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 A B S T R A C T

The timing and magnitude of COVID-19 infections are of interest to the public and to public health, but 
these are challenging to ascertain due to the volume of undetected asymptomatic cases and reporting delays. 
Accurate estimates of COVID-19 infections based on finalized data can improve understanding of the pandemic 
and provide more meaningful quantification of disease patterns and burden. Therefore, we retrospectively 
estimate daily incident infections for each U.S. state prior to Omicron. To this end, reported COVID-19 cases 
are deconvolved to their likely date of infection onset using delay distributions estimated from the CDC line 
list. Then, a novel serology-driven model is used to scale these deconvolved cases to account for the unreported 
infections. The resulting infection estimates incorporate variant-specific incubation periods, reinfections, and 
waning antigenic immunity. They clearly demonstrate that reported cases failed to reflect the full extent of 
disease burden in all states. Most notably, infections were severely underreported during the Delta wave, 
with an estimated reporting rate as low as 6.3% in New Jersey, 7.3% in Maryland, and 8.4% in Nevada. 
Moreover, in 44 states, fewer than 1/3 of infections eventually appeared as case reports, and there were 
sustained periods where surges in infections were virtually undetectable through reported cases. This pattern 
was clearly illustrated by North and South Dakota during the spring of 2021, as well as by several Northeastern 
states during the Delta wave of late summer that year. While reported cases offered a convenient proxy of 
disease burden, they failed to capture the full extent of infections and severely underestimated the true disease 
burden. Our retrospective analysis also estimates other important quantities for every state, including variant-
specific deconvolved cases, time-varying case ascertainment ratios, as well as infection-hospitalization and 
infection-fatality ratios.
1. Introduction

Reported COVID-19 cases are a staple in tracking the pandemic 
at varying geographic resolutions (Dong et al., 2020; The New York 
Times, 2020; The Washington Post, 2020). Yet, for every case that was 
eventually reported to public health, several infections were likely to 
have occurred. To see why, it is important to understand whose cases 
were being reported and what differentiates them from unreported 
cases as well as when these case reports happened. Fig.  1 shows an 
idealized path of a symptomatic infection that is eventually reported 
to public health. This figure illustrates a number of sources of bias in 
the reporting pipeline. For instance, diagnostic testing mainly targeted 
symptomatic individuals; thus, infected individuals exhibiting little to 
no symptoms were omitted (Centers for Disease Control and Preven-
tion, 2022). In addition, testing practices, availability, and uptake 

∗ Corresponding author.
E-mail addresses: rachel.lobay@stat.ubc.ca (R. Lobay), ajiteshs@usc.edu (A. Srivastava), ryantibs@berkeley.edu (R.J. Tibshirani), daniel@stat.ubc.ca 

(D.J. McDonald).

varied temporally and spatially (Pitzer et al., 2021; European Centre for 
Disease Prevention and Control, 2020; Hitchings et al., 2021). Finally, 
cases provided a belated view of the pandemic’s progression, because 
they were subject to delays due to the viral incubation period, the 
speed and severity of symptom onset, laboratory confirmation, test 
turnaround times, and eventual submission to public health (Pellis 
et al., 2021; Washington State Department of Health, 2020). For these 
reasons, reported cases were lagging indicators of the course of the 
pandemic. Furthermore, they did not represent the actual number of 
new infections that occurred on any given day based on exposure to 
the pathogen. Since there was no large-scale surveillance effort in the 
United States that reliably tracked symptom onset, let alone infection 
onset, ascertaining the onset of all infections is challenging.
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Fig. 1. Idealized chain of events from infection onset to case report date for a symptomatic infection that is eventually reported to public health.
̂

Infection prevalence studies were conducted in various countries 
over the course of the pandemic to measure and monitor the prevalence 
of COVID-19 in real-time. The UK was a leader in such large-scale 
surveillance with the REACT-1 programme, which used at-home testing 
of randomly selected individuals across England Imperial College Lon-
don (2022). In addition, the ONS COVID-19 Infection Survey took the 
at-home testing approach to households across the UK to ascertain 
how many people presently and previously had COVID-19 (Office for 
National Statistics, 2020). Comparable studies were conducted in other 
countries, including France (Vaux et al., 2023), Germany (Jacob et al., 
2021), Hungary (Merkely et al., 2020), and Iceland Gudbjartsson et al. 
(2020), though efforts were smaller-scale. The U.S. supported some 
similarly small-scale studies like the Community Prevalence of SARS-
CoV-2 Study (COMPASS), which tracked around 22,000 individuals 
from 15 communities during 2021 (Justman et al., 2024), and the 
Digital Engagement and Tracking for Early Control and Treatment 
(DETECT) study, which collected over 35,000 self-reported test results 
from 2020 to 2022 (Kolb et al., 2023). These studies provided valuable 
insights, but their voluntary nature meant they were susceptible to 
participation bias. Large-scale studies like REACT-1 or ONS are costly 
due to extensive sampling and mass testing (Pavelka et al., 2021), 
so alternatives, such as seroprevalence from routine blood sampling, 
may be more sustainable over time (COVID-19 Immunity Task Force, 
2023). While infection prevalence studies are important for real-time 
monitoring, their cost, cross-sectional nature, and logistical complexity 
limit their feasibility for long-term tracking and retrospective analysis. 
Consequently, leveraging routine data streams already integrated with 
existing infrastructure can give a more clear and consistent view of 
the pandemic’s progression, while enhancing transparency and public 
participation.

Contextualizing the course of the pandemic, understanding the 
effects of interventions, and drawing insights for future pandemics is 
challenging because the spatial and temporal behavior of infections 
is unknown. While reported cases provide a convenient proxy of the 
disease burden in a population, it is incomplete, delayed, and misrep-
resents the true size and timing of the pandemic. Regardless of these 
difficulties, it is important to the public and to public health to perform 
a pandemic post-mortem. Estimates of daily incident infections are one 
such way to measure this and can guide understanding of the pandemic 
burden over space and time.

In this work, we provide a data-driven reconstruction of daily inci-
dent infections for each U.S. state before the onset of Omicron. Using 
state-level line list data, we estimate state-date specific distributions for 
the delay from symptom onset to positive specimen date and positive 
specimen to case report date. We combine these with variant-specific 
incubation period distributions to deconvolve (i.e. push back using 
the distribution of delays) daily reported COVID-19 cases back to 
their infection onset, removing the effects of the delays. Finally, we 
adjust for unreported infections with seroprevalence and reinfection 
data, accounting for the waning of antigenic immunity over time. This 
last stage is the key contributor to uncertainty quantification for the 
estimated incident infections. A graphical depiction of our procedure 
is shown in Fig.  2. We also provide a brief description of the key data 
sources used in our procedure in Appendix A.

Our results examine the features of the infection estimates and the 
implications of using them, rather than reported cases, to assess the 
2 
impact of the pandemic in U.S. states. We also calculate simple time-
varying infection-hospitalization ratios (IHRs) and infection-fatality ra-
tios (IFRs) for each state and compare them with their case-based 
counterparts: the case-hospitalization ratios (CHRs) and case-fatality 
ratios (CFRs). While these analyses provide a glimpse into the utility 
of our infection estimates, we believe that there is much more to be 
explored, and we hope that our work serves as a benchmark for future 
retrospective analyses.

2. Methods

In what follows, we describe how we estimate the daily incident 
infections for each U.S. state from June 1, 2020 to November 29, 
2021. Fig.  2 summarizes the major analysis tasks. First, we estimate 
the delays from positive specimen to report date and use them to 
push back the reported cases to their sample collection dates. Next, we 
estimate the delay from symptom onset to sample collection, combine 
this with variant-specific infection-to-symptom delays, and use these 
to push back the cases to infection onset. The resulting case estimates 
are aggregated across variant categories and adjusted by the case 
ascertainment ratio, estimated with seroprevalence survey data and a 
model for antigenic immunity.

2.1. From reported cases to positive specimen collection

Deconvolution ‘‘pushes back’’ reported cases to the likely date of 
positive specimen collection. An important aspect of our methods is 
that deconvolution is not the same as a simple shift, rather it involves 
the distribution of delays (specific to each state and date). Simply 
shifting cases back in time would fail to reflect the fact that some cases 
take much longer to be reported than others (Appendix B).

We begin by describing how the model for deconvolution infers 
the likely dates of positive specimen collection from reported cases 
before describing how the CDC line list (Centers for Disease Control 
and Prevention, 2020a) is used to estimate the necessary delay dis-
tributions. Together, these are the ingredients for Step 1 in Fig.  2. 
Define 𝑦𝓁,𝑡 to be the number of new cases reported in location 𝓁 at 
time 𝑡, as reported by the John Hopkins Center for Systems Science 
and Engineering (JHU CSSE, Dong et al., 2020) and retrieved with the 
COVIDcast API (Reinhart et al., 2021). Let 𝜋𝓁,𝑡(𝑘) be the probability that 
cases with positive specimen collection at time 𝑡 − 𝑘 are reported at 𝑡. 
Then, we model 𝑦𝓁,𝑡 as a Gaussian with mean 

E[𝑦𝓁,𝑡 ∣ 𝑥𝓁,𝑠, 𝑠 ≤ 𝑡] =
∑

𝑘
𝜋𝓁,𝑡−𝑘(𝑘)𝑥𝓁,𝑡−𝑘, (1)

which is a probability-weighted sum of the number of positive speci-
mens collected 𝑘 days earlier, 𝑥𝓁,𝑡−𝑘. We estimate 𝐱𝓁 = (𝑥𝓁,1,… , 𝑥𝓁,𝑇 )𝖳

by minimizing the negative log-likelihood with a penalty that encour-
ages smoothness in time. Thus, our estimator is given by

𝐱𝓁 = argmin
𝐱

∑

𝑡

(

𝑦𝓁,𝑡 −
∑

𝑘
𝜋𝓁,𝑡−𝑘(𝑘)𝑥𝑡−𝑘

)2

+ 𝜆
∑

𝑡

|

|

|

𝑥𝑡 − 4𝑥𝑡−1 + 6𝑥𝑡−2 − 4𝑥𝑡−3 + 𝑥𝑡−4
|

|

|

. (2)

The solution to this minimization problem is an adaptive piecewise 
cubic polynomial (Tibshirani, 2014, 2022) and can be accurately com-
puted easily (Ramdas and Tibshirani, 2016; Jahja et al., 2022). We 
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Fig. 2. Flowchart of the data and major analysis steps required to get from reported cases to incident infection estimates. In Step 1, we used the CDC line list data to deconvolve 
(i.e. push back using the distribution of delays) reported cases (gray) to the date of positive specimen (red). Step 2 separately deconvolved these to the date of infection by variant 
(Epsilon in Purple, Ancestral in Green), before summing across all variants (orange) in Step 3. Finally, we used seroprevalence survey and time-varying reinfection data to account 
for the unreported infections. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
̃

select the tuning parameter 𝜆 with cross-validation to minimize the out-
of-sample reconvolution error. Note that the 𝓁1 penalty is applied to 
all 4𝑡ℎ-order discrete differences. This choice results in piecewise cubic 
polynomials (discrete splines, Tibshirani, 2022) where the number and 
length of each piece is chosen adaptively. This property enables the 
model to better capture localized changes in the estimated infections. 
In contrast, a squared 𝓁2 penalty would produce smoothing splines 
resulting in global smoothness.

To estimate the 𝜋𝓁,𝑡(𝑘) for all states 𝓁, times 𝑡, and delays 𝑘, we use 
the CDC line list (Centers for Disease Control and Prevention, 2020a). 
The line list contains three key dates of interest for many cases that 
eventually appear in case reports: symptom onset, positive specimen 
collection, and report to the CDC. Handling missingness in these dates 
requires careful attention (Appendix C). Define 𝑧𝓁,𝑡 to be a case report 
occurring at time 𝑡 in location 𝓁. We assume that positive samples 
are reported within 60 days and that no test is reported on the same 
date as it was collected. Under these assumptions, let 𝑁𝓁,𝑡 be the total 
number of 𝑧𝓁,𝑟 with positive specimen collection date 𝑟 in a window 
𝑟 ∈ [𝑡−75+1, 𝑡+60] around 𝑡. Then, we compute the observed probability 
mass function (pmf) 

�̃�𝓁,𝑡(𝑘) =
1

𝑁𝓁,𝑡

(

# 𝑧𝓁,𝑟 with positive specimen at 𝑟 − 𝑘
)

𝟏(0 < 𝑘 ≤ 60),

(3)

where 𝟏(𝑍) = 1 if 𝑍 is true and 0 otherwise. We also compute a similar 
national pmf, �̃�𝑡(𝑘)𝟏(0 < 𝑘 ≤ 60), without restricting to location 𝓁. 
Next, let 𝛼𝓁,𝑡 be the ratio of 𝑁𝓁,𝑡 to the number of reported cases in the 
window [𝑡−60+2, 𝑡+75]. Then, we compute 𝑝𝓁,𝑡 = 𝛼𝓁,𝑡�̃�𝓁,𝑡 + (1− 𝛼𝓁,𝑡)�̃�𝑡. 
This construction allows for more reliance on the state estimate when a 
larger fraction of case reports appear in the CDC line list. We calculate 
the mean 𝑚𝓁,𝑡 and variance 𝑣𝓁,𝑡 of the pmf {𝑝𝓁,𝑡(𝑘)} and estimate the 
best-fitting gamma distribution by solving the moment equations 𝑚𝓁,𝑡 =
𝛼𝓁,𝑡𝜃𝓁,𝑡 and 𝑣𝓁,𝑡 = 𝛼𝓁,𝑡𝜃2𝓁,𝑡 for the shape 𝛼𝓁,𝑡 and scale 𝜃𝓁,𝑡. Finally, 
we discretize the resulting gamma density to the original support to 
produce an estimate 𝜋𝓁,𝑡(𝑘) of the delay distribution 𝜋𝓁,𝑡(𝑘). This simple 
procedure of estimating the delay distribution by fitting a probability 
distribution to observed delays is common but may be susceptible to 
certain types of bias due to censoring and other considerations (Park 
et al., 2024). Additional details are deferred to Appendix D.

2.2. From positive specimen collection to infection onset

To continue, pushing positive specimen collection time back to 
infection onset (Step 2 in Fig.  2), we use a procedure very similar 
3 
to that described above and specified in Eqs.  (1) and (2). However, 
because the delays involve the time from infection to symptom on-
set, these are treated as variant-specific. We use our estimates from 
Section 2.1, �̂�𝓁 , but we weight them corresponding to the mix of 
variants in circulation. To estimate the daily proportions of the variants 
circulating in each state, we use GISAID genomic sequencing data from 
CoVariants.org (Hodcroft, 2021; Elbe and Buckland-Merrett, 2017), and 
estimate a multinomial logistic regression model. This procedure is now 
standard  (Obermeyer et al., 2022; Annavajhala et al., 2021; Figgins 
and Bedford, 2021, see Appendix E for additional details). The resulting 
estimated probability of variant 𝑗 is given by �̂�𝑗𝓁,𝑡.

To estimate variant-specific delays from infection to positive speci-
men collection, we convolve the location-time-specific symptom-to-test 
distributions (that are estimated from the CDC line list in the same way 
as in Section 2.1), with variant-specific incubation periods. The convo-
lution of these yields a distribution 𝜏𝑗𝓁,𝑡(𝑘). Details on the convolution 
and its inputs are in Appendices F.1–F.3.

Analogous to Eqs.  (1) and (2), for each variant 𝑗, we model the 
variant-specific, deconvolved cases as Gaussian with mean 
E
[

𝑣𝑗𝓁,𝑡𝑥𝓁,𝑡 ∣ 𝑢𝑗𝓁,𝑠, 𝑠 ≤ 𝑡
]

=
∑

𝑘
𝜏𝑗𝓁,𝑡−𝑘(𝑘)𝑢𝑗𝓁,𝑡−𝑘 (4)

and estimate 𝐮𝑗𝓁 by minimizing the negative log-likelihood with a 
penalty to promote smoothness:

𝐮𝑗𝓁 = argmin
𝐮

∑

𝑡

(

𝑣𝑗𝓁,𝑡𝑥𝓁,𝑡 −
∑

𝑘
𝜏𝑗𝓁,𝑡−𝑘(𝑘)𝑢𝑡−𝑘

)2

+ 𝜆
∑

𝑡

|

|

|

𝑢𝑡 − 4𝑢𝑡−1 + 6𝑢𝑡−2 − 4𝑢𝑡−3 + 𝑢𝑡−4
|

|

|

. (5)

We call the solution �̃�𝑗𝓁 the variant-specific deconvolved cases and 
emphasize that these are cases that were eventually reported to public 
health. Because this deconvolution is performed separately for each 
location and variant, we sum over the variants at each time 𝑡, and 
denote the total deconvolved cases at location 𝓁 as ̂𝐮𝓁 =

∑

𝑗 �̃�𝑗𝓁 (Step 
3 in Fig.  2). These deconvolved cases are now indexed by the time of 
infection onset rather than case report.

2.3. Inverse reporting ratio and the antibody prevalence model

To capture the unreported infections, it is necessary to adjust these 
deconvolved case estimates by the inverse reporting ratio: the ratio 
of the number of incident infections to incident reported infections 
(Step 4 in Fig.  2). Seroprevalence of anti-nucleocapsid antibodies rep-
resents the percentage of people who have at least one resolving or 
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past infection (Centers for Disease Control and Prevention, 2020b), 
so we develop a model that uses the change in subsequent sero-
prevalence measurements to estimate all new infections. We use two 
seroprevalence surveys to estimate the proportion of the population 
with evidence of previous infection in each state over time (Centers 
for Disease Control and Prevention, 2021a,b, see also Appendix G).

To account for different surveys occurring on different dates with 
roughly weekly availability and measurement error, we treat actual 
seroprevalence 𝑠𝓁,𝑚 as a latent variable available on Monday (using 𝑚
rather than 𝑡 to denote Mondays). Therefore, the observed seropreva-
lence survey measurements 𝑟1𝑚 and 𝑟2𝑚 are modeled as Gaussian,

𝑟1𝓁,𝑚 ∣ 𝑠𝓁,𝑚, 𝑤1
𝓁,𝑚 ∼ N(𝑠𝓁,𝑚, 𝑤1

𝓁,𝑚𝜎
2
𝓁,𝑟), (6)

𝑟2𝓁,𝑚 ∣ 𝑠𝓁,𝑚, 𝑤2
𝓁,𝑚 ∼ N(𝑠𝓁,𝑚, 𝑤2

𝓁,𝑚𝜎
2
𝓁,𝑟), (7)

with source-specific measurement errors, 𝑤1
𝓁,𝑚 and 𝑤2

𝓁,𝑚, that scale 
proportionally to sampling uncertainty.

To complete the model, we assume that latent seroprevalence is 
modeled as Gaussian with mean given by a fraction of the previous 
seroprevalence measurement at time 𝑚 plus the reinfection-adjusted 
deconvolved cases multiplied by the inverse reporting ratio at time 𝑚: 
E[𝑠𝓁,𝑚+1 ∣ 𝑠𝓁,𝑚] = (1 − 𝛾)𝑠𝓁,𝑚 + 𝑎𝓁,𝑚(1 − 𝑧𝑚)

∑

𝑡∈[𝑚,𝑚+1]
�̂�𝓁,𝑡, (8)

where ̂𝑢𝓁,𝑡 are deconvolved cases (from Section 2.2), 𝑧𝑚 is the fraction 
of reinfections, and 𝑎𝓁,𝑚 is the inverse reporting ratio. Note that 𝛾 is 
the fraction of people whose level of infection-induced antibodies falls 
below the detection threshold between time 𝑡 and time 𝑡+ 1. The daily 
fraction of new infections 𝑧𝑡 are based on surveillance work conducted 
by the Southern Nevada Health District (Ruff et al., 2022), and these 
estimates are broadly similar to those in other locations with available 
data (Ruff et al., 2022; New York State Department of Health, 2023; 
Hawaii Department of Health, 2022; Washington State Department of 
Health, 2022). Finally, we specify the time-varying evolution of the 
inverse reporting ratio as Gaussian with expectation, 
E[𝑎𝓁,𝑚+1 ∣ 𝑎𝓁,𝑚, 𝑎𝓁,𝑚−1, 𝑎𝓁,𝑚−2] = 3𝑎𝓁,𝑚 − 3𝑎𝓁,𝑚−1 + 𝑎𝓁,𝑚−2. (9)

This construction for Eq.  (9) results in estimates that vary smoothly in 
time.

The antibody prevalence model specified by Eqs. (6) to (9) is a 
state space model with latent variables 𝐬𝓁 and 𝐚𝓁 . In this way, the 
latent variables and all unknown parameters can be estimated using 
maximum likelihood, despite missing or irregularly-spaced survey mea-
surements. Additionally, latent quantities can be extrapolated beyond 
the times of measured seroprevalence. Importantly, the specification 
of Eqs. (6) to (9) naturally captures uncertainty in the estimates of 
the 𝐚𝓁 curves around their point estimates. While Steps 1–3 in our 
analysis pipeline (Fig.  2) are also point estimates, and hence uncertain, 
their relative contribution to the uncertainty of estimated infections is 
much less than that of the seroprevalence and ascertainment fraction 
estimates. Additional details of this methodology and the computation 
of the associated uncertainty measurements are in Appendix H.

2.4. Lagged correlation and time-varying IHRs and IFRs

We use the COVIDcast API (Reinhart et al., 2021) to retrieve the 
daily number of confirmed COVID-19 hospital admissions for each 
state that are collected by the U.S. Department of Health and Human 
Services (HHS). We use our infection estimates �̂�𝓁 to compute the 
lagged correlation with hospitalizations. The goal of this analysis is 
to find the lag between infection and hospitalization rates that gives 
the highest average rank-based correlation across U.S. states. Thus, we 
consider a wide range of possible lag values ranging from 1 to 25 days. 
Then, to assess the impact of our modeling choices, particularly the 
contribution of the main steps to the lagged correlation analysis, we 
conduct an ablation study that is detailed in Appendix I.
4 
For each considered lag, we calculate Spearman’s correlation be-
tween the daily state infection and hospitalization rates from June 1, 
2020, to November 29, 2021, using a center-aligned rolling window of 
61 days. We then average these correlations across all states and times 
for each lag.

The lag 𝓁 that leads to the highest average correlation is used to 
estimate the time-varying IHRs for each state. For each time 𝑡, IHR(𝑡) 
can be computed by dividing the number of individuals who were 
hospitalized due to COVID-19 on day 𝑡 by the estimated total number 
of those who were infected on day 𝑡 − 𝓁. However, to stabilize these 
IHR estimates, we use the averages of hospitalizations and infections 
within a window of 61 days centered on the date of interest (𝑡 and 𝑡−𝓁
respectively).

To evaluate the impact of window size on the resulting stabilized 
IHR and CHR estimates, we conduct a sensitivity analysis by varying 
the window size from 15 days to 91 days. The results of this analysis 
are reported in Appendix J.

The same procedure is used to compute IFRs, with a few data-driven 
adjustments. New deaths due to COVID-19 for each state and collected 
by the National Center for Health Statistics (NCHS) are reported weekly 
rather than daily. We use these death counts rather than those from 
JHU CSSE because they are aligned by the date of death not the 
date of report. Since these are weekly while the infection estimates 
are daily, we convert them to daily by proportionally allocating the 
weekly counts across the intervening days. First, all weekly totals are 
divided by 7 and missing weeks are imputed with the previous week’s 
value. Then, since each weekly total corresponds to a Sunday, we use 
a weighted combination of the preceding Sunday’s and the following 
Sunday’s values for the intervening weekdays—for example, a Tuesday 
is imputed of 5/7 of the preceding Sunday’s value and 2/7 of the 
following Sunday’s value.

To identify the optimal lag, we consider a larger range of lag values 
than for hospitalizations, from 1 to 35 days, as deaths typically follow 
hospitalization. As with the IHRs, we perform an ablation study to 
evaluate the effects of our modeling choices (Appendix K). We compute 
Spearman’s rank-based correlation between the state infection and 
death rates using a 91-day center-aligned rolling window rather than 61 
days, and proceed similarly for the construction of time-varying IFRs. 
A sensitivity analysis varying the window size from 31 to 101 days is 
provided in Appendix L.

3. Results

3.1. Infection estimates and cases-to-infections ratios across the U.S.

Prior to Omicron, the largest infection outbreaks occurred in the 
late summer and early fall of 2021 in Louisiana, Georgia, Idaho, and 
Montana (Figs.  3 to 4). During this time, the state with the highest rate 
of infections on a single day is Louisiana, with 476 infections per 100K 
(95% CI: 294, 658) on July 20, 2021. For comparison, the state’s 7-day 
average case rate peaks at 126 cases per 100K on August 13, 2021. 
Idaho follows with an infections peak of 457 per 100K (95% CI: 319, 
595) on September 7, 2021, and a case peak of 76 per 100K occurring 
shortly thereafter on September 13, 2021. The period of lowest viral 
transmission is in the summer of 2020, when Vermont has fewer than 
10 infections per 100K per week from June to August, the longest such 
lull for any state.

Nearly all states exhibit two major waves in infections—the An-
cestral wave began in the fall of 2020 and extended into the winter 
season, while the Delta wave started in the late summer of 2021 and 
continued into mid-fall. In general, greater similarities in the strength 
and magnitude of outbreaks emerge in small clusters of states that 
border each other (Idaho and Montana; North and South Carolina), 
which present waves of infections that mirror each other in amplitude 
and timing.
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Fig. 3. Estimates of the daily new infections per 100,000 population for each U.S. state from June 1, 2020 to November 29, 2021 (dark blue line). The blue shaded regions depict 
the 50, 80, and 95% intervals for the estimates, while the orange line represents the trailing 7-day average of reported cases per 100,000. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
While the Ancestral, Alpha, and Delta waves are visible for most 
states, there are clear outbreaks in unreported infections that are not 
easily detectable from cases alone. For example, a wave of infections 
is evident in North and South Dakota over the spring of 2021 that is 
virtually undetectable from reported cases. Similarly, in late-summer 
2021, the Delta wave is only faintly detectable from cases in a number 
of Northeastern states, while infections suggest that it has already 
begun in earnest.

Moreover, cases severely underestimate infections during Delta for 
many states, more so than in earlier waves (Fig.  3). The most extreme is 
New Jersey, where about 6.3% of estimated infections were eventually 
reported as cases. Similarly low are Maryland (7.3%), Nevada (8.4%), 
and South Dakota (10.0%). In 44 states, fewer than 1/3 of infections 
eventually appeared in case reports. The cases-to-infections ratio is 
larger in earlier waves, and its effects are most apparent in different 
regions. During Alpha, Louisiana has the lowest ratio of infections to 
cases (11.9%) followed by California (13.6%). Such patterns are less 
apparent during the Ancestral wave, where Ohio and Maryland have 
the lowest ratio of reported cases to infections at 21.4% and 21.7%, 
respectively.

Fig.  5 shows that using cases as a proxy for infections can lead to 
misunderstandings in the locations that are affected and the extent to 
which they are affected. For example, on October 20, 2020, while case 
rates are elevated in a handful of upper-Midwestern states (namely, 
North and South Dakota), infection rates are elevated to a similar 
extent in the surrounding states as well, indicating a wider impact than 
suggested by cases alone. On July 20, 2021, while the map of case rates 
shows low and geographically consistent impact, infection rates reveal 
that Texas, Louisiana, Georgia, and their neighbors are hotspots.

By focusing on states with elevated cases, infection outbreaks may 
be overlooked. For instance, on August 27, 2021, Montana and Idaho 
have some of the highest infection rates (Fig.  5). In contrast, their 
case rates are unremarkable (the highest case rates tend to be in the 
Southeast). Infection outbreaks tend to precede case outbreaks, though 
the lead time can vary widely. During the Delta wave, infections in 
Montana peak about 41 days before cases, while in Idaho, they peak 
5 
about 6 days before cases (Fig.  3). During the Ancestral wave, infections 
peak about 12 days earlier than cases in Montana and 24 days earlier 
in Idaho, demonstrating a notable shift in lead times.

3.2. Cross-correlations, IHRs, IFRs, CHRs, and CFRs

The maximum Spearman’s correlation between infections and hos-
pitalizations is 0.48 and occurs at a lag of 13 days (Fig.  6, left panel). 
In contrast, we find that the largest average Spearman correlation for 
cases is 0.69 and occurs at a lag of 1 day. That is, case reports are nearly 
contemporaneous to hospitalizations, while infection estimates clearly 
precede them. For infections and deaths, the maximum Spearman’s 
correlation is 0.57 and occurs at a lag of 24 days (Fig.  6, right panel), 
whereas for cases and deaths it is 0.75 at 10 days. Thus, the maximum 
correlation for infections occurs 14 days earlier than for cases.

We compute the time-varying infection-hospitalization ratios (IHRs) 
for each state using a 13-day lag and case-hospitalization ratios (CHRs) 
with a 1-day lag for comparison (Fig.  7). Overall, the relationship 
between infections and hospitalizations is complex. It is characterized 
by intermittent spikes that punctuate longer periods where the IHRs 
are relatively stable, remaining below 0.1 hospitalizations per infection. 
This pattern of stability and relative comparability across states is 
supported by the median and 95% confidence intervals for the IHRs de-
scribed in Appendix M. This trend is also evident in the IFRs, computed 
using the optimal 24-day lag. These IFRs are generally more stable and 
smaller than the corresponding CFRs, remaining below 0.02 deaths per 
infection (Fig.  8 and Appendix M).

While these trends persist for larger window sizes, it is impor-
tant to acknowledge that the window size plays an important role in 
smoothing: larger window sizes result in more smoothing, leading to 
more tapered peaks, whereas smaller window sizes reduce smoothing, 
resulting in more pronounced peaks and larger intermittent spikes, as 
detailed in Appendices J and L.

The IHRs and CHRs exhibit similar spatiotemporal trends as those 
noted above for infections. Namely, states that are proximate (for 
example, North and South Carolina) show similar temporal patterns 
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Fig. 4. Panel A: Reported cases (orange) and estimates of daily new infections (dark blue) per 100K inhabitants. The blue shaded regions indicate 50, 80, and 95% confidence 
bands. Panel B: Deconvolved cases colored by variant per 100K inhabitants. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
Fig. 5. Choropleth maps of the state-level estimates of daily new cases per 100K (top row) and daily new infections per 100K (bottom row) for five select dates between June 1, 
2020 and November 29, 2021. Note that the first date is chosen as a baseline, while the other dates are chosen because they present large counts of infections across all states. 
In particular, the third and fifth dates show the largest number of total infections across the 50 states within those calendar years. For a more dynamic visualization of the case 
and infection trends over time, videos depicting the infection and case choropleth maps over the entire period are available in the GitHub repository for this work.
in IHRs and CHRs. In addition, similar spikes are evident across many 
states during waves of infections that are driven by variants of concern. 
Many states exhibit a striking increase in hospitalizations in mid-2021, 
which coincides with the rapid takeover of the Delta variant (Hodcroft, 
2021). These trends are less pronounced in the IFRs and CFRs, with 
notable exceptions such as North and South Dakota, where there is a 
sharp spike in IFRs and CFRs in mid-2021, also coinciding with the 
spread of the Delta variant.
6 
4. Discussion

We retrospectively estimated daily incident infections for each U.S. 
state over the period June 1, 2020 to November 29, 2021. Our estimates 
support the intuition that the pandemic impacted states earlier and at 
a larger scale than is indicated by reported cases. They also empha-
size that using cases as a proxy for infections can lead to erroneous 
conclusions about trends in infections. More importantly, we observe 
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Fig. 6. Left panel: Spearman’s rank correlation between each of infections and cases with hospitalizations per 100,000. A rolling window of 61 days is applied before averaging 
across all states and times for each lag. Right panel: Spearman’s rank correlation between each of infections and cases with deaths per 100,000. A rolling window of 91 days is 
applied before averaging across all states and times for each lag. Both panels: The vertical dashed lines indicate the lags for which the highest average correlation is attained.
Fig. 7. Time-varying IHR and CHR estimates for each state from June 2020 to November 2021, calculated using the correlation-maximizing lags from Section 3.2. Note that the 
infection, case, and hospitalization counts are subject to a center-aligned 7-day average to remove spurious day of the week effects. Also note that the different starting points 
across states are due to the availability of the hospitalization data.
outbreaks in infections that are missed from inspecting cases alone such 
as the Delta wave in New Jersey, Connecticut, and Maryland. These 
sorts of omissions serve to emphasize that cases paint an incomplete 
picture of the pandemic, especially when outbreaks are largely driven 
by unreported infections. Furthermore, since case reports generally 
follow symptom and infection onsets, cases have a built-in temporal 
bias. This is in addition to other biases from differences in reporting 
across states such as temporary bottlenecks due to influxes of data or 
more persistent processing issues that increase the average time from 
case detection to report (Washington State Department of Health, 2020; 
Dunkel, 2020). Thus, while reported cases provide an indication of the 
trajectory of the pandemic, it is delayed and incomplete.

Case reporting varied widely over time and across locations glob-
ally, not just in the U.S., leading to misrepresentations of disease burden 
and complicating the development of evidence-based policy decisions. 
This geographical variation, driven by differing testing capacities and 
reporting standards, makes it difficult to establish accurate infection 
trends and investigate appropriate responses. Misleading spatial pat-
terns of reported cases, such as overrepresentation in some areas and 
underrepresentation in others (a glimpse of which was shown in Fig. 
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5), further exacerbate the difficulty in evaluating the true scope of the 
pandemic and likely hindered effective policy decisions.

While countries like England addressed these case-based challenges 
through large-scale infection-prevalence surveys (e.g. the REACT-1 
study, Imperial College London, 2022), these efforts are limited by 
the biases inherent to the study design, specifically those related to 
response rates and population coverage. For example, the response 
rate varied between 11.7% and 30.5% in REACT-1, with demographic 
variation, particularly in relation to age (Elliott et al., 2023). Addition-
ally, such studies are expensive to design and implement, requiring 
substantial funding for participant recruitment, data collection, and 
analysis. Costs are further compounded due to comprehensive national 
sampling as well as mass PCR-based testing (Pavelka et al., 2021). 
By leveraging routine data streams, our methodology provides a less 
expensive, more sustainable way to track infections over time. Thus, 
our approach has the potential to be adapted into a cost-effective, real-
time alternative for pandemic monitoring, offering timely estimates to 
inform policymakers and overcoming the biases seen in case reporting.

Though this paper focused on retrospective estimation, this ap-
proach could be extended to the real-time case. However, such an 
extension would be challenging due to data-driven issues, particularly 
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Fig. 8. Time-varying IFR and CFR estimates for each state from June 2020 to November 2021, calculated using the correlation-maximizing lags from Section 3.2. Note that the 
infection, case, and death counts are calculated with a center-aligned 7-day average to remove spurious day of the week effects.
reporting delays and right censoring. For instance, Jahja et al. (2022) 
explores estimating infections in real-time using the CDC line list 
data set in a similar deconvolution-based approach. They highlight 
complexities with using this data set for estimation, including monthly 
updates and right censoring. To handle the right censoring problem, 
they created a Kaplan–Meier-like method and they applied specialized 
regularization techniques to manage fluctuations in estimates around 
the date of interest. Similar techniques would likely need to be applied 
to manage the CDC line list dataset if we were to extend our approach 
to a real-time analysis. For a brief overview of the other main data 
sources we used, their data collection period, update frequency, and 
major sources of delay, which are factors that would likely impact 
right censoring and increase volatility in real-time estimation, see 
Appendix A.

Our approach offers a number of additional advantages. By in-
corporating state-level case, line list, and variant circulation data, 
we are able to construct incubation and delay distributions that are 
spatiotemporally specific. Time-varying and state-specific seropreva-
lence data allows the reporting ratio estimates to similarly vary over 
space and time, a departure from existing work (Unwin et al., 2020; 
Center for the Ecology of Infection Diseases, 2020). Unlike previous 
approaches that use a single delay distribution to generate estimates 
for all states (Chitwood et al., 2022; Jahja et al., 2022; Miller et al., 
2022), our work avoids this assumption of geographic invariance, 
an assumption that is far from realistic due to differences in the 
reporting pipelines, pandemic response, and variants in circulation, 
among other things. Similarly, prior methodology relies on only one 
incubation period distribution (Miller et al., 2022), whereas our method 
incorporates variant-specific incubation periods. This enhances our 
infection onset estimation by accounting for the differences across 
variants–specifically, that newer variants tend to have shorter incu-
bation periods (Tanaka et al., 2022; Ogata et al., 2022; Wu et al., 
2022).

Another limitation of previous approaches to estimate infections 
is that they often fail to account for reinfections. While reinfections 
constitute a small portion of the total infections until the arrival of high 
immune-escape variants (Omicron BA.1), disregarding them means 
that the infection-reporting ratio will tend to be underestimated with 
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seroprevalence data alone. By accounting for reinfections as well as 
the waning of seropositivity, we more accurately estimate this ratio. 
Future work could further refine this analysis. Because the waning of 
immunity is likely to be variant-dependent (Pooley et al., 2023), our 
model’s single waning parameter would be more accurately estimated 
as a mixture of variant-specific parameters with weights determined by 
the proportion of the variants circulating.

While we did consider the waning of seropositivity in our modeling 
procedure, we did not explicitly consider the relationship between the 
epidemic growth rates and the probability of positive tests. Specifically, 
during upswings in an epidemic, a greater proportion of infections 
come from individuals early in their infection, who have higher viral 
loads and are more likely to test positive (Frediani et al., 2024). During 
a decline, the opposite occurs. This dynamic relationship between 
infection stage, viral load, and test positivity has been well-described 
by Hay et al. (2021). This effect may be substantial and could influence 
the accuracy of the deconvolved case and infection estimates, especially 
during rapid changes in the epidemic trajectory.

Another area for potential improvement is the use of the constant-
lag relationship between infections and hospitalizations. We used a 
single lag in our analysis, emphasizing the contrast between case-
based calculations and those based on estimated infections. However, 
using a single lag is problematic as it is likely to vary over space and 
time (Imperial College London, 2022) due to changing variants, local 
public health availability, and policy decisions, among other reasons. 
Additionally, this fixed lag of estimator is likely to create bias, even 
if correctly specified, and should generally be avoided (Goldwasser 
et al., 2024). Future work could explore multiple lags or heterogeneous 
convolutional estimators (Overton et al., 2022) using distributions of 
delays rather than single lags.

Another aspect of our analysis that warrants consideration is the 
time period under study. We chose to end our analysis on November 29, 
2021, for two main reasons. The first is that Omicron and subsequent 
variants come with substantial increases in the risk of reinfection 
in comparison to previous variants, likely due to increased immune 
escape (Wei et al., 2024; Pulliam et al., 2022; Eythorsson et al., 2022). 
Access to reinfection data that is representative of each location under 
study is paramount for extending the analysis. While it would be ideal 
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to use the reinfection rates over time for each U.S. state, many states do 
not publicly report reinfection data over the entire time period under 
examination, if at all.

The second reason is that the case-ascertainment ratio after Decem-
ber 2021 can no longer be estimated with seroprevalence data alone. 
Specifically, while most state-level data suggests that reinfections still 
account for less than 20% of reported cases during Omicron (Ruff et al., 
2022; New York State Department of Health, 2023; Hawaii Depart-
ment of Health, 2022; Washington State Department of Health, 2022), 
seropositivity rapidly reaches nearly 100% of the population. There-
fore, alternative data sources for estimating the case-ascertainment 
ratio must be considered. For example, wastewater surveillance data 
may be complementary to seroprevalence data, especially when testing 
is low, or serve as a substitute when it is unavailable (McManus et al., 
2023). An alternative approach could integrate surveillance streams 
from surveys, helplines, or medical records if they offer a sufficiently 
strong signal of the disease intensity over time (Reinhart et al., 2021; 
European Centre for Disease Prevention and Control, 2020).

Our work develops a deconvolution-based approach to inferring in-
fection onset, combining available line list data with variant circulation 
estimates and literature derived incubation periods. This approach is 
complemented with the development of a model that incorporates wan-
ing detectable antibody levels and major seroprevalence surveys. The 
resulting infection estimates as well as their geospatial and temporal 
trends are strongly grounded in both data and statistical models.

These well-informed, localized estimates of COVID-19 infections 
provide a clear and comprehensive understanding of the pandemic’s 
progression over time. They contribute important information on the 
timing and magnitude of the disease burden for each location, and 
highlight trends that may not be visible from reported case data alone. 
Therefore, these infection estimates provide key information for the 
ongoing investigation on the true size and impact of the pandemic.
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