theorem 8. The proof to this Theorem is essentially the same as proof to
Theorem 7 in Chen et al. (2014c) by using the Theorem 7 of the current paper. We state the
basic ideas in the following and omit the details. Note that the functional space (16) depends
on the probability measure P and smoothing parameter h

(37)

F = F(P, h) =

{
(u, v) 7→ fx,y(u, v) : fx,y(u, v) = p̃−1

yy (x, y) ×

K

(
‖x− u‖

h

)
K(1)

(
y − v
h

)
, x ∈ D, y ∈ M̃(x)

}

since the index y is defined on the smoothed local mode M̃(x) and it requires second derivatives

of smooth density p̃(x, y). Both M̃(x) and p̃(x, y) are completely detemined by P and h. For
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the bootstrap estimate, Theorem 7 implies that ∆̂∗n can be approximated by the maximal of
a certain Gaussian process

(38) sup
f∈F(Pn,h)

|B(f)|.

Note now the function space depends on Pn and h. This is because for the bootstrap case, we
are conditioned on the data (D i.e. empirical measure Pn) and sampling from Pn. The role
of P is completely replaced by Pn. For the functional space, the index y takes values at the
‘estimated’ local modes M̂n(x) and p̃yy(x, y) will be replaced by the second derivative of KDE
p̂n(x, y). Both quantities now are determined by the empirical measure Pn and the smoothing
parameter h.

The maximal of Gaussian processes defined on the two functional space F(P, h) and F(Pn, h)
will be asymptotically the same by Lemma 17, 19 and 20 in Chen et al. (2014c). Putting al-
together, the result follows from the approximation

(39) ∆̂∗n ≈ sup
f∈F(Pn,h)

|B(f)| ≈ sup
f∈F(P,h)

|B(f)| ≈ ∆n.

Before we prove Theorem 10, we first prove the following useful lemma on the Gaussian
mixture and its corresponding local modes.

Lemma 14 (Gaussian Mixture and Local Modes). Consider a Gaussian mixture p(y) =∑K
j=1 πjφ(y;µj , σ

2
j ) with µ1 < . . . < µK and y ∈ R. Let W = ∆min

σmax
and ∆min = min{|µj−µi| :

i 6= j} and σmax = maxj σj. If

W ≥

√
2 log

(
4(K ∨ 3− 1)

πmax

πmin

)
,

then

max
j
|µj −mj | ≤ σmax × 4

πmax

πmin

1

W
e−

W2

2 .

Proof. Given any (πj , µj , σ
2
j : j = 1, . . . ,K), we consider another mixture (but not nec-

essarily a density)

h(y) = πminφ(y;µ1, σ
2
max) +

K∑
j=2

φ(y;µ1 + (j − 1)∆min, σ
2
max).

We assume

(MK) h(y) has K distinct local modes.

Note that this implies p(y) to have K distinct local modes. Later we will prove this condition.
Let the ordered local modes of h(y) be m′1 < . . . < m′K . It is not hard to observe that

(40) |m′1 − µ1| ≥ max
j
|mj − µj |



NONPARAMETRIC MODAL REGRESSION 29

since all mixture components in h other than the first one are pulling the m′1 away from µ1.
One can think of h(y) as the worst case scenario (the layout of mixture pulling mj away from
µj) of the parameters (πj , µj , σ

2
j : j = 1, . . . ,K).

Because µ1 < µj , the local mode m′1 > µ1 and h(m′1) > h(µ1). We define s1 such that

h(µ1 + s1) = h(µ1), h(s) ≥ h(µ1) ∀s ∈ [µ1, µ1 + s1].

It is easy to see that m′1 ≤ s1 + µ1 since m′1 is the smallest (in terms of location) local mode
of h. Thus, if we can bound s1, we bound the difference |m′1−µ1|. Note that s1 must be very
small (at least smaller than σmax) otherwise we will not obtain K local modes.

Now by definition of h, we attempts to find s1 such that

(41)

h(µ1) = πminφ(µ1;µ1, σ
2
max) + πmax

K∑
j=2

φ(µ1;µ1 + (j − 1)∆min, σ
2
max)

=
1√

2πσ2
max

πmin +
1√

2πσ2
max

πmax

K∑
j=2

e−
1
2

(
(j−1)∆min
σmax

)2

= h(µ1 + s1)

=
1√

2πσ2
max

πmine
− 1

2
(
s1

σmax
)2

+
1√

2πσ2
max

πmax

K∑
j=2

e−
1
2

(
(j−1)∆min−s1

σmax
)2

.

Therefore, s1 can be obtained by solving

(42) πmin

(
1− e−

1
2

(
s1

σmax
)2
)

= πmax

K∑
j=2

e−
1
2

(
(j−1)∆min
σmax

)2

(e
(j−1)∆min
σmax

s1
σmax

− s21
2σ2

max − 1)

Note that ex < 1 + 2x if x < 1. Thus, when

(43)
(j − 1)∆min

σmax

s1

σmax
< 1,

we have

(44) e
(j−1)∆min
σmax

s1
σmax

− s21
2σ2

max − 1 < 2
(j − 1)∆min

σmax

s1

σmax
= 2(j − 1)W

s1

σmax
,

where W = ∆min
σmax

. Also note that

(45) 1− e−
1
2

(
s1

σmax
)2

>
1

2
(
s1

σmax
)2

since s1 < σmax.
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Let s2 be a small number satisfying

(46)

1

2
(
s2

σmax
)2 = 2

πmax

πmin
W

s2

σmax

∫ ∞
1

xe−
W2

2
x2
dx

=
s2

σmax

πmax

πmin

2

W
e−

W2

2

≥W πmax

πmin

s2

σmax

K∑
j=1

e−
1
2
j2W 2

j2

= πmax

K∑
j=2

e−
1
2

(
(j−1)∆min
σmax

)2

2(j − 1)Ws2
πmax

πmin
.

By (42), (44) and (45), s2 > s1. The above result gives

(47) s2 = σmax ×
πmax

πmin

4

W
e−W

2/2 > s1 ≥ max
j
|mj − µj |

which is the desire result.
Note that the above method requires (43), which requires

(48)
1

K − 1

1

W
>

s2

σmax
=
πmax

πmin

4

W
e−W

2/2.

This is true whenever

(49) W >

√
2 log

(
4(K − 1)

πmax

πmin

)
which gives part of the condition in this Lemma.

Recall that we assume (MK) at the beginning. We prove that as W is sufficiently large,
(MK) holds. It is easy to see that

(50)
|µi − µj | > ∆min

⇒ |mi −mj | > ∆min − 2 max
i
|mi − µi|.

Thus, as long as ∆min − 2 maxi |mi − µi| > 0, there exists K distinct local modes for p(y).
By equation (47), a sufficient condition to ∆min − 2 maxi |mi − µi| > 0 is

(51) ∆min > 2σmax ×
πmax

πmin

4

W
e−W

2/2

which is equivalent to

W 2eW
2/2 > 8

πmax

πmin
.

As W > 1 (which is satisfied by (52)),

eW
2/2 > 8

πmax

πmin
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implies (51) so that a sufficient condition for p(y) having K distinct local modes is

(52) W >

√
2 log

(
8
πmax

πmin

)
.

Combining this condition and equation (49), we conclude the result.

Proof of Theorem 10. The proof consists of four steps. At first three steps, we consider
the pointwise prediction sets and the last step is to extend the proof to the unifrom prediction
sets. We summarize the four steps as follows:

1. We prove
ε1−α(x) ≤ z1−α/2σmax(x) + max

i
|ui(x)−mi(x)|,

where m1(x) < m2(x) < . . . < mK(x)(x) are the ordered local modes.

2. We prove η1−α(x) ≥ 1
2K(x)∆min(x).

3. We apply Lemma 14 to bound maxi |ui(x) −mi(x)| by ∆min(x) and use the first two
steps to conclude the desire result.

4. We extend the first three steps to uniform case.

Step 1. By assumption (GP), the set

A =

K(x)⋃
j=1

µj(x)⊕
(
z1−α/2σj(x)

)
is a (1−α)% prediction set. Let m1(x) < m2(x) < . . . < mK(x)(x) be the ordered local modes
of p(y|x). Then we have

(53)

µj(x)⊕
(
z1−α/2σj(x)

)
⊆ mj(x)⊕

(
z1−α/2σj(x) + |µj(x)−mj(x)|

)
⊆ mj(x)⊕

(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
.

This works for all j. Note that the regression mode set M(x) = {m1(x), . . . ,mK(x)(x)} so
that

A ⊆M(x)⊕
(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
which implies

(54) ε1−α(x) ≤ z1−α/2σmax(x) + max
j
|µj(x)−mj(x)|

since ε1−α(x) is the smallest size to construct a pointwise prediction set with with 1 − α
prediction accuracy.

Step 2. Since we pick α such that α < π1(x), πK(x)(x). The prediction set from regression
function must contains all the mixture centers. Thus,

2η1−α(x) ≥ µK(x)(x)− µ1(x) ≥ (K(x)− 1)∆min(x).



32 Y.-C. CHEN ET AL.

Step 3. The length of prediction set P1−α = M(x) ⊕ ε1−α(x) is 2K(x)ε1−α(x) and the
length of prediction set R1−α = m(x)⊕ η1−α(x) is 2η1−α(x). Thus, we need to show

(55) η1−α(x) > K(x)ε1−α(x).

By (54) and Step 2, a sufficient condition for (55) is

(K(x)− 1)∆min(x) > K(x)

(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
.

Applying Lemma 14 yields

(56) max
j
|µj(x)−mj(x)| ≤ σmax(x)× 4

πmax(x)

πmin(x)

1

W (x)
e−

W (x)2

2

whenever

(57) W (x) ≥

√
2 log

(
4(K(x) ∨ 3− 1)

πmax(x)

πmin(x)

)
,

where W (x) = ∆min(x)
σmax(x) .

Now assume α < 0.1, the z-score z1−α/2 > 1.64. We bound maxj |µj(x)−mj(x)| by 0.1×
z1−α/2σmax(x) so that we can have a reference rule only depends on z-score. Thus, we can use
(56):

(58)

4
πmax(x)

πmin(x)

1

W (x)
e−

W (x)2

2 ≤ 4
πmax(x)

πmin(x)
e−

W (x)2

2

≤ 0.1× z1−α/2

< 0.1× 1.64

Thus, we need

(59)

W (x) >

√
2 log

(
40

1.64

πmax(x)

πmin(x)

)

=

√
6.4 + 2 log

(
πmax(x)

πmin(x)

)
.

Hence, as W (x) >

√
6.4 + 2 log

(
πmax(x)
πmin(x)

)
, we need

(K(x)− 1)∆min(x) > 1.1×K(x)z1−α/2σmax(x).

This requires

(60) W (x) > 1.1× K(x)

K(x)− 1
z1−α/2.
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Now the conditions on W (x) = ∆min(x)
σmax(x) involve equations (57),(59) and (60). We conclude

that whenever

W (x) =
∆min(x)

σmax(x)

> max

{
1.1× K(x)

K(x)− 1
z1−α/2,

√
6.4 ∨ 2 log (4(K(x) ∨ 3− 1)) + 2 log

(
πmax(x)

πmin(x)

)}
,

the prediction set P1−α(x) is smaller than R1−α(x).

Step 4. Now we extend to the uniform case. Note that

(61)
ε1−α ≤ sup

x
ε1−α(x)

η1−α ≥ inf
x
η1−α(x).

Therefore,

(62)

ε1−α ≤ sup
x
ε1−α(x)

≤ sup
x

(
z1−α/2σmax(x) + max

j
|µj(x)−mj(x)|

)
≤ z1−α/2σmax + sup

x
max
j
|µj(x)−mj(x)|

and similarly

(63)

η1−α ≥ inf
x
η1−α(x)

≥ inf
x

(K(x)− 1)∆min(x)

≥ (Kmin − 1)∆min.

Now note that the second term in the last inequality of (62) can be bounded by

(64)

sup
x

max
j
|µj(x)−mj(x)| ≤ sup

x
σmax(x)× 4

πmax(x)

πmin(x)

1

W (x)
e−W (x)2/2

≤ σmax × 4
πmax

πmin

1

W
e−W

2/2,

where W = ∆min
σmax

≤W (x).
Now use the same way as (58) and combine (62) and (64),

(65) ε1−α ≤ 1.1× z1−α/2σmax

whenever

(66) W =
∆min

σmax
> max

{√
6.4 ∨ 2 log (4(Kmax ∨ 3− 1)) + 2 log

(
πmax

πmin

)}
.
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The volume of prediction sets P1−α and R1−α is

Vol(P1−α) = 2ε1−α

∫
D
K(x)dx, Vol(R1−α) = 2η1−α

∫
D
dx.

Thus, Vol(P1−α) < Vol(R1−α) if and only if

(67) ε1−αK < η1−α.

Applying equation (65) and (64) to (67), we require

(68) η1−α ≥ (Kmin − 1)∆min > K × 1.1× z1−α/2σmax ≥ ε1−α

which leads to
∆min

σmax
> 1.1× K

Kmin − 1
z1−α/2.

Combining this condition and (66), we complete the proof.

Proof for Lemma 11. Let the Hessian matrix of p(x, y) be H ≡ H(x, y). The eigenvalue
of a 2× 2 matrix has an explicit formula:

(69)
λ1(x, y) = tr(H)/2 +

√
tr(H)2/2− det(H)

λ2(x, y) = tr(H)/2−
√
tr(H)2/2− det(H)

and the corresponding eigenvectors are

(70) v1(x, y) =

[
λ1(x, y)−H22

H21

]
v2(x, y) =

[
λ2(x, y)−H22

H21

]
,

where Hij is the (i, j) element of H and tr(H) is the trace of H and det(H) is the determinant
of H.

Thus, λ2(x, y) < 0 if and only if (tr(H) < 0 or det(H) < 0). Namely,

λ2(x, y) < 0⇐⇒
(
H11 +H22 < 0 or H11H22 < H2

12

)
.

However, since y ∈M(x), H22 < 0. This implies λ2(x, y) < 0. (since whatever the sign of H11

is, one of the above conditions must hold)
Thus, all we need is to show vT2 (x, y)∇p(x, y) = 0. By the formula for eigenvectors,

vT2 (x, y)∇p(x, y) = (λ2(x, y)−H22)px(x, y) +H21py(x, y)

= (λ2(x, y)−H22)px(x, y)

since py(x, y) = 0 for y ∈M(x). Therefore, vT2 (x, y)∇p(x, y) = 0 if and only if px(x, y) = 0 or
λ2(x, y)−H22 = 0. The former case corresponds to the first condition and by (69), λ2(x, y) =
H22 if and only if H12 = 0. This completes the proof.
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