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We consider the problem of distribution-free predictive inference, with the goal of producing predictive
coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal
prediction offer marginal coverage guarantees, where predictive coverage holds on average over all
possible test points, but this is not sufficient for many practical applications where we would like to
know that our predictions are valid for a given individual, not merely on average over a population. On
the other hand, exact conditional inference guarantees are known to be impossible without imposing
assumptions on the underlying distribution. In this work, we aim to explore the space in between these
two and examine what types of relaxations of the conditional coverage property would alleviate some
of the practical concerns with marginal coverage guarantees while still being possible to achieve in a
distribution-free setting.

Keywords: distribution-free inference; predictive inference; conformal prediction.

1. Introduction

Consider a training data set (X1, Y1), . . . , (Xn, Yn), and a test point (Xn+1, Yn+1), with the training and
test data all drawn i.i.d. from the same distribution. Here, each Xi ∈ R

d is a feature vector, while Yi ∈ R

is a response variable. The problem of predictive inference is the following: if we observe the n training
data points, and are given the feature vector Xn+1 for a new test data point, we would like to construct
a prediction interval for Yn+1—that is, a subset of R that we believe is likely to contain the test point’s
true response value Yn+1.

As a motivating example, suppose that each data point i corresponds to a patient, with Xi encoding
relevant covariates (age, family history, current symptoms, etc.), while the response Yi measures a
quantitative outcome (e.g. reduction in blood pressure after treatment with a drug). When a new patient
arrives at the doctor’s office with covariate values Xn+1, the doctor would like to be able to predict their
eventual outcome Yn+1 with a range, making a statement along the lines of: ‘Based on your age, family
history and current symptoms, you can expect your blood pressure to go down by 10–15 mmHg’. In this
paper, we will study the problem of making accurate predictive statements of this sort.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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456 R.F. BARBER ET AL.

To study such questions, throughout this paper we will write Ĉn(x) ⊆ R to denote the prediction
interval1 for Yn+1 given a feature vector Xn+1 = x. This interval is a function of both the test point x
and the training data (X1, Y1), . . . , (Xn, Yn). We will write Ĉn (without specifying a test point x) to refer
to the algorithm that maps the training data (X1, Y1), . . . , (Xn, Yn) to the resulting prediction intervals
Ĉn(x) indexed by x ∈ R

d. (For convenience in writing our results, we assume that the Xi’s lie in R
d,

although our results hold more generally for any probability space.)
For the algorithm Ĉn to be useful, we would like to be assured that the resulting prediction interval is

indeed likely to contain the true response value, i.e. that Yn+1 ∈ Ĉn(Xn+1) with fairly high probability.
When this event succeeds, we say that the predictive interval Ĉn(Xn+1) covers the true response value
Yn+1. Defining the coverage probability is not a trivial question—do we require that coverage holds
with high probability on average over the test feature vector Xn+1, pointwise at any value Xn+1 = x
or something in between? In order to be robust to distributional assumptions, we would also like to
ensure that our algorithm Ĉn has good coverage properties without making any assumptions about the
underlying distribution P—a ‘distribution-free’ guarantee.

To formalize these ideas, we will begin with a few definitions. Throughout, P will denote a joint
distribution on (X, Y) ∈ R

d ×R, and we will write PX to denote the induced marginal on X and PY|X for
the conditional distribution of Y|X. We say that Ĉn satisfies distribution-free marginal coverage at the
level 1 − α, denoted by (1 − α)-MC, if2

P
{
Yn+1 ∈ Ĉn(Xn+1)

}
� 1 − α for all distributions P. (1.1)

In other words, the probability that Ĉn covers the true test value Yn+1 is at least 1 −α, on average over a
random draw of the training and test data from any distribution P. We say that Ĉn satisfies distribution-
free conditional coverage at the level 1 − α, denoted by (1 − α)-CC, if

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 = x
}
� 1 − α for all P and almost all x, (1.2)

where, fixing the distribution P, we write ‘almost all x’ to mean that the set of points x ∈ R
d where the

bound fails to hold must have measure zero under PX . This means that the probability that Ĉn covers, at
a fixed test point Xn+1 = x, is at least 1 − α.3

Now, how should we interpret the difference between marginal and conditional coverage? With
α = 0.05, we expect that the doctor’s statement (‘...you can expect your blood pressure to go down by
10–15 mmHg’) should hold with 95% probability. For marginal coverage, the probability is taken over
both Xn+1 and Yn+1, while for conditional coverage, Xn+1 is fixed, and the probability is taken over
Yn+1 only (and over all the training data in both situations). This means that for marginal coverage, the
doctor’s statements have a 95% chance of being accurate on average over all possible patients that might
arrive at the clinic (marginalizing over Xn+1), but might for example have 0% chance of being accurate

1 Note that the set Ĉn(x) ⊆ R is not required to be an interval—it may consist of a disjoint union of multiple intervals. For
simplicity, we still refer to the Ĉn(x)’s as ‘prediction intervals’.

2 In these definitions, and throughout the remainder of the paper, all probabilities are taken with respect to training data
(X1, Y1), . . . , (Xn, Yn) and test point (Xn+1, Yn+1) all drawn i.i.d. from P, unless specified otherwise.

3 [13] also considers a notion of conditional coverage, where the guarantee is required to hold after conditioning on the training
data (X1, Y1), . . . , (Xn, Yn) but without conditioning on the test point Xn+1, and thus is very different from the type of conditioning
that we consider here.
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THE LIMITS OF DISTRIBUTION-FREE CONDITIONAL PREDICTIVE INFERENCE 457

for patients under the age of 25, as long as this is averaged out by a higher-than-95% chance of coverage
for patients older than 25. The stronger definition of conditional coverage, on the other hand, removes
this possibility and requires that whatever statement the doctor makes (different for each patient) has a
95% chance of being true for every individual patient, regardless of the patient’s age, family history, etc.

For practical purposes, then, marginal coverage does not seem to be sufficient—each patient would
reasonably hope that the information they receive is accurate for their specific circumstances and is not
comforted by knowing that the inaccurate information they might be receiving will be balanced out by
some other patient’s highly precise prediction. On the other hand, the problem of conditional inference
is statistically very challenging and is known to be incompatible with the distribution-free setting [8,13]
(we will discuss this in more detail later on). Our goal in this paper is therefore to explore the middle
ground between marginal and conditional inference, while working in the distribution-free setting in
order to be robust to violations of any modeling assumptions.

1.1 Summary of contributions

As mentioned above, it is known to be impossible for any finite-length prediction interval to
satisfy distribution-free conditional coverage in the sense of (1.2)—this is because, without assuming
smoothness of the underlying distribution P, we cannot exclude the possibility that there is some sort
of discontinuity at X = x that leads to a failure of coverage. (Background on this type of impossibility
result is described more formally in Section 2.2.)

This impossibility motivates us to consider an approximate version of the conditional coverage
property. We will say that Ĉn satisfies distribution-free approximate conditional coverage at level 1 − α

and tolerance δ > 0, denoted by (1 − α, δ)-CC, if

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
}
� 1 − α for all distributions P

and all X ⊆ R
d with PX(X ) � δ. (1.3)

For example, at α = 0.05 and δ = 0.1, the coverage probability has to be at least 95% for any subgroup
of patients that makes up at least 10% of the overall population. If δ > 0 is fairly small, then this
approximate conditional coverage property is quite a bit stronger than marginal coverage and may be
sufficient for many applications.

However, we find that it is inherently impossible to find non-trivial algorithms that achieve even
this relaxed notion of conditional coverage. Specifically, we compare against a trivial solution: we show
with a simple argument that any method Ĉn that satisfies (1−αδ)-MC will also satisfy (1−α, δ)-CC. In
this sense, we can trivially achieve approximate conditional coverage by way of marginal coverage, but
this solution is not satisfactory since, for small δ, a (1 − αδ)-MC prediction interval will be extremely
wide. However, the main result of this paper, Theorem 3.1 (see Section 3), proves that any (1−α, δ)-CC
method is essentially no better than this kind of trivial construction (in the sense of the expected length
of the resulting intervals).

Perhaps then, the definition (1.3) of approximate conditional coverage may be stronger than needed
in practical applications. In a medical setting, for instance, a patient would typically want to know
that coverage is accurate on average over a subgroup of patients similar to the individual and would
not be concerned about arbitrary subgroups consisting of highly dissimilar patients. This motivates
us to consider alternatives to the approximate conditional coverage property (1.3)—in Section 4, we
modify (1.3) to consider only a restricted class of sets X, for instance, only sets consisting of balls
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458 R.F. BARBER ET AL.

under some metric (to represent patients similar to the individual of interest, in our example). We
construct an example of an algorithm that satisfies this type of property—a modification of the split
conformal method—that we analyze in Theorem 4.1. We also establish lower (Theorem 4.2) and upper
(Theorem 4.3) bounds on the efficiency of any predictive method satisfying this type of property, as
a function of the complexity (Vapnik–Chervonenkis (VC) dimension) of the class of sets over which
coverage is required to hold.

1.2 Notation

Before proceeding, we establish some notation and terminology that will be used throughout the paper.
All sets and functions are implicitly assumed to be measurable (e.g. ‘for all X ⊆ R

d’ in (1.3) should
be interpreted to mean all measurable subsets of Rd). The function leb() denotes Lebesgue measure on
R or on R

d. Prediction intervals are allowed to be either fixed or randomized. Specifically, a non-data-
dependent prediction interval C = C(x) may either be fixed (i.e. a function mapping points x ∈ R

d to
subsets C(x) ⊆ R) or random (i.e. a function mapping points x ∈ R

d to a random variable C(x) taking
values in the set of subsets of R). Analogously, for a data-dependent prediction interval Ĉn = Ĉn(x),
fixing the training data (X1, Y1), . . . , (Xn, Yn) and the vector x ∈ R

d, this interval may be either a fixed
or random subset of R.

2. Background

In this section, we give background on the split conformal prediction method, which achieves
distribution-free marginal coverage and review results in the literature establishing that distribution-free
conditional coverage is not possible.

2.1 Split conformal prediction

The split conformal prediction algorithm, introduced in [10,14] (under the name ‘inductive conformal
prediction’) and studied further by [9,13,7], is a well-known method that achieves distribution-free
marginal coverage guarantees. This method makes no assumptions at all on the distribution of the data
aside from requiring that the training data and the test point are exchangeable. (Of course, assuming that
the training and test data are i.i.d. is simply a special case of the exchangeability assumption.)

The split conformal prediction method begins by partitioning the sample size n into two portions,
n = n0 + n1, e.g. split in half. We will use the first n0 many training points to fit an estimated regression
function μ̂n0

(x), and the remaining n1 = n − n0 many training points to determine the width of the
prediction interval around μ̂n0

(x). The estimated model μ̂n0
can be fitted from (X1, Y1), . . . , (Xn0

, Yn0
)

using any algorithm—for example, we might fit a linear model, μ̂n0
(x) = x�β̂ where β̂ ∈ R

d is fitted
on the data points (X1, Y1), . . . , (Xn0

, Yn0
) using least squares regression or any other regression method.

Next, fix a desired predictive coverage level 1 − α, for instance 95%. We then compute residuals

Ri = ∣∣Yi − μ̂n0
(Xi)

∣∣ for i = n0 + 1, . . . , n,

and define4

q̂n1
= the

⌈
(1 − α)(n1 + 1)

⌉ −th smallest value of the list Rn0+1, . . . , Rn.

4 Formally, when we write ‘the k-th smallest value of the list...’ for a list that has m elements, this will denote +∞ in the case
that k > m.
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THE LIMITS OF DISTRIBUTION-FREE CONDITIONAL PREDICTIVE INFERENCE 459

The predictive interval is then defined as

Ĉn(x) = [
μ̂n0

(x) − q̂n1
, μ̂n0

(x) + q̂n1

]
. (2.1)

This method can also be generalized to include a local variance/scale estimate or to allow for an
asymmetric construction treating the right and left tails of the residuals separately.

The split conformal algorithm is a variant of conformal prediction, which has a rich literature
dating back many years (see, e.g. [14,11] for background). Conformal prediction similarly relies on
the exchangeability of the training and test data, but rather than splitting the training data to separate the
tasks of model fitting and calibrating the quantiles, conformal prediction uses the full training sample for
both tasks, thus paying a higher computational cost. Here, for simplicity, we do not describe conformal
prediction but focus on the split conformal algorithm, which we generalize in our own proposed methods
later on.

Using the assumption that the data points are i.i.d., the proof that the split conformal prediction
method satisfies (1 − α)-MC is very intuitive. For completeness, we state this known result here.

Theorem 2.1 ([10, Proposition 1]). The split conformal prediction method defined in (2.1) satisfies the
(1 − α)-MC property (1.1).

Importantly, the above guarantee holds irrespective of the regression algorithm used to fit μ̂n0
.

Furthermore, [7] show that, in some settings, this distribution-free construction may result in an interval
that is asymptotically no wider than the best possible ‘oracle’ interval—in other words, it is possible to
provide marginal distribution-free prediction without incurring a cost in terms of overly wide intervals.
(The intuition behind the proof of Theorem 2.1 will be discussed in Section 4.1 as a special case of our
new results; [7]’s guarantee of optimal length will be discussed in more detail in Section 4.2.3.)

2.2 Impossibility of distribution-free conditional coverage

While the split conformal method satisfies distribution-free marginal coverage (1.1), as mentioned
earlier, this property may not be sufficient for practical prediction tasks, as it leaves open the possibility
that entire regions of test points (e.g. subgroups of patients) are receiving inaccurate predictions. To
avoid this problem, we may wish to construct Ĉn to guarantee coverage conditional on Xn+1, rather than
on average over Xn+1. Is it possible to achieve distribution-free conditional coverage (1.2) while still
constructing predictive intervals that are not too much larger than needed?

Unfortunately, it is well known that, if we do not place any assumptions on P, then estimation and
inference on various functionals of P are impossible to carry out, see, e.g. [1,4] for background. More
specifically, for the current problem of distribution-free conditional prediction intervals, [8,13] prove
that the (1 − α)-CC property (1.2) is impossible for any algorithm Ĉn, unless Ĉn has the property that
it produces intervals with infinite expected length under any non-discrete distribution P, which is not a
meaningful procedure.

Proposition 2.2 [Rephrased from [13,8]] Suppose that Ĉn satisfies (1 − α)-CC (1.2). Then for all
distributions P, it holds that

E
[
leb(Ĉn(x))

] = ∞

at almost all points x aside from the atoms of PX .
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460 R.F. BARBER ET AL.

In other words, at almost all nonatomic points x, the prediction interval has infinite expected length.
This means that distribution-free conditional coverage in the sense of (1.2) is impossible to attain in any
meaningful sense.

Asymptotic conditional coverage. There is an extensive literature examining this problem in a setting
where P is assumed to satisfy some type of smoothness condition, and conditional coverage can then be
achieved asymptotically by letting the sample size n tend to infinity and using a vanishing bandwidth
to compute local smoothed estimators of the conditional distribution of Y|X. Works in this line of the
literature include [3,8], among many others. In this present work, however, we are interested in obtaining
distribution-free guarantees that hold at any finite sample size n, and therefore, we aim to avoid relying
on assumptions such as smoothness of P or on asymptotic arguments.

3. Approximate conditional coverage

While the results of [13] and [8] prove that distribution-free methods cannot achieve conditional
predictive guarantees, in practice it may be sufficient to obtain ‘approximately conditional’ inference.
In our doctor/patient example, we would certainly want to make sure that there is no entire subgroup of
patients that are all receiving poor predictions—as in our earlier example where the predictive intervals
had poor coverage for all patients below the age of 25—but we may be willing to accept that some rare
groups of patients might be receiving inaccurate information.

We therefore try to relax our requirement of conditional coverage to an approximate version—recall
from Section 1.1 that Ĉn satisfies distribution-free approximate conditional coverage at level 1 − α

and tolerance δ > 0, denoted by (1 − α, δ)-CC, if (1.3) holds. We can easily verify that approximate
conditional coverage limits to conditional coverage by taking δ to zero:

Ĉn satisfies (1 − α) − CC ⇐⇒ Ĉn satisfies (1 − α, δ) − CC for all δ > 0.

At the other extreme, marginal coverage is recovered by taking δ = 1:

Ĉn satisfies (1 − α) − MC ⇐⇒ Ĉn satisfies (1 − α, δ) − CC for δ = 1.

While we have seen that exact conditional coverage is impossible to meaningfully attain, does this
relaxation allow us to move towards a meaningful solution? To answer this question, it is useful to first
consider a simple solution obtained by way of a marginal coverage method.

3.1 The inadequacy of reducing to marginal coverage

The following lemma suggests that our approximate conditional coverage can be naively obtained via
marginal coverage at a more stringent level.

Lemma 3.1 Let Ĉn be any method that attains distribution-free marginal coverage (1.1) with
miscoverage rate αδ in place of α, that is, Ĉn satisfies the (1 − αδ)-MC property. Then Ĉn also satisfies
(1 − α, δ)-CC.
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Proof of Lemma 3.1. Since Ĉn satisfies (1 − αδ)-MC, for any distribution P we have

αδ � P
{
Yn+1 �∈ Ĉn(Xn+1)

}
� P

{
Yn+1 �∈ Ĉn(Xn+1), Xn+1 ∈ X

}
� δ · P {

Yn+1 �∈ Ĉn(Xn+1)
∣∣ Xn+1 ∈ X

}
,

where the last step holds for any X with P
{
Xn+1 ∈ X

} = PX(X ) � δ. Rearranging yields the
lemma. �

To interpret this lemma, we might apply the split conformal prediction algorithm (2.1) at the
miscoverage level αδ, which ensures marginal coverage at this level and, therefore, ensures (1 − α, δ)-
CC. However, we would typically choose δ to be quite small, as we would like to be able to condition on
small sets X (to ensure that there aren’t any large subgroups of patients all receiving poor information).
This means that any prediction intervals satisfying (1 − αδ)-MC must generally be extremely wide, e.g.
99.5% coverage intervals instead of 95% coverage intervals when α = 0.05 and δ = 0.1. Therefore, the
naive solution of using marginal coverage to ensure approximate conditional coverage is not satisfactory.

Before moving on, we extend Lemma 3.1 to generalize the naive solution given by (1 − αδ)-MC:

Lemma 3.2 Let Ĉn be any method that satisfies (1 − cαδ)-MC (1.1), for some c ∈ [0, 1]. Let Ĉ′
n be

defined as follows: at a test point x, with probability 1−α
1−cα , we define Ĉ′

n(x) = Ĉn(x), or otherwise, we
define Ĉ′

n(x) = ∅ (the empty set), where we assume that this decision is carried out independently of x
and of the training data. Then Ĉ′

n also satisfies (1 − α, δ)-CC.

Proofs for this lemma and for all subsequent theoretical results are given in the Appendix.
To understand the role of the parameter c in this lemma, we can consider the two extremes—setting

c = 1, we would simply output the interval Ĉn(x) that satisfies (1 − αδ)-MC, i.e. we return to the naive
solution of Lemma 3.1. At the other extreme, if we set c = 0, at any test point Xn+1 = x the resulting
prediction interval would be given by R with probability 1 − α, or ∅ otherwise—this clearly satisfies
(1 − α, δ)-CC (and, in fact, (1 − α)-CC) but is of course meaningless as it reveals no information about
the data.

3.2 Hardness of approximate conditional coverage

We now introduce our main result, which proves that, as in the exact conditional coverage setting, the
relaxation to (1 − α, δ)-conditional coverage is still impossible to attain meaningfully. In particular, the
naive solution—obtaining (1 −α, δ)-CC by way of marginal coverage, as in Lemmas 3.1 and 3.2—is in
some sense the best possible method, in terms of the lengths of the resulting prediction intervals.

To quantify this, for any P and any marginal coverage level 1 − α, consider finding the prediction
interval CP(x) with the shortest possible length, subject to requiring marginal coverage to be at least
1 − α under the distribution P. As the notation suggests, the coverage properties of CP(x) are specific
to P and are not distribution-free in any sense. Formally, we define the set of intervals with marginal
coverage under P as

CP(1 − α) =
{

CP : PP

{
Y ∈ CP(X)

}
� 1 − α

}
,
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where CP(x) may denote a fixed or random interval (that is, CP is a function mapping points x ∈ R
d to

fixed or random subsets of R). We can then define the minimum possible length as

LP(1 − α) = inf
CP∈CP(1−α)

{
EPX

[
leb(CP(X))

] }
. (3.1)

If CP is random rather than fixed, then we should interpret the expectation as being taken with respect
to the random draw of X and the randomization in the construction of CP(X).

With these definitions in place, we present our main result, which proves a lower bound on the
prediction interval width of any method that attains distribution-free approximate conditional coverage.

Theorem 3.1 Suppose that Ĉn satisfies (1 − α, δ)-CC (1.3). Then for all distributions P where the
marginal distribution PX has no atoms,

E
[
leb(Ĉn(Xn+1))

]
� inf

c∈[0,1]

{
1 − α

1 − cα
· LP(1 − cαδ)

}
.

How should we interpret this lower bound? Based on Lemma 3.1, we can achieve (1 − α, δ)-CC
trivially by running split conformal prediction at the marginal coverage level 1 − αδ. What would be
the average width from such a procedure? As mentioned in Section 2.1, under certain assumptions on
P, [7] prove that the split conformal method run at coverage level 1 − αδ with a consistent regression
algorithm μ̂ will, with high probability, output a prediction interval with width that is only o(1) larger
than the oracle interval, which has width LP(1 − αδ). More generally, for any c ∈ [0, 1], we can use
the construction suggested in Lemma 3.2 combined with the split conformal method, now run at level
1 − cαδ, to instead produce expected length ≈ 1−α

1−cα · LP(1 − cαδ).
Since Theorem 3.1 demonstrates that any method satisfying (1 − α, δ)-CC cannot beat this lower

bound, this means that the (1 − α, δ)-CC property is impossible to attain beyond the trivial solution, i.e.
by applying a method that guarantees (1 − αδ)-marginal coverage, which then yields (1 − α, δ)-CC as
a byproduct (or choosing some c ∈ [0, 1] for the more general construction). Since typically we would
choose δ to be a small constant, this lower bound is indeed a substantial issue, since LP(1 − αδ) will
generally be much larger than the length we would need if the distribution P were known.

4. Restricted conditional coverage

Our main result, Theorem 3.1, shows that our definition of approximate conditional coverage in (1.3)
is too strong; it is impossible to construct a meaningful procedure satisfying this definition. One way
to weaken this condition is to restrict which sets X we consider, yielding a less stringent notion of
approximate conditional coverage.

For example, we can require that the coverage guarantee holds ‘locally’ by conditioning only on any
ball with sufficient probability δ, rather than on an arbitrary subset X ⊆ R

d. More concretely, we might
require that

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ B(x, r)
}

� 1 − α for all distributions P and all x ∈ R
d, r � 0 with PX(B(x, r)) � δ. (4.1)
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Here, B(x, r) is the closed �2 ball centered at x with radius r. In the doctor/patient example, we can think
of this as requiring 95% predictive accuracy on average over the subgroup of population consisting of
patients similar to a given patient x, where similarity is defined with the �2 norm (of course, we can
also generalize this to different metrics). As another example, [13 ,8] consider a version of conformal
prediction that guarantees coverage within each one of a finite number of subgroups, i.e.

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ Xk

}
� 1 − α for all distributions P and for all k = 1, . . . , K, (4.2)

for some fixed partition R
d = X1 ∪ · · · ∪ XK of the feature space. Here, we may think of predefining

subgroups of patients (males below age 25, males age 25–35, etc.) and requiring 95% predictive
accuracy on average over each predefined subgroup.

More generally, suppose we are given a collection X of measurable subsets of Rd. We say that Ĉn
satisfies distribution-free approximate conditional coverage at level 1 − α and tolerance δ > 0 relative
to the collection X, denoted by (1 − α, δ,X)-CC, if

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
}

� 1 − α for all distributions P and all X ∈ X with PX(X ) � δ. (4.3)

To avoid degenerate scenarios, we will assume that we always have R
d ∈ X, meaning that requiring

(1 − α, δ,X)-CC is always at least as strong as requiring (1 − α)-MC. Of course, this definition yields
the original (1 − α, δ)-CC condition if we take X to be the collection of all measurable sets. If the
class X is too rich, then, our main result in Theorem 3.1 proves that (1 − α, δ,X)-CC is impossible
to achieve beyond trivial solutions. We may ask then whether it’s possible to construct meaningful
prediction intervals when X is sufficiently restricted.

In the following, we will first construct a concrete algorithm, based on the split conformal prediction
method, that attains (1 − α, δ,X)-CC. Afterwards, we will attempt to determine how the complexity of
the class X determines whether this algorithm provides meaningful prediction intervals (i.e. narrower
intervals than the lower bound of Theorem 3.1) and indeed if this is possible to attain with any algorithm.

4.1 Split conformal for restricted conditional coverage

As a concrete example, we will construct a variant of the split conformal prediction method and will
generalize [7]’s results on the efficiency of split conformal prediction to establish conditions under
which the resulting prediction intervals are asymptotically efficient.

Let μ̂n0
(x) be some fitted regression function, which estimates the conditional mean of Y given

X = x. As before, we require that μ̂n0
is fitted on the first n0 training samples, (X1, Y1), . . . , (Xn0

, Yn0
).

Next, define the residual

Ri = ∣∣Yi − μ̂n0
(Xi)

∣∣
on the remaining training samples i = n0 + 1, . . . , n and on the test point i = n + 1. (As for the original
split conformal method, this procedure can be generalized to include a local scale estimate, σ̂n0

(Xi) or
to allow for an asymmetric interval that treats the right and left tails of the residuals differently, but we
do not include these generalizations here.)

The original split conformal method operates by observing that the test point residual, Rn+1, is
equally likely to occur anywhere in the ranked list of residuals Rn0+1, . . . , Rn, Rn+1, i.e. the test residual
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is exchangeable with the n1 many residuals from the held-out portion of the training data. The split
conformal prediction interval (2.1) is then constructed as

Ĉn(x) = [
μ̂n0

(x) − q̂n1
, μ̂n0

(x) + q̂n1

]
,

where q̂n1
is the

⌈
(1 − α)(n1 + 1)

⌉
-th smallest value among Rn0+1, . . . , Rn. The width of this prediction

interval is determined by this residual quantile q̂n1
, which is calculated by pooling all residuals from

the holdout set i = n0 + 1, . . . , n and is therefore calibrated to give the appropriate coverage level on
average over the distribution P (as in Theorem 2.1).

We now need to modify this construction to guarantee a stronger notion of coverage—we need to
ensure coverage on average over any X ∈ X with PX(X ) � δ. We will need to modify the width of the
prediction interval—for example, for a set X where residuals tend to be large (i.e. |Y − μ̂n0

(X)| is likely
to be large if we condition on X ∈ X), the split conformal interval constructed above is too narrow to
achieve 1 − α coverage on average over this set. We will therefore construct a new interval,

Ĉn(x) = [
μ̂n0

(x) − q̂n1
(x), μ̂n0

(x) + q̂n1
(x)

]
. (4.4)

The width of the interval is now defined locally by the quantity q̂n1
(x), which we will address next.

Intuitively, if x belongs to a set X within which residuals tend to be large, we will need q̂n1
(x) to be

large in order to achieve the right coverage level on average over X.
We now construct q̂n1

(x). First, we will narrow down the class of subsets to consider. Define

N̂n1
(X ) =

n∑
i=n0+1

1
{
Xi ∈ X

}
,

the number of holdout points that lie in X. Next, let

X̂n1
=

{
X ∈ X : N̂n1

(X ) � δn1

(
1 −

√
2 log n1

δn1

)}
⊆ X.

This definition ensures that if a given subset X has probability � δ under P, then we will include
X ∈ X̂n1

with high probability. Next, let

q̂n1
(X ) = the

⌈(
1 − α + 1

n1

)
· (N̂n1

(X ) + 1
)⌉−th smallest value of

{
Ri : n0+1 � i � n, Xi ∈ X

}
.

Finally, we set

q̂n1
(x) = sup

X∈X̂n1 :x∈X

q̂n1
(X ). (4.5)

(Recall that Rd ∈ X by assumption, and thus R
d ∈ X̂n1

, so there is always at least one set X in this
supremum.)

Our next result proves that this construction achieves the desired approximate conditional coverage
property.
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Theorem 4.1 For any class X of measurable subsets of Rd, the prediction interval defined in (4.4)
satisfies (1 − α, δ,X)-CC (4.3).

Of course, the supremum defined in (4.5) may be impossible to compute efficiently—this will
naturally depend on the structure of the class X. (We expect that for simple cases, such as taking X

to be the set of all �2 balls as for the ‘local’ conditional coverage discussed earlier, we may be able
to compute or approximate (4.5) more efficiently; we leave this as an open question for future work.)
Furthermore, this guarantee does not yet establish that this method provides a meaningful prediction
interval—it may be the case that the intervals are too wide. We will examine this question next.

4.2 Characterizing hardness with the VC dimension

For a class X of subsets of Rd, we write VC(X) to denote the VC dimension of the class X. This measure
of complexity is defined as follows. For any finite set A of points in R

d, we say that A is shattered by
X if, for every subset of points B ⊆ A, there exists some X ∈ X with X ∩ A = B. The VC dimension
is then defined as

VC(X) = max {|A | : A is shattered by X} ,

i.e. the largest cardinality of any set shattered by X. Well-known examples include:

• If X is the set of all �2 balls in R
d, then VC(X) = d + 1.

• If X is the set of all half-spaces in R
d, then VC(X) = d + 1.

• If X is the set of all intersections of k different half-spaces in R
d, then VC(X) = O(kd log k)

[2, Lemma 3.2.3].

While a large VC dimension of X ensures that there is some set of points A that is shattered by X,
we need a stronger formulation to establish a hardness result for restricted conditional coverage. We will
consider an ‘almost everywhere’ version of the VC dimension, defined as follows:

VCa.e.(X) = max

⎧⎨⎩m � 0 :
the class of sets A = {a1, . . . , am} ⊆ R

d

such that X does not shatter A,
has Lebesgue measure zero in (Rd)m

⎫⎬⎭
In other words, instead of searching for a single set A of size m that is shattered by X, we require that
almost all sets A of size m are shattered by X. It is trivial that VC(X) � VCa.e.(X), but in fact, the two
may coincide—for example,

• If X is the set of all �2 balls in R
d, then VCa.e.(X) = VC(X) = d + 1.

• If X is the set of all half-spaces in R
d, then VCa.e.(X) = VC(X) = d + 1.

In order to obtain a tight bound, we also need to define a slightly stronger notion of predictive
coverage. Our previous definitions (for marginal, conditional and approximate conditional coverage)
all calculated probabilities with respect to Pn+1 for some distribution P, in other words, with the data
points (X1, Y1), . . . , (Xn+1, Yn+1) drawn i.i.d. from an arbitrary distribution. A more general setting is
where these n + 1 data points are instead assumed to be exchangeable (which includes i.i.d. as a special
case). We thus define a notion of approximate conditional coverage under exchangeability rather than
the i.i.d. assumption. We say that a procedure Ĉn satisfies (1 − α, δ,X)-conditional coverage under
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exchangeability, denoted by (1 − α, δ,X)-CCE, if

PP̃

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
}

� 1 − α for all exchangeable distributions P̃ on (X1, Y1), . . . , (Xn+1, Yn+1)

and all X ∈ X with PP̃

{
Xn+1 ∈ X

}
� δ. (4.6)

Clearly, a procedure Ĉn satisfying (1 − α, δ,X)-CCE will also satisfy (1 − α, δ,X)-CC by definition.
It is worth noting that all proofs of predictive coverage guarantees for conformal and split conformal
prediction methods do not require the i.i.d. assumption but rather only need to assume exchangeability—
that is, results such as Theorem 4.1 continue to hold, meaning that our split conformal method proposed
in Section 4.1 satisfies this stronger coverage property (4.6).

We will now see how the VC dimension relates to the conditional coverage problem. We will show
that:

• If VCa.e.(X) � 2n + 2, then the (1 − α, δ,X)-CCE property cannot be obtained beyond the
trivial lower bound given in Theorem 3.1.

• On the other hand, if VC(X)  δn/ log n, then the split conformal method described in
Section 4.1, which is guaranteed to satisfy (1 − α, δ,X)-CCE, produces prediction intervals
of nearly optimal length under a location-family model.

An equivalent perspective is that with sufficiently many points n, the CCE property can be meaningfully
attained. We now formalize these results.

4.2.1 A lower bound First, we will examine the setting where VCa.e.(X) � 2n+2. In this setting, we
will see that (1 − α, δ,X)-conditional coverage under exchangeability is incompatible with meaningful
predictive intervals.

Theorem 4.2 Suppose that Ĉn satisfies (1 − α, δ,X)-CCE as defined in (4.6), where X satisfies
VCa.e.(X) � 2n + 2. Then for all distributions P where the marginal distribution PX is continuous
with respect to Lebesgue measure, we have

E
[
leb(Ĉn(Xn+1))

]
� inf

c∈[0,1]

{
1 − α

1 − cα
· LP(1 − cαδ)

}
.

In other words, if VCa.e.(X) � 2n + 2, the lower bound proved here is identical to that of
Theorem 3.1, which is the trivial lower bound that can be obtained by simply requiring marginal
coverage at a far stricter level. (For example, if we take X to be the collection of all balls or all half-
spaces in R

d for d � 2n + 1, then this condition on VCa.e.(X) will hold.) We remark that it is possible
to prove a similar result for the (1 − α, δ,X)-CC condition (rather than the stronger (1 − α, δ,X)-CCE
condition), but in that case we are only able to show this result when VCa.e.(X) � n2.

4.2.2 An upper bound Next, we prove that efficient prediction is possible when the VC dimension is
low.

Since our construction given in (4.4) uses a symmetric interval around an initial model μ̂n0
, with

the width of the interval selected to cover the worst-case scenario in terms of the choice of X, we can
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only hope for efficiency as compared to the best ‘oracle’ interval of this form. For a fixed function
μ : Rd → R and for any X ∈ X with nonzero probability under PX , define

q∗
P,μ,α(X) = the (1 − α) − quantile of |Y − μ(X)|,

under the distribution (X, Y) ∼ P conditional on X ∈ X.

Next, for any x ∈ R
d, define

q∗
P,μ,α,δ(x) = sup

X∈X:x∈X,PX(X )�δ

q∗
P,μ,α(X ),

the maximum quantile over any set X containing the point x. We will then consider the ‘oracle’
prediction interval

C∗
P,μ,α,δ(x) = [

μ(x) − q∗
P,μ̂n0 ,α,δ(x), μ(x) + q∗

P,μ̂n0 ,α,δ(x)
]
. (4.7)

We can easily verify that C∗
P,μ,α,δ(x) satisfies

PP

{
Y ∈ C∗

P,μ,α,δ(X)

∣∣∣ X ∈ X
}
� 1 − α

for all X ∈ X with PX(X ) � δ.
Our main result proves that, if the collection X has sufficiently small VC dimension, then with high

probability the prediction interval Ĉn constructed in (4.4) above is essentially the same as the ‘oracle’
interval defined in (4.7), when constructed around the pre-trained model μ = μ̂n0

. To formalize this, we
show that Ĉn is bounded above and below by oracle intervals with slightly perturbed values of α and δ.

Theorem 4.3 Assume that VC(X) � 1 and n1 � 2. Then for every x ∈ R
d, if VC(X) � c · δn1

log n1
, then

the split conformal prediction interval Ĉn defined in (4.4) satisfies

PPn

{
C∗

P,μ̂n0 ,α+,δ+(x) ⊆ Ĉn(Xn+1) ⊆ C∗
P,μ̂n0 ,α−,δ−(x)

}
� 1 − 1

n1
,

where

α+ = α + cα

√
VC(X) log n1

δn1
, α− = α − cα

√
VC(X) log n1

δn1

and

δ+ = δ + cδ

√
VC(X) log n1

n1
, δ− = δ − cδ

√
VC(X) log n1

n1

and where c, cα , cδ are universal constants.
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4.2.3 Special case: the location family with i.i.d. noise While the result given in Theorem 4.3 is
quite general (we do not assume anything about the distribution P), we can consider a special case
where, given strong conditions on P, the prediction interval Ĉn(Xn+1) nearly matches a much stronger
oracle—namely, the narrowest possible valid prediction interval.

Our discussion for this setting will closely follow the work of [7] for the split conformal method.
We first describe their results. Their work assumes a location-family model:

The distribution of Y|X is given by Y = μP(X) + ε, where
μP(x) is a fixed function, and ε is independent from X and has density fε ,

where fε(t) is symmetric around t = 0 and nonincreasing for t � 0.
(4.8)

[7] additionally assume that the estimator μ̂n0
(x) of the true mean function μP(x) is consistent—

Assumption A4 in their work requires that

P

{
E

[(
μ̂n0

(X) − μP(X)
)2

∣∣∣ μ̂n0

]
� ηn0

}
� 1 − ρn0

, (4.9)

where we should think of the quantities ηn0
, ρn0

as small or vanishing. To interpret this assumption, the
probability on the outside is taken with respect to the training data (X1, Y1), . . . , (Xn0

, Yn0
) used to fit the

model μ̂n0
, while the conditional expectation on the inside is taken with respect to a new draw X ∼ PX .

Under conditions (4.8) and (4.9), [7] prove that the split conformal method (2.1) is asymptotically
efficient as n0, n1 → ∞, satisfying bounds of the form

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
) = oP(1), (4.10)

where � denotes the symmetric set difference and where C∗
P(x) denotes the ‘oracle’ prediction interval

that we would build if we knew the distribution P—under the simple model (4.8) for P above, this
interval has the form

C∗
P(x) = μP(x) ± q∗

ε,α ,

where q∗
ε,α denotes the (1 − α/2) quantile of fε (i.e. the (1 − α)-quantile of the distribution of |ε|).

We now extend this result to the setting of approximate conditional coverage. Specifically, working
under the same assumptions, we will prove that our proposed algorithm (4.4), which is constructed to
satisfy the (1 − α, δ,X)-CC property, will also return an interval that is asymptotically equivalent to the
oracle interval C∗

P as long as VC(X) is not too large.

Corollary 4.1 Under the conditions of Theorem 4.3 together with assumptions (4.8) and (4.9), if
VC(X) � c · δn1

log n1
, then the split conformal prediction interval Ĉn defined in (4.4) satisfies

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
)
� c′

⎛⎝η
1/3
n0

δ1/2 +
η

1/3
n0 +

√
VC(X) log n1

δn1

fε(q
∗
ε,α/2)

⎞⎠
with probability at least 1 − 1

n1
− 2ρn0

− η
1/3
n0 , where c, c′ are universal constants.

In other words, for a location-family model with a consistent estimate of the true mean function
(ηn0

, ρn0
→ 0), if VC(X) is sufficiently small then the interval Ĉn defined in (4.4) is able to satisfy
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restricted conditional coverage in the distribution-free setting, while matching the best possible ‘oracle’
prediction interval length asymptotically as n0, n1 → ∞.

5. Discussion

In this work, we have explored the possible definitions of approximate conditional coverage for
distribution-free predictive inference with the goal of finding meaningful definitions that are strong
enough to achieve some of the practical benefits of conditional coverage (i.e. patients feel assured that
their personalized predictions have some level of accuracy), but weak enough to still allow for the
possibility of meaningful distribution-free procedures. We find that requiring (1 − α, δ)-conditional
coverage to hold, i.e. coverage at level 1 − α over every subgroup with probability at least δ within
the overall population, is too strong of a condition—our main result establishes a lower bound on the
resulting prediction interval length and demonstrates that meaningful procedures cannot be constructed
with this property. By relaxing the desired property to (1−α, δ,X)-conditional coverage, i.e. coverage at
level 1−α over every subgroup X ∈ X that has probability at least δ, we see that sufficiently restricting
the class X does allow for nontrivial prediction intervals.

Many open questions remain after our preliminary findings. In particular, what types of classes X are
most meaningful for defining this restricted form of approximate conditional coverage? Furthermore,
for nearly any class X, computation for the split conformal method constructed in Section 4.1 may pose
a serious challenge—how can we efficiently compute predictive intervals for this problem?

Another direction for relaxing (1 − α, δ)-CC property is to require it to hold only over some
distributions P (rather than restricting to a class X of sets that we condition on). Is it possible to ensure
that conditional coverage at level 1 − α holds, not at some uniform tolerance level δ, but at an adaptive
tolerance level δ(P) that is low for ‘well-behaved’ distributions P but may be as large as 1 (i.e. only
ensuring marginal coverage) for degenerate distributions P? We leave these questions for future work.
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A. Proof of main impossibility result (Theorem 3.1)

A.1 A preliminary lemma

In order to prove our main theorem, we rely on a key lemma:

Lemma A.1 Suppose that Ĉn satisfies (1 − α, δ)-CC as defined in (1.3). Then for all distributions
P where the marginal distribution PX has no atoms, and for all measurable sets B ⊆ R

d × R with
P(B) � δ, we have

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ (Xn+1, Yn+1) ∈ B
}
� 1 − α.

Comparing this lemma to the definition of (1 − α, δ)-CC, we see that the definition of approximate
conditional coverage requires that the result of the lemma must hold for any set of the form B = X×R,
i.e. conditioning on an event Xn+1 ∈ X (with probability at least δ). The lemma extends the property to
condition also on events that are defined jointly in (X, Y).

While this may initially appear to be a simple extension of the definition of (1 − α, δ)-CC, the
proof is not trivial, and the implications of this result are very significant. To see why, suppose that we
construct B to consist only of points (x, y) such that Yn+1 = y is in the extreme tail of its conditional
distribution given Xn+1 = x—specifically, outside the range given by the δ/2 and 1 − δ/2 conditional
quantiles (so that the overall probability of B is large enough, i.e. � δ). The lemma claims that even
when (Xn+1, Yn+1) lands in this set, i.e. Yn+1 is in the extreme tails of its conditional distribution given
Xn+1, this value Yn+1 is still quite likely to lie in Ĉn(Xn+1). This implies that Ĉn(Xn+1) must indeed be
very wide.

We will next formalize this intuition to prove our theorem.

A.2 Proof of Theorem 3.1

First, for each x ∈ R
d and each s ∈ [0, 1], define

CP,s(x) = {
y : P

{
y ∈ Ĉn(x)

}
> s

}
,
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where the probability is taken with respect to the training data. Note that CP,s(x) is fixed, since it is
defined as a function of the distribution of Ĉn(x), not of the random interval Ĉn(x) itself.

Next, for any fixed x, in expectation over the training data, we have

E
[
leb

(
Ĉn(x)

)] = E

[∫
y∈R

1
{
y ∈ Ĉn(x)

}
dy

]
=

∫
y∈R

P
{
y ∈ Ĉn(x)

}
dy,

by Fubini’s theorem. Now, we can rewrite

P
{
y ∈ Ĉn(x)

} =
∫ 1

s=0
1
{
P
{
y ∈ Ĉn(x)

}
> s

}
ds =

∫ 1

s=0
1
{
y ∈ CP,s(x)

}
ds,

and so plugging this in and applying Fubini’s theorem again,

E
[
leb

(
Ĉn(x)

)] =
∫ 1

s=0

∫
y∈R

1
{
y ∈ CP,s(x)

}
dy ds =

∫ 1

s=0
leb

(
CP,s(x)

)
ds.

Next, plugging in the test point Xn+1 and applying Fubini’s theorem an additional time,

E
[
leb

(
Ĉn(Xn+1)

)] = E
[
E
[
leb

(
Ĉn(Xn+1)

) ∣∣ Xn+1

]] = E

[∫ 1

s=0
leb

(
CP,s(Xn+1)

)
ds

]
=

∫ 1

s=0
E
[
leb

(
CP,s(Xn+1)

)]
ds =

∫ 1

s=0
EPX

[
leb

(
CP,s(X)

)]
ds, (A.1)

where the last step holds since marginally Xn+1 ∼ PX .
Next, we define

αs = PP

{
Y �∈ CP,s(X)

}
,

the marginal miscoverage rate of the sets CP,s(x) (that is, we think of CP,s(x) as a deterministic prediction
interval). Then

EPX

[
leb

(
CP,s(X)

)]
� LP(1 − αs) (A.2)

by the definition of the minimal prediction interval length LP given in (3.1). Since s �→ αs is
nondecreasing and right-continuous, and satisfies α1 = 1, we can define

s
 = min{s ∈ [0, 1] : αs � δ}.
Define also

B+ = {
(x, y) : P

{
y ∈ Ĉn(x)

}
� s


}
and B− = {

(x, y) : P
{
y ∈ Ĉn(x)

}
< s


}
.

Then
PP

{
(X, Y) ∈ B+

} = αs
 � δ and PP

{
(X, Y) ∈ B−

} = sup
s<s


αs � δ.

Now, since P is assumed to have no atoms (inheriting this property from the marginal PX), by [5,
Proposition A.1] (see also [12]), we can find a measurable set B such that

B− ⊆ B ⊆ B+ and PP {(X, Y) ∈ B} = δ.

By definition of B, we have

(x, y) ∈ B ⇒ P
{
y ∈ Ĉn(x)

}
� s
,

(x, y) �∈ B ⇒ P
{
y ∈ Ĉn(x)

}
� s
.

(A.3)
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Next, writing a ∧ b to denote min{a, b}, we can calculate∫ s


s=0
αs ds = s
 −

∫ s


s=0
(1 − αs) ds

= s
 −
∫ s


s=0
PP

{
Y ∈ CP,s(X)

}
ds

= s
 −
∫ s


s=0
PP

{
P
{
Y ∈ Ĉn(X)

∣∣ X, Y
}

> s
}
ds

= s
 −
∫ 1

s=0
PP

{
P
{
Y ∈ Ĉn(X)

∣∣ X, Y
} ∧ s
 > s

}
ds

= s
 − EP

[
P
{
Y ∈ Ĉn(X)

∣∣ X, Y
} ∧ s


]
= s
 − (

EP

[
P
{
Y ∈ Ĉn(X)

∣∣ X, Y
} · 1 {(X, Y) ∈ B}] + EP

[
s
 · 1 {(X, Y) �∈ B}])

= s
 − P
{
Yn+1 ∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

} − s
PP {(X, Y) �∈ B}
= δ

(
s
 − P

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ (Xn+1, Yn+1) ∈ B
})

,

where the last step holds since PP {(X, Y) ∈ B} = P
{
(Xn+1, Yn+1) ∈ B

} = δ by construction. Next, by
applying Lemma A.1 to the set B, we have

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ (Xn+1, Yn+1) ∈ B
}
� 1 − α

and therefore ∫ s


s=0
αs ds � δ

(
s
 − (1 − α)

)
. (A.4)

In particular, since the left-hand side is non-negative, this proves that we must have s
 � 1 − α > 0 (we
can assume that α < 1 since otherwise the theorem holds trivially).

Now, returning to (A.1) and (A.2), we have

E
[
leb

(
Ĉn(Xn+1)

)]
�

∫ 1

s=0
LP(1 − αs) ds �

∫ s


s=0
LP(1 − αs) ds

= s


∫ s


s=0

1

s


LP(1 − αs) ds � s
LP

(
1 −

∫ s


s=0

1

s


αs ds

)
, (A.5)

where the last step uses Jensen’s inequality, together with the fact that α �→ LP(1 − α) is convex. (To
verify this, let CP ∈ CP(1 − α) and C′

P ∈ CP(1 − α′) and then define C′′
P(x) as the random interval

that outputs CP(x) with probability (1 − t) and C′
P(x) with probability t. Then it is easy to verify that

C′′
P ∈ CP(1 − α′′) where α′′ = (1 − t)α + tα′ and that EPX

[
leb(C′′

P(X))
] = (1 − t)EPX

[
leb(CP(X))

] +
tEPX

[
leb(C′′

P(X))
]
. This is sufficient to establish convexity.)

Combining (A.4) and (A.5), we obtain

E
[
leb

(
Ĉn(Xn+1)

)]
� s
LP

(
1 − δ

(
1 − 1 − α

s


))
,

since LP is non-decreasing. Finally, define

c = 1

α
− 1 − α

s
α
.
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Since we have verified that 1 − α � s
 � 1, this means that c ∈ [0, 1], and plugging in this choice of c,
we obtain

E
[
leb

(
Ĉn(Xn+1)

)]
� 1 − α

1 − cα
LP(1 − cαδ),

which proves the theorem.

A.3 Proof of Lemma A.1

Let δ′ = PP {(X, Y) ∈ B} � δ. We will assume that δ′ < 1 (since the case δ′ = 1 is trivial). Fix a

large integer M � n + 1. First, draw M data points (X(1)
0 , Y(1)

0 ), . . . , (X(M)
0 , Y(M)

0 ) i.i.d. from (X, Y) ∼
P conditional on (X, Y) �∈ B, and M additional data points (X(1)

1 , Y(1)
1 ), . . . , (X(M)

1 , Y(M)
1 ) i.i.d. from

(X, Y) ∼ P conditional on (X, Y) ∈ B. Let L denote this draw of the 2M data points. Since PX has no

atoms, with probability 1 all the X(i)
0 ’s and X(i)

1 ’s are distinct, so from this point on we assume that this
is true.

Next, suppose that we draw indices m1, . . . , mn+1 without replacement from the set {1, . . . , M}.
Independently for each i = 1, . . . , n + 1, set

(Xi, Yi) =
{

(X(mi)
0 , Y(mi)

0 ), with probability 1 − δ′,
(X(mi)

1 , Y(mi)
1 ), with probability δ′.

(A.6)

We can clearly see that, after marginalizing over L, this is equivalent to drawing the data points (Xi, Yi)

i.i.d. from P. Therefore, we have

P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

} = E
[
P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

∣∣ L
}]

,

where, on the right-hand side, after conditioning on L, the data points (Xi, Yi) are drawn according
to (A.6).

Next, consider an alternate distribution where we draw the n + 1 data points (Xi, Yi) from L but
now drawing with replacement. Specifically, fixing L, let Q(L ) be the discrete distribution that places
probability 1−δ′

M on each point (X(m)
0 , Y(m)

0 ) and probability δ′
M on each point (X(m)

1 , Y(m)
1 ), for m =

1, . . . , M. The product distribution
(
Q(L )

)n+1 is therefore equivalent to sampling indices m1, . . . , mn+1
with replacement from the set {1, . . . , M} and then defining (Xi, Yi) again according to (A.6).

Now, if M is very large relative to n, it is extremely unlikely that we would have mi = mi′ for

any i �= i′, when drawing from
(
Q(L )

)n+1. Specifically, we can easily check that this probability is

bounded by n2

M , and so for any fixed L, the total variation distance between the distribution given in (A.6)
(i.e. sampling without replacement) and the distribution (Q(L))n+1 (i.e. sampling with replacement) is

bounded by n2

M . Therefore,

P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

∣∣ L
}
�P(Q(L))n+1

{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}+n2

M
,

where on the left-hand side, after conditioning on L, the data points (Xi, Yi) are drawn according
to (A.6).

Next, for any L, define the set

X(L ) = {X(1)
1 , . . . , X(M)

1 }.
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Note that, for (X, Y) ∼ Q(L ), by construction we have X ∈ X(L) if and only if (X, Y) ∈ B (since we
have assumed that L is chosen so that X(1)

0 , . . . , X(M)
0 , X(1)

1 , . . . , X(M)
1 are all distinct) and

PQ(L) {X ∈ X(L)} = PQ(L) {(X, Y) ∈ B} = δ′ � δ.

Therefore, since Ĉn satisfies (1 − α, δ)-CC with respect to any distribution, we must have

P(Q(L ))n+1

{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}
= P(Q(L ))n+1

{
Yn+1 �∈ Ĉn(Xn+1), Xn+1 ∈ X(L )

}
= P(Q(L ))n+1

{
Yn+1 �∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X(L )
} · δ′ � αδ′

for every fixed L where X(1)
0 , . . . , X(M)

0 , X(1)
1 , . . . , X(M)

1 are distinct. Combining everything, therefore,

P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}
� E

[
P(Q(L ))n+1

{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

} + n2

M

]
� αδ′ + n2

M
,

where the expectation is taken with respect to the random draw of L. Since M can be taken to be
arbitrarily large, we therefore have

P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}
� αδ′ = α · P {

(Xn+1, Yn+1) ∈ B
}

,

which concludes the proof of the lemma.

B. Additional proofs

B.1 Proof of Lemma 3.2

Let A ∼ Bernoulli
(

1−α
1−cα

)
be the Bernoulli variable indicating whether Ĉ′

n(x) is defined as Ĉn(x) (if

A = 1) or as the empty set (if A = 0). Then, for any X with PX(X ) � δ, we have

P
{
Yn+1 ∈ Ĉ′

n(Xn+1)
∣∣ Xn+1 ∈ X

} = P
{
A = 1, Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
}

= 1 − α

1 − cα
· P {

Yn+1 ∈ Ĉn(Xn+1)
∣∣ Xn+1 ∈ X

}
� 1 − α

1 − cα
· (1 − cα) = 1 − α,

where the inequality holds since Ĉn satisfies (1 − cα, δ)-CC by Lemma 3.1.

B.2 Proof of Theorem 4.1

Fix any distribution P and any X ∈ X with PX(X) � δ. Let

Rn+1 = ∣∣Yn+1 − μ̂n0
(Xn+1)

∣∣
be the residual of the test point. By definition of the procedure, we can see that

P
{
Yn+1 �∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
} = P

{
Rn+1 > q̂n1

(Xn+1)
∣∣ Xn+1 ∈ X

}
� P

{
X �∈ X̂n1

∣∣ Xn+1 ∈ X
} + P

{
Rn+1 > q̂n1

(X )
∣∣ Xn+1 ∈ X

}
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/455/5896927 by C
olum

bia U
niversity user on 21 August 2021



THE LIMITS OF DISTRIBUTION-FREE CONDITIONAL PREDICTIVE INFERENCE 475

The first probability depends only on the held-out portion of the training data, i.e. data points i =
n0 + 1, . . . , n. We have

X �∈ X̂n1
⇒

n∑
i=n0+1

1
{
Xi ∈ X

}
< δn1

(
1 −

√
2 log n1

δn1

)
.

Since each Xi has probability at least δ of lying in X, therefore this probability is bounded by

P

{
Binomial (n1, δ) < δn1

(
1 −

√
2 log n1

δn1

)}
� 1

n1
,

where the inequality holds by the multiplicative Chernoff bound. Therefore, what we have so far is

P
{
Yn+1 �∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
}
� 1

n1
+ P

{
Rn+1 > q̂n1

(X )
∣∣ Xn+1 ∈ X

}
.

Next, let I = {i : n0 + 1 � i � n, Xi ∈ X }. Then |I| = N̂n1
(X ), and by definition of q̂n1

(X ), we see

that Rn+1 > q̂n1
(X ) if and only if Rn+1 is not one of the

⌈(
1 − α + 1

n1

)
· (|I| + 1)

⌉
smallest values of

{Ri : i ∈ I ∪ {n + 1}}. Now, after conditioning on I and on the event Xn+1 ∈ X, by distribution of the
data we see that these residuals are exchangeable. Therefore, this event has probability at most

1 −
⌈(

1 − α + 1
n1

)
· (|I| + 1)

⌉
|I| + 1

� α − 1

n1

after conditioning on I and on the event that Xn+1 ∈ X. This bound is therefore true also after
marginalizing over I, and so P

{
Rn+1 > q̂n1

(X )
∣∣ Xn+1 ∈ X

}
� α − 1

n1
, which concludes the proof.

B.3 Proof of Theorem 4.2

First, we need to show that Lemma A.1 holds in this setting.
Lemma B.1 Suppose that Ĉn satisfies (1 − α, δ,X)-CCE as defined in (4.6), where X satisfies

VCa.e.(X) � 2n + 2. Then for all distributions P where the marginal distribution PX is continuous with
respect to Lebesgue measure, for all B ⊆ R

d × R with PP {(X, Y) ∈ B} � δ,

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ (Xn+1, Yn+1) ∈ B
}
� 1 − α.

With this lemma in place, the proof of Theorem 4.2 follows exactly as the proof of our initial result,
Theorem 3.1. We now turn to proving the lemma.

Proof. of Lemma B.1 The proof of this lemma is similar to that of Lemma A.1, except that instead of
taking M samples from B and from Bc for an arbitrarily large integer M, we only need to take n + 1
from each set.

Let δ′ = PP {(X, Y) ∈ B} � δ. We can assume that δ′ < 1 (otherwise, the bound claimed in

the lemma is trivial). Draw n + 1 data points (X(1)
0 , Y(1)

0 ), . . . , (X(n+1)
0 , Y(n+1)

0 ) i.i.d. from (X, Y) ∼ P

conditional on (X, Y) �∈ B, and n + 1 additional data points (X(1)
1 , Y(1)

1 ), . . . , (X(n+1)
1 , Y(n+1)

1 ) i.i.d. from
(X, Y) ∼ P conditional on (X, Y) ∈ B. Let L denote this draw of the 2n + 2 data points.
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Next, we draw a permutation π of the set {1, . . . , n + 1} uniformly at random and draw

B1, . . . , Bn+1
iid∼ Bernoulli(δ′) independently of all other random variables. Define

(Xi, Yi) =
⎧⎨⎩
(

X(πi)
0 , Y(πi)

0

)
, if Bi = 0,(

X(πi)
1 , Y(πi)

1

)
, if Bi = 1.

We can clearly see that, after marginalizing over L, this is equivalent to drawing the data points (Xi, Yi)

i.i.d. from P. Therefore, we have

P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

} = E
[
P
{
Yn+1 �∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

∣∣ L
}]

,
(B.1)

where, on the right-hand side, after conditioning on L, the data points (Xi, Yi) are defined by the
permutation π and the Bernoulli variables B1, . . . , Bn+1.

Next, consider the distribution of the data conditional on L, which we denote by P̃(L ). Since the
permutation π is drawn uniformly at random, and the Bi’s are i.i.d., it is clear that the n + 1 data points
(X1, Y1), . . . , (Xn+1, Yn+1) are exchangeable under the distribution P̃(L ). Therefore, for any fixed L
and for any set X ∈ X with PP̃(L )

{
Xn+1 ∈ X

}
� δ, the (1 − α, δ,X)-CCE property ensures that

PP̃(L )

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X
}
� 1 − α.

Now, fixing L, define the set X(L ) to be any element of X such that

X(L ) � X(1)
1 , . . . , X(n+1)

1 , X(L ) �� X(1)
0 , . . . , X(n+1)

0 .

(Since we have assumed that VCa.e.(X) � 2n + 2, and that PX is continuous with respect to Lebesgue
measure, such a set X(L ) ∈ X exists with probability one for any random draw of L.) Note that, under
the distribution P̃(L), we have Xn+1 ∈ X(L ) if and only if (Xn+1, Yn+1) ∈ B and

PP̃(L )

{
(Xn+1, Yn+1) ∈ B

} = PP̃(L )

{
Xn+1 ∈ X(L )

} = P
{
Bn+1 = 1

} = δ′ � δ.

Returning to the above, we therefore have

PP̃(L )

{
Yn+1 ∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}
= PP̃(L )

{
Yn+1 ∈ Ĉn(Xn+1), Xn+1 ∈ X(L )

}
= PP̃(L )

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ Xn+1 ∈ X(L )
} · δ′ � (1 − α) · δ′.

Then returning to (B.1),

P
{
Yn+1 ∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}
= E

[
P
{
Yn+1 ∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

∣∣ L
}]

= E

[
PP̃(L )

{
Yn+1 ∈ Ĉn(Xn+1), (Xn+1, Yn+1) ∈ B

}]
� E

[
(1 − α) · δ′] = (1 − α) · δ′.

Therefore,
P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣ (Xn+1, Yn+1) ∈ B
}
� (1 − α) · δ′

δ′ = 1 − α,

which proves the lemma. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/455/5896927 by C
olum

bia U
niversity user on 21 August 2021



THE LIMITS OF DISTRIBUTION-FREE CONDITIONAL PREDICTIVE INFERENCE 477

B.4 Proof of Theorem 4.3

Let μ = μ̂n0
. Throughout this proof, we will condition on the data (X1, Y1), . . . , (Xn0

, Yn0
) and will

therefore treat this model as fixed—the probability bound will hold with respect to the distribution of
the n1 holdout points (and therefore, the bound also holds after marginalizing over the initial n0 training
points).

We will first see that it is sufficient to prove that, with high probability, the following two bounds
hold:

Xx,+ ⊆ X̂n1
⊆ Xx,−, (B.3)

where we define Xx,+ = {X ∈ X : x ∈ X, PX(X ) � δ+} and Xx,− = {X ∈ X : x ∈ X, PX(X ) �
δ−}, and

q∗
P,μ,α+(X ) � q̂n1

(X ) � q∗
P,μ,α−(X) for all X ∈ Xx,−. (B.3)

If these two statements hold, then we have

q∗
P,μ,α+,δ+(x) = sup

X∈Xx,+
q∗

P,μ,α+(X ) � sup
X∈X̂n1

q∗
P,μ,α+(X ) � sup

X∈X̂n1

q̂n1
(X ) = q̂n1

(x),

and similarly

q∗
P,μ,α−,δ−(x) = sup

X∈Xx,−
q∗

P,μ,α−(X ) � sup
X∈X̂n1

q∗
P,μ,α−(X ) � sup

X∈X̂n1

q̂n1
(X ) = q̂n1

(x).

By construction of the intervals, we therefore see that C∗
P,μ,α+,δ+(x) ⊆ Ĉn(x) ⊆ C∗

P,μ,α−,δ−(x), which is
the claim in the theorem.

Now we verify that (B.2) and (B.3) both hold with high probability. First, by [6, Bousquet bound
(Section 2.3) + Theorem 3.9], we can verify the following concentration result:5

P

{∣∣∣∣∣ N̂n1
(X )

n1
− PX(X )

∣∣∣∣∣ � Δconc(X ) for all X ∈ X

}
� 1 − 1

3n1
, (B.4)

where for each X ∈ X, we define

Δconc(X ) = c′
[√

PX(X ) ·
√

VC(X) log n1

n1
+ VC(X) log n1

n1

]
,

for a universal constant c′ (not dependent on X ).
Next, for any X ∈ X, define

X̃ =
{
(x, y) ∈ R

d × R : x ∈ X and |y − μ(x)| > q∗
P,μ,α−(X )

}
.

Lemma B.2 below will verify that

VC
(
{X̃ : X ∈ X}

)
� VC(X) + 1.

5 To obtain this bound, we need to apply [6, Bousquet bound (Section 2.3) + Theorem 3.9] O(log n1) many times, once for
each class Xj = {X ∈ X : PX(X) � 2−j}, for j = 0, 1, . . . , O(log n1) (i.e. a peeling argument).
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Therefore, again applying [6, Bousquet bound (Section 2.3) + Theorem 3.9] as above, if the universal
constant c′ is chosen appropriately in the definition of Δconc(X ) then it holds that

P

{ ∣∣∣∣∣∣ 1

n1

n∑
i=n0+1

1
{
(Xi, Yi) ∈ X̃

}
− PP

{
(X, Y) ∈ X̃

} ∣∣∣∣∣∣ � Δconc(X ) for all X ∈ X

}
� 1 − 1

3n1
.

Furthermore, we can calculate that

PP

{
(X, Y) ∈ X̃

}
= PX(X ) · PP

{
|Y − μ(X)| > q∗

P,μ,α−(X )

∣∣∣ X ∈ X
}
� PX(X ) · α−,

by definition of the quantile q∗
P,μ,α−(X ). Therefore,

P

{
1

n1

n∑
i=n0+1

1
{

Xi ∈ X, |Yi − μ(Xi)|>q∗
P,μ,α−(X )

}
�α−PX(X ) + Δconc(X ) ∀X ∈ X

}
�1 − 1

3n1
.

(B.5)

An analogous argument can be used to prove that

P

{
1

n1

n∑
i=n0+1

1
{

Xi ∈ X, |Yi − μ(Xi)|�q∗
P,μ,α+(X )

}
�α+PX(X ) − Δconc(X ) ∀ X ∈ X

}
�1 − 1

3n1
.

(B.6)

Now from this point on, we will assume that the events in (B.4), (B.5) and (B.6) all hold, which will
occur with probability at least 1 − 1

n1
. We now need to verify that this implies (B.2) and (B.3).

First, we verify (B.2). For any X ∈ X̂n1
, by definition of X̂n1

together with (B.4) we have

δ

(
1 −

√
2 log n1

δn1

)
� 1

n1

n∑
i=n0+1

1
{
Xi ∈ X

} = N̂n1
(X )

n1
� PX(X ) + Δconc(X ).

Examining the definition of δ−, we see that this implies PX(X ) � δ− when the universal constant cδ is
chosen to be sufficiently large. This proves that X̂n1

⊆ Xx,−. Conversely, for any X ∈ Xx,+, applying
(B5) and again assuming cδ is chosen appropriately, we have

1

n1

n∑
i=n0+1

1
{
Xi ∈ X

} = N̂n1
(X )

n1
� PX(X ) − Δconc(X ) � δ+ − Δconc(X ) � δ

(
1 −

√
2 log n1

δn1

)
,

and so X ∈ X̂n1
. This proves that X̂n1

⊇ Xx,+.
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Next, we verify (B.3). Fix any X ∈ Xx,−. By the events in (B.4) and (B.5), we have

n∑
i=n0+1

1
{

Xi ∈ X, |Yi − μ(Xi)| > q∗
P,μ,α−(X )

}

� n1α−PX(X ) + n1Δconc(X ) � n1α−

(
N̂n1

(X )

n1
+ Δconc(X )

)
+ n1Δconc(X)

� N̂n1
(X )

(
α− + 2Δconc(X )

1
n1

N̂n1
(X )

)
� N̂n1

(X )

(
α− + 2Δconc(X )

PX(X ) − Δconc(X )

)
.

By definition of Δconc(X ), together with the assumption that VC(X) � c · δn1
log n1

, if c is chosen to be
sufficiently small then, since PX(X ) � δ−, we have

2Δconc(X )

PX(X ) − Δconc(X )
� c′′

√
VC(X) log n1

δn1
,

where c′′ is another universal constant. Furthermore, by definition of α−, it holds that

N̂n1
(X )

(
α− + c′′

√
VC(X) log n1

δn1

)
� N̂n1

(X ) −
⌈(

1 − α + 1

n1

)
· (N̂n1

(X ) + 1
)⌉

as long as the constant cα is chosen to be sufficiently large. Combining these calculations, we see that

n∑
i=n0+1

1
{

Xi ∈ X, |Yi − μ(Xi)| � q∗
P,μ,α−(X )

}
�

⌈(
1 − α + 1

n1

)
· (N̂n1

(X ) + 1
)⌉

.

Since q̂n1
(X ) is defined as the �

(
1 − α + 1

n1

)
·(N̂n1

(X )+1)�-th smallest value in the list
{
Ri : n0+1 �

i � n, Xi ∈ X
}
, the above bound immediately verifies that

q̂n1
(X ) � q∗

P,μ,α−(X ).

We can similarly show that, if the events in (B.4) and (B.6) both hold, then

n∑
i=n0+1

1
{

Xi ∈ X, |Yi − μ(Xi)| � q∗
P,μ,α+(X )

}

� N̂n1
(X)

(
α+ − 2Δconc(X )

PX(X ) − Δconc(X )

)
> N̂n1

(X ) · α,

and by definition of q̂n1
(X ) this is sufficient to establish that

q̂n1
(X ) � q∗

P,μ,α+(X ).

Therefore, combining everything, we have shown that (B.2) and (B.3) both hold whenever the events
in (B.4), (B.5) and (B.6) all hold, which occurs with probability at least 1− 1

n1
. This completes the proof

of the theorem.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/455/5896927 by C
olum

bia U
niversity user on 21 August 2021



480 R.F. BARBER ET AL.

B.4.1 Supporting lemma

Lemma B.2 Let X be any collection of measurable subsets of Rd, and let c : X → R be any function.
Fix any function f : Rd × R → R, and for each X ∈ X define

X̃ =
{
(x, y) ∈ R

d × R : x ∈ X and f (x, y) > c(X )
}

.

Then
VC

(
{X̃ : X ∈ X}

)
� VC(X) + 1.

Proof. To see this, suppose VC({X̃ : X ∈ X}) = m. If m = 1 then the result is trivial, so assume m � 2.
We can then find m points (xi, yi) ∈ R

d × R, for i = 1, . . . , m, which are shattered by {X̃ : X ∈ X}.
Without loss of generality, assume that f (xm, ym) = mini=1,...,m f (xi, yi). We will now show that the set

{x1, . . . , xm−1} is shattered by X. Fix any subset I ⊆ {1, . . . , m − 1}, and let Ĩ = I ∪ {m}. Then since

{X̃ : X ∈ X} shatters (x1, y1), . . . , (xm, ym), there must be some X ∈ X such that (xi, yi) ∈ X̃ for i ∈ Ĩ
and (xi, yi) �∈ X̃ for i �∈ Ĩ. In particular, taking i = m ∈ Ĩ, we have

(xm, ym) ∈ X̃ ⇒ f (xm, ym) > c(X ) ⇒ f (xi, yi) > c(X ) for all i.

Now, for all i ∈ I,
i ∈ Ĩ ⇒ (xi, yi) ∈ X̃ ⇒ xi ∈ X,

and for all i ∈ {1, . . . , m − 1}\I, we know that f (xi, yi) > c(X ) and therefore

i �∈ Ĩ ⇒ xi �∈ X.

Since we can find such a set X for each subset I ⊆ {1, . . . , m − 1}, this means that X shatters
{x1, . . . , xm−1}, and therefore VC(X) � m − 1, completing the proof. �

B.5 Proof of Corollary 4.1

Recall that the oracle interval is given by

C∗
P(Xn+1) = μP(Xn+1) ± q∗

ε,α ,

where q∗
ε,α is the (1 − α/2)-quantile of fε . By Theorem 4.3, for every x ∈ R

d we have

P

{
C∗

P,μ̂n0 ,α+,δ+(x) ⊆ Ĉn(x) ⊆ C∗
P,μ̂n0 ,α−,δ−(x)

}
� 1 − 1

n1
,

where α+, α−, δ+, δ− are defined as in the statement of that theorem. Therefore, it must also hold that

P

{
C∗

P,μ̂n0 ,α+,δ+(Xn+1) ⊆ Ĉn(Xn+1) ⊆ C∗
P,μ̂n0 ,α−,δ−(Xn+1)

}
� 1 − 1

n1
,

and so with probability at least 1 − 1
n1

, we have

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
)
� leb

(
C∗

P,μ̂n0 ,α−,δ−(Xn+1)\C∗
P(Xn+1)

)+leb
(
C∗

P(Xn+1)\C∗
P,μ̂n0 ,α+,δ+(Xn+1)

)
.

Now we bound these two terms. We can calculate deterministically that

leb
(
C∗

P,μ̂n0 ,α−,δ−(Xn+1)\C∗
P(Xn+1)

)
� |μ̂n0

(Xn+1) − μP(Xn+1)| + 2 max
{
q∗

P,μ̂n0 ,α−,δ−(Xn+1) − q∗
ε,α , 0

}
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and

leb
(
C∗

P(Xn+1)\C∗
P,μ̂n0 ,α+,δ+(Xn+1)

)
� |μ̂n0

(Xn+1) − μP(Xn+1)| + 2 max
{
q∗
ε,α − q∗

P,μ̂n0 ,α+,δ+(Xn+1), 0
}
.

Therefore, with probability at least 1 − 1
n1

, we have

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
)
� 2|μ̂n0

(Xn+1) − μP(Xn+1)| + 2 max
{
q∗
ε,α − q∗

P,μ̂n0 ,α+,δ+(Xn+1), 0
}

+ 2 max
{
q∗

P,μ̂n0 ,α−,δ−(Xn+1) − q∗
ε,α , 0

}
,

so we now need to bound these remaining terms with high probability.
First, we bound |μ̂n0

(Xn+1) − μP(Xn+1)|. Define

Δ̂n0
= E

[(
μ̂n0

(X) − μP(X)
)2

∣∣∣ μ̂n0

]
,

which satisfies P
{
Δ̂n0

� ηn0

}
� 1 − ρn0

by (4.9). We have

P

{
|μ̂n0

(Xn+1) − μP(Xn+1)| > η1/3
n0

}
= E

[
P

{
|μ̂n0

(Xn+1) − μP(Xn+1)| > η1/3
n0

∣∣∣ μ̂n0

}]
� E

[
min

{
E
[
(μ̂n0

(Xn+1) − μP(Xn+1))
2
∣∣ μ̂n0

]
η

2/3
n0

, 1

}]

= E

[
min

{
Δ̂n0

η
2/3
n0

, 1

}]
� ρn0

+ ηn0

η
2/3
n0

.

Therefore, with probability at least 1 − 1
n1

− ρn0
− η

1/3
n0 , we have

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
)
� 2η1/3

n0
+ 2 max

{
q∗
ε,α − q∗

P,μ̂n0 ,α+,δ+(Xn+1), 0
}

+ 2 max
{
q∗

P,μ̂n0 ,α−,δ−(Xn+1) − q∗
ε,α , 0

}
.

Next, since R
d ∈ X by assumption, by definition we have

q∗
P,μ̂n0 ,α+,δ+(Xn+1) = sup

X∈X:Xn+1∈X,PX(X)�δ+
q∗

P,μ̂n0 ,α+(X ) � q∗
P,μ̂n0 ,α+(Rd) � q∗

ε,α+ ,

where the last step uses the location family assumption (4.8). Therefore, with probability at least 1 −
1
n1

− ρn0
− η

1/3
n0 , we have

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
)
� 2η1/3

n0
+ 2

(
q∗
ε,α − q∗

ε,α+
) + 2 max

{
q∗

P,μ̂n0 ,α−,δ−(Xn+1) − q∗
ε,α , 0

}
.

We now address the last term. By definition, we have

q∗
P,μ̂n0 ,α−,δ−(Xn+1) = sup

X∈X:Xn+1∈X,PX(X )�δ−
q∗

P,μ̂n0 ,α−(X ) � sup
X∈X:PX(X )�δ−

q∗
P,μ̂n0 ,α−(X ).

By the location family assumption (4.8) we can see that, for any X,

q∗
P,μ̂n0 ,α−(X ) � inf

0<α′<α−

{
q∗
ε,α−−α′ + the (1 − α′) −quantile of |μ̂n0

(X) − μP(X)|
conditional on μ̂n0

and on the event X ∈ X

}
.
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And, for any X with PX(X ) � δ−, this last quantile is bounded by√
E
[
(μ̂n0

(X) − μP(X))2
∣∣ μ̂n0

, X ∈ X
]

α′ �

√
Δ̂n0

α′δ−
.

Therefore, choosing α′ = η
1/3
n0 ,

q∗
P,μ̂n0 ,α−,δ−(Xn+1) � q∗

ε,α−−η
1/3
n0

+
√√√√ Δ̂n0

η
1/3
n0 δ−

� q∗
ε,α−−η

1/3
n0

+ η1/3
n0

δ
−1/2
− ,

where the last bound holds with probability at least 1 − ρn0
by (4.9). Combining everything, with

probability at least 1 − 1
n1

− 2ρn0
− η

1/3
n0 , we have

leb
(
Ĉn(Xn+1)� C∗

P(Xn+1)
)
� 2η1/3

n0
+ 2

(
q∗
ε,α−−η

1/3
n0

− q∗
ε,α+

) + 2η1/3
n0

δ
−1/2
− .

Finally, by our assumptions (4.8) on the density fε and the definition of q∗
ε,·, for any α′ < α′′ ∈ [0, 1] we

have
1

2
(α′′ − α′) =

∫ q∗
ε,α′

t=q∗
ε,α′′

fε(t) dt � fε(q
∗
ε,α′) · (q∗

ε,α′ − q∗
ε,α′′

)
.

Therefore,

q∗
ε,α−−η

1/3
n0

− q∗
ε,α+ �

α+ − (
α− − η

1/3
n0

)
2fε(q

∗
ε,α−−η

1/3
n0

)
,

which completes the proof for constants c, c′ chosen appropriately.
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