
Fast Computation of the Median by Successive Binning

Ryan J. Tibshirani
Dept. of Statistics, Stanford University, Stanford, CA 94305

email: ryantibs@stanford.edu

October 2008

Abstract

In many important problems, one uses the median instead of the mean to estimate
a population’s center, since the former is more robust. But in general, computing the
median is considerably slower than the standard mean calculation, and a fast median
algorithm is of interest. The fastest existing algorithm is quickselect. We investigate a
novel algorithm binmedian, which has O(n) average complexity. The algorithm uses a
recursive binning scheme and relies on the fact that the median and mean are always at
most one standard deviation apart. We also propose a related median approximation
algorithm binapprox, which has O(n) worst-case complexity. These algorithms are highly
competitive with quickselect when computing the median of a single data set, but are
significantly faster in updating the median when more data is added.

1 Introduction

In many applications it is useful to use the median instead of the mean to measure the
center of a population. Such applications include, but are in no way limited to: biological
sciences; computational finance; image processing; and optimization problems. Essentially,
one uses the median because it is not sensitive to outliers, but this robustness comes at
a price: computing the median takes much longer than computing the mean. Sometimes
one finds the median as a step in a larger iterative process (like in many optimization
algorithms), and this step is the bottleneck. Still, in other problems (like those in biological
applications), one finds the median of a data set and then data is added or subtracted. In
order to find the new median, one must recompute the median in the usual way, because
the standard median algorithm cannot utilize previous work to shortcut this computation.
This brute-force method leaves much to be desired.

We propose a new median algorithm binmedian, which uses buckets or “bins” to recur-
sively winnow the set of the data points that could possibly be the median. Because these
bins preserve some information about the original data set, the binmedian algorithm can use

1

previous computational work to effectively update the median, given more (or less) data.
For situations in which an exact median is not required, binmedian gives rise to an approx-
imate median algorithm binapprox, which rapidly computes the median to within a small
margin of error. We compare binmedian and binapprox to quickselect, the fastest existing
algorithm for computing the median. We first describe each algorithm in detail, beginning
with quickselect.

2 Quickselect

2.1 The quickselect algorithm

Quickselect (Floyd & Rivest 1975a) is not just used to compute the median, but is a more
general algorithm to select the kth smallest element out of an array of n elements. (When
n is odd the median is the kth smallest with k = (n + 1)/2, and when n is even it is the
mean of the elements k = n/2 and k = n/2 + 1.) The algorithm is derived from quicksort

(Hoare 1961), the well-known sorting algorithm. First it chooses a “pivot” element p from
the array, and rearranges (“partitions”) the array so that all elements less than p are to
its left, and all elements greater than p are to its right. (The elements equal to p go on
either side). Then it recurses on the left or right subarray, depending on where the median
element lies. In pseudo-code:

Quickselect(A, k):

1. Given an array A, choose a pivot element p

2. Partition A around p; let A1, A2, A3 be the subarrays of points <,=, > p

3. If k ≤ len(A1): return Quickselect(A1, k)

4. Else if k > len(A1) + len(A2): return Quickselect(A3, k − len(A1)− len(A2))

5. Else: return p

The fastest implementations of quickselect perform the steps 3 and 4 iteratively (not
recursively), and use a standard in-place partitioning method for step 2. On the other
hand, there isn’t a universally accepted strategy for choosing the pivot p in step 1. For the
comparisons in sections 5 and 6, we use a very fast Fortran implementation of quickselect
taken from Press, Teukolsky, Vetterling & Flannery (1992). It chooses the pivot p to be the
median of the bottom, middle, and top elements in the array.

2

2.2 Strengths and weaknesses of quickselect

There are many advantages to quickselect. Not only does it run very fast in practice, but
when the pivot is chosen randomly from the array, quickselect has O(n) average computa-
tional complexity (Floyd & Rivest 1975b). Another desirable property is that uses only O(1)
space, meaning that the amount of extra memory it needs doesn’t depend on the input size.
Perhaps the most underappreciated strength of quickselect is its simplicity. The algorithm’s
strategy is quite easy to understand, and the best implementations are only about 30 lines
long.

One disadvantage of quickselect is that it rearranges the array for its own computational
convenience, necessitated by the use of in-place partitioning. This seemingly innocuous side-
effect can be a problem when maintaining the array order is important (for example, when
one wants to find the median of a column of a matrix). To resolve this problem, quickselect
must make a copy of this array, and use this scratch copy to do its computations (in which
case it uses O(n) space).

But the biggest weakness of quickselect is that it is not well-suited to problems where
the median needs to be updated with the addition of more data. Though it is able to
efficiently compute the median from an in-memory array, its strategy is not conducive to
saving intermediate results. Therefore, if data is appended to this array, we have no choice
with quickselect but to compute the median in the usual way, and hence repeat much of
our previous work. This will be our focus in section 6, where we will give an extension of
binmedian that is able to deal with this update problem effectively.

3 Binmedian

3.1 The binmedian algorithm

First we give a useful lemma:

Lemma 1. If X is a random variable having mean µ, variance σ2, and median m, then
m ∈ [µ− σ, µ + σ].

Proof. Consider

|µ−m| = |E(X −m)|
≤ E|X −m|
≤ E|X − µ|
= E

√

(X − µ)2

≤
√

E(X − µ)2

= σ.

3

Here the first inequality is due to Jensen’s inequality, and the second inequality is due to
the fact that the median minimizes the function G(a) = E|X − a|. The third inequality is
due to the concave version of Jensen’s inequality.

Given data points x1, . . . xn and assuming that n is odd1, the basic strategy of the
binmedian algorithm is:

1. Compute the mean µ and standard deviation σ

2. Form B bins across [µ − σ, µ + σ], map each data point to a bin

3. Find the bin b that contains the median

4. Recurse on the set of points mapped to b

Here B is a fixed constant, and in step 2 we consider B equally spaced bins across [µ −
σ, µ + σ]. That is, we consider intervals of the form

µ− σ +

[

i

B
· 2σ, i+ 1

B
· 2σ

)

for i = 0, 1, . . . B − 1. Iterating over the data x1, . . . xn, we count how many points lie in
each one of these bins, and how many points lie to the left of these bins. We denote these
counts by Ni and NL.

In step 3, to find the median bin we simply start adding up the counts from the left
until the total is ≥ (n+ 1)/2. That is, b is minimal such that

NL +
b

∑

i=0

Ni ≥
n+ 1

2
.

Note that Lemma 1 guarantees that b ∈ {0, . . . B − 1}.
Finally, in step 4 we iterate through x1, . . . xn once again to determine which points were

mapped to bin b. Then we consider B equally spaced bins across µ−σ+
[

b
B
· 2σ, b+1

B
· 2σ

)

,
and continue as before (except that now NL is the number of points to the left of the
median bin, i.e. NL ← NL +

∑b−1
i=0 Ni). We stop when there is only one point left in the

median bin—this point is the median. (In practice, it is actually faster to stop when the
remaining number of points in the median bin is ≤ C, another fixed constant, and then find
the median directly using insertion sort.)

1An analogous strategy holds when n is even. Now at each stage we have to keep track of the bin that
contains the “left” median (the kth smallest element with k = n/2) and the bin that contains the “right”
median (k = n/2 + 1). This is more tedious than the odd case, but is conceptually the same, so hereafter
we’ll assume that n is odd whenever we talk about binmedian.

4

Notice that a larger value of B gives fewer points that map to the median bin, but it
also means more work to find b at each recursive step. For the time trials in sections 5
and 6, we choose B = 1000 because it weighs these two factors nicely. We also replace the
recursive step with an iterative loop, and use C = 20. Binmedian is implemented in Fortran
for the time trials, and this code, as well as an equivalent implementation in C, is available
at http://stat.stanford.edu/~ryantibs/median/.

3.2 Strengths and weaknesses of binmedian

Beginning with its weaknesses, the binmedian algorithm will run faster with fewer points
in the median’s bin, and therefore its runtime is necessarily dependent on the distribution
of the input data. The worst case for binmedian is when there is a huge cluster of points
surrounding the median, with a very large standard deviation. With enough outliers, the
median’s bin could be swamped with points for many iterations.

However, we can show that the algorithm’s asymptotic running time is largely unaffected
by this problem: with very reasonable assumptions on the data’s distribution, binmedian

has O(n) average complexity (see A.1). Moreover, this robustness also seems to be true in
practice. As we shall see in section 5, the algorithm’s runtime is only moderately affected
by unfavorable distributions, and in fact, binmedian is highly competitive with quickselect

in terms of running time.
Like quickselect, the binmedian algorithm uses O(1) space, but (like quickselect) this

requires it to change the order of the input data. The greatest strength of binmedian is that
the algorithm is able to quickly cache some information about the input data, when it maps
the data points to bins. This gives rise to a fast median approximation algorithm, binapprox.
It also enables binmedian, as well as binapprox, to efficiently recompute the median when we
are given more data. We’ll see this in section 6, but first we discuss binapprox in the next
section.

4 Binapprox

4.1 The binapprox algorithm

In some situations, we do not need to compute the median exactly, and care more about
getting a quick approximation. Binapprox is a simple approximation algorithm derived from
binmedian. It follows the same steps as binmedian, except that it stops once it has computed
the median bin b, and just returns the midpoint of this interval. Hence to be perfectly clear,
the algorithm’s steps are:

1. Compute the mean µ and standard deviation σ

2. Form B bins across [µ − σ, µ + σ], map each data point to a bin

5

3. Find the bin b that contains the median

4. Return the midpoint of bin b

The median can differ from this midpoint by at most 1/2 the width of the interval, or
1/2 · 2σ/B = σ/B. Since we use B = 1000 in practice, binapprox is accurate to within
1/1000th of a standard deviation.

Again, we implement binapprox in Fortran for sections 5 and 6. This code as well as C
code for binapprox is available at http://stat.stanford.edu/~ryantibs/median/.

4.2 Strengths and weaknesses of binapprox

Unlike binmedian, the runtime of binapprox doesn’t depend on the data’s distribution, since
it doesn’t perform the recursive step. It requires O(1) space, and doesn’t perturb the input
data, so rearranging is never a problem. The algorithm has O(n) worst-case computational
complexity, as it only needs 3 passes through the data. It consistently runs faster than
quickselect and binmedian in practice. Most importantly it extends to a very fast algorithm
to deal with the update problem.

Binapprox’s main weakness is fairly obvious: if the standard deviation is extremely large,
the reported approximation could be significantly different from the actual median.

5 Speed comparisons on single data sets

We compare quickselect, binmedian, and binapprox across data sets coming from various
distributions. For each data set we perform a sort and take the middle element, and report
these runtimes as a reference point for the slowest way to compute the median.

We test a total of eight distributions. The first four—uniform over [0, 1], normal with
µ = 0, σ = 1, exponential with λ = 1, chi-square with k = 5—are included because they are
fundamental, and frequently occur in practice. The last four are mixed distributions that
are purposely unfavorable for the binmedian algorithm. They have a lot of points around
the median, and a huge standard deviation. Two of these are mixtures of standard normal
data and uniformly distributed data over [−103, 103], resp. [−104, 104]. The other two are
mixtures of standard normal data and exponential data with λ = 10−3, resp. λ = 10−4.
All these mixtures are even, meaning that an equal number of points come from each of the
two distributions. Table 1 gives the results of all these timings, which were performed on
an Intel Xeon 64 bit, 3.00GHz processor.

For the first four distributions, quickselect and binmedian are very competitive in terms of
runtime, with quickselect doing better on the data from U(0, 1) and N(0, 1), and binmedian

doing better on the data from E(1) and χ2
5. It makes sense that binmedian does well on the

data drawn from E(1) and χ2
5, upon examining the probability density functions of these

6

U(0, 1) N(0, 1)

time ratio time ratio

Quickselect 107.05 (0.47) 1.17 99.70 (1.05) 1.17

Binmedian 112.45 (0.55) 1.23 106.95 (1.51) 1.25

Binapprox 91.30 (0.32) 1 85.35 (0.86) 1

Sort 3205.84 (5.97) 35.11 3231.22 (4.24) 37.86

E(1) χ2

5

time ratio time ratio

Quickselect 106.75 (0.83) 1.62 107.80 (4.29) 1.32

Binmedian 87.25 (0.96) 1.32 104.65 (4.12) 1.28

Binapprox 65.90 (0.75) 1 81.75 (3.97) 1

Sort 3217.51 (5.40) 48.82 3225.82 (4.70) 39.46

N(0, 1) and U(−103, 103) N(0, 1) and U(−104, 104)

time ratio time ratio

Quickselect 103.65 (1.15) 1.33 101.00 (0.96) 1.30

Binmedian 126.65 (1.20) 1.62 130.90 (1.25) 1.69

Binapprox 78.15 (1.02) 1 77.50 (1.28) 1

Sort 3225.40 (5.58) 41.27 3214.16 (3.89) 41.47

N(0, 1) and E(10−3) N(0, 1) and E(10−4)

time ratio time ratio

Quickselect 98.45 (1.13) 1.59 100.90 (1.23) 1.58

Binmedian 88.90 (1.63) 1.43 106.85 (0.89) 1.67

Binapprox 62.10 (1.16) 1 63.80 (1.25) 1

Sort 3228.93 (5.56) 52.00 3236.71 (2.95) 50.73

Table 1: Runtimes in milliseconds of quickselect, binmedian, binapprox, and sort for com-
puting the median of 1 + 107 data points from different distributions. We performed 10
repetitions for each distribution, and report the average and standard deviation of the run-
times. (In fact, for each repetition we drew 20 different data sets from the distribution, and
timed how long it takes for the algorithm to sequentially compute the medians of these 20
data sets, in one contiguous block. Then we divided this number by 20; this was done to
avoid timing inaccuracies.) We also list the runtime ratios, relative to the fastest time.

7

distributions. The density function of the exponential distribution, for example, is at its
highest at 0 and declines quickly, remaining in sharp decline around the median (log 2/λ).
This implies that there will be (relatively) few points in the median’s bin, so binmedian gets
off to a good start.

Generally speaking, binmedian runs slower than quickselect over the last four distribu-
tions. But considering that these distributions are intended to mimic binmedian’s degenerate
case (and are extreme examples, at that), the results are not too dramatic at all. The bin-

median algorithm does worse with the normal/uniform mixtures (skewed on both sides)
than it does with the normal/exponential mixtures (skewed on one side). At its worst,
binmedian is 1.3 times slower than quickselect (130.9 versus 101 ms, on the N(0, 1) and
U(−104, 104) mixture), but is actually slightly faster than quickselect on the N(0, 1) and
E(10−3) mixture.

Binapprox is the fastest algorithm across every distribution. It maintains a reasonable
margin on quickselect and binmedian (up to 1.62 and 1.69 times faster, respectively), though
the differences are not striking. In the next section, we focus on the median update problem,
where binmedian and binapprox display a definite advantage.

6 Speed comparisons on the update problem

Suppose that we compute the median of some data x1, . . . xn0
, and then we’re given more

data xn0+1, . . . xn, and we’re asked for the median of the aggregate data set x1, . . . xn. Of
course we could just go ahead and compute the median of x1, . . . xn directly, but then we
would be redoing much of our previous work to find the median of x1, . . . xn0

. We’d like a
better strategy for updating the median.

Consider the following: we use binmedian to compute the median of x1, . . . xn0
, and save

the bin counts Ni, i = 0, . . . B − 1, and NL, from the first iteration. We also need save the
mean µ0 and the standard deviation σ0. Given xn0+1, . . . xn, we map these points to the
original B bins and just increment the appropriate counts. Then we compute the median
bin in the usual way: start adding NL +N0 +N1 + . . . and stop when this is ≥ (n+ 1)/2.

But now, since we haven’t mapped the data x1, . . . xn to bins over its proper mean and
standard deviation, we aren’t guaranteed that the median lies in one of the bins. In the
case that the median lies to the left of our bins (i.e. NL ≥ (n+ 1)/2) or to the right of our
bins (i.e. NL +N0 + . . . NB−1 < (n+1)/2), we have to start all over again and perform the
usual binmedian algorithm on x1, . . . xn. But if the median does lie in one of the bins, then
we can continue onto the second iteration as usual. This can provide a dramatic savings in
time, because we didn’t even have to touch x1, . . . xn0

in the first iteration.
We can use binapprox in a similar way: save µ0, σ0, Ni, NL from the median computation

on x1, . . . xn0
, and then use them to map xn0+1, . . . xn. We then determine where the median

lies: if it lies outside of the bins, we perform the usual binapprox on x1, . . . xn. Otherwise

8

we can just return midpoint of the median’s bin.
In this same situation, quickselect does not have a way to save its previous work, and must

redo the whole computation.2 In table 2, we demonstrate the effectiveness of binmedian and
binapprox on this update problem. Instead of adding data xn0+1, . . . xn only once, we add it
many times, and we record how long it takes for the algorithms to compute these medians
in one contiguous block. Binmedian and binapprox each keep a global copy of µ0, σ0, Ni, NL.
They set these globals given the initial data x1, . . . xn0

, and as more data is added, they
dynamically change them if the median ever lies outside of the bins.

The first two situations from table 2 represent the best case scenario for binmedian and
binapprox. The added data sets are fairly small when compared to the initial data set
(n − n0 = 105 data points versus n0 = 1 + 107 data points). Also, the added data lies
mainly inside the initial bin range [µ0− σ0, µ0 + σ0], so the median will never lie outside of
the bins. This means that binmedian and binapprox never have to undo any of their previous
work (i.e. they never have to recompute the mean or standard deviation of the data set,
and re-bin all the points), and are able update the median very quickly. At their best,
binmedian is faster than quickselect by a factor of 3.97, and binapprox is faster by a factor
of 24.55.

The last two situations represent realistic, not-so-ideal cases for binmedian and binapprox.
The added data sets are equal in size to the initial data set (n−n0 = 106 and n0 = 1+106).
Moreover, the added data lies mainly outside of the initial bin range, which means that the
median will eventually lie outside of the bins, forcing binmedian and binapprox to recompute
the mean and standard deviation and re-bin all of the data points. (This may happen more
than once.) Nonetheless, binmedian and binapprox still maintain a very good margin on
quickselect, with binmedian running up to 3.94 times faster than quickselect and binapprox

running up to 19.01 times faster.
It is important to note that when binapprox successfully updates the median (that is, it

finds the new median bin without having to recompute the mean, standard deviation, etc.),
it is accurate to within σ0/1000, where σ0 is the standard deviation of the original data set
x1, . . . xn0

. To bound its accuracy in terms of the standard deviation σ of the whole data

2One might argue that quickselect sorts half of the array x1, . . . xn0
, and it could use this sorted order when

given xn0+1, . . . xn to expedite the partitioning steps, and thus quickly compute the median of x1, . . . xn.
First, keeping this sorted order does not actually provide much of a speed up. Second, and most importantly,
that quickselect might keep x1, . . . xn0

in the order that it produced is an unrealistic expectation in practice.
There may be several other steps that occur between initially computing the median and recomputing the
median, and these steps could manipulate the order of the data. Also, if the data’s order shouldn’t be
perturbed in the first place (for example, if we’re computing the median of a column of a matrix), then
quickselect has to make a copy of x1, . . . xn0

, and only rearranges the order of this copy. It’s not practical to
keep this copy around until we’re given xn0+1, . . . xn, even if n0 is only reasonably large.

9

1 + 107 pts ∼ N(0, 25) and
then 20× (105 pts ∼ N(0, 25))

time ratio

Quickselect 2236 (8.23) 22.36

Binmedian 584 (5.27) 5.84

Binapprox 100 (9.42) 1

1 + 107 pts ∼ N(0, 25) and
then 20 × (105 pts ∼ N(2, 4))

time ratio

Quickselect 2234 (7.07) 24.55

Binmedian 563 (10.75) 6.19

Binapprox 91 (12.65) 1

1 + 106 pts ∼ N(0, 25) and
then 20 × (106 pts ∼ N(1/2 · j, 25), j = 1, . . . 20)

time ratio

Quickselect 2429 (11.36) 18.99

Binmedian 616 (9.94) 4.81

Binapprox 128 (5.27) 1

1 + 106 pts ∼ N(0, 25) and
then 20 × (106 pts ∼ N(10, 25))

time ratio

Quickselect 2376 (16.19) 19.01

Binmedian 629 (11.01) 5.03

Binapprox 125 (5.68) 1

Table 2: Runtimes in milliseconds of quickselect, binmedian, and binapprox for the median
update problem. The algorithms initially compute the median of a data set, then we sequen-
tially add more data, and the algorithms must recompute the median after each addition.
Whenever new data is added, quickselect computes the median of the aggregate data set
with its usual strategy, and hence repeats much of its previous work. On the other hand,
binmedian and binapprox can use their cached bin counts to effectively update the median.
For each distribution, we performed 10 repetitions, and we list the average and standard
deviation of these times. We give the runtime ratios, which are taken relative to the fastest
time.

10

set x1, . . . xn, consider

σ =

√

√

√

√

1

n

n
∑

i=1

(xi − µ)2 ≥

√

√

√

√

1

n

n0
∑

i=1

(xi − µ)2 ≥

√

√

√

√

1

n

n0
∑

i=1

(xi − µ0)2 =

√

n0

n
σ0

where µ0 is the mean of x1, . . . xn0
and µ is the mean of x1, . . . xn. Therefore, binapprox’s

error in this situation is at most

σ0
1000

≤

√

n
n0
σ

1000
. (1)

If n = 2n0, this becomes
√
2σ/1000 ≈ σ/700, which is still quite small.

Finally, observe that we can use an analogous strategy for binmedian and binapprox

to recompute the median after removing (instead of adding) a subset of data. Suppose
that, having computed the median of x1, . . . xn, we wish to know median when xn0+1, . . . xn
are removed from the data set. Then as before, we save µ, σ,Ni, NL from our median
computation on x1, . . . xn, map xn0+1, . . . xn to bins, and decrement (instead of increment)
the counts appropriately.

7 Discussion and summary

We have proposed an algorithm binmedian, which computes the median by repeated binning
on a selectively smaller subset of the data, and a corresponding approximation algorithm
binapprox. Binmedian has O(n) average complexity when mild assumptions are made on the
data’s distribution function, and binapprox has O(n) worst-case complexity. For finding the
median of a single data set, binmedian is highly competitive with quickselect, although it
becomes slower when there are many points near the median and the data has an extremely
large standard deviation. On single data sets, binapprox is consistently faster no matter the
distribution. Binmedian and binapprox both outperform quickselect on the median update
problem, wherein new data is successively added to a base data set; on this problem,
binapprox can be nearly 25 times faster than quickselect.

In most real applications, an error of σ/1000 (an upper bound for binapprox’s error)
is perfectly acceptable. In many biological applications this can be less than the error
attributed to the machine that collects the data. Also, we emphasize that binapprox performs
all of its computations without side effects, and so it does not perturb the input data in any
way. Specifically, binapprox doesn’t change the order of the input data, as do quickselect and
binmedian. For applications in which the input’s order needs to be preserved, quickselect
and binmedian must make a copy of the input array, and this will only increase the margin
by which binapprox is faster (in tables 1 and 2).

Finally, it is important to note the strategy for binmedian and binapprox is well-suited
to situations in which computations must be distributed. The computations to find the

11

mean and standard deviation can be easily distributed—hence with the data set divided
into many parts, we can compute bin counts separately on each part, and then share these
counts to find the median bin. For binapprox we need only to report the midpoint of this
bin, and for binmedian we recurse and use this same distributed strategy. This could work
well in the context of wireless sensor networks, which have recently become very popular in
many different areas of research, including various military and environmental applications
(see Zhao & Guibas (2004)).

For any situation in which an error of σ/1000 is acceptable, there seems to be no
downside to using the binapprox algorithm. It is in general a little bit faster than quickselect

and it admits many nice properties, most notably its abilities to rapidly update the median
and to be distributed. We hope to see diverse applications that benefit from this.

Acknowledgements

We could not have done this work without Rob Tibshirani’s positive encouragement and
consistently great input. We also thank Jerry Friedman for many helpful discussions and
for his mentorship. Finally, we thank the Cytobank group—especially William Lu—for
discussing ideas which gave rise to the whole project. Binapprox is implemented in the
current version of the Cytobank software package for flow cytometry data analysis (http:
//www.cytobank.org).

A Appendix

A.1 Proof that binmedian has O(n) expected running time

Let X1, . . . Xn be iid points from a continuous distribution with density f . Assuming that
f is bounded and that E(X4

1) < ∞, we show that the binmedian algorithm has expected
O(n) running time.3

Now for notation: let f ≤ M , and E(X2
1) = σ2. Let µ̂ and σ̂ be the empirical mean

and standard deviation of X1, . . . Xn. Let Nj be the number of points at the jth iteration
(N0 = n), and let T be the number of iterations before termination. We can assure T ≤ n.4

3Notice that this expectation is taken over draws of the data X1, . . . Xn from their distribution. This is
different from the usual notion of expected running time, which refers to an expectation taken over random
decisions made by the algorithm, holding the data fixed.

4To do this we make a slight modification to the algorithm, which does not change the running time.
Right before the recursive step (step 4), we check if all of the data points lie in the median bin. If this is
true, then instead of constructing B new bins across the bin’s endpoints, we construct the bins across the
minimum and maximum data points. This assures that at least one data point will be excluded at each
iteration, so that T ≤ n.

12

M

f
2σ̂

B
≤ 2(σ + ǫ)

B

Figure 1: The area under the curve between the two red lines is ≤M · 2(σ + ǫ)/B.

At the jth iteration, the algorithm performs Nj +B operations; therefore its runtime is

R =
T
∑

j=0

(Nj +B) ≤
n
∑

j=0

(Nj +B) =
n
∑

j=0

Nj +B(n+ 1)

and its expected runtime is

E(R) ≤
n
∑

j=0

E(Nj) +B(n+ 1).

Now we compute E(Nj). Let b denote the median bin; this is a (random) interval of
length 2σ̂/B. Well

E(N1) = nP(X1 ∈ b)

≤ nP(X1 ∈ b; σ̂ ≤ σ + ǫ) + nP(σ̂ > σ + ǫ).

Well P(X1 ∈ b; σ̂ ≤ σ + ǫ) < M · 2(σ + ǫ)/B (see the picture), and P(σ̂ − σ > ǫ) = C/n
(see Lemma 2; this is why we need a finite fourth moment of X1). Therefore

E(N1) ≤
n

B
2M(σ + ǫ) + C.

In general

E(Nj) = nP(X1 ∈ b,X1 ∈ b2, . . . and X1 ∈ bj) = nP(X1 ∈ bj)

where bi is the median’s bin at the ith iteration, so that we can similarly bound

E(Nj) ≤
n

Bj
2M(σ + ǫ) + C.

13

Therefore

E(R) ≤
n
∑

j=0

(

n

Bj

2M(σ + ǫ) + C

)

+B(n+ 1)

= 2M(σ + ǫ)

n
∑

j=0

1/Bj

n+ (B + C)(n+ 1)

≤ 2M(σ + ǫ)

∞
∑

j=0

1/Bj

n+ (B + C)(n+ 1)

= O(n).

Lemma 2. With the same assumptions as above, P(σ̂ − σ > ǫ) = O(n−1) for any ǫ > 0.

Proof. Notice

{σ̂ − σ > ǫ} =
{

(σ̂ − σ)2 > ǫ2; σ̂ > σ
}

=
{

σ̂2 − 2σ̂σ + σ2 > ǫ2; σ̂ > σ
}

⊆
{

σ̂2 − σ2 > ǫ2; σ̂ > σ
}

=
{

σ̂2 − σ2 > ǫ2
}

.

Recall that σ̂2 = 1
n

∑n
1 (Xi− X̄)2. Consider the unbiased estimator for σ2, S2 = n

n−1 σ̂
2, and

{

σ̂2 − σ2 > ǫ2
}

⊆
{

S2 − σ2 > ǫ2
}

.

By Chebyshev’s inequality P(S2 − σ2 > ǫ2) ≤ Var(S2)/ǫ2. The rest is a tedious but
straightforward calculation, using E(X4

1) <∞, to show that Var(S2) = O(n−1).

A.2 Proof that binmedian has O(logn) expected number of iterations

Under the same set of assumptions on the data X1, . . . Xn, we can show that the binmedian

algorithm has an expected number of O(log n) iterations before it converges. We established
that

E(N1) ≤
n

B
2M(σ + ǫ) + C,

and by that same logic it follows

E(Nj |Nj−1 = m) ≤ m

B
2M(σ + ǫ) +C = m− g(m)

14

where g(m) = m2M(σ+ǫ)(B−1)
B

− C. By Theorem 1.3 of Motwani & Raghavan (1995), this
means that

E(T) ≤
∫ n

1

dx

g(x)

=

∫ n

1

dx

x2M(σ+ǫ)(B−1)
B

− C

= O(log n).

References

Floyd, R. W. & Rivest, R. L. (1975a), ‘Algorithm 489: Select’, Communications of the
ACM 18(3), 173.

Floyd, R. W. & Rivest, R. L. (1975b), ‘Expected time bounds for selection’, Communications
of the ACM 18(3), 165–72.

Hoare, C. A. R. (1961), ‘Algorithm 64: Quicksort’, Communications of the ACM 2(7), 321.

Motwani, R. & Raghavan, P. (1995), Randomized Algorithms, Cambridge University Press.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992), Numerical
Recipes in Fortran 77: The Art of Scientific Computing, Second Edition, Cambridge
University Press, New York.

Zhao, F. & Guibas, L. (2004), Wireless Sensor Networks: An Information Processing Ap-
proach, Elsevier/Morgan-Kaufmann.

15

