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In this paper, we study the statistical properties of Principal Components Regression with Laplacian
Eigenmaps (PCR-LE), a method for non-parametric regression based on Laplacian Eigenmaps (LE).
PCR-LE works by projecting a vector of observed responses Y = (Y1, . . . , Yn) onto a subspace spanned
by certain eigenvectors of a neighbourhood graph Laplacian. We show that PCR-LE achieves minimax
rates of convergence for random design regression over Sobolev spaces. Under sufficient smoothness
conditions on the design density p, PCR-LE achieves the optimal rates for both estimation (where the
optimal rate in squared L2 norm is known to be n−2s/(2s+d)) and goodness-of-fit testing (n−4s/(4s+d)).
We also consider the situation where the design is supported on a manifold of small intrinsic dimension m,
and give upper bounds establishing that PCR-LE achieves the faster minimax estimation (n−2s/(2s+m))
and testing (n−4s/(4s+m)) rates of convergence. Interestingly, these rates are almost always much faster
than the known rates of convergence of graph Laplacian eigenvectors to their population-level limits; in
other words, for this problem regression with estimated features appears to be much easier, statistically
speaking, than estimating the features itself. We support these theoretical results with empirical evidence.

Keywords: Laplacian Eigenmaps; non-parametric regression; principal components regression; Sobolev
space; minimax rates.

1. Introduction

Laplacian Eigenmaps (LE) [8] is a method for nonlinear dimensionality reduction and data representa-
tion. Given data points {X1, . . . , Xn} ⊂ R

d, LE maps each Xi to a vector (v1,i, . . . , vK,i) according to the
following steps.

1. First, LE forms a neighbourhood graph G = (V , W) over the points {X1, . . . , Xn}. The graph G
is an undirected, weighted graph, with vertices V = {X1, . . . , Xn}, and weighted edges Wij which
correspond to the proximity between points Xi and Xj.

2. Next, LE forms an (unweighted) graph Laplacian matrix L ∈ R
n×n, a symmetric and diagonally

dominant matrix with diagonal elements Lii =
∑n

j=1 Wij, and off-diagonal elements Lij = −Wij.
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3. Finally, LE takes the eigendecomposition L = ∑n
k=1 λkvkv�k , and outputs the vectors

(v1,i, . . . , vK,i) ∈ R
K for each i = 1, . . . , n.

A natural way to use LE is by taking the collection of vectors {(v1,i, . . . , vK,i)}ni=1 to be features in a
downstream regression algorithm. In this paper, we study a simple method along these lines: Principal
Components Regression with Laplacian Eigenmaps (PCR-LE), a method for non-parametric regression
which operates by running ordinary least squares (OLS) using the features output by LE. Given pairs of
design points and responses (X1, Y1), . . . , (Xn, Yn), PCR-LE computes an estimate f̂ ∈ R

n,

f̂ := argmin
f∈span{v1,...,vK}

‖Y− f‖2
2, (1.1)

where Y = (Y1, . . . , Yn) ∈ R
n is the vector of responses and ‖ · ‖2 denotes the usual Euclidean norm in

R
n. (For a formal definition of LE and PCR-LE, see Section 2.2.)

LE has been practically very successful, and by now has been used for various statistical tasks such
as spectral clustering, manifold learning, level-set estimation, semi-supervised learning, etc. At this
point there exists a rich literature [9, 15, 16, 19, 23, 27, 28, 44, 59, 60, 69] explaining this practical
success from a theoretical perspective. Loosely speaking, these works model the design points as being
independent samples from a distribution P with density p, and show that in this case the eigenvectors of
the graph Laplacian L are good empirical approximations of population-level objects. These population-
level objects are eigenfunctions ψk—meaning solutions, along with eigenvalues ρk, to the equation
ΔPψk = ρkψk—of a density-weighted Laplacian operator defined via

ΔPf := −1

p
div(p2∇f ). (1.2)

(Here div stands for the divergence operator, and ∇ for the gradient. See (2.4) for the formal definition
of (ρk, ψk).) These eigenfunctions in turn characterize various interesting structural aspects of p, such
as the location and number of high- and low-density regions, the shape and intrinsic dimension of its
support and so forth.

These aforementioned works justify LE as method for data representation, by establishing that
each feature vector (v1,i, . . . , vK,i) serves an empirical approximation to an idealized representation
(ψ1(Xi), . . . , ψK(Xi)). They also provide quantitative guarantees for the accuracy with which LE
approximates this ideal representation. However, this theory does not focus on the statistical properties
of PCR-LE for classical regression problems such as estimation and testing. That is the major question
we address in this paper. We adopt the usual model of non-parametric regression with random design,
where one observes independent pairs (X1, Y1), . . . , (Xn, Yn) of design points and responses. We assume
the design points {X1, . . . , Xn} are sampled from an unknown distribution P supported on X ⊆ R

d, and
the responses follow a signal plus Gaussian noise model,

Yi = f0(Xi)+ wi, wi ∼ N(0, 1), (1.3)

with noise variables wi independent of design points Xi. The regression function f0 is unknown but
assumed to belong to a Sobolev space Hs(X ). We consider two settings: one where X is a full-
dimensional domain, and the other where X is a low-dimensional submanifold of Rd. In each setting,
we derive upper bounds which imply that the PCR-LE estimate f̂ and a test using the statistic T̂ = ‖̂f‖2

2
are statistically optimal methods for two classical problems in non-parametric regression: estimation and
goodness-of-fit testing.
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Sobolev spaces and spectral series regression. To analyse PCR-LE, we work in a classical situation
where the regression function is assumed to belong to a (Hilbert-)Sobolev space. For an open domain
X ⊆ R

d, the Sobolev space Hs(X ) consists of all functions f ∈ L2(X ) which are s-times weakly
differentiable, with all order-s partial derivatives Dαf ∈ L2(X ). We study regression over Sobolev
spaces in part because, generally speaking, the minimax rates are well understood; as mentioned before,
when the domain X is full-dimensional they are n−2s/(2s+d) for estimation, and n−4s/(4s+d) for testing.
For this reason, regression over Sobolev spaces is a good setting to see whether PCR-LE measures up to
more standard minimax optimal approaches, which have strong theoretical guarantees but are less often
used in practice. We give a more specific comparison between PCR-LE and some of these more classical
methods in Section 6.

We also view PCR-LE as being particularly well suited for regression over Sobolev spaces due to
their close connection with spectral series regression. Spectral series regression computes generalized
empirical Fourier coefficients ãk := 1

n

∑n
i=1 Yiψk(Xi), and truncates to the K-lowest frequency

eigenfunctions of ΔP, producing the estimate

f̃ (x) =
K∑

k=1

ãkψk(x). (1.4)

Spectral series regression is intrinsically linked with Sobolev spaces. That is because under appropriate
boundary conditions, a ball in the order-s Sobolev space consists of functions f = ∑

k akψk ∈ L2(X )

for which the generalized Fourier coefficients {ak}∞k=1 satisfy the decay condition
∑

k a2
kρ

s
k ≤ C (See

Section 2.3 for more details). This decay condition justifies the truncated series estimator (1.4), since
it means the truncation will incur only a limited amount of bias for any f0 ∈ Hs(X ). For this reason
spectral series regression over Sobolev spaces has been well-studied—at least when X = [0, 1]d—since
at least Rice [51],1 and its optimality properties are by this point generally well understood.

PCR-LE serves as an empirical approximation to spectral series regression, since as already
mentioned the eigenvectors vk are empirical approximations to the eigenfunctions ψk of ΔP. Viewed
in this light, a major advantage of PCR-LE is that it operates without needing knowledge of the design
distribution P. This is an advantage because in our context P is an unknown and potentially complex
distribution: for example, it can be highly non-uniform, have a complicated support which may be a
submanifold of Rd or both. In contrast, spectral series regression relies on diagonalizing the density-
weighted Laplacian ΔP, and in our context must be viewed as an oracle method; to emphasize this
we henceforth refer to the estimator defined in (1.4) as population-level spectral series regression. On
the other hand, intuitively PCR-LE incurs some extra error using an empirical approximation to the
underlying basis {ψk}∞k=1: our work shows that in many cases, this extra error is not enough to change
the overall rate of convergence.

1.1 Main contributions

Summarized succinctly, our main contribution is to theoretically analyse non-parametric regression
with PCR-LE and establish upper bounds which imply that this method often achieves optimal rates
of convergence over Sobolev spaces.

1 And proposed much earlier in the context of density estimation by Čencov [67].
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Rates of convergence: population-level spectral series regression. As we have already mentioned, the
minimax optimal rates over Sobolev spaces are generally well known, as are upper bounds for population-
level spectral series methods which match these rates. However, we could not find precisely stated results
applying to our setting, which is quite general in the following respects.

• We consider Sobolev spaces Hs(X ) for all combinations of s and d. This includes the subcritical
regime where the smoothness parameter s satisfies s < d/2; in this regime Hs(X ) does not
continuously embed into the space of continuous functions C0(X ).

• We consider general design distributions P, which may satisfy certain regularity conditions but are
not limited to being, say, the uniform distribution over [0, 1]d.

For completeness, we analyse population-level spectral series methods in this general setting, and
establish upper bounds showing that such methods converge at the ‘usual’ rates of n−2s/(2s+d) for
estimation and n−4s/(4s+d) for testing. This analysis relies heavily on certain asymptotic properties of the
continuum eigenfunctions ψk and eigenvalues ρk, which hold for quite general second-order differential
operators L including the density-weighted Laplacian L = ΔP.

Rates of convergence: PCR-LE. The rest of our results consist of various upper bounds on the rates of
convergence for the PCR-LE estimator f̂ , and a test using the statistic ‖̂f‖2

2. These upper bounds quantify
how PCR-LE can take advantage of either smooth higher order derivatives, low intrinsic dimension of
the design distribution or both, in an optimal manner. We consider two kinds of assumptions for the
design distribution P, which we refer to as the flat Euclidean and manifold settings. In the first case we
suppose the design distribution P has support X which is a full-dimensional set in R

d, and that the true
signal f0 lies in a ball in the Sobolev space Hs(X ), (See Section 2.1 for the formal assumptions.) In this
case our main contributions are as follows:

• We show that the PCR-LE estimator f̂ has in-sample mean-squared error on the order of n−2s/(2s+d),
for any number of derivatives s ∈ N and dimension d (Theorems 1 and 3).

• We show that a test based on the statistic ‖̂f‖2
2, calibrated to have controlled type I error, has non-

trivial power so long as the squared L2 norm of f0 is at least n−4s/(4s+d), for any number of derivatives
s ∈ N and dimension d ∈ {1, 2, 3, 4} (Theorems 2 and 4).

We then consider the behaviour of PCR-LE in the manifold setting, where the design distribution is
supported on an (unknown) domain X which is a submanifold of Rd of intrinsic dimension m ∈ N, m <

d. (Again see Section 2.1 for the formal assumptions.) In this case, our main contributions are as follows:

• We show that the PCR-LE estimator f̂ has in-sample mean squared error of at most n−2s/(2s+m), when
s ∈ {1, 2, 3} and for any m ∈ N (Theorem 7).

• We show that a test based on the statistic ‖̂f‖2
2, calibrated to have controlled type I error, has non-

trivial power so long as the squared L2 norm of f0 is at least n−4s/(4s+m), when s ∈ {1, 2, 3} and
m ∈ {1, 2, 3, 4} (Theorem 8).

To the best of our knowledge, the minimax rates for non-parametric regression with random design
over unknown manifolds have only been worked out for Hölder classes, and even in this case the
calculations are only for s ≤ 2 bounded derivatives [12, 73]. Our upper bounds confirm that these
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Table 1 Summary of PCR-LE estimation rates over Sobolev balls. The bold font marks minimax
optimal rates. In each case, rates hold for all d ∈ N (in the flat Euclidean setting), and for all
m ∈ N, 1 < m < d (in the manifold setting). Although we suppress it for simplicity, in all cases when
the PCR-LE estimator is optimal, the dependence of the error rate on the radius M of the Sobolev ball
is also optimal.

Smoothness order Flat Euclidean Manifold

s ≤ 3 n−2s/(2s+d) n−2s/(2s+m)

s > 3 n−2s/(2s+d) n−6/(6+m)

Table 2 Summary of PCR-LE testing rates over Sobolev balls. The bold font marks minimax optimal
rates. Rates when d > 4s assume that f0 ∈ L4(X ), and depend on ‖f0‖L4(X ). Although we suppress it
for simplicity, in all cases when other PCR-LE test is optimal, the dependence of the error rate on the
radius M of the Sobolev ball is also optimal.

Smoothness
order

Dimension Flat Euclidean Manifold

s = 1 dim(X ) < 4 n−4s/(4s+d) n−4s/(4s+m)

dim(X ) ≥ 4 n−1/2 n−1/2

s = 2 or 3 dim(X ) ≤ 4 n−4s/(4s+d) n−4s/(4s+m)

4 < dim(X ) < 4s n−2s/(2(s−1)+d) n−2s/(2(s−1)+m)

dim(X ) ≥ 4s n−1/2 n−1/2

s > 3 dim(X ) ≤ 4 n−4s/(4s+d) n−12/(12+d)

4 < dim(X ) < 4s n−2s/(2(s−1)+d) n−6/(4+m)

dim(X ) ≥ 4s n−1/2 n−1/2

rates are the same for Sobolev spaces—in estimation, when loss is measured in empirical norm—for the
values of s and m mentioned above.

In all these cases, our bounds also depend optimally on the radius M of the Sobolev ball under
consideration. However, for some values of s (number of derivatives) and d (dimension), there do exist
gaps between our upper bounds on the error of PCR-LE and the minimax rates. Although we do not give
corresponding lower bounds verifying the tightness of our analysis, we believe these gaps reflect the true
behaviour of the method rather than some looseness in our analysis, and we comment more on this at
relevant parts in the text. For completeness, we summarize all of our upper bounds—those which match
the minimax rates, and those which do not—in Tables 1 and 2.

Perspective: regression error versus feature reconstruction. We now pause for a moment, to emphasize
that in a certain respect the aforementioned rates of convergence for PCR-LE are quite surprising.
Remember that PCR-LE is a regression method using features (eigenvectors vk of the graph Laplacian
L) which are themselves empirical estimates of population-level quantities (eigenfunctions ψk of the
density-weighted Laplacian ΔP). It seems reasonable to expect that the error of PCR-LE should be
decomposed into two parts: first, the error with which these empirically derived features estimate their
continuum limits; second, the error with which, given ideal population-level features, the regression
function is estimated.
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2428 A. GREEN ET AL.

Crucially, our analysis does not work in this way. This is important because all known upper bounds
on the rates at which vk → ψk as n → ∞ are much slower than the minimax rates for regression
over Sobolev classes. For instance, the best currently known upper bound on the empirical L2 error
1
n

∑n
i=1(

√
nvk,i − ψk(Xi))

2 is only of the order of n−2/(4+d) [19], which is slower than the minimax
estimation rate over Hs(X ) for any s ∈ N, s ≥ 1.2 Although this upper bound may not reflect the
true rate of convergence of graph Laplacian eigenvectors—this is still an active area of research, and
no lower bounds are known—it seems very unlikely that the true rate matches the minimax estimation
rate n−2s/(2s+d), which after all approaches the dimension-free rate 1/n for large values of s. The bottom
line is that the rate at which graph Laplacian eigenvectors are known to converge to density-weighted
Laplacian eigenfunctions is too slow to explain the upper bounds we establish for PCR-LE.

Instead of relying on convergence of eigenvectors to eigenfunctions, our analysis proceeds via a
bias-variance decomposition at the level of the graph. As usual for OLS estimates, the variance term
depends only on the degrees of freedom df(̂f ) = tr(VKV�K ) = K. More surprisingly, the bias can also
be upper bounded without appealing to concentration of eigenvectors v1, . . . , vK around eigenfunctions
ψ1, . . . , ψK ; for instance, we show in Lemma C.1 that for estimation the squared bias is at most of the
order of f�0 Lsf0/(nλs

K+1).
Ultimately, our upper bound on the error of PCR-LE is determined entirely by a pair of graph

functionals: the quadratic form f�0 Lsf0, and the graph Laplacian eigenvalue λK+1. This brings a couple
of advantages:

• First, it eliminates the need to analyse convergence of eigenvectors to eigenfunctions, which is critical
in order to get sufficiently fast rates of convergence for PCR-LE, as we have already explained.
Instead, we only have to consider these two graph functionals, both of which are known to converge
at faster rates than graph Laplacian eigenvectors.

• Second, in order to obtain upper bounds on ‖̂f − f0‖2
n we do not require that these graph functionals

themselves converge to population-level limits, but only that they be stochastically bounded on the
right order. The latter is a much weaker requirement.

To derive our upper bounds on the error of PCR-LE, we directly analyse the quadratic form f�0 Lsf0
and the eigenvalue λK+1, using some existing results as well as deriving some new ones which may be
of independent interest.

To summarize, our work demonstrates, broadly speaking, that regression using estimated features
can be analysed independently from the estimation error of the features themselves. Regression using
learned features—that is, a feature representation derived from the data itself—is a general and widely
applied paradigm, and we believe this observation may have consequences outside of its application to
PCR-LE in this work.

1.2 Related work

Laplacian smoothing. In a previous paper [31], we (the authors) considered an alternative method for
non-parametric regression via neighbourhood graphs: Laplacian smoothing, defined as the solution to

2 To make matters worse, PCR-LE, when deployed optimally, does not use a single eigenvector vk for a fixed index k ∈ N, but
rather many eigenvectors v1, . . . , vK with K growing in n. As K grows larger, the rate at which vK → ψK gets slower, since the
population-level object being estimated is less regular; see [15, 28].
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the following optimization problem,

minimize
f∈Rn

‖Y− f‖2
2 + λf�Lf . (1.5)

Laplacian smoothing is a penalized method for regression, where the penalty functional f�Lf serves as
a discrete approximation to the continuum functional J(f ) := ∫ ‖∇f (x)‖2p2(x) dx [13]. In the univariate
setting (d = 1), this casts Laplacian smoothing as a discrete and density-weighted alternative to a first-
order thin-plate spline estimator, which is defined as the solution to

minimize
f∈H1(R)

1

n

n∑
i=1

(Yi − f (Xi))
2 + J(f ). (1.6)

When d = 1 the first-order thin-plate spline estimator enjoys excellent theoretical properties, such as
being minimax optimal over the first-order Sobolev space H1(R). However, when d ≥ 2 the story
changes dramatically: the problem (1.6) is in fact not even well-posed.3 In contrast, in this previous
paper, we showed that Laplacian smoothing was a well-posed and consistent estimator for any (fixed)
dimension d, and achieved minimax optimal rates for estimation and testing so long as d ∈ {1, 2, 3, 4}.

However, Laplacian smoothing neither takes advantage of smooth higher order derivatives, nor is it
provably optimal over H1(X ) for dimensions d ≥ 5. One of our motivations for considering PCR-LE
was to find an estimator which addressed these deficiencies. In this work we indeed establish that PCR-
LE has much stronger optimality properties than those we derived for Laplacian smoothing, or indeed
those known for any other method of regression using neighbourhood graphs.

One way to interpret this difference between PCR-LE and Laplacian smoothing is to view the latter as
a ridge regression problem. This follows from writing the Laplacian smoothing penalty as a (weighted)
ridge penalty in the spectral domain, f�Lf = ∑n

k=1 λk(v
�
k f )2. Dhillon et al. [20] establish conditions

under which principal components regression can have smaller risk than ridge regression using the same
set of features. Viewed in this light, our work shows this phenomenon occurs when the features are
eigenvectors of a neighbourhood graph Laplacian and the estimand is a function in Sobolev space. It
also establishes that principal components regression can obtain the minimax rate of convergence even
when ridge fails to do so. Interestingly, this is not the case if the function class in question is an RKHS
[21], and further motivates the study of regression over Sobolev spaces in the subcritical regime, where
surprising new phenomena emerge.

Other related work.Much of the work regarding regression using neighbourhood graph Laplacians deals
with semi-supervised learning, where in addition to the labelled data (X1, Y1), . . . , (Xn, Yn) one observes
unlabelled points (Xn+1, . . . , XN), and the task is to produce an estimate at labelled and unlabelled points
alike. To this end, the landmark paper of [75] proposed to interpolate the observed values by harmonic
extension, i.e. compute the Laplacian matrix LN corresponding to a graph formed over all design points
X1, . . . , XN , and then solve the constrained problem

minimize
f∈RN

f�LNf subject to fi = Yi for i = 1, . . . , n.

3 This can be explained by reference to the Sobolev Embedding Theorem, since it is an implication of this theorem that
convergence of a sequence of functions {fN }N∈N → f in first-order Sobolev norm implies pointwise convergence only when
d = 1.
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Conventional wisdom says that harmonic extension is sensible only when the responses are noiseless,
Yi = f0(Xi), and that in the noisy setting one should instead solve the penalized formulation

minimize
f∈RN

n∑
i=1

(Yi − fi)
2 + λf�LNf . (1.7)

Notwithstanding their intuitive appeal, both the constrained and penalized problems have issues when
d > 1 and n/N → 0: the estimates tend towards degeneracy, meaning they are ‘spiky’ at labelled data
points and close to constant everywhere else [17, 18, 48]. One solution to this problem is to instead use
LE for semi-supervised learning (SSL-LE), i.e. compute the eigendecomposition LN =

∑N
k=1 λkuku�k

and, letting U ∈ R
n×K be the matrix with entries Uik = uk,i and columns U1, . . . , UK , solve the problem.

minimize
f∈span{U1,...,UK}

n∑
i=1

(Yi − fi)
2. (1.8)

[46, 74] analyse SSL-LE in a particular asymptotic regime where the number of labelled points n is held
fixed while the number of unlabelled points N−n →∞. They show that the SSL-LE estimator achieves
minimax optimal rates—as a function of the number of labelled points n—over Sobolev spaces. However,
in the particular asymptotic regime when n is fixed and N−n →∞, the n lowest frequency eigenvectors
of the graph Laplacian LN all converge to their continuum limits. Consequently, the SSL-LE estimator
converges to the population-level spectral series estimator, and the analysis of SSL-LE reduces to that
of the population-level method. As we have already explained, the supervised setting (where N = n) we
consider in this work is very different, and analysing PCR-LE necessitates an entirely different approach,

In this supervised setting, there has been relatively little work regarding random design regression
with neighbourhood graph Laplacians. Aside from our own work on Laplacian smoothing, summarized
above, we highlight two other related papers: Lee et al. [46], who analyse a variant of PCR-LE, but derive
suboptimal rates of convergence, and García Trillos and Murray [26], who study Laplacian smoothing
and establish the uniform upper bound maxi=1,...,n |f̌ (Xi)− f0(Xi)| ≤ Cn−1/(2+d) under the assumption
f0 ∈ C2(X ), which is slower than the minimax rate (log n/n)−2/(4+d) for this function class [65].

Most work on supervised learning using graphs adopts a fixed design perspective, treating the design
points X1 = x1, . . . , Xn = xn as vertices of a fixed graph, and carrying out inference with respect to
the conditional mean vector (f0(x1), . . . , f0(xn)). In this setting, matching upper and lower bounds have
been established that certify the optimality of graph-based methods for estimation [38, 42, 43, 53, 54,
71]) and testing [55–58] over different ‘function’ classes (in quotes because these classes really model
the n-dimensional vector of evaluations). This setting is quite general, because the graph need not be a
geometric graph defined on a vertex set which belongs to Euclidean space. On the other hand, depending
on the data collection process, it may be unnatural to model the design points as being a priori fixed, and
the estimand as being a vector which exhibits a discrete notion of ‘smoothness’ over this fixed design.
Instead, we adopt the random design perspective, and seek to estimate a function that we assume exhibits
a more classical notion of smoothness.

Roadmap. We now outline the structure of the rest of this paper. In Section 2, we give our formal
modelling assumptions, and precisely define the PCR-LE estimator and test we study. Propositions 1
and 2, in Section 2.3, show that under rather general (non-parametric) conditions on the design
distribution, population-level spectral series methods achieve minimax rates of convergence over
Sobolev classes. Then in Sections 3 and 4 we give our main upper bounds on the error of PCR-LE.
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These upper bounds (summarized above) hold under similarly general conditions, and imply that the
PCR-LE estimator and test are also minimax rate-optimal. In Section 5 we examine the empirical
behaviour of PCR-LE, and show that even at moderate sample sizes PCR-LE is competitive with
population-level spectral series regression. We conclude with some discussion in Section 6.

Notation. We now introduce some notation; for ease of reference, we include a table summarizing
notation in Appendix A.

We frequently refer to various classical function classes, starting with the Lebesgue space L2(X ),
defined differently depending on whether X ⊆ R

d is a full-dimensional open set or a compact
Riemannian manifold. When X ⊆ R

d is a full-dimensional open set, letting dν denote the Lebesgue
measure, the space L2(X ) refers to the set of ν-measurable functions f for which ‖f‖2

L2(X )
:= ∫

f 2 dν <

∞. When X is a compact Riemannian manifold, letting dμ denote the volume form induced by the
embedding of X into R

d, the space L2(X ) refers to the set of μ-measurable functions f for which
‖f‖2

L2(X )
:= ∫

f 2 dμ < ∞. We also define an inner-product over these spaces: for a measure P which

admits a density p with respect to ν, we define 〈f , g〉P := ∫
f (x)g(x)p(x) dν(x); likewise, if P admits a

density p with respect to μ, 〈f , g〉P := ∫
f (x)g(x)p(x) dμ(x). We refer to the norm ‖f‖2

P := 〈f , f 〉P as
the squared L2(P)-norm. The inner product 〈f , g〉P and squared norm ‖f‖2

P have empirical counterparts
〈f , g〉n = 1

n

∑n
i=1 f (Xi)g(Xi) and ‖f‖2

n = 1
n

∑n
i=1[f (Xi)]

2.
We use Ck(X ) to refer to functions which are k times continuously differentiable in X , either

for some integer k ≥ 1 or for k = ∞. We let C∞c (X ) represent those functions in C∞(X ) with
support V compactly contained in X , meaning V is compact and V ⊆ X . We write ∂f /∂ri for the
partial derivative of f in the ith standard coordinate of Rd, and use the multi-index notation Dαf :=
∂ |α|f /∂α1x1 . . . ∂αd xd for multi-indices α ∈ N

d. Recall that for a given multi-index α ∈ N
d, a function f

is α-weakly differentiable if there exists some h ∈ L1(X ) such that∫
X

hg = (−1)|α|
∫
X

fDαg, for every g ∈ C∞c (X ).

If such a function h exists, it is the αth weak partial derivative of f , and denoted by Dαf := h. For
functions f which are |α|-times classically differentiable, this coincides with the classical definition of
derivative, and so we use the same notation for both.

For a vector v ∈ R
n, we write ‖v‖ = ‖v‖2 for Euclidean norm and |v| = ‖v‖1 for 	1 norm; we will

sometimes abuse notation by taking ‖v‖2
n = 1

n‖v‖2. We let dX (x′, x) be the geodesic distance between
points x and x′ on a manifold X . Then for a given δ > 0, B(x, δ) is the radius-δ ball with respect
to Euclidean distance, whereas BX (x, δ) is the radius-δ ball with respect to geodesic distance. Letting
Tx(X ) be the tangent space at a point x ∈X , we write Bm(v, δ) ⊂ Tx(X ) for the radius-δ ball centred
at v ∈ Tx(X ).

For sequences (an) and (bn), we use the asymptotic notation an � bn to mean that there exists a
number C such that an ≤ Cbn for all n. We write an � bn when an � bn and bn � an. On the other
hand we write an = o(bn) when lim an/bn = 0, and likewise an = ω(bn) when lim an/bn = ∞. Finally
a ∨ b := max{a, b} and a ∧ b := min{a, b}.

2. Preliminaries

We begin in Sections 2.1–2.2 by precisely defining the models (random design points, Sobolev regression
functions) and methods (PCR-LE) under consideration. Then in Section 2.3, we analyse the behaviour
of population-level spectral series regression.
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2.1 Non-parametric regression over Sobolev spaces

As mentioned, we will always operate in the usual setting of non-parametric regression with ran-
dom design. We observe independent random samples (X1, Y1), . . . , (Xn, Yn), where the design points
X1, . . . , Xn are sampled from a distribution P with support X ⊆ R

d, and the responses follow (1.3). We
now formulate two sets of assumptions on the design distribution P, in which the support X is either a
flat Euclidean or manifold domain. We also review the definition of L2-Sobolev spaces in both cases.

Flat Euclidean setting. We will use the phrase flat Euclidean to refer to a design P satisfying the following
pair of conditions:

• The support X of the design distribution P is an open, connected and bounded subset of Rd, with
Lipschitz boundary.

• The distribution P admits a Lipschitz density p with respect to the d-dimensional Lebesgue measure
ν, which is bounded away from 0 and∞,

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈X .

Note that at various points we will also assume that the density p ∈ Ck(X ) for some integer k ≥ 1.
For a flat Euclidean domain and an integer s ≥ 1, the order-s Sobolev space is defined as follows.

Definition 1. (Sobolev space on a flat Euclidean domain). For an integer s ≥ 1, a function f ∈ L2(X )

belongs to the Sobolev space Hs(X ) if for all α ∈ N
d, |α| ≤ s, the weak derivatives Dαf exist and

satisfy Dαf ∈ L2(X ). The jth order semi-norm for f ∈ Hs(X ) is |f |Hj(X ) :=∑
|α|=j ‖Dαf‖L2(X ), and

the corresponding squared norm

‖f‖2
Hs(X ) := ‖f‖2

L2(X )
+

s∑
j=1

|f |2Hj(X )
,

induces the Sobolev ball

Hs(X ; M) := {
f ∈ Hs(X ) : ‖f‖Hs(X ) ≤ M

}
.

When s > 1 our results will also require that f0 satisfy a zero-trace boundary condition. Recall that
Hs(X ) can alternatively be defined as the completion of C∞(X ) in the Sobolev norm ‖ · ‖Hs(X ). The
zero-trace Sobolev spaces are defined in a similar fashion, as the completion of C∞c (X ) in the same
norm.

Definition 2. (Zero-trace Sobolev space). A function f ∈ Hs(X ) belongs to the zero-trace Sobolev
space Hs

0(X ) if there exists a sequence f1, f2, . . . of functions in C∞c (X ) such that

lim
k→∞‖fk − f‖Hs(X ) = 0.

The normed ball Hs
0(X ; M) := Hs

0(X ) ∩ Hs(X ; M).

Boundary conditions play an important role in the analysis of spectral methods, as we explain further
in Section 2.3. For now, we limit ourselves to pointing out that for functions f ∈ C∞(X ), the zero-trace

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/2423/7265386 by guest on 17 O
ctober 2023



LAPLACIAN EIGENMAPS REGRESSION 2433

condition can be stated more concretely, as implying that ∂kf /∂nk(x) = 0 for each k = 0, . . . , s− 1, and
for all x ∈ ∂X . (Here ∂/(∂n) is the partial derivative operator in the direction of the normal vector n.)

Manifold setting. As in the flat Euclidean case, we start with some regularity conditions on the design.
For the second condition, recall that the reach R is the largest radius of a ball which can be rolled around
the manifold X ; mathematically,

R :=
{
sup
r>0

: ∀z ∈ R
d, inf

x∈X
‖z− x‖ ≤ r, ∃! y ∈X s.t. ‖z− y‖ = inf

x∈X
‖z− x‖

}
.

We will use the phrase manifold design to refer to a design P satisfying the following conditions:

• The support X of the design distribution P is a closed, connected and smooth Riemannian manifold
(without boundary) embedded in R

d, of intrinsic dimension 1 ≤ m < d.

• The manifold X has positive reach R > 0.

• The design distribution P admits a Lipschitz density p with respect to the volume form dμ induced
by the Riemannian structure of X , which is bounded away from 0 and∞,

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈X .

There are several equivalent ways to define Sobolev spaces on smooth manifolds. We will stick with
a definition that parallels our set-up in the flat Euclidean setting as much as possible. To do so, we first
recall the notion of partial derivatives of a function f defined on X . These are defined with respect
to a local coordinate system. Letting r1, . . . , rm be the standard basis of Rm, for a given chart (φ, U)

(meaning an open set U ⊆X , and a smooth mapping φ : U → R
m) we write φ =: (x1, . . . , xm) in local

coordinates, meaning xi = ri ◦ φ. Then the partial derivative ∂f /∂xi of a function f : X → R at x ∈ U
is

∂f

∂xi
(x) := ∂(f ◦ φ−1)

∂ri
(φ(x)) .

The right-hand side should be interpreted in the weak sense of derivative. As before, we use the multi-
index notation Dαf := ∂ |α|f /∂α1x1 . . . ∂αmxm.

Definition 3. (Sobolev space on a manifold). A function f ∈ L2(X ) belongs to the Sobolev space
Hs(X ) if for all α ∈ N

d, |α| ≤ s, the weak derivatives Dαf exist and satisfy Dαf ∈ L2(X ).
The jth order semi-norm |f |Hj(X ), the norm ‖f‖Hs(X ), and the ball Hs(X ; M) are all defined as in
Definition 1.

As we defined them, the norm ‖f‖Hs(X ) and ball Hs(X ; M) are highly non-intrinsic, in that they
depend on the choice of local coordinates. However, any two coordinate systems will result in equivalent
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2434 A. GREEN ET AL.

norms,4 and so the definition of Hs(X ) is independent of local coordinates. Additionally, all of our upper
bounds on the estimation and testing error of PCR-LE hold up to constant factors, regardless of what
choice of local coordinates is made. For an alternative, more intrinsic definition of a Sobolev space on a
manifold, see [34].

2.2 Principal components regression with Laplacian Eigenmaps

We now formally define the estimator and test statistic we study. Both are derived from eigenvectors
of a graph Laplacian. For a function η : [0,∞) → [0,∞), and a radius parameter ε > 0, let
G = ({X1, . . . , Xn}, W) be the neighbourhood graph formed over the design points {X1, . . . , Xn}, with
a weighted edge Wij = η(‖Xi − Xj‖/ε) between vertices i and j. We refer to η as a similarity kernel, or
just kernel for short.

Then the neighbourhood graph Laplacian Ln,ε : Rn → R is defined by its action on vectors u ∈ R
n

as

(
Ln,εu

)
i

:= 1

nε2+dim(X )

n∑
j=1

(
ui − uj

)
η

(‖Xi − Xj‖
ε

)
. (2.1)

(Here dim(X ) stands for the dimension of X . It is equal to d in the flat Euclidean setting and equal
to m in the manifold setting. The pre-factor (nε2+dim(X ))−1 ensures non-degenerate stable limits as
n → ∞, ε → 0). Note that (nεdim(X )+2) · Ln,ε = D − W, where D ∈ R

n×n is the diagonal degree
matrix, Dii =

∑n
i=1 Wij.

The graph Laplacian is a positive semi-definite matrix, and admits the eigendecomposition Ln,ε =∑n
k=1 λkvkv�k , where for each k ∈ {1, . . . , n} the eigenvalue-eigenvector pair (λk, vk) satisfies

Ln,εvk = λkvk, ‖vk‖2
2 = 1.

We will assume without loss of generality that each eigenvalue λ of Ln,ε has algebraic multiplicity 1, and
so we can index the eigenpairs (λ1, v1), . . . , (λn, vn) in ascending order of eigenvalue, 0 = λ1 < λ2 <

. . . < λn.
The PCR-LE estimator f̂ defined in (1.1) simply projects the response vector Y onto the first K

eigenvectors of Ln,ε. Since the eigenvectors of the graph Laplacian are orthonormal with respect to the
Euclidean inner product on R

n, we can more simply write this as

f̂ = VKV�K Y, (2.2)

where VK ∈ R
n×K is the matrix with kth column VK,k = vk.

4 Recall that norms ‖ · ‖1 and ‖ · ‖2 on a space F are said to be equivalent if there exist constants c and C such that

c‖f‖1 ≤ ‖f‖2 ≤ C‖f‖1 for all f ∈ F .
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LAPLACIAN EIGENMAPS REGRESSION 2435

The PCR-LE test statistic is

T̂ := ‖̂f‖2
n =

1

n
Y�VKV�K Y, (2.3)

and can be used to determine whether f0 = 0.

2.3 Population-level spectral series regression

We now establish some upper bounds on the error of population-level spectral series regression when
f0 ∈ Hs(X ), which imply that such methods achieve optimal rates of convergence for both estimation
and testing. The upper bounds we establish are ‘usual’ in the sense that they match the rates n−2s/(2s+d)

(estimation) and n−4s/(4s+d) (testing) which are already known in many cases. However, they are unusual
in that we treat both the case where s < d/2 and thus the Sobolev space Hs(X ) does not continuously
embed into C(X ), and the case where P is not the uniform distribution over the unit cube. The upper
bounds given in this section serve two purposes: first, to clarify what the rates are in these less-
typically studied settings; second, to show that even in this general setting, population-level spectral
series regression can always obtain the optimal rates. The latter point is important since the method we
focus on for the most part, PCR-LE, is an empirical approximation to population-level spectral series
regression.

Spectrally defined Sobolev spaces. Suppose we have a flat Euclidean design P supported on X . Recalling
the density-weighted Laplacian ΔP, defined in (1.2), we consider the eigenvector equation with Neumann
boundary conditions,

ΔPψ = ρψ ,
∂

∂n
ψ = 0 on ∂X . (2.4)

The eigenvector equation (2.4) has enumerable solutions (ρ1, ψ1), (ρ2, ψ2), . . ., sorted as usual in
ascending order of eigenvalue [27]. These eigenvalues and eigenfunctions can be used to give a spectral
definition of Sobolev spaces: these are the spaces

H s(X ) :=
{ ∞∑

k=1

akψk ∈ L2(X ) :
∞∑

k=1

a2
kρ

s
k <∞

}
, (2.5)

with norm ‖f‖2
H s(X )

= a2
kρ

s
k for f =∑

akψk, and corresponding ball

H s(X ; M) := {
f ∈H s(X ) : ‖f‖H s(X ) ≤ M

}
. (2.6)

Under appropriate regularity conditions H s(X ) consists of functions f ∈ Hs(X ) which also satisfy
some additional boundary conditions. For instance if p ∈ C∞(X ) and ∂X ∈ C1,1 then Dunlop et al.
[22] show that for any s ≥ 1,

H 2s(X ) =
{

f ∈ H2s(X ) :
∂Δr

Pf

∂n
= 0 on ∂X , for all 0 ≤ r ≤ s− 1

}
, (2.7)
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2436 A. GREEN ET AL.

and likewise H 2s+1(X ) = H 2s(X ) ∩ H2s+1(X ) for any s ≥ 0. Additionally, the norms ‖f‖H s(X )

and ‖f‖Hs(X ) are equivalent.

Estimation with spectral series regression. Recall the population-level spectral series estimator f̃ defined
in (1.4). We now give an upper bound on the mean-squared error of f̃ .

Proposition 1. In the flat Euclidean setting, assume additionally that ∂X ∈ C1,1, p ∈ C∞(X ), f0 ∈
H s(X ; M) and ‖f0‖2

P ≤ 1. Then there exists a constant C which does not depend on f0, M or n such
that the following statement holds: if the population-level spectral series estimator in (1.4) is computed

with parameter K = max{⌊M2n
⌋d/(2s+d)

, 1}, then

E

[
‖̃f − f0‖2

P

]
≤ C max

{
M2

(
M2n

)−2s/(2s+d)

,
1

n

}
. (2.8)

When the Sobolev ball radius n−1/2 � M, the upper bound in (2.8) is of the order of
M2(M2n)−2s/(2s+d). This is well known to be the minimax rate of estimation over the Sobolev classes
Hs([0, 1]d; M) when s > d/2; see e.g. [33, 66, 72] and references therein, and specifically Theorem 3.2 of
[33] for a matching lower bound in the context of non-parametric regression with random design. On the
other hand there seems to have been much less study of minimax rates over Hs([0, 1]d; M) when s < d/2.
In this subcritical regime, the Sobolev space contains functions without continuous representatives, and
certain questions become more subtle; see our remark after Theorem 3. However, Proposition 1 confirms
that in this regime the minimax rates (with loss measured in squared-L2(P) norm) are still of the order
of M2(M2n)−2s/(2s+d), since a matching lower bound follows from the known estimation rates over
Cs([0, 1]d) ⊆ Hs([0, 1]d) [64].

Testing with spectral series regression. In the goodness-of-fit testing problem, one asks for a test
function—formally, a Borel measurable function φ that takes values in {0, 1}—which can distinguish
between the hypotheses

H0 : f0 = f �
0 , versus Ha : f0 ∈H s(X ; M) \ {f �

0 }. (2.9)

To fix ideas, here and throughout we focus on the signal detection problem, meaning the special case
where f �

0 = 0.5 We are interested in how large ‖f0‖2
P needs to be in order for a level-a test to have power

of at least b, for some a, b ∈ (0, 1). For more background on non-parametric goodness-of-fit testing
problems, see [40].

A natural test statistic for the signal detection problem is T̃ = ‖̃f‖2
P. The population-level spectral

series test ϕ̃ := 1{T̃ ≥ K/n + √
2K/an2} has bounded Type I error, E0[ϕ̃] ≤ a(1 + o(1)) so long

as (M2n)2d/(4s+d) ≤ n. Proposition 2 gives an upper bound on the Type II error that holds over all
f0 ∈H s(X ; M) for which ‖f0‖2

P is sufficiently large.

Proposition 2. Fix a, b ∈ (0, 1). In the flat Euclidean setting, suppose additionally that the density p is
known, that ∂X ∈ C1,1, p ∈ C∞(X ), f0 ∈ H s(X ; M) for some s > d/4, and ‖f0‖4

L4(X )
≤ 1. Then

there exists a constant C which does not depend on f0, M or n such that the following statement holds: if

5 This is without loss of generality since all the test statistics we consider are easily modified to handle the case when f ∗0 is not
0, by simply subtracting f ∗0 (Xi) from each observation Yi, with no change in the analysis.
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LAPLACIAN EIGENMAPS REGRESSION 2437

the population-level spectral series test ϕ̃ is computed with parameter K = max{⌊M2n
⌋2d/(4s+d)

, 1}, if
(M2n)2d/(4s+d) ≤ n, and if

‖f0‖2
P ≥ C min

{
M2(M2n)−4s/(4s+d),

1

n

}
(2.10)

then the Type II error is upper bounded, Ef0 [1− ϕ̃] ≤ b.

Assuming again that n−1/2 � M, the right-hand side of (2.10] is M2(M2n)−4s/(4s+d), matching the
usual minimax critical radius over Sobolev space. (See [32, 39, 40]; specifically, Ingster and Sapatinas
[39] show that the minimax squared critical radius is of the order of n−4s/(4s+d) when M = 1, and
simple alterations of their analysis imply the rate M2(M2n)−4s/(4s+d) for general M.) On the other
hand, when s ≤ d/4 the minimax regression testing rates over Hs(X ) are not known. If one explicitly
assumes f0 ∈ L4(X ; 1)—note that Hs(X ) does not continuously embed into L4(X ) when s ≤ d/4—
then the minimax critical radius for regression testing is of the order of n−1/2 [32], and is achieved
by a test using the naive statistic ‖Y‖2

n. In other words, the regression testing problem over Sobolev
spaces fundamentally changes when s ≤ d/4, and hereafter when we discuss testing we will limit our
consideration to s > d/4.

The main takeaway from Propositions 1 and 2 is that population-level spectral series methods for
regression achieve optimal rates of convergence, when the regression function f0 is Sobolev smooth
and the design distribution P is known a priori and satisfies an appropriate notion of smoothness.6

We reiterate that when the design distribution is unknown, these methods have to be treated as oracle
methods, in contrast to PCR-LE. As we will see, PCR-LE achieves comparable rates of convergence
when p is sufficiently smooth but potentially unknown.

Of course, it is worth pointing out that other methods besides PCR-LE are statistically optimal for
non-parametric regression even when p is unknown. We comment more on some of these in Section 6,
after we have derived our major results regarding PCR-LE.

3. Minimax optimality of PCR-LE

In this section we give upper bounds on the error of PCR-LE in the flat Euclidean setting. We will divide
our theorem statements based on whether the regression function f0 belongs to the first order Sobolev
class H1(X ) or a higher order Sobolev class (Hs

0(X ) for some integer s ≥ 2), since the details of the
two settings are somewhat different.

3.1 First-order Sobolev classes

We begin assuming f0 ∈ H1(X ; M). We show that f̂ and a test based on T̂ are minimax optimal for all
values of d for which the minimax rates are known.

Estimation with PCR-LE. PCR-LE depends on the kernel η and two tuning parameters, the graph radius
ε and number of eigenvectors K. We will need to make some assumptions on each.

6 The assumption p ∈ C∞(X ) could likely be weakened, but since this would not substantially add to the main points of
Propositions 1 and 2, we do not pursue the details further.
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(K1) The kernel function η is a non-increasing function supported on [0, 1]. Its restriction to [0, 1] is
Lipschitz, and η(1) > 0. Additionally, it is normalized so that∫

Rd
η(‖z‖) dz = 1.

(P1) The number of eigenvectors is given by

K = min
{⌊

(M2n)d/(2+d)
⌋
∨ 1, n

}
. (3.1)

If K < n, then additionally

C0

(
log n

n

)1/d

≤ ε ≤ c0 min{1, K−1/d}. (3.2)

In (3.2) the numbers C0 and c0 are constants that do not depend on n, f0 or M, but may depend on
P and d. For instance, C0 is sufficiently large to ensure that the neighbourhood graph is connected with
high probability.

We now have our first main theorem, regarding the estimation error of PCR-LE. The proof of this
theorem, along with the proofs of all subsequent results, can be found in the Appendix.

Theorem 1. In the flat Euclidean setting, suppose additionally f0 ∈ H1(X , M). There are constants
c, C and N (not depending on f0, M or n), such that the following statement holds for all n ≥ N and any
δ ∈ (0, 1): if the PCR-LE estimator f̂ is computed with a kernel η satisfying (K1), and parameters ε and
K satisfying (P1), then

‖̂f − f0‖2
n ≤ C

(
1

δ
M2(M2n)−2/(2+d) ∧ 1

)
∨ 1

n
, (3.3)

with probability at least 1− δ − Cn exp(−cnεd)− exp(−K).

From (3.3) it follows immediately that when n−1/2 � M � n1/d, then with constant probability
‖̂f − f0‖2

n � M2(M2n)−2/(2+d), matching the minimax estimation rate over Sobolev classes.
Some other remarks:

• Radius of the Sobolev ball. When M = o(n−1/2) then computing PCR-LE with K = 1 achieves the
parametric rate ‖̂f − f0‖2

n � n−1, and the zero-estimator f̂ = 0 achieves the better rate ‖̂f − f0‖2
n �

M2. However, we do not know what the minimax rate is in this regime. On the other hand, when
M = ω(n1/d), then computing PCR-LE with K = n achieves the rate ‖̂f − f0‖2

n � 1, which is better
than the rate in (2.8). This is because we are evaluating error in-sample rather than out-of-sample.
However, in truth these are edge cases, which do not fall neatly into the framework of non-parametric
regression.

• Meaning of pointwise evaluation. There is one subtlety introduced by the use of in-sample mean
squared error. Since elements f ∈ Hs(X ) are equivalence classes, defined only up to a set of measure
zero, one cannot really speak of the pointwise evaluation f0(Xi), as we do by defining our target of
estimation to be (f0(X1), . . . , f0(Xn)), until one selects a representative of each equivalence class f .
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Implicitly, we will always pick the precise representative f ∗0 ∈ f0 (as defined in [24]), and the notation
‘f0(Xi)’ should always be interpreted as f ∗0 (Xi). To be clear, however, it does not really matter which
representative we choose, since all versions agree except on a set of measure zero, and so any two
g0, h0 ∈ f0 satisfy g0(Xi) = h0(Xi) for all i = 1, . . . , n almost surely. For this reason we can write
f0(Xi) without fear of ambiguity or confusion.

• Tuning parameters. The assumptions placed on the kernel function η are needed for technical reasons.
They can likely be weakened, although we note that they are already fairly general. The lower bound
on ε imposed by (3.2) is of the order of the connectivity threshold, the smallest radius for which the
resulting graph will still be connected with high probability. On the other hand, as we will see in
Section 3.3, the upper bound on ε is needed to ensure that the graph eigenvalue λK is of at least the
same order as the continuum eigenvalue ρK ; this is essential in order to obtain a tight upper bound
on the bias of f̂ . Finally, we set K = ⌊

(M2n)d/(2+d)
⌋

(when possible) to optimally trade-off bias and
variance, as is typical.

• High-probability guarantees. The upper bound given in (3.3) holds with probability 1 − δ − o(1).
Under the stronger assumption that f0 is M-Lipschitz, we can establish the same guarantee (3.3) with
probability 1− δ2/n− Cn exp(−cnεd)− exp(−K); in other words, we can give a high-probability
guarantee (for details see [31]). In this case a routine calculation shows that E[‖̂f − f0‖2

n] will also
be on the some order as (3.3). We also suspect that high-probability guarantees will hold so long as
‖∇f‖Lq(X ) is bounded for some sufficiently large q < ∞, but it remains an open question whether
such guarantees can be obtained in the Sobolev case (q = 2) which is the focus of this work.

Testing with PCR-LE. Consider the test ϕ := 1{T̂ ≥ ta}, where ta is the threshold

ta := K

n
+ 1

n

√
2K

a
.

This choice of threshold ta guarantees that ϕ is a level-a test. As we show in Theorem 2, when d < 4,
ε and K are chosen appropriately, and the alternative f0 is sufficiently well separated from 0, the test ϕ

has Type II error of at most b.
(P2) The number of eigenvectors is given by

K = min
{⌊

(M2n)2d/(4+d)
⌋
∨ 1, n

}
. (3.4)

If K < n then additionally the graph radius ε satisfies (3.2).

Theorem 2. Fix a, b ∈ (0, 1). The PCR-LE test ϕ, computed with threshold ta, is a level-a test: E0[ϕ] ≤
a. Additionally, in the flat Euclidean setting, suppose f0 ∈ H1(X ; M), and that d < 4. Then there exist
constants C and N that do not depend on f0, such that the following statement holds for all n ≥ N: if ϕ

is computed with a kernel η satisfying (K1), and parameters ε and K satisfying (P2), and if f0 satisfies

‖f0‖2
P ≥ C

((
M2(M2n)−4/(4+d) ∧ n−1/2

) [√
1

a
+ 1

b

]
∨ M2

bn2/d

)
∨ 1

n
, (3.5)

then Ef0 [1− ϕ] ≤ b.
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2440 A. GREEN ET AL.

Although (3.5) involves taking the maximum of several different terms, the important takeaway of
Theorem 2 is that if n−1/2 � M � n(4−d)/4d, then ϕ has small worst-case risk as long as f0 is separated
from 0 by at least M2(M2n)−4/(4+d). This implies that ϕ is a minimax rate-optimal test over H1(X ; M)

when d ∈ {1, 2, 3}. As mentioned previously, when d ≥ 4 the first-order Sobolev space H1(X ) does not
continuously embed into L4(X ), and in this case the optimal rates for regression testing over Sobolev
spaces are unknown.

3.2 Higher order Sobolev classes

We now consider the situation where the regression function displays some higher order regularity, f0 ∈
Hs

0(X ; M) for some s ∈ N, s ≥ 2. We show that the PCR-LE estimator and test continue to be optimal
for all orders of s, as long as the design density is itself also sufficiently regular, p ∈ Cs−1(X ). In
estimation, this is the case for any dimension d, whereas in testing it is the case only when d ≤ 4.

Estimation with PCR-LE. In order to show that f̂ is an optimal estimator over Hs
0(X ; M), we will require

that ε be meaningfully larger than the lower bound in (P1).
(P3) The number of eigenvectors is given by

K = min
{⌊

(M2n)d/(2s+d)
⌋
∨ 1, n

}
.

If K < n then additionally

C0 max
{(

log
n

)1/d

, (M2n)−1/(2(s−1)+d)

}
≤ ε ≤ c0 min{1, K−1/d}. (3.6)

Crucially, when n is sufficiently large the two conditions in (P3) are not mutually exclusive.

Theorem 3. In the flat Euclidean setting, suppose additionally f0 ∈ Hs
0(X , M) and p ∈ Cs−1(X ).

There exist constants c, C and N that do not depend on f0, such that the following statement holds all
for all n larger than N and for any δ ∈ (0, 1): if the PCR-LE estimator f̂ is computed with a kernel η

satisfying (K1), and parameters ε and K satisfying (P3), then

‖̂f − f0‖2
n ≤ C

(
1

δ
M2(M2n)−2s/(2s+d) ∧ 1

)
∨ 1

n
, (3.7)

with probability at least 1− δ − Cn exp(−cnεd)− exp(−K).

Theorem 3, in combination with Theorem 1, implies that in the flat Euclidean setting PCR-LE is a
minimax rate-optimal estimator over Sobolev classes, for all values of s and d. Some other remarks:

• Sub-critical Sobolev spaces. Theorems 1 and 3 do not require that the smoothness index s of the
Sobolev space satisfy s > d/2, a condition often seen in the literature. In the sub-critical regime
s ≤ d/2, the Sobolev space Hs(X ) is quite irregular. It is not a Reproducing Kernel Hilbert Space
(RKHS), nor does it continuously embed into C0(X ), much less into any Hölder space. As a result,
for certain versions of the non-parametric regression problem—e.g. when loss is measured in L∞
norm, or when the design points {X1, . . . , Xn} are assumed to be fixed—in a minimax sense even
consistent estimation is not possible. Likewise, certain estimators are ‘off the table’, most notably
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RKHS-based methods such as thin-plate splines of degree k ≤ d/2. Nevertheless, for random design
regression with error measured in squared L2(P)-norm, the population-level spectral series estimator
f̃ obtains the standard minimax rates n−2s/(2s+d) for all values of s and d. Theorems 1 and 3 show
that the same is true with respect to PCR-LE, when error is measured in empirical norm.

• Smoothness of design density. As promised, Theorem 3 shows that PCR-LE achieves optimal rates
of convergence so long as the unknown design density p is sufficiently smooth, p ∈ Cs−1(X ).
The requirement p ∈ Cs−1(X ) is essential to showing that f̂ enjoys the faster minimax rates of
convergence when s > 1, as we discuss in Section 3.3.

Testing with PCR-LE. The test ϕ can adapt to the higher order smoothness of f0, when ε and K are chosen
correctly.

(P4) The number of eigenvectors is given by

K = min
{⌊

(M2n)2d/(4s+d)
⌋
∨ 1, n

}
. (3.8)

If K < n then additionally the graph radius ε satisfies (3.6).
When d ≤ 4 and n is sufficiently large, it is possible to choose ε and K such that both (3.6) and (3.8)

are satisfied, and our next theorem establishes that in this situation ϕ is an optimal test.

Theorem 4. Fix a, b ∈ (0, 1). The PCR-LE test ϕ, computed with threshold ta, is a level-a test: E0[ϕ] ≤
a. In the flat Euclidean setting, suppose additionally that f0 ∈ Hs

0(X , M), that p ∈ Cs−1(X ) and that
d ≤ 4. Then there exist constants c, C and N that do not depend on f0, such that the following statement
holds for all n ≥ N: if the PCR-LE test ϕ is computed with a kernel η satisfying (K1), and parameters ε

and K satisfying (P4), and if f0 satisfies

‖f0‖2
P ≥

C

b

((
M2(M2n)−4s/(4s+d) ∧ n−1/2

) [√
1

a
+ 1

b

]
∨ M2

bn2s/d

)
∨ 1

n
, (3.9)

then Ef0 [1− ϕ] ≤ b.

Similarly to the first-order case, the main takeaway from Theorem 4 is that when n−1/2 � M �
n(4s−d)/4d, then ϕ is a minimax rate-optimal test over Hs

0(X ). However, unlike the first-order case,
when 4 < d < 4s the minimax testing rate over Hs

0(X ) is still of the order of M2(M2n)−4s/(4s+d), but
we can no longer claim that ϕ is an optimal test in this regime.

Theorem 5. Under the same set-up as Theorem 4, but with 4 < d < 4s. If the PCR-LE test ϕ

is computed with a kernel η satisfying (K1), number of eigenvectors K satisfying (3.8), and ε =
(M2n)−1/(2(s−1)+d), and if

‖f0‖2
P ≥

C

b

((
M2(M2n)−2s/(2(s−1)+d) ∧ n−1/2

) [√
1

a
+ 1

b

]
∨ M2

bn2s/d

)
∨ 1

n
, (3.10)

then Ef0 [1− ϕ] ≤ b.

Focusing on the special case where M � 1, Theorem 5 says that ϕ has small Type II error whenever
‖f0‖2

P � n−2s/(2(s−1)+d) and 4 < d < 4s. This is smaller than the estimation rate n−2s/(2s+d), but larger
than the minimax squared critical radius n−4s/(4s+d).
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At a high level, it is intuitively reasonable that PCR-LE should have more difficulty achieving
the minimax rates of convergence for testing, as opposed to estimation. To obtain the faster rates of
convergence for testing, PCR-LE must use many more eigenvectors than are necessary for estimation,
including some eigenvectors which correspond to very large eigenvalues. It is known that the approxi-
mation properties of eigenvectors corresponding to large eigenvalues are very poor [15, 28], and when
d > 4 this prevents us from establishing that PCR-LE is an optimal test. That being said, although we
suspect ϕ is truly suboptimal when d > 4, our analysis relies on an upper bound on testing bias. Since
we do not prove a matching lower bound, we cannot rule out that the test ϕ is optimal for all s < d/4.
We leave the matter to future work.

3.3 Analysis of PCR-LE

We now outline the high-level strategy we follow when proving each of Theorems 1-5. We analyse the
estimation error of f̂ , and the testing error of ϕ, by first conditioning on the design points {X1, . . . , Xn}
and deriving design-dependent bias and variance terms. For estimation, we show that with probability at
least 1− exp(−K),

‖̂f − f0‖2
n ≤

〈Ls
n,εf0, f0〉n
λs

K+1︸ ︷︷ ︸
bias

+ 5K

n︸︷︷︸
variance

. (3.11)

For testing, we show that ϕ (which is a level-a test by construction) also has small Type II Error, Ef0 [1−
ϕ] ≤ b/2, if

‖f0‖2
n ≥

〈Ls
n,εf0, f0〉n
λs

K+1︸ ︷︷ ︸
bias

+ 32

√
2K

n

[√
1

a
+ 1

b

]
︸ ︷︷ ︸

variance

. (3.12)

These design-dependent bias-variance decompositions are reminiscent of the more classical bias-
variance decompositions typical in the analysis of population-level spectral series methods (for instance
(B6) and (B7)), but different in certain key respects. Comparing (3.11) and (3.12) with (B6) and (B7),
we see that two continuum objects in the latter pair of bounds, the Sobolev norm ‖f0‖2

H s(X )
and the

eigenvalue ρK+1, have been replaced by graph-based analogues: the graph Sobolev seminorm 〈Ls
n,εf0, f0〉n

and the graph Laplacian eigenvalue λK+1. These latter quantities, along with the empirical squared
norm ‖f0‖2

n, are random variables that depend on the random design points {X1, . . . , Xn}. We proceed
to establish suitable upper and lower bounds on these quantities that hold in probability.

Graph Sobolev seminorms. In Proposition 3 we restate an upper bound on the first-order graph Sobolev
semi-norm 〈Ln,εf , f 〉n from [31].

Proposition 3. (Lemma 1 of Green et al. [31]). In the flat Euclidean setting, suppose additionally f ∈
H1(X ). There exist constants c, C that do not depend on f or n such that the following statement holds
for any δ ∈ (0, 1): if η satisfies (K1) and ε < c, then

〈Ln,εf , f 〉n ≤
C

δ
‖f‖2

H1(X )
, (3.13)

with probability at least 1− δ.
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Proposition 3 follows by upper bounding the expectation E〈Ln,εf , f 〉n = 〈LP,εf , f 〉P—where LP,ε is
the non-local Laplacian operator defined in (3.15)—by (a constant times) the squared Sobolev norm
‖f‖2

H1(X )
, and then applying Markov’s inequality.

In this work, we establish that under certain conditions analogous bounds hold for the higher order
graph Sobolev seminorm 〈Ls

n,εf , f 〉n, when s ∈ N, s ≥ 2.

Proposition 4. In the flat Euclidean setting, suppose additionally that f ∈ Hs
0(X ) and p ∈ Cs−1(X ).

Then there exist constants c and C that do not depend on f or n such that the following statement holds
for any δ ∈ (0, 1): if η satisfies (K1) and Cn−1/(2(s−1)+d) < ε < c, then

〈Ls
n,εf , f 〉n ≤

C

δ
‖f‖2

Hs(X ), (3.14)

with probability at least 1− δ.

We now summarize the techniques used to prove Proposition 4, emphasizing the reasons for the
conditions imposed on f , p and ε. The following discussion is non-rigorous—for the complete and formal
proof see Section D.

To upper bound 〈Ls
n,εf , f 〉n in terms of ‖f‖2

Hs(X )
, we introduce an intermediate quantity: the non-local

Sobolev seminorm 〈Ls
P,εf , f 〉P. This seminorm is defined with respect to the iterated non-local Laplacian

Ls
P,ε = LP,ε ◦ · · · ◦ LP,ε, where LP,ε is a non-local approximation to ΔP,

LP,εf (x) := 1

εd+2

∫
X

(f (z)− f (x)) η

(‖z− x‖
ε

)
dP(z). (3.15)

Proposition 4 is proved by showing the pair of inequalities,

〈Ls
n,εf , f 〉n ≤

1

δ
〈Ls

P,εf , f 〉P ≤
C

δ
‖f‖2

Hs(X ), (3.16)

where the first inequality above is probabilistic and holds with probability 1 − δ, and in the second
inequality C may depend on parameters such as s, d, X but does not depend on n or the specific f ∈
Hs

0(X ).
The first inequality in (3.16) is shown by bounding the expectation of the graph Sobolev semi-norm

in terms of the non-local Sobolev seminorm and applying Markov’s inequality. A complication is that
unlike in the first-order case, when s ≥ 2 then 〈Ls

n,εf , f 〉n is itself a biased estimate of the non-local
seminorm 〈Ls

P,εf , f 〉P. This is because 〈Ls
n,εf , f 〉n is a V-statistic, meaning it is the sum of an unbiased

estimator of 〈Ls
P,εf , f 〉P (in other words, a U-statistic) plus some higher order, pure bias terms. We show

that these pure bias terms are negligible when ε is sufficiently large. This is where the lower bound
Cn−1/(2(s−1)+d) < ε in the statement of Proposition 4 comes from.

The derivation of the second inequality in (3.16) differs in the technical details based on whether s
is even or odd; we focus our discussion on the case where s is odd although the general ideas are the
same in either case. When s is odd, in a nutshell we establish the desired upper bound by arguing that
the iterated non-local Laplacian L(s−1)/2

P,ε f satisfies the approximate equality

L(s−1)/2
P,ε f ≈ σ (s−1)/2

η Δ
(s−1)/2
P f ,
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2444 A. GREEN ET AL.

and then applying the known upper bound 〈LP,εg, g〉P ≤ C‖g‖2
H1(X )

with g = Δ
(s−1)/2
P f . Here ση :=

1
d

∫
Rd ‖x‖2η(‖x‖) dx is a constant that is finite under the assumptions of (K1). The approximate equality

above relies on Taylor expansions of both f and p, which is the reason we require that p ∈ Cs−1(X ).
The approximate equality also breaks down near the boundary of X , and instead we show L(s−1)/2

P,ε f is
close to 0 using the zero-trace property of f .

An important aspect of the ultimate result is that, since we are ultimately interested only in an upper
bound on the rate of convergence of PCR-LE, it is enough to have an upper bound on the graph-Sobolev
seminorm that has the right dependence on ‖f‖2

Hs(X )
and does not depend on n. This means we do not

have to show that 〈Ls
n,εf , f 〉n ≈ ‖f‖2

Hs(X )
which would be substantially more challenging.

Neighbourhood graph eigenvalues. On the other hand, several recent works [15, 16, 27] have analysed
the convergence of graph eigenvalues λk towards ρk, defined in (2.4). They provide explicit bounds on
the relative error |λk − ρk|/ρk, which show that the relative error is small for sufficiently large n and
small ε. Crucially, these guarantees hold simultaneously for all 1 ≤ k ≤ K as long as ρK = O(ε−2).
These results are actually stronger than are necessary to establish Theorems 1–4—in order to get rate-
optimality, we need only show that for the relevant values of K, λK/ρK = ΩP(1)—but the guarantees
hold only when X is a manifold without boundary.

In the case where X is assumed to have a boundary, the graph Laplacian Ln,ε is a reasonable
approximation of the operator ΔP only at points x ∈ X for which B(x, ε) ⊆ X . In contrast, at points
x near the boundary of X , the graph Laplacian is known to approximate a different operator altogether
[11].7 This renders analysis of λk substantially more challenging, since its continuum limit is not ρk.
Rather than analysing the convergence of λk, we will instead use Lemma 2 of [31], whose assumptions
match our own, and who give a weaker bound on the ratio λk/ρk that will nevertheless suffice for our
purposes.

Proposition 5. (Lemma 2 of [31]). In the flat Euclidean setting, there exist constants c and C such that
the following statement holds: if η satisfies (K1) and C(log n/n)1/d < ε < c, then

λk ≥ c ·min
{
ρk,

1

ε2

}
for all 1 ≤ k ≤ n, (3.17)

with probability at least 1− Cn exp{−cnεd}.
By our assumptions on P, ρ0 = λ0 = 0. Furthermore, Weyl’s Law (B4) tells us that under the

assumptions of the flat Euclidean setting k2/d � ρk for all k ∈ N, k > 1. Combining these statements
with (3.17), we conclude that with high probability λK � K2/d so long as K � ε−d.

Empirical norm. Finally, in Proposition 6 we establish that a one-sided bound of the form ‖f0‖2
n � ‖f0‖2

P
holds whenever ‖f0‖2

P is itself sufficiently large.

Proposition 6. In the flat Euclidean setting, suppose additionally that f ∈ Hs(X , M) for some s > d/4.
There exist constants c and C that do not depend on f0 or n such that the following statement holds for

7 This is directly related to the boundary bias of kernel smoothing, since the graph Laplacian can be viewed as a kernel-based
estimator of ΔP.
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any δ > 0: if

‖f‖P ≥ CM

(
1

δn

)s/d

(3.18)

then with probability at least 1− exp{−(cn ∧ 1/δ)},

‖f‖2
n ≥

1

2
‖f0‖2

P. (3.19)

To prove Proposition 6, we use a Gagliardo–Nirenberg interpolation inequality (see e.g. Theorem
12.83 of Leoni [47]) to control the fourth moment of f ∈ Hs(X ) in terms of ‖f‖P and |f |Hs(X ), then
invoke a one-sided Bernstein’s inequality as in [70, section 14.2). Note carefully that the statement (3.19)
is not a uniform guarantee over all f ∈ Hs(X ; M). Indeed, such a statement cannot hold in the sub-critical
regime (2s ≤ d).8 Fortunately, a pointwise bound—meaning a bound that holds with high probability
for a single f ∈ Hs(X )—is sufficient for our purposes.

Finally, invoking the bounds of Propositions 3–6 inside the bias-variance tradeoffs (3.11) and
(3.12) and then choosing K to balance bias and variance (when possible) leads to the conclusions of
Theorems 1–5.

As pointed out by a reviewer, the proof techniques outlined above rely heavily on special properties
of the Euclidean norm. To analyse the statistical error of PCR-LE for more general types of losses,
very different approaches might be needed. We think the question of whether PCR-LE would attain the
optimal rates for, say, 	p losses with p > 2, would be an interesting direction for future work.

3.4 Computational considerations

Our focus in this paper is primarily on the statistical efficiency of PCR-LE. In this section we briefly
discuss some computational aspects of the method.

Sparsification. First, we note that one very nice aspect of neighbourhood graphs is that the graph
Laplacian Ln,ε is typically quite sparse. For instance, choosing ε � (log n/n)1/d will result in a Laplacian
with O(n log n) non-zero entries. Our theory shows that this choice of ε results in optimal estimators and
tests when s = 1.

However, in the higher order case (s ≥ 2), our optimality results hold only under meaningfully
larger choices of ε (see (P3) and (P4)), and the resulting neighbourhood graph G will be much denser:
the average degree will grow polynomially in the sample size n as n → ∞, so there will be more non-
zero entries in the graph Laplacian, which increases the computational burden of PCR-LE. To address
this issue, in Appendix J we review some approaches to spectral sparsification, in which one efficiently
computes a sparse graph Ǧ that approximates G in a spectral sense. The hope is that the PCR-LE estimator
f̌ , computed with respect to the sparsified graph Ǧ, has similar statistical properties as f̂ while being
much faster to compute. To that end, we provide upper bounds on ‖f̌ − f0‖2

n, which show that under

8 This is because in the sub-critical regime, for any set of points {x1, . . . , xn} there exists a sequence of functions {fk : k ∈ N} ⊂
Hs(X ; 1) satisfying fk(xi) = 1 for each i = 1, . . . , n—and therefore ‖fk‖2

n = 1—but for which ‖fk‖2
P → 0 as k →∞.
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2446 A. GREEN ET AL.

mild conditions on Ǧ—provably achieved by many spectral sparsification algorithms—the estimator f̌
achieves the same rates of convergence as f̂ .

Beyond eigendecomposition. As currently defined PCR-LE requires taking a full eigendecomposition of
L. Naively this requires O(n3) time, and when n is large this may be prohibitive. However Frostig et al.
[25] show that in a general setting—outside of the context of graphs or graph Laplacians—it is possible
to compute an approximate solution to PCR by solving a ‘few’ ridge regression problems, without ever
needing to find the spectral decomposition. In the case of PCR-LE each ridge regression is equivalent to
Laplacian regularization, which can be approximately computed in time nearly-linear in the number of
edges in G [68]; this means that when G is sparse or has been sparsified, Laplacian regularization can
be solved in Õ(n) time. [Here Õ(·) hides poly(log n) factors.]

Unfortunately, in Frostig et al. [25] the number of ridge regressions used to approximately compute
PCR depends inversely on the spectral gap λK+1/(λK+1−λK) which for neighbourhood graphs is usually
quite small. The subsequent work of Allen-Zhu and Li [2, Jin and Sidford 41] sharpen the dependence
on the spectral gap, and the topic remains an area of active research.

Another interesting idea is to consider whether graph-based estimators besides PCR-LE could
achieve the optimal rates of convergence. An obvious candidate would be penalized regression involving
the Laplacian raised to a certain power, i.e. the solution to

minimize
f∈Rn

n∑
i=1

(Yi − fi)
2 + λf�Lsf .

Obviously this can also be solved without needing a full eigendecomposition of the Laplacian. However
we are unable to show that it is statistically optimal except in a very few special cases; namely when
s = 1 and d = 1, 2, 3, 4.

3.5 Out-of-sample error

LE is defined only at the observed samples and so our statements on the estimation error of PCR-LE
are based on mean-squared error at the data. Although it is common to measure error in this way, in the
context of random design regression it is arguably a bit unnatural; for instance, in-sample mean-squared
error has no formal relationship to prediction risk. Also, the lower bounds on estimation error for random
design regression—discussed in Section 2.3—are with respect to integrated L2 loss. So as a formal matter
our upper bounds cannot be compared with known lower bounds, at least in the sub-critical regime where
s ≤ d/2 and there is no coupling between ‖ · ‖n and ‖ · ‖P.

In Green [30], we discussed a post-processing scheme based on kernel smoothing that takes an
estimator f̂ defined only at the design points, and gives the function

Th,n̂f (x) =
⎧⎨⎩ 1∑n

i=1 ψ(‖Xi−x‖/h)

n∑
i=1

ψ

(
‖Xi−x‖

h

)̂
fi, if

n∑
i=1

ψ

(
‖Xi−x‖

h

)
> 0

0, otherwise.

This is well defined for any x ∈ R
d.

We showed that under appropriate conditions the resulting Th,n̂f has comparable L2(P) error to the
in-sample mean-squared error of f̂ . These conditions are exactly the ones of Theorem 1 (for f0 ∈ H1(X ))
or Theorem 3 (for f0 ∈ Hs

0(X ), s ≥ 2), plus the following.
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(K2) The kernel function ψ is supported on a subset of [0, 1]. Additionally, ψ is Lipschitz continuous
on [0, 1], and is normalized so that ∫ ∞

−∞
ψ(|z|) dz = 1.

If s ≥ 2 then ψ additionally satisfies the higher order kernel conditions,∫ ∞

−∞
ψ(|z|) dz = 1,

∫ ∞

−∞
z	ψ(|z|) dz = 0, for z = 1, . . . , s+ d − 2,

∫ ∞

−∞
zs+d−1ψ(|z|) dz <∞.

(P5) For constants c0 and C0, the bandwidth parameter h satisfies

C0

(
log(1/h)

n

)1/d

≤ h ≤ c0n−1/(2s+d).

Combined with our results on the in-sample error of PCR-LE, Theorem 19 of Green [30] yields the
following upper bound on estimation error.

Theorem 6. In the flat Euclidean setting, there exist constants c, C and N that do not depend on f0
or n such that each the following statements hold with probability at least 1 − δ − Cn exp{−cnεd} −
C exp{−cnhd}, for all n ≥ N, and for any δ ∈ (0, 1).

• If f0 ∈ H1(X ; M) for Cn−1/2 ≤ M ≤ cn1/d, the LE estimator f̂ is computed with parameters ε and
K that satisfy (P1), and the out-of-sample extension Th,n̂f is computed with bandwidth h = n−1/(2+d)

and kernel ψ that satisfies (K2), then

‖Th,n̂f − f0‖2
P ≤

C

δ
M2(M2n)−2/(2+d).

• If f0 ∈ Hs
0(X ; M) for Cn−1/2 ≤ M ≤ cns/d and p ∈ Cs−1(X ) for some s ∈ N, s > 1, and the LE

estimator f̂ is computed with parameters ε and K that satisfy (P3), and the out-of-sample extension
Th,n̂f is computed with bandwidth h = n−1/(2(s−1)+d) and kernel ψ that satisfies (K2), then

‖Th,n̂f − f0‖2
P ≤

C

δ
M2(M2n)−2s/(2s+d).

The implication is that Th,n̂f is a rate-optimal estimator with loss measured in L2(P) norm.
Another advantage of extending f̂ to a function defined out-of-sample is that in principle it allows

for tuning the hyperparameters of PCR-LE using cross-validation or other sample-splitting techniques.

4. Manifold setting

In this section we consider the manifold setting, where it is known that the minimax rates depend only
on the intrinsic dimension m; more specifically, [3, 12] show that for functions with Hölder smoothness
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s, the minimax estimation rate is n−2s/(2s+m) and the testing rate is n−4s/(4s+m).9 On the other hand, a
theory has been developed [5–7, 10, 49, 50] establishing that the neighbourhood graph G can ‘learn’ the
manifold X in various senses, so long as X is locally linear. We build on this work by showing that
when P is supported on a manifold X and f0 ∈ Hs(X ), PCR-LE achieves the faster minimax estimation
and testing rates.

4.1 Upper bounds

This section will proceed similarly to Section 3.2, with two differences. First when X is without
boundary, as is assumed in the manifold setting, it is easy to deal with the first-order (s = 1) and higher
order (s > 1) cases all at once. Second and more importantly, we will establish PCR-LE is optimal only
when the regression function f0 ∈ Hs(X ; M) for s ∈ {1, 2, 3}.
Estimation with PCR-LE. To ensure that f̂ is an in-sample minimax rate-optimal estimator, we choose
the kernel function η, graph radius ε and number of eigenvectors K as in (P3), except with ambient
dimension d replaced by the intrinsic dimension m.

(K4) The kernel function η is a non-increasing function supported on a subset of [0, 1]. Its restriction
to [0, 1] is Lipschitz, and η(1) > 0. Additionally, it is normalized so that∫

Rm
η(‖z‖) dz = 1.

(P5) The number of eigenvectors is given by

K = min
{⌊

(M2n)m/(2s+m)
⌋
∧ 1, n

}
.

If K < n then additionally

C0 max
{(

log
n

)1/m

, n−1/(2(s−1)+m)

}
≤ ε ≤ c0 min{1, K−1/m}. (4.1)

Theorem 7. In the manifold setting, suppose additionally f0 ∈ Hs(X , M) and p ∈ Cs−1(X ) for s ≤ 3.
There exist constants c, C and N that do not depend on f0, such that the following statement holds all for
all n ≥ N and for any δ ∈ (0, 1): if the PCR-LE estimator f̂ is computed with a kernel η satisfying (K4),
and parameters ε and K satisfying (P5), then

‖̂f − f0‖2
n ≤ C

(
1

δ
M2(M2n)−2s/(2s+m) ∧ 1

)
∨ 1

n
, (4.2)

with probability at least 1− δ − Cn exp(−cnεm)− exp(−K).

9 Although [3] considers density testing, usual arguments regarding equivalence of experiments [14] imply that the same rates
apply to regression testing.
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Testing with PCR-LE. Likewise, to construct a minimax optimal test using T̂ , we choose ε and K as in
(P2), except with the ambient dimension d replaced by the intrinsic dimension m.

(P6) The number of eigenvectors is given by

K = min
{⌊

(M2n)2m/(4s+m)
⌋
∨ 1, n

}
.

If K < n then additionally the graph radius ε satisfies (4.1).

Theorem 8. Fix a, b ∈ (0, 1). The PCR-LE test ϕ, computed with threshold ta, is a level-a test: E0[ϕ] ≤
a. In the manifold setting, suppose additionally f0 ∈ Hs(X , M), that p ∈ Cs−1(X ) and that s ≤ 3 and
m ≤ 4. Then there exist constants c, C and N that do not depend on f0, such that the following statement
holds for all n ≥ N: if the PCR-LE test ϕ is computed with a kernel η satisfying (K4), and parameters ε

and K satisfying (P6), and if f0 satisfies

‖f0‖2
P ≥

C

b

((
M2(M2n)−4s/(4s+m) ∧ n−1/2

) [√
1

a
+ 1

b

]
∨ M2

bn2s/m

)
∨ 1

n
, (4.3)

then Ef0 [1− ϕ] ≤ b.

Focusing on the case M � 1,10 the upper bounds in Theorems 7 and 8 imply that PCR-LE attain the
optimal rates of convergence over Sobolev balls Hs(X ) for s ∈ {1, 2, 3}.

Unlike in the full-dimensional case, in the manifold setting our upper bounds on the estimation and
testing error of PCR-LE do not match the minimax rate when s ≥ 4. In this case, the containment
Hs(X ; 1) ⊂ H3(X ; 1) implies that the PCR-LE estimator f̂ has in-sample mean-squared error of at
most of the order of n−6/(6+m), and that the PCR-LE test has small Type II error whenever ‖f0‖2

P �
n−12/(12+m); however, these are slower than the minimax rates.

We now explain this difference between the flat Euclidean and manifold settings. At a high level,
thinking of the graph G as an estimate of the manifold X , we incur some error using Euclidean distance
rather than geodesic distance to form the edges of G. This is in contrast with the full-dimensional setting,
where the Euclidean metric exactly coincides with the geodesic distance for all points x, z ∈X that are
sufficiently close to each other and far from the boundary of X . This extra error incurred in the manifold
setting using the ‘wrong distance’ dominates when s ≥ 4.

As this explanation suggests, by building G using the geodesic distance one could avoid this error, and
might obtain superior rates of convergence. However this is not an option for us, as we assume X —and
in particular its geodesics—are unknown. Likewise, a population-level spectral series estimator using
eigenfunctions of the manifold Laplace–Beltrami operator will achieve the minimax rate for all values
of s and m; but this is undesirable for the same reason—we do not want to assume that X is known. It is
not clear whether this gap between population-level spectral series regression and the PCR-LE estimator
is real, or a product of loose upper bounds.

Finally, as in the full-dimensional case, when the intrinsic dimension m > 4 we cannot choose the
graph radius ε and number of eigenvectors K to optimally balance testing bias and variance. Instead,
reasoning as in the proof of Theorem 5 shows that when 1 ≤ s ≤ 3, the PCR-LE test has power against

10 To the best of our knowledge, the minimax rates for general M in the manifold setting have not been worked out.
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alternatives with L2(P) norm satisfying the inequality in (3.10), except with the ambient dimension d
replaced by m.

4.2 Analysis

The high-level strategy used to prove Theorems 7 and 8 is the same as in the flat-Euclidean setting. More
specifically, we will use precisely the same bias-variance decompositions (3.11) (for estimation) and
(3.12) (for testing). The difference will be that our bounds on the graph Sobolev seminorm 〈Ls

n,εf0, f0〉n,
graph eigenvalue λK and empirical norm ‖f0‖2

n will now always depend on the intrinsic dimension m,
rather than the ambient dimension d. The precise results we use are contained in Propositions 7–9.

Proposition 7. In the manifold setting, suppose additionally that f ∈ Hs(X ; M) and p ∈ Cs−1(X ) for
s = 1, 2 or 3. Then there exist constants c and C that do not depend on f , n or M such that the following
statement holds for any δ ∈ (0, 1): if η satisfies (K4) and Cn−1/(2(s−1)+m) < ε < c, then

〈Ls
n,εf , f 〉n ≤

C

δ
‖f‖2

Hs(X ), (4.4)

with probability at least 1− 2δ.

In the manifold setting, appropriate bounds on the graph eigenvalues λk have already been derived
in [15, 28, 29]. The precise result we use is a direct consequence of Theorem 2.4 of [16].

Proposition 8. In the manifold setting, there exist constants c and C such that the following statement
holds: if η satisfies (K4) and C(log n/n)1/m < ε < c, then

λk ≥ c ·min
{

k2/m,
1

ε2

}
for all 1 ≤ k ≤ n, (4.5)

with probability at least 1− Cn exp{−cnεm}.
(For the specific computation used to deduce Proposition 8 from Theorem 2.4 of [16], see [31].)
Finally, we have the following lower bound on the empirical norm ‖f‖n.

Proposition 9. In the manifold setting, suppose additionally that f0 ∈ Hs(X , M) for some s > m/4.
There exists a constant C that does not depend on f0 such that the following statement holds for all δ > 0:
if

‖f0‖P ≥ CM

(
1

δn

)s/m

, (4.6)

then with probability at least 1− exp{−(cn ∧ 1/δ)},

‖f0‖2
n ≥

1

2
‖f0‖2

P. (4.7)

We prove Proposition 9 in a parallel manner to its flat Euclidean counterpart (Proposition 6), by first
using a Gagliardo–Nirenberg inequality to upper bound the L4(X ) norm of a Sobolev function defined
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Fig. 1. In-sample mean squared error (mse) of PCR-LE (LE) vs. population-level spectral series (SS) estimator, as a function of
sample size n. Each plot is on the log–log scale, and the results are averaged over 400 repetitions. All estimators are tuned for
optimal average mse, separately at each value of n. The black line shows the minimax rate (in slope only; the intercept is chosen
to match the observed error).

on a compact Riemannian manifold, and then applying a one-sided Bernstein’s inequality. Finally,
combining Propositions 7–9 with the conditional-on-design bias-variance decompositions (3.11) and
(3.12) leads to the conclusions of Theorems 7 and 8.

5. Experiments

In this section we empirically demonstrate that the PCR-LE estimator and test are reasonably good
alternatives to population-level spectral series methods, even at moderate sample sizes n. In order to
compare the two approaches, in our experiments we stick to the simple case where the design distribution
P is the uniform distribution over X = [−1, 1]d, and we have simple closed-form expressions for the
eigenfunctions of ΔP. In general, it is not easy to analytically compute these eigenfunctions, which is
part of the appeal of LE and PCR-LE.

Estimation. In our first experiment, we compare the mean-squared error of the PCR-LE estimator f̂ to
that of its population-level counterpart f̃ . We vary the sample size from n = 1000 to n = 4000; sample
n design points {X1, . . . , Xn} from the uniform distribution on the cube [−1, 1]d; and sample responses

Yi according to (1.3) with regression function f0 = M/ρ
s/2
K · ψK for K � nd/(2s+d) (the pre-factor

M/ρ
s/2
K is chosen so that |f0|2Hs(X )

= M2). In Fig. 1 we show the in-sample mean-squared error of
the two estimators as a function of n, for different dimensions d and order of smoothness s. We see
that both estimators have mean-squared error converging to zero at roughly the minimax rate. While
unsurprisingly the population-level spectral series estimator has the smaller error, generally speaking
the error of PCR-LE approaches that of the population-level spectral series method as n gets larger.

Testing. In our second experiment, we compare the PCR-LE test ϕ against the population-level spectral
series test ϕ̃.11 The set-up is generally the same as that of our first experiment, but the details are
necessarily somewhat more complicated. First we take a collection F = {M/ρ

s/2
k ψk}nk=1 of functions

H1(X ; M). Then, for each f0 ∈ F , we run a given test φ (either the PCR-LE test φ = ϕ, or the
population-level spectral series test φ = ϕ̃) and record whether it was a false negative or true positive.
We repeat this process over 100 replications, giving a Monte Carlo estimate of the type II error Ef0 [1−φ]

for each f0 ∈ F . Finally, we measure quality of the test by reporting the smallest value of ‖f0‖2
P such

that Ef0 [1− φ] ≤ b.

11 In this experiment, we calibrate the tests by simulation rather than using theoretically-motivated cut-offs.
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Fig. 2. Worst-case testing risk for PCR-LE (LE) and spectral series (SP) tests, as a function of sample size n. Plots are on the
same scale as Fig. 1, and the black line shows the minimax rate. All tests are set to have .05 Type I error, and are calibrated by
simulation under the null.

Fig. 3. Mean squared error of PCR-LE (red), and population-level spectral series (green) estimators as a function of tuning

parameters. Top row: the same regression function f0 as used in Fig. 1. Bottom row: the regression function f0 ∝
∑

k 1/ρ
1/2
k ψk .

For all experiments, the sample size n = 1000, and the results are averaged over 200 repetitions. In each panel, all tuning parameters
except the one being varied are set to their optimal values.

In Fig. 2, we see that both the PCR-LE and population-level spectral series tests perform similarly,
and converge at roughly the minimax rate.

Tuning parameters. Our first two experiments demonstrate that PCR-LE methods have comparable
statistical performance to population-level spectral series methods. PCR-LE depends on two tuning
parameters, and in our final experiment we investigate the importance of both, focusing now on
estimation. In Fig. 3, we see how the mean-squared error of PCR-LE changes as each tuning parameter
is varied. As suggested by our theory, properly choosing the number of eigenvectors K is crucial: the
mean-squared error curves, as a function of K, always have a sharply defined minimum. On the other
hand, as a function of the graph radius parameter ε the mean-squared error curve is much closer to flat.
This squares completely with our theory, which requires that the number of eigenvectors K be much
more carefully tuned that the graph radius ε.
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6. Discussion

In this work, we have derived upper bounds on the rates of convergence for regression with PCR-
LE, which imply that in various settings the PCR-LE estimator and test are minimax rate-optimal over
Sobolev classes. Importantly, these upper bounds hold under non-parametric conditions on the design
density p, and allow for p to be unknown and, potentially, supported on a low-dimensional manifold. Our
results help explain the practical success of methods which leverage graph Laplacian eigenvectors for
regression. They also distinguish such methods from more traditional spectral series procedures, which
rely on a density-dependent basis and thus require the density be known a priori.

Of course, there do exist other methods for non-parametric regression which achieve optimal
rates of convergence under similar (or indeed weaker) conditions on p. These include other graph-
based approaches—e.g. Laplacian smoothing—methods besides spectral series methods—e.g. kernel
smoothing, local polynomial regression, thin-plate splines—and continuum spectral projection methods
which use the eigenfunctions of an operator defined independently of p. To be clear, we do not advocate
PCR-LE over these alternatives. Rather, we view our results as theoretically justifying a place for
regression using LE in the non-parametric regression toolbox.

That being said, PCR-LE does have certain advantages over each of the aforementioned approaches.
We now conclude by outlining some of these advantages (limiting our discussion to estimation):

• Optimality when d ≥ 5. As mentioned in the introduction, Laplacian smoothing (defined via (1.5))
provably achieves minimax optimal rates over H1(X ) only when d ∈ {1, 2, 3, 4} [31, 53]. In contrast,
PCR-LE is optimal over H1(X ) for all dimensions d, and also over the higher order Sobolev spaces
Hs(X ).

• Dependence on intrinsic dimension. When the design distribution is non-uniform, an oft-
recommended alternative to population-level spectral series regression is to run OLS using
eigenfunctions of a density-independent differential operator. As a concrete example, let Δ be
the unweighted Laplacian operator on R

d, Δ = ∑d
i=1 ∂2f /∂x2

i . Denoting the eigenfunctions of Δ

(under Neumann boundary conditions) by φ1, φ2, . . ., and letting Φ ∈ R
n×K be the matrix with

entries Φik = φk(Xi) and columns Φ1, . . . , ΦK , one could compute an estimator by solving the
following OLS problem:

minimize
f∈span{Φ1,...,ΦK}

‖Y− f‖2
n.

Unlike with spectral series regression, this approach can produce reasonable estimates even when
the sampled eigenfunctions (φk(X1), . . . , φk(Xn)) ∈ R

n are not approximately orthogonal. Indeed
in the flat Euclidean setting such a method will in fact be minimax rate-optimal, though the upper
bounds may come with undesirably large constants if p is very non-uniform. However in the manifold
setting we know of no guarantees for the method, and suspect it may converge at suboptimal rates or
even be inconsistent. The justification for this claim is that the eigenfunctions φk have no underlying
relationship to the Sobolev space Hs(X ) except when X is a full-dimension set in R

d. In contrast,
PCR-LE uses features which are empirical approximations to eigenfunctions ψk of the density-
weighted Laplace–Beltrami operator ΔP. The eigenfunctions of ΔP are appropriately adapted to
the geometry of the manifold X , and as a result PCR-LE is consistent and in certain cases minimax
optimal, as we have shown.
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• Dependence on design density. In Appendix H, we give a simple univariate example of a sequence
of densities and regression functions {(p(n), f (n)

0 : n ∈ N} such that the expected in-sample mean
squared error of PCR-LE is smaller than that of either kernel smoothing or least squares using
eigenfunctions of Δ. This is possible because PCR-LE induces a completely different bias than these
latter two methods. In particular, when f0 and p satisfy the so-called cluster assumption—meaning
f0 is piecewise constant in high-density regions (clusters) of p—then the bias of PCR-LE can be
much smaller (for equivalent levels of variance) than that of kernel smoothing or least-squares with
eigenfunctions of Δ.

• We emphasize that this does not contradict the well-known optimality properties of, for example,
kernel smoothing over Hölder balls. Rather, in the standard non-parametric regression set-up—which
we adopt in the main part of this paper, and in which P is assumed to be equivalent to Lebesgue
measure—the biases of PCR-LE and kernel smoothing happen to be equivalent. But when P is
sufficiently non-uniform, this is no longer the case.

Grounding each of these three points on a firmer and more complete theoretical basis would be, in
our view, a valuable direction for future work.
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APPENDIX

A. Notation Table

Table A3 Notation.

Symbol Definition

X domain, either an open set in R
d or a compact manifold embedded in R

d.
ν Lebesgue measure
μ volume form induced by the embedding of X into R

d

P probability measure associated with the design points
p density of the probability measure, either with respect to ν or μ.
L2(X ) set of square-integrable functions, either with respect to ν or μ

∫
X f 2 dν <∞ or∫

X f 2 dμ <∞
Ck(X ) functions which are k-times continuously differentiable in X
C∞c (X ) functions in C∞(X ) which are compactly supported in X
Hs(X ) order-s Sobolev space (Definition 1 in the flat Euclidean setting, Definition 3 in the

manifold setting.)
Hs

0(X ) order-s zero-trace Sobolev space (Definition 2)
‖ · ‖2 Euclidean distance
dX (·, ·) geodesic distance
B(x, δ) Ball in Euclidean distance, centred at x with radius δ
BX (x, δ) Ball in geodesic distance

B. Upper bounds on population-level spectral series regression

In this section we first give the proof of Proposition 1, then of Proposition 2. In both cases the structure
of the analysis, which is fairly classical and straightforward, can be usefully compared with our analysis
of PCR-LE (see Section 3.3).

Proof of Proposition 1. We decompose risk into squared bias and variance,

E‖̃f − f0‖2
P = E‖E[̃f ]− f0‖2

P + E‖̃f − E[̃f ]‖2
P. (B.1)

Since the eigenfunctions {ψk} form an orthonormal basis of L2(X ) (with respect to the inner-
product 〈·, ·〉P) and f0 ∈ H s(X ) ⊆ L2(X ), we can write the squared bias in terms of squared Fourier
coefficients of f0, leading to the following upper bound,

‖f0 − E[̃f ]‖2
P =

∞∑
k=K+1

〈f0, ψk〉2P ≤
1

ρs
K+1

∞∑
k=K+1

ρs
k+1〈f0, ψk〉2P ≤

‖f0‖2
H s(X )

ρs
K+1

.
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On the other hand, the variance term can be written as the sum of the variance of each empirical Fourier
coefficient, and subsequently by the law of total variance we derive that

E‖̃f − E[̃f ]‖2
P =

K∑
k=1

Var
[〈Y, ψk〉n

] = K∑
k=1

Var
[
E[〈Y , ψk〉n|X1, . . . , Xn]

]+ E
[
Var[〈Y , ψk〉n|X1, . . . , Xn]

]

=
K∑

k=1

Var
[〈f0, ψk〉n

]+ 1

n
E

[
‖ψk‖2

n

]

≤ 1

n

K∑
k=1

E

[(
f0(X)ψk(X)

)2
]
+ K

n
. (B.2)

Consequently,

E‖̃f − f0‖2
P ≤

‖f0‖2
H s(X )[

ρK+1

]s + K

n
+ 1

n
E

[
(f0(X))2 ·

K∑
k=1

(ψk(X))2

]
. (B.3)

The claim of the proposition then follows from variants of two classical results in spectral geometry.
The first is a Weyl’s Law asymptotic scaling of the eigenvalues of ΔP due to [22]; formally, there exist
constants c and C (which will depend on P and d) such that

ck2/d ≤ ρk ≤ Ck2/d for all k ∈ N, k ≥ 2. (B.4)

The second is a local analogue to Weyl’s Law, which says that there exists a constant C (again depending
on P and d) such that

sup
x∈X

{ K∑
k=1

(
ψk(x)

)2
}
≤ CK for all K ∈ N. (B.5)

Equation (B.5) is a direct implication of (B.4) along with Theorem 17.5.3 of [36]. Plugging the upper
bounds (B.4) and (B.5) back into (B.3), and recalling that E[(f0(X))2] = ‖f0‖2

P ≤ 1, we conclude that

E‖̃f − f0‖2
P ≤ C

( ‖f0‖2
H s(X )

(K + 1)2s/d
+ K

n

)
. (B.6)

If n−1/2 ≥ M, then taking K = 1 implies E‖̃f − f0‖2
P ≤ C(M2 + 1/n). Otherwise, setting K =⌊

M2n
⌋d/(2s+d)

balances squared bias and variance, and yields the claim. �

Proof of Proposition 2. We briefly lay out the main ideas needed to prove Proposition 2, following the
lead of [39] who prove a similar result in the special case where M = 1 and P is the uniform distribution
over X = [0, 1]d, and referring to that work for more details.
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We begin by computing the first two moments of the test statistic T̃ . The expectation is

E[̃T] = (n− 1)

n

K∑
k=1

〈f0, ψk〉2P +
K

n
+ E

[
(f0(X))2 ·

K∑
k=1

(ψk(X))2
]

.

To compute the variance, we decompose T̃ = T̃1,1 + T̃1,2 + T̃1,3 + T̃2 into the sum of 3 U-statistics and

the remaining diagonal terms, defined in terms of the equivalent kernel κ(x, x′) =∑K
k=1 ψk(x)ψk(x

′) as

T1,1 := 1

n2

∑
1≤i �=j≤n

wiwjκ(Xi, Xj), T1,2 := 1

n2

∑
1≤i �=j≤n

(
wif0(Xj)+ wjf0(Xi)

)
κ(Xi, Xj)

T1,3 := 1

n2

∑
1≤i �=j≤n

f0(Xi)f0(Xj)κ(Xi, Xj), T2 := 1

n2

n∑
i=1

Y2
i κ(Xi, Xi).

The variances of each statistic can be found by routine computation (see [39]), and in particular satisfy
the upper bounds

Var(T1,1) ≤
2K

n2 , Var(T1,2)
(i)≤ C

n
‖f0‖2

P

Var(T1,3)
(ii)≤ C

(
K

n
‖f0‖4

P +
K

n2 ‖f0‖4
L4(X )

)
, Var(T2)

(iii)≤ CK2

n3

(
1+ ‖f0‖4

L4(X )

)
where (i)–(iii) hold due to local Weyl’s law, i.e. (B.5). Upper bounds on Type I and Type II error,

E0[ϕ̃] ≤
(

1+ CK/n2
)

a, Ef0 [1− ϕ̃] ≤
C(K/n2 + ‖f0‖2

P + K/n‖f0‖4
P + K/n2‖f0‖4

L4(X )
)

(
∑K

k=1〈f0, ψk〉2P −
√

2K/an)2
,

follow from Chebyshev’s inequality. From (B.4) (Weyl’s Law), we have that

K∑
k=1

〈f0, ψk〉2P ≥ ‖f0‖2
P −

‖f0‖2
H s(X )

ρs
K+1

≥ ‖f0‖2
P − C

‖f0‖2
H s(X )

(K + 1)2s/d
,

and it can be verified that so long as

‖f0‖2
P ≥ C

( ‖f0‖2
H s(X )

(K + 1)2s/d
+
√

K

n

(√
1

a
+

√
1

b

))
(B.7)

for a sufficiently large constant C, then Ef0 [1− ϕ̃] ≤ b. The two summands in (B.7) are bias and standard

deviation terms, respectively. When M2 ≤ n−1, setting K = 1 gives the desired result. Otherwise,

choosing K = ⌊
M2n

⌋2d/(4s+d)
balances these two terms, and leads to (2.10). �
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C. Graph-dependent error bounds

In this section, we adopt the fixed design perspective; or equivalently, condition on Xi = xi for i =
1, . . . , n. We take G = ({x1, . . . , xn}, W

)
to be a fixed graph on {x1, . . . , xn} with Laplacian matrix L =∑n

k=1 λkvkv�k . The randomness thus all comes from the responses

Yi = f0(xi)+ wi, (C.1)

where the noise variables wi are independent N(0, 1). In the rest of this section, we will mildly abuse
notation and write f0 = (f0(x1), . . . , f0(xn)) ∈ R

n.

C.1 Upper bound on Estimation Error of PCR-LE

Lemma C.1. Suppose we observe (Y1, x1), . . . , (Yn, xn) according to (C.1). Then for any integer s ≥ 1,
and any integer 1 ≤ K ≤ n, the PCR-LE estimator f̂ of (2.2) satisfies

‖̂f − f0‖2
n ≤

〈Lsf0, f0〉n
λs

K+1
+ 5K

n
, (C.2)

with probability at least 1− exp(−K) if 1 ≤ K ≤ n.

Proof of Lemma C.1. By the triangle inequality,

‖̂f − f0‖2
n ≤ 2

(
‖Êf − f0‖2

n + ‖̂f − Êf‖2
n

)
. (C.3)

The first term in (C.3) (approximation error) is non-random, since the design is fixed. The expectation
Êf =∑K

k=1〈vk, f0〉vk, so that

‖Êf − f0‖2
n =

∥∥∥∥∥
n∑

k=K+1

〈vk, f0〉vk

∥∥∥∥∥
2

n

= 1

n

n∑
k=K+1

〈vk, f0〉2.

In the above, the last equality relies on the fact that vk are orthonormal with respect to the usual Euclidean
inner product 〈·, ·〉. Using the fact that the eigenvalues are in increasing order, we obtain

1

n

n∑
k=K+1

〈vk, f0〉2 ≤
1

nλs
K+1

n∑
k=K+1

λs
k〈vk, f0〉2 ≤

〈Lsf0, f0〉n
λs

K+1
.

Observe that 〈vk, ε〉 d= Zk, where (Z1, . . . , Zn) ∼ N(0, In×n). Again using the orthonormality of the
eigenvectors vk, we have

‖̂f − Êf‖2
n =

1

n

K∑
k=1

〈vk, ε〉2 d= 1

n

K∑
k=1

Z2
k .
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Thus ‖̂f − Êf‖2
n is equal to 1/n times a χ2 distribution with K degrees of freedom. Consequently, it

follows from a result of [45] that

P

(
‖̂f − Êf‖2

n ≥
K

n
+ 2

√
K

n

√
t + 2t

n

)
≤ exp(−t).

Setting t = K completes the proof of the lemma.

C.2 Upper bound on Testing Error of PCR-LE

In the following Lemma, we upper bound the Type I and Type II error of the test ϕ = 1{T̂ ≥ ta}.
Lemma C.2. Suppose we observe (Y1, x1), . . . , (Yn, xn) according to (C.1). Fix (a, b) ∈ (0, 1). Then
E0[ϕ] ≤ a, and if additionally f0 �= 0 satisfies

‖f0‖2
n ≥

〈Lsf0, f0〉n
λs

K+1
+
√

2K

n

[
2

√
1

a
+

√
2

b
+ 32

bn

]
, (C.4)

for some s ∈ N, s ≥ 1, then Ef0 [1− φ] ≤ b.

Proof of Lemma C.2. We first compute the expectation and variance of T̂ , then apply Chebyshev’s
inequality to upper bound the Type I and Type II error.

Expectation. Recall that T̂ = 1
n

∑K
k=1〈Y, vk〉2. Expanding the square gives

E[̂T] = 1

n

K∑
k=1

E
[〈Y, vk〉2

] = K

n
+

K∑
k=1

〈f0, vk〉2.

Thus E[̂T]− ta = 1
n

∑K
k=1〈f0, vk〉2 −

√
2K/n · √1/a. Furthermore, it is a consequence of (C.4) that

1

n

K∑
k=1

〈f0, vk〉2 −
√

2K

n

√
1/a ≥ ‖f0‖2

n −
〈Lsf0, f0〉n

λs
K+1

−
√

2K

n

√
1/a ≥

√
2K

n

[√
1

a
+

√
2

b
+ 32

bn

]
. (C.5)

Variance. Recall from the proof of Lemma C.1 that 〈ε, vk〉 d= Zk for (Z1, . . . , Zn) ∼ N(0, In×n).
Expanding the square, and recalling that Cov[Z, Z2] = 0 for Gaussian random variables, we have that

Var
[
〈Y, vk〉2

]
= Var

[
2〈f0, vk〉Zk + 2Z2

k

]
= 4〈f0, vk〉2 + 2.

Moreover, since Cov[Z2
k , Z2

	 ] = 0 for each k = 1, . . . , K, we see that

Var
[
T̂
] = 1

n2

K∑
k=1

Var
[
〈Y, vk〉2

]
= 2K

n2 +
K∑

k=1

4〈f0, vk〉2
n2 .
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Bounds on Type I and Type II error. The upper bound on Type I error follows immediately from
Chebyshev’s inequality.

The upper bound on Type II error also follows from Chebyshev’s inequality. We observe that (C.5)
implies Ef0 [̂T] ≥ ta, and apply Chebyshev’s inequality to deduce

Pf0

(
T̂ < ta

) ≤ Pf0

(
|̂T − Ef0 [̂T]|2 > |Ef0 [̂T]− ta|2

)
≤ Var

[
T̂
][

Ef0 [̂T]− ta

]2 =
2K/n2 + 4/n2 ∑K

k=1〈f0, vk〉2[
Ef0 [̂T]− ta

]2 .

Thus we have upper bounded the Type II error by the sum of two terms, each of which are no more than
b/2, as we now show. For the first term, after noting that (C.5) implies Ef0 [̂T] − ta ≥

√
2K/n · √2/b,

the upper bound follows:

2K/n2[
Ef0 [̂T]− ta

]2
≤ b

2
.

On the other hand, for the second term we use (C.5) in two ways: first to conclude that Ef0 [̂T] − ta ≥
1
2n ·

∑K
k=1〈f0, vk〉2, and second to obtain

4/n2 ∑K
k=1〈f0, vk〉2[

Ef0 [̂T]− ta

]2
≤ 4/n2 ∑K

k=1〈f0, vk〉2(
1
n

∑K
k=1〈f0, vk〉2/2

)2
≤ 16∑K

k=1〈f0, vk〉2
≤ b

2
.

D. Graph Sobolev semi-norm, flat Euclidean domain

In this section we prove Proposition 4. The proposition will follow from several intermediate results.

1. In Section D.1, we show that if f ∈ Hs
0(X ; M), then

〈Ls
n,εf , f 〉n ≤

1

δ
〈Ls

P,εf , f 〉P +
Cε2

nε2s+d
M2, (D.1)

with probability at least 1− 2δ.
We term the first term on the right-hand side the non-local Sobolev semi-norm, as it is a kernelized
approximation to the Sobolev semi-norm 〈Δs

Pf , f 〉P. The second term on the right-hand side is a
pure bias term, which as we will see is negligible compared with the non-local Sobolev semi-norm
as long as ε � n−1/(2(s−1)+d).

2. In Section D.2, we show that when x is sufficiently in the interior of X , then Lk
P,εf (x) is a good

approximation to Δk
Pf (x), as long as f ∈ Hs(X ) and p ∈ Cs−1(X ) for some s ≥ 2k + 1.

3. In Section D.3, we show that when x is sufficiently near the boundary of X , then Lk
P,εf (x) is

close to 0, as long as f ∈ Hs
0(X ) for some s > 2k.
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4. In Section D.4, we use the results of the preceding two sections to show that if f ∈ Hs
0(X ; M)

and p ∈ Cs−1(X ), there exists a constant C which does not depend on f such that

〈Ls
P,εf , f 〉P ≤ CM2. (D.2)

Finally, in Section D.5 we provide some assorted estimates used in Sections D.1.

Proof of Proposition 4. Proposition 4 follows immediately from (D.1) and (D.2). �
One note regarding notation: suppose a function g ∈ H	(U), where 	 ∈ N and U is an open set. Let

V be another open set, compactly contained within U. Then we will use the notation g ∈ H	(V) to mean
that the restriction g| V of g to V belongs to H	(V).

D.1 Decomposition of graph Sobolev semi-norm

In Lemma D.3, we decompose the graph Sobolev semi-norm (a V-statistic) into an unbiased estimate of
the non-local Sobolev semi-norm (a U-statistic), and a pure bias term. We establish that the pure bias
term will be small (in expectation) relative to the U-statistic whenever ε is sufficiently small.

Lemma D.3. For any f ∈ L2(X ), the graph Sobolev semi-norm satisfies

〈Ls
n,εf , f 〉n = U(s)

n,ε(f )+ B(s)
n,ε(f ), (D.3)

such that E[U(s)
n,ε(f )] = ( n

s+1)
ns+1 · 〈Ls

P,εf , f 〉P. If additionally f ∈ H1(X ; M) and ε ≥ n−1/d, then the bias

term B(s)
n,ε(f ) satisfies

E

[
|B(s)

n,ε(f )|
]
≤ Cε2

δnε2+d
M2. (D.4)

Notice that ‖f‖2
H1(X )

≤ ‖f‖2
Hs(X )

and
( n

s+1)
ns+1 ≤ 1. Then (D.1) follows immediately from Lemma

D.3, by Markov’s inequality.

Proof of Lemma D.3. We begin by introducing some notation. We will use bold notation j = (j1, . . . , js)
for a vector of indices where ji ∈ [n] for each i. We write [n]s for the collection of all such vectors,
and (n)s for the subset of such vectors with no repeated indices. Finally, we write Dif for a kernelized
difference operator,

Dif (x) := (
f (x)− f (Xi)

)
η

(‖Xi − x‖
ε

)
,

and we let Djf (x) :=
(

Dj1 ◦ · · · ◦ Djs f
)

(x).

In this notation,

Ln,εf (x) = 1

nεd+2

n∑
i=1

Dif (x),
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and it is easy 〈Ls
n,εf , f 〉n as the sum of a U-statistic and a bias term,

〈Ls
n,εf , f 〉n =

1

n

n∑
i=1

Ls
n,εf (Xi) · f (Xi)

= 1

ns+1εs(d+2)

∑
ij∈(n)s+1

Djf (Xi) · f (Xi)︸ ︷︷ ︸
=:U(s)

n,ε(f )

+ 1

ns+1εs(d+2)

∑
ij∈

[n]s+1\(n)s+1

Djf (Xi) · f (Xi)

︸ ︷︷ ︸
=:B(s)

n,ε(f )

When the indices of ij are all distinct, it follows straightforwardly from the law of iterated expectation
that

E[Djf (Xi) · f (Xi)] = εs(d+2)
E[Ls

P,εf (Xi) · f (Xi)] = εs(d+2)〈Ls
P,εf , f 〉P,

which in turn implies E[U(s)
n,ε(f )] = ( n

s+1)
ns+1 · 〈Ls

P,εf , f 〉P.
It remains to show (D.4). Notice that for any i, j ∈ [n] it is the case that Djf (Xi) = −Dif (Xj). Thus,

by adding and subtracting f (Xjs
), we obtain by symmetry that∑

ij∈
[n]s+1\(n)s+1

Djf (Xi) · f (Xi) =
1

2
·

∑
ij∈

[n]s+1\(n)s+1

Djf (Xi) ·
(

f (Xi)− f (Xjs
)
)

,

and consequently

E

⎡⎢⎢⎢⎣ ∑
ij∈

[n]s+1\(n)s+1

Djf (Xi) · f (Xi)

⎤⎥⎥⎥⎦ ≤ 1

2
·

∑
ij∈

[n]s+1\(n)s+1

E

[∣∣∣Djf (Xi)

∣∣∣ · ∣∣∣f (Xi)− f (Xjs
)

∣∣∣] .

It follows from Lemma D.8—given later in Section D.5—ij ∈ [n]s+1 which contains a total of k + 1
distinct indices,

E

[∣∣∣Djf (Xi)

∣∣∣ · ∣∣∣f (Xi)− f (Xjs
)

∣∣∣] ≤ C1ε
2+kdM2.

This shows us that the expectation of |Bs
n,ε(f )| can bounded from above by the sum over several different

terms, grouped according to the number of distinct indices |ij|, as follows:

E
[|Bs

n,ε(f )|
] ≤ C1

ε2

nε2s
M2

∑
ij∈

[n]s+1\(n)s+1

1

(nεd)s
ε(|ij|−1)d

≤ C1
ε2

nε2s
M2

s−1∑
k=1

(nεd)k

(nεd)s
n.
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Finally, we note that by assumption nεd ≥ 1, so that in the above sum the factor of (nεd)k is largest when
k = s− 1. We conclude that

E
[|Bs

n,ε(f )|
] ≤ C1(s− 1)

ε2

nε2s+d
M2,

which is the desired result.

D.2 Approximation error of non-local Laplacian

In this section, we establish the convergence Lk
P,εf → σ k

ηΔk
Pf as ε → 0. More precisely, we give an

upper bound on the squared difference between Lk
P,εf and σ k

ηΔk
Pf as a function of ε. The bound holds for

all x ∈Xkε, and f ∈ Hs(X ), as long as s ≥ 2k + 1.

Lemma D.4. Let s ∈ N, s ≥ 3. In the flat Euclidean setting, suppose additionally that f ∈ Hs(X ; M),
and p ∈ Cs−1(X ). Let LP,ε be defined with respect to a kernel η that satisfies (K1). Then there exist
constants C1 and C2 that do not depend on f , such that each of the following statements hold.

• If s is odd and k = (s− 1)/2, then

‖Lk
P,εf − σ k

ηΔk
Pf‖L2(Xkε)

≤ C1Mε (D.5)

• If s is even and k = (s− 2)/2, then

‖Lk
P,εf − σ k

ηΔk
Pf‖L2(Xkε)

≤ C2Mε2. (D.6)

We remark that when k = 1 and f ∈ C3(X ) or C4(X ), statements of this kind are well known,
and indeed stronger results—with L∞(X ) norm replacing L2(X ) norm—hold. When dealing with the
iterated Laplacian, and functions f which are regular only in the Sobolev sense, the proof is somewhat
more lengthy, but in result is similar in spirit.

Proof of Lemma D.4. Throughout this proof, we shall assume that f and p are smooth functions, meaning
they belong to C∞(X ). This is without loss of generality, since C∞(X ) is dense in both Hs(X ) and
Cs−1(X ), and since both sides of the inequalities (D.5) and (D.6) are continuous with respect to ‖ ·
‖Hs(X ) and ‖ · ‖Cs−1(X ) norms.

We will actually prove a more general set of statements than contained in Lemma D.4, more general
in the sense that they give estimates for all k, rather than simply the particular choices of k given above.
In particular, we will prove that the following two statements hold for any s ∈ N and any k ∈ N \ {0}.
• If k ≥ s/2, then for every x ∈Xkε,

Lk
P,εf (x) = gs(x)ε

s−2k (D.7)

for a function gs that satisfies

‖gs‖L2(Xkε)
≤ C‖p‖k

Cq(X )M, (D.8)

where q = 1 if s = 0 or s = 1, and otherwise q = s− 1.
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• If k < s/2, then for every x ∈Xkε,

Lk
P,εf (x) = σ k

η ·Δk
Pf (x)+

�(s−1)/2�−k∑
j=1

g2(j+k)(x)ε
2j + gs(x)ε

s−2k. (D.9)

for functions gj that satisfy

‖gj‖Hs−j(Xkε)
≤ C‖p‖k

Cs−1(X )
M. (D.10)

In the statement above, recall that H0(Xkε) = L2(Xkε). Additionally, note that we may speak of the
pointwise behaviour of derivatives of f because we have assumed that f is a smooth function. Observe
that (D.5) follows upon taking k = �(s− 1)/2� in (D.9), whence we have

(
Lk

P,εf (x)− σ k
ηΔk

Pf (x)
)2 = ε2 (gs(x)

)2

for some gs ∈ L2(Xkε, C · M · ‖p‖Cs−1(X )), and integrating over Xkε gives the desired result. (D.6)
follows from (D.9) in an identical fashion.

It thus remains to establish (D.9), and (D.7) which is an important part of proving (D.9). We will do
so by induction on k. Note that throughout, we will let gj refer to functions which may change from line
to line, but which always satisfy (D.10).

Proof of (D.7) and (D.9), base case. We begin with the base case, where k = 1. Again, we point out
that although the desired result is known when s = 3 or s = 4, and f is regular in the Hölder sense, we
require estimates for all s ∈ N when f is regular in the Sobolev sense.

When s = 0, the inequality (D.7) is implied by Lemma D.6. When s ≥ 1, we proceed using Taylor
expansion. For any x ∈ Xε, we have that B(x, ε) ⊆ X . Thus for any x′ ∈ B(x, ε), we may take an
order s Taylor expansion of f around x′ = x, and an order q Taylor expansion of p around x′ = x, where
q = 1 if s = 1, and otherwise q = s− 1. (See Section I.2 for a review of the notation we use for Taylor
expansions, as well as some properties that we make use of shortly.) This allows us to express LP,εf (x)
as the sum of three terms,

LP,εf (x) = 1

εd+2

s−1∑
j1=1

q−1∑
j2=0

1

j1! j2!

∫
X

(
dj1

x f
)

(x′ − x)
(

dj2
x p

)
(x′ − x)η

(‖x′ − x‖
ε

)
dx′

+ 1

εd+2

s−1∑
j=1

1

j!

∫
X

(
dj

xf
)

(x′ − x)rq
x′(x; p)η

(‖x′ − x‖
ε

)
dx′

+ 1

εd+2

∫
X

rj
x′(x; f )η

(‖x′ − x‖
ε

)
dP(x′).

Here we have adopted the convention that
∑0

j=1 = 0.
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Changing variables to z = (x′ − x)/ε, we can rewrite the above expression as

LP,εf (x) = 1

ε2

s−1∑
j1=1

q−1∑
j2=0

εj1+j2

j1! j2!

∫
dj1

x f (z)dj2
x p(z)η (‖z‖) dz

+ 1

ε2

s−1∑
j=1

εj

j!

∫
dj

xf (z)rq
zh+x(x; p)η (‖z‖) dz

+ 1

ε2

∫
rj

zh+x(x; f )η (‖z‖) p(zh+ x) dz

:= G1(x)+ G2(x)+ G3(x).

We now separately consider each of G1(x), G2(x) and G3(x). We will establish that if s = 1 or s = 2,
then G1(x) = 0, and otherwise if s ≥ 3 that

G1(x) = σηΔPf (x)+
�(s−1)/2�−1∑

j=1

g2(j+1)(x)ε
2j + gs(x)ε

s−2.

On the other hand, we will establish that if s = 1 then G2(x) = 0, and otherwise for s ≥ 2

‖G2‖L2(Xε)
≤ Cεs−2M‖p‖Cs−1(X ); (D.11)

this same estimate will hold for G3 for all s ≥ 1. Together these will imply (D.7) and (D.9).
Estimate on G1(x). If s = 1, then s − 1 = 0, and so G1(x) = 0. We may therefore suppose s ≥ 2.

Recall that

G1(x) =
s−1∑
j1=1

q−1∑
j2=0

εj1+j2−2

j1! j2!

∫
B(0,1)

dj1
x f (z)dj2

x p(z)η(‖z‖) dz︸ ︷︷ ︸
:=gj1,j2 (x)

(D.12)

The nature of gj1,j2(x) depends on the sum j1+j2. Since dj1
x fdj2

x is an order j1+j2 (multivariate) monomial,
we have (see Section I.2) that whenever j1 + j2 is odd,

gj1,j2(x) =
∫
X

dj1
x f (z)dj2

x p(z)η(‖z‖) dz = 0.

In particular this is the case when j1 = 1 and j2 = 0. Thus when s = 2, G1(x) = g1,0(x) = 0. On the
other hand if s ≥ 3, then the lowest order terms in (D.12) are those where j1 + j2 = 2, so that either
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j1 = 1 and j2 = 1, or j1 = 2 and j2 = 0. We have that

g1,1(x)+
1

2
g2,0(x) =

∫
X

d1
x f (z)d1

x p(z)η(‖z‖) dz+ p(x)

2

∫
X

d2
x f (z)η(‖z‖) dz

=
d∑

i1=1

d∑
i2=1

Dei1 f (x)Dei2 p(x)
∫
X

zei1+ei2 η(‖z‖) dz

+ p(x)

2

d∑
i1=1

d∑
i2=1

Dei2+ei2 f (x)
∫
X

zei1+ei2 η(‖z‖) dz

=
d∑

i=1

Dei f (x)Deip(x)
∫
X

z2η(‖z‖) dz+ p(x)

2

d∑
i=1

D2ei f (x)
∫
X

z2η(‖z‖) dz

= σηΔPf (x),

which is the leading term order term. Now it remains only to deal with the higher order terms, where
j1 + j2 > 2, and where it suffices to show that each function gj1,j2 satisfies (D.10) for j = min{j1 + j2 −
2, s− 2}. It is helpful to write gj1,j2 using multi-index notation,

gj1,j2(x) =
∑
|α1|=j1

∑
|α2|=j2

Dα1 f (x)Dα2 p(x)
∫

B(0,1)

zα1+α2η(‖z‖) dz,

where we note that | ∫B(0,1)
zα1+α2η(‖z‖) dz| < ∞ for all α1, α2, by the assumption that η is Lipschitz

on its support. Finally, by Hölder’s inequality we have that

‖Dα1 fDα2 p‖Hs−(j+2)(X ) ≤ ‖Dα1 f‖Hs−(j+2)(X )‖Dα2 p‖Cs−(j+2)(X )

≤ ‖Dα1 f‖Hs−j1 (X )‖Dα2 p‖Cs−(j2+1)(X )

≤ M · ‖p‖Cs−1(X ),

and summing over all |α1| = j1 and |α2| = j2 establishes that gj1,j2 satisfies (D.10).

Estimate on G2(x). Note immediately that G2(x) = 0 if s = 1. Otherwise if s ≥ 2, then q = s − 1.

Recalling that |rs−1
x+zε(x; p)| ≤ Cεs−1‖p‖Cs−1(X ) for any z ∈ B(0, 1), and that dj

xf (·) is a j-homogeneous
function, we have that

|G2(x)| ≤
s−1∑
j=1

εj−2

j!

∫
B(0,1)

∣∣∣(dj
xf
)

(z)
∣∣∣ · |rs−1

x+zε(x; p)| · η(‖z‖) dz

≤ Cεs−2‖p‖Cs−1(X )

s−1∑
j=1

1

j!

∫
B(0,1)

∣∣∣(dj
xf
)

(z)
∣∣∣ · η(‖z‖) dz. (D.13)
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Furthermore, for each j = 1, . . . , s − 1 convolution of dj
xf with η only decreases the L2(Xε) norm,

meaning

∫
Xε

(∫
B(0,1)

∣∣∣(dj
xf
)

(z)
∣∣∣ · η(‖z‖) dz

)2

dx ≤
∫
Xε

(∫
B(0,1)

∣∣∣(dj
xf
)

(z)
∣∣∣2 η(‖z‖) dz

)
·
(∫

B(0,1)

η(‖z‖) dz

)
dx

≤
∫

B(0,1)

∫
Xε

[(
djf

)
(x)

]2
η(‖z‖) dx dz

≤ ‖djf‖2
L2(Xε)

.

(D.14)

In the above, we have used both that |dj
xf (z)| ≤ |djf (x)| for all z ∈ B(0, 1), and that the kernel is

normalized so that
∫

η(‖z‖) dz = 1. Combining this with (D.13), we conclude that

∫
Xε

|G2(x)|2 dx ≤ C
(
εs−2‖p‖Cs−1(X )

)2 s−1∑
j=1

∫
Xε

(
1

j!

∫
B(0,1)

∣∣∣(dj
xf
)

(z)
∣∣∣ · |η(‖z‖)| dz

)2

dx

≤ C
(
εs−2‖p‖Cs−1(X )

)2 s−1∑
j=1

‖dju‖2
L2(Xε)

,

establishing the desired estimate.

Estimate on G3(x). Applying the Cauchy–Schwarz inequality, we deduce a pointwise upper bound on
|G3(x)|2,

|G3(x)|2 ≤
(

pmax
ε2

)2

·
(∫

B(0,1)

∣∣rs
x+εz(x; u)

∣∣2 η(‖z‖) dz

)
·
(∫

B(0,1)

η(‖z‖) dz

)

≤
(

pmax
ε2

)2 ∫
B(0,1)

∣∣rs
x+εz(x; u)

∣∣2 η(‖z‖) dz.

Applying this pointwise over all x ∈Xε and integrating, we obtain

∫
Xε

|G3(x)|2 dx ≤
(

pmax
ε2

)2 ∫
Xε

∫
B(0,1)

∣∣rs
x+εz(x; f )

∣∣2 η(‖z‖) dz dx

=
(

pmax
ε2

)2 ∫
B(0,1)

∫
Xε

∣∣rs
x+εz(x; f )

∣∣2 η(‖z‖) dx dz

≤
(

pmaxεs

ε2

)2

‖dsf‖2
L2(Xε)

,
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with the last inequality following from (I.2). Noting that pmax = ‖p‖C0(X ) ≤ ‖p‖Cs−1(X ), we see that
this is a sufficient bound on ‖G3‖L2(Xε)

.

Proof of (D.7) and (D.9), induction step. We now assume that (D.7) and (D.9) hold for all order up to
some k, and show that they then hold for order k + 1 as well. The proof is relatively straightforward,
once we introduce a bit of notation. Namely, for any 	, j ∈ N such that 1 ≤ j ≤ 	 ≤, we will use g	

j to
refer to a function satisfying

‖g	
j ‖H	−j(X(k+1)ε)

≤ C‖p‖k+1
Cq(X )

M. (D.15)

Note that g	
j (x) = g(s−	)+j(x), so that gs

j (x) = gj(x). As before, the functions g	
j may change from line

to line, but will always satisfy (D.15). We immediately illustrate the purpose of this notation. Suppose
g ∈ H	(Xkε; C‖p‖k

Cq(X )
M) for some 	 ≤ s. If 	 ≤ 2, then by the inductive hypothesis, it follows that

for any x ∈X(k+1)ε

LP,εg(x) = g	
	(x)ε

	−2. (D.16)

On the other hand if 2 < 	 ≤ s, then by the inductive hypothesis, it follows that for any x ∈X(k+1)ε,

LP,εg(x) = σηΔPg(x)+
�(	−1)/2�−1∑

j=1

g	
2j+2(x)ε

2j + g	
	(x)ε

	−2. (D.17)

Proof of (D.7). If s ≤ 2(k+ 1), then by the inductive hypothesis it follows that for all x ∈Xkε, we have
Lk

P,εf (x) = gs(x) · εs−2k, for some gs ∈ L2(Xkε, C‖p‖k
Cs−1(X )

M). Note that we may know more about

Lk
Pf (x) than simply that it is bounded in L2-norm, but a bound in L2-norm suffices. In particular, from

such a bound along with (D.16) we deduce that for any x ∈X(k+1)ε,

Lk+1
P,ε f (x) = (LP,ε ◦ Lk

P,εf )(x) = LP,εgs(x)ε
s−2k = gs

s(x)ε
s−2(k+1), (D.18)

establishing (D.7).

Proof of (D.9). If s > 2(k + 1), then by the inductive hypothesis we have that for all x ∈Xkε,

Lk
P,εf (x) = σ k

ηΔk
Pf (x)+

�(s−1)/2�−k∑
j=1

g2(j+k)(x)ε
2j + gs(x)ε

s−2k.

Thus for any x ∈X(k+1)ε,

Lk+1
P,ε f (x) =

(
LP,ε ◦ Lk

P,εf
)

(x) = σ k
η LP,εΔ

k
Pf (x)+

�(s−1)/2�−k∑
j=1

LP,εg2(j+k)(x)ε
2j + LP,εgs(x)ε

s−2k

There are three terms on the right-hand side of this equality, and we now analyse each separately.
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1. Noting that Δk
Pf ∈ Hs−2k(X ; C‖p‖k

Cs−1(X )
M), we use (D.17) to derive that

LP,εΔ
k
Pf (x) = σηΔ

k+1
P f (x)+

(s−2k−1)/2−∑
j=1

gs−2k
2j+2(x)ε2j + gs−2k

s−2k(x)ε
s−2k−2

= σηΔ
k+1
P f (x)+

(s−1)/2−(k+1)∑
j=1

g2(k+1+j)(x)ε
2j + gs(x)ε

s−2(k+1), (D.19)

where in the second equality we have simply used the fact g	
j (x) = g(s−	)+j(x) to rewrite the

equation.

2. Suppose j < �(s− 1)/2� − k. Then we use (D.17) to derive that

LP,εg2(j+k)(x) = σηΔPg2(j+k)(x)+
�(s−2j−2k−1)/2�−1∑

i=1

gs−2(j+k)
2(i+1) (x)ε2i + gs−2(j+k)

s−2(j+k)(x)ε
s−2(j+k+1)

= g2(j+k+1)(x)+
�(s−1)/2�−(j+k+1)∑

i=1

g2(i+j+k+1)(x)ε
2i + gs(x)ε

s−2(j+k+1),

where in the second equality we have again used g	
j (x) = g(s−	)+j(x), and also written σηΔPf =

gs−2(j+k)
2 = g2(j+k+1), since the particular dependence on the Laplacian ΔP will not matter. From

here, multiplying by ε2j, we conclude that

ε2jLP,εg2(j+k)(x) = g2(j+k+1)(x)ε
2j +

�(s−1)/2�−(j+k+1)∑
i=1

g2(i+j+k+1)(x)ε
2(i+j) + gs(x)ε

s−2(k+1)

= g2(j+k+1)(x)ε
2j +

�(s−1)/2�−(k+1)∑
m=1

g2(m+k+1)(x)ε
2m + gs(x)ε

s−2(k+1),

(D.20)

with the second equality following upon changing variables to m = i+ j.

3. On the other hand if j = �(s− 1)/2� − k, then the calculation is much simpler,

ε2jLP,εg2(j+k)(x) = gs−2(j+k)
s−2(j+k)(x)ε

2jεs−2(j+k)−2 = gs(x)ε
s−2(k+1). (D.21)

4. Finally, it follows immediately from (D.17) that

LP,εgs(x)ε
s−2k = gs(x)ε

s−2(k+1). (D.22)

Plugging (D.19)–(D.22) back into (D.18) proves the claim.
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D.3 Boundary behaviour of non-local Laplacian

In Lemma D.5, we establish that if f is Sobolev smooth of order s > 2k and zero-trace, then near the
boundary of X the non-local Laplacian Lk

P,εf is close to 0 in the L2-sense.

Lemma D.5. Let s, k ∈ N. In the flat Euclidean setting, suppose additionally that f ∈ Hs
0(X ; M). Then

there exist numbers c, C > 0 that do not depend on M, such that for all ε < c,

‖Lk
P,εf‖2

L2(∂kεX )
≤ Cε2(s−2k)M2.

Proof of Lemma D.5. Applying Lemma D.6, we have that

‖Lk
P,εf‖2

L2(∂kε(X ))
≤ (Cpmax)2

ε4 ‖Lk−1
P,ε f‖2

L2(∂kε(X ))
≤ · · · ≤ (Cpmax)2

ε4k
‖f‖2

L2(∂kε(X ))

Thus it remains to show that for all ε < c,

‖f‖2
L2(∂kε(X ))

=
∫

∂kε(X )

(f (x))2 dx ≤ C1ε
2s‖f‖2

Hs(X ). (D.23)

We will build to (D.23) by a series of intermediate steps, following the same rough structure as the proof
of Theorem 18.1 in Leoni [47]. For simplicity, we will take k = 1; the exact same proof applies to the
general case upon assuming ε < c/k.
Step 1: Local Patch. To begin, we assume that for some c0 > 0 and a Lipschitz mapping φ : Rd−1 →
[−c0, c0], we have that f ∈ C∞c (Uφ(c0)), where

Uφ(c0) =
{
y ∈ Q(0, c0) : φ(y−d) ≤ yd

}
,

and here Q(0, c0) is the d-dimensional cube of side length c0, centred at 0. We will show that for all
0 < ε < c0, and for the tubular neighbourhood Vφ(ε) = {y ∈ Q(0, c0) : φ(y−d) ≤ yd ≤ φ(y−d) + ε},
we have that ∫

Vφ(ε)

|f (x)|2 dx ≤ Cε2s‖f‖2
Hs(Uφ(c0))

.

For a given y = (y′, yd) ∈ Vφ(ε), let y0 = (y′, φ(y′)). Taking the Taylor expansion of f (y) around y = y0,
because u is compactly supported in Vφ , it follows that

f (y) = f (y0)+
s−1∑
j=1

1

j!
Djed f (y0)

(
yd − φ(y′)

)j + 1

(s− 1)!

∫ yd

φ(y′)
(1− t)s−1Dsed f (y′, z)

(
yd − z

)s−1
dz  ⇒

|f (y)| ≤ Cεs−1
∫ yd

φ(y′)

∣∣Dsed f (y′, z)
∣∣ dz.
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Consequently, by squaring both sides and applying Cauchy–Schwarz, we have that

|f (y)|2 ≤ Cε2(s−1)

(∫ yd

φ(y′)

∣∣Dsed f (y′, z)
∣∣ dz

)2

≤ Cε2s−1
∫ yd

φ(y′)

∣∣Dsed f (y′, z)
∣∣2 dz.

Applying this bound for each y ∈ Vφ(ε), and then integrating, we obtain

∫
Vφ(ε)

|f (y)|2 dy ≤
∫

Qd−1(c0)

∫ φ(y′)+ε

φ(y′)
|f (y′, yd)|2 dyd dy′

≤ Cε2s−1
∫

Qd−1(c0)

∫ φ(y′)+ε

φ(y′)

∫ yd

φ(y′)

∣∣Dsed f (y′, z)
∣∣2 dz dyd dy′, (D.24)

where we have written Qd−1(0, c0) for the d − 1-dimensional cube of side length c0, centred at 0.
Exchanging the order of the inner two integrals then gives

∫ φ(y′)+ε

φ(y′)

∫ yd

φ(y′)

∣∣Dsed f (y′, z)
∣∣2 dz dyd =

∫ φ(y′)+ε

φ(y′)

∫ ε

z

∣∣Dsed f (y′, z)
∣∣2 dyd dz

≤ Cε

∫ φ(y′)+ε

φ(y′)

∣∣Dsed f (y′, z)
∣∣2 dz

≤ Cε

∫ c0

φ(y′)

∣∣Dsed f (y′, z)
∣∣2 dz.

Finally, plugging back into (D.24), we conclude that

∫
Vφ(ε)

|f (y)|2 dy ≤ Cε2s
∫

Qd−1(0,c0)

∫ c0

φ(y′)

∣∣Dsed f (y′, z)
∣∣2 dz dy′ ≤ Cε2s|u|2Hs(Uφ(c0))

.

Step 2: Rigid motion of local patch. Now, suppose that at a point x0 ∈ ∂X , there exists a rigid motion
T : Rd → R

d for which T(x0) = 0, and a number C0 such that for all ε · C0 ≤ c0,

T
(
QT(x0, c0) ∩ ∂εX

) ⊆ Vφ

(
C0ε

)
and T

(
QT(x0, c0) ∩X

) = Uφ(c0).

Here QT(x0, c0)) is a (not necessarily coordinate-axis-aligned) cube of side length c0), centred at x0.
Define v(y) := f (T−1(y)) for y ∈ Uφ(c0). If u ∈ C∞c (X ), then v ∈ C∞c (Uφ(c0)), and moreover

‖v‖2
Hs(Uφ(c0))

= ‖f‖2
Hs(QT (x0,c0)∩X )

. Therefore, using the upper bound that we derived in Step 1,

∫
Vφ(C0·ε)

|v(y)|2 dy ≤ Cε2s‖v‖2
Hs(Uφ(c0))

,
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we conclude that∫
QT (x0,c0)∩∂εX

|f (x)|2 dx =
∫

T(QT (x0,c0))∩∂εX )

|v(y)|2 dy

≤
∫

Vφ(C0·ε)
|v(y)|2 dy

≤ Cε2s‖v‖2
Hs(Uφ(c0))

= Cε2s‖f‖2
Hs(QT (x0,c0))∩X ) ≤ Cε2s‖f‖2

Hs(X ).

Step 3: Lipschitz domain. Finally, we deal with the case where X is assumed to be an open, bounded
subset of R

d, with Lipschitz boundary. In this case, at every x0 ∈ ∂X , there exists a rigid motion
Tx0

: Rd → R
d such that Tx0

(x0) = 0, a number c0(x0), a Lipschitz function φx0
: Rd−1 → [−c0, c0],

and a number C0(x0), such that for all ε · C0(x0) ≤ c0(x0),

T
(
QT(x0, c0(x0)) ∩ ∂εX

) ⊆ Vφ

(
C0(x0) · ε

)
and T

(
QT(x0, c0(x0)) ∩X

) = Uφ(c0(x0)).

Therefore for every x0 ∈ ∂X , it follows from the previous step that∫
QTx0

(x0,c0(x0))∩∂εX
|f (x)|2 dx ≤ C(x0)ε

2s‖f‖2
Hs(X ),

where on the right-hand side C(x0) is a constant that may depend on x0, but not on u or ε.
We conclude by taking a collection of cubes that covers ∂εX for all ε sufficiently small. First, we note

that by a compactness argument there exists a finite subset of the collection of cubes {QTx0
(x0, c0(x0)/2) :

x0 ∈ ∂X } which covers ∂X , say QTx1
(x1, c0(x1)/2), . . . , QTxN

(xN , c0(xN)/2). Then, for any ε ≤
mini=1,...,N c0(xi)/2, it follows from the triangle inequality that

∂εX ⊆
N⋃

i=1

QTxi
(xi, c0(xi)).

As a result,

∫
∂εX

|f (x)|2 ≤
N∑

i=1

∫
QTxi

(xi,c0(xi))∩∂ε(X )

|f (x)|2 ≤ ε2s‖f‖2
Hs(X )

N∑
i=1

C0(xi),

which proves the claim of (D.23).

D.4 Estimate of non-local Sobolev seminorm

Now, we use the results of the preceding two sections to prove (D.2). We will divide our analysis in
two cases, depending on whether s is odd or even, but before we do this we state some facts that will
be applicable to both cases. First, we recall that LP,ε is self-adjoint in L2(P), meaning 〈LP,εf , g〉P =
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〈f , LP,εg〉P for all f , g ∈ L2(X ). We also recall the definition of the Dirichlet energy EP,ε(f ; X ),

〈LP,εf , f 〉P =
1

εd+2

∫
X

∫
X

(
f (x)− f (x′)

)2
η

(‖x′ − x‖
ε

)
dP(x′) dP(x) =: EP,ε(f ; X ). (D.25)

Finally, we recall a result of [31]: there exist constants c0 and C0 which do not depend on M, such that
for all ε < c0 and for any f ∈ H1(X ; M),

EP,ε(f ; X ) ≤ C0M2. (D.26)

Case 1: s odd. Suppose s is odd, so that s ≥ 3. Taking k = (s− 1)/2, we use the self-adjointness of LP,ε
to relate the non-local semi-norm 〈Ls

P,εf , f 〉P to a non-local Dirichlet energy,

〈Ls
P,εf , f 〉P = 〈Lk+1

P,ε f , Lk
P,εf 〉P = EP,ε(L

k
P,εf ; X ).

We now separate this energy into integrals over Xkε and ∂kε(X ),

EP,ε(L
k
P,εf ; X ) = 1

εd+2

{∫
Xkε

∫
Xkε

(
Lk

P,εf (x)− Lk
P,εf (x′)

)2
η

(‖x′ − x‖
ε

)
dP(x′) dP(x)

+
∫

∂kεX

∫
∂kεX

(
Lk

P,εf (x)− Lk
P,εf (x′)

)2
η

(‖x′ − x‖
ε

)
dP(x′) dP(x)

}
:= EP,ε(L

k
P,εf ; Xkε)+ EP,ε(L

k
P,εf ; ∂kεX ) (D.27)

and upper bound each energy separately. For the first term, we add and substract σ k
ηΔk

Pf (x) and σ k
ηΔk

Pf (x′)
within the integrand, then use the triangle inequality and the symmetry between x and x′ to deduce that

EP,ε(L
k
P,εf ; Xkε) ≤3σ 2k

η EP,ε(Δ
k
Pf ; Xkε)+

2

εd+2

∫
Xkε

∫
Xkε

(Lk
P,εf (x)

− σ k
ηΔk

Pf (x))2η

(‖x′ − x‖
ε

)
dP(x′) dP(x). (D.28)

Noticing that Δk
Pf ∈ H1(X ; ‖p‖k

Cs−1(X )
M), we use (D.26) to conclude that EP,ε(Δ

k
Pf ; Xkε) ≤ C0M2.

On the other hand, it follows from Assumption (K1) and (D.5) that

2

εd+2

∫
Xkε

∫
Xkε

(
Lk

P,εf (x)− σ k
ηΔk

Pf (x)
)2

η

(‖x′ − x‖
ε

)
dP(x′) dP(x)

≤ 2pmax
ε2

∫
Xkε

(
Lk

P,εf (x)− σ k
ηΔk

Pf (x)
)2

dP(x)

≤ C1M2.

Plugging these two bounds into (D.28) gives the desired upper bound on EP,ε(L
k
P,ε; Xkε).
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For the second term in (D.27), we apply Lemmas D.7 and D.5 and conclude that

EP,ε(L
k
P,εf ; ∂kεX ) ≤ 4p2

max
ε2 ‖Lk

P,εf‖L2(∂kεX ) ≤ CM2.

Case 2: s even. If s ∈ N is even, s ≥ 2, then letting k = (s− 2)/2, the self-adjointness of LP,ε implies

〈Ls
P,εf , f 〉P = ‖Lk+1

P,ε f‖2
P.

As in the first case, we divide the integral up into the interior region Xkε and the boundary region ∂kεX ,

‖Lk+1
P,ε f‖2

P ≤ pmax‖Lk+1
P,ε f‖2

L2(X )
≤ pmax

{∫
Xkε

(
Lk+1

P,ε f (x)
)2

dP(x)+
∫

∂kεX

(
Lk+1

P,ε f (x)
)2

dP(x)

}
,

(D.29)

and upper bound each term separately. For the first term, adding and subtracting σ k
ηΔk

Pf (x) gives

∫
Xkε

(
Lk+1

P,ε f (x)
)2

dP(x) ≤ 2
∫
Xkε

(
LP,εΔ

k
Pf (x)

)2
dP(x)+ 2

∫
Xkε

(
LP,ε

(
Lk

P,εf − σηΔ
k
Pf

)
(x)

)2
dP(x)

(i)≤ CM2 + 2
∫
Xkε

(
LP,ε

(
Lk

P,εf − σηΔ
k
Pf

)
(x)

)2
dP(x)

(ii)≤ CM2 + Cp2
max
ε2 ‖Lk

P,εf − σηΔ
k
Pf‖2

L2(Xkε)

(iii)≤ CM2,

with (i) following from (D.7) since Δk
Pf ∈ H2(X ; M‖p‖l

Cs−1(X )
), (ii) following from Lemma D.6, and

(iii) following from (D.6).
Then Lemma D.5 shows that the second term in (D.29) satisfies∫

∂kεX

(
Lk+1

P,ε f (x)
)2

dP(x) ≤ CM2.

D.5 Assorted integrals

Lemma D.6. In the flat Euclidean setting, suppose additionally that f ∈ L2(U; M) for a Borel set U ⊆
X , and let LP,ε be defined with respect to a kernel η that satisfies (K1). Then there exists a constant C
which does not depend on f or M such that

‖LP,εf‖L2(U) ≤
2pmax

ε2
‖f‖L2(U) (D.30)

Lemma D.7. In the flat Euclidean setting, suppose additionally that f ∈ L2(U; M) for a Borel set U ⊆
X , and let LP,ε be defined with respect to a kernel η that satisfies (K1). Then there exists a constant C
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which does not depend on f or M such that

EP,ε(f ; U) ≤ 4p2
max
ε2 ‖f‖2

L2(U)
(D.31)

Lemma D.8. In the flat Euclidean setting, suppose additionally that f ∈ H1(X ; M), and let Dif be
defined with respect to a kernel η that satisfies (K1). Then there exists a constant C which does not
depend on f or M, such that for any i, j ∈ [n] and j ∈ [n]s,

E

[
|Djf (Xi)| · |f (Xi)− f (Xj)|

]
≤ Cε2+dkM2,

where k + 1 is the number of distinct indices in ijj.

Proof of Lemma D.6. We fix a version of f ∈ L2(U), so that we may speak of its pointwise values.
At a given point x ∈ U, we can upper bound |LP,εf (x)|2 using the Cauchy–Schwarz inequality as

follows:

|LP,εf (x)|2 ≤
(

pmax
ε2+d

)2(∫
U

(|f (x′)| + |f (x)|)2
η

(‖x′ − x‖
ε

)
dx′

)2

≤
(

pmax
ε2+d

)2(∫
U

(|f (x′)| + |f (x)|)2
η

(‖x′ − x‖
ε

)
dx′ ·

∫
η

(‖x′ − x‖
ε

)
dx′

)

= p2
max

ε4+d

∫
U

(|f (x′)| + |f (x)|)2
η

(‖x′ − x‖
ε

)
dx′.

The equality follows by the assumption
∫
Rd η(‖z‖) dx = 1 in (K1). Integrating over all x ∈ U, it follows

from the triangle inequality that

‖LP,ε‖2
L2(U)

≤ 2p2
max

ε4+d

∫
U

∫
U

(
|f (x′)|2 + |f (x)|2

)
η

(‖x′ − x‖
ε

)
dx′ dx

≤ 2p2
max

ε4+d

∫
U

∫
U

(
|f (x′)|2 + |f (x)|2

)
η

(‖x′ − x‖
ε

)
dx′ dx. (D.32)

Finally, using Fubini’s Theorem we determine that

∫
U

∫
U

(
|f (x′)|2 + |f (x)|2

)
η

(‖x′ − x‖
ε

)
dx′ dx = 2

∫
U

∫
U
|f (x)|2η

(‖x′ − x‖
ε

)
dx

≤ 2εd
∫

U
|f (x)|2 dx = 2εd‖f‖2

L2(U)
, (D.33)
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and by combining (D.32) and (D.33) we conclude that

‖LP,ε‖2
L2(U)

≤ 4p2
max
ε4 ‖f‖2

L2(U)
.

Proof of Lemma D.7. We have

EP,ε(f ) =
1

ε2+d

∫
U

∫
U

(
f (x)− f (x′)

)2
η

(‖x′ − x‖
ε

)
dP(x′) dP(x)

≤ 2p2
max

ε2+d

∫
U

∫
U

(
|f (x)|2 + |f (x′)|2

)
η

(‖x′ − x‖
ε

)
dx′ dx,

and the claim follows from (D.33).

Proof of Lemma D.8. Let Gn,ε[Xij] be the subgraph induced by vertices Xi, Xj1
, . . . , Xjs

. An inductive
argument shows that

|Djf (Xi)| ≤ C|f (Xjs
)− f (Xi)| · 1

{
Gn,ε[Xij] is connected.

}
,

from which it follows that

|Djf (Xi)| · |f (Xi)− f (Xj)| ≤ C|f (Xjs
)− f (Xi)| · |f (Xj)− f (Xi)| · 1

{
Gn,ε[Xijj] is connected.

}
Taking expectation and applying Cauchy–Schwarz (if j �= js) gives

E

[
|Djf (Xi)| · |f (Xi)− f (Xj)|

]
≤ C · E

[
|f (Xjs

)− f (Xi)|2 · 1
{

Gn,ε[Xijj] is connected.
} ]

(If j = js the inequality is of course immediate.) Marginalizing out the contribution of all indices in j not
equal to i or j gives

E

[
|f (Xj)− f (Xi)|2 · 1

{
Gn,ε[Xijj] is connected.

}]
(D.34)

≤
(
(s+ 1)pmaxνdε

d
)|j\{j∪i}| · E

[
|f (Xj)− f (Xi)|21{‖Xi − Xj‖ ≤ ε}

]
≤

(
(s+ 1)pmaxνdε

d
)|j\{j∪i}| · p2

maxνdε
2+dM2 (D.35)

with the second inequality following from the proof of Lemma 1 in [31]. Finally, we notice that |j \ {i∪
j}| = k − 1, so that (D.35) gives the desired result.
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E. Graph Sobolev semi-norm, manifold domain

In this section we prove Proposition 7. Note that when s = 1, the upper bound (4.4) follows immediately
from Lemma E.10 and Markov’s inequality.

On the other hand when s = 2 or s = 3, we prove Proposition 7 by first establishing some
intermediate results, many of which are analogous to results we have already shown in the flat Euclidean
case. Indeed, in some ways the proof will be simpler in the manifold setting than in the flat Euclidean
case: there is no boundary, and we do not need to analyse the iterated nonlocal Laplacian Lj

P,ε for j > 1.
That being said, as mentioned in our main text, in the manifold setting there is some extra error

induced using Euclidean rather than geodesic distance. We upper bound this error by comparing the
non-local operator

LP,εf (x) := 1

ε2+m

∫
X

(
f (x′)− f (x)

)
η

(‖x′ − x‖
ε

)
p(x′) dμ(x′).

to an alternative nonlocal Laplacian L̃P,ε, which is defined with respect to geodesic distance. Precisely,
let dX (x, x′) denote the geodesic distance between x, x′ ∈X , and define

L̃P,εf (x) := 1

ε2+m

∫
X

(
f (x′)− f (x)

)
η

(
dX (x′, x)

ε

)
p(x′) dμ(x′).

We show the following results, each of which hold under the same assumptions as Proposition 7.

• In Section E.1 we show that the graph Sobolev seminorm 〈Ls
n,εf , f 〉n is upper bounded by the sum of

a non-local seminorm and a pure bias term: specifically, with probability at least 1− 2δ,

〈Ls
n,εf , f 〉n ≤

〈Ls
P,εf , f 〉P

δ
+ C1

ε2

nε2s+m
M2. (E.1)

This upper bound is essentially the same as (D.1), but with the intrinsic dimension m taking the
place of the ambient dimension d. The pure bias term will be of at most constant order when ε �
n−1/(2(s−1)+m).

• In Section E.2, we show that the error incurred using the ‘wrong’ metric is negligible. Precisely, we
find that

‖LP,εf − L̃P,εf‖2
L2(X )

≤ C2ε
2|f |2H1(X )

. (E.2)

• In Section E.3, we analyse the approximation error of L̃P,ε. We show that when f ∈ H2(X ) and
p ∈ C1(X ),

‖̃LP,εf‖2
L2(X )

≤ C3‖f‖2
H2(X )

. (E.3)

On the other hand, if f ∈ H3(X ) and p ∈ C2(X ), then

‖̃LP,εf − σηΔPf‖2
L2(X )

≤ C3ε
2‖f‖2

H3(X )
. (E.4)
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Here ΔP is the density-weighted Laplace–Beltrami operator. It is defined precisely as in (1.2), but
with div and ∇ interpreted as the divergence and gradient operators on the manifold X .

• In Section E.4, we use the results of the preceding two sections to show that if f ∈ Hs(X ) and
p ∈ Cs−1(X ), then

〈Ls
P,εf , f 〉P ≤ C4‖f‖2

Hs(X ). (E.5)

• In Section E.5 we state some technical results used in the previous sections.

We point out that when f is Hölder smooth, results analogous to (E.4) have been established in
Calder and García Trillos [16]. When f is Sobolev smooth, our analysis (which relies heavily on Taylor
expansions) is largely similar, except that the remainder term in the relevant Taylor expansion will be
bounded in L2(X ) norm rather than L∞(X ) norm. This is analogous to the situation in the flat Euclidean
model.

In the proof of (E.1)–(E.5), we recall the following estimates from differential geometry: (i) letting
K0 be an upper bound on the absolute value of the sectional curvatures of X , K0 ≤ 2R, and letting (ii)
i0 be a lower bound on the injectivity radius of X , i0 ≥ πR; see Proposition 1 of [1]. Additionally,
recall that for all δ < i0, the exponential map expx : Bm(0, δ) ⊂ Tx(X ) → BX (x, δ) ⊂ X is a
diffeomorphism for all x ∈X . We shall therefore always assume ε < i0.

Proof of Proposition 7. Follows immediately from (E.1) and (E.5). �

E.1 Decomposition of graph Sobolev seminorm

The proof of (E.1) is identical to the proof of (D.1), except substituting the intrinsic dimension m for
ambient dimension d, and using Lemma E.12 rather than Lemma D.8.

E.2 Error due to Euclidean Distance

In this section, we prove (E.2). By applying Cauchy–Schwarz we obtain an upper bound on |LP,εf (x)−
L̃P,εf (x)|2:

[
LP,εf (x)− L̃P,εf (x)

]2 ≤ p2
max

ε2(2+m)

∫
X

[
f (x′)− f (x)

]2
∣∣∣∣η(‖x′ − x‖

ε

)
− η

(
dX (x′, x)

ε

)∣∣∣∣ dμ(x′)

·
∫
X

∣∣∣∣η(‖x′ − x‖
ε

)
− η

(
dX (x′, x)

ε

)∣∣∣∣ dμ(x′)

= 1

ε2(2+m)
A1(x) · A2(x) (E.6)

Thus we have upper bounded |LP,εf (x) − L̃P,εf (x)|2 by the product of two terms, each of which we
now suitably bound. To do so, we will use the following estimate, from proposition 4 of [28]: for all
‖x′ − x‖ ≤ R/2,

‖x′ − x‖ ≤ dX (x′, x) ≤ ‖x′ − x‖ + 8

R2 ‖x′ − x‖3. (E.7)
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From here forward we will assume ε < R/2.

Upper bound on A1(x). Consequently η(‖x′−x‖/ε) ≥ η(dX (x′, x)/ε). For a corresponding upper bound,
let Lη denote the Lipschitz constant of η on [0, 1] and set ε̃ := (1+ 27ε2/R2)ε. Then∣∣∣∣η(‖x′ − x‖

ε

)
− η

(
dX (x′, x)

ε

)∣∣∣∣ ≤ Lη8ε2

R2 · 1 {
dX (x′, x) ≤ ε

}+ ‖η‖∞ · 1{ε < dX (x′, x) ≤ ε̃}.

Thus,

A1(x) ≤
8Lηε

2

R2

∫
X

[
f (x′)− f (x)

]2 1{‖x′ − x‖ ≤ ε} dμ(x′)

+ ‖η‖∞
∫
X

[
f (x′)− f (x)

]2 1
{
ε < dX (x′, x) ≤ ε̃

}
dμ(x′)

Integrating over X , we conclude from Lemma 3.3 of [15] and Lemma E.11 that∫
X

A1(x) dμ(x) ≤ 8Lηνmε2

R2(m+ 2)

(
1+ CmK0R2

)
εm+2|f |2H1(X )

+ C‖η‖∞εm+4|f |2H1(X )
=: C5ε

m+4|f |2H1(X )
.

Upper bound on A2(x). Integrating over x′ ∈X , we see that∫
X

∣∣∣∣η(‖x′ − x‖
ε

)
− η

(
dX (x′, x)

ε

)∣∣∣∣ dμ(x′)

≤ 8Lηε
2

R2

∫
X

1
{
dX (x′, x) ≤ ε

}
dμ(x′)+ pmax‖η‖∞

∫
X

1
{
ε < dX (x′, x) ≤ ε̃

}
dμ(x′)

= 8Lηε
2

R2
· μ (

BX (x, ε)
)+ pmax‖η‖∞

[
μ
(
BX (x, ε̃)

)− μ
(
BX (x, ε)

)]
. (E.8)

Equation (1.36) in [28] states that∣∣μ(BX (x, ε))− ωmεm
∣∣ ≤ CmK0ε

m+2,

where we recall K0 is an upper bound on the sectional curvature of X . Plugging this back into (E.8), we
conclude that∫

X

∣∣∣∣η(‖x′ − x‖
ε

)
− η

(
dX (x′, x)

ε

)∣∣∣∣ dμ(x′)

≤ 8Lηε
2

R2

[
ωmεm + CmK0ε

m+2
]
+ ‖η‖∞

[
ωm(̃εm − εm)+ 2CmK0ε

m+2
]

≤ 8Lηε
2

R2

[
ωmεm + R2CmK0ε

m
]
+ ‖η‖∞εm+2

[
27ωm

R2 + 2CmK0

]
=: C6ε

m+2.
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Putting together the pieces. Plugging our upper bounds on A1(x) and A2(x) back into (E.6), we deduce
that

‖̃LP,εf − LP,εf‖2
L2(X )

≤ 1

ε2(2+m)

∫
X

A1(x) · A2(x) dμ(x)

≤ C6

ε(2+m)

∫
X

A1(x) dμ(x)

≤ C5C6ε
2|f |2H1(X )

,

thus proving the claimed result.

E.3 Approximation error of non-local Laplacian

Fix x ∈ X . We begin with a pointwise estimate of L̃P,εf , facilitated by expressing w(v) = f (expx(v))
and q(v) = p(expx(v)) in normal coordinates, as in [16]. Let Jx(·) be the Jacobian of the exponential
map expx, we have

L̃P,εf (x) = 1

εm+2

∫
X

(
f (x′)− f (x)

)
η

(
dX (x′, x)

ε

)
dP(x′)

= 1

εm+2

∫
B(0,ε)⊂Tx(X )

(w(v)− w(0)) η

(‖v‖
ε

)
Jx(v)q(v) dv

= 1

ε2

{∫
B(0,1)

(w(εv)− w(0)) η(‖v‖)q(εv) dv+
∫

B(0,1)

(w(εv)− w(0)) η(‖v‖)q(εv) (Jx(εv)−1) dv

}
= A1(x)+ A2(x)

[[DmEquation201]]Note that w and q have the same smoothness properties as f and p. Moreover, arguing
exactly as we did in the flat Euclidean case, we can show that when f ∈ H2(X ) and p ∈ C1(X ), then

‖A1‖2
L2(X )

≤ C‖f‖2
H2(X )

,

whereas if f ∈ H3(X ) and p ∈ C2(X ) then

‖A1 − σηΔPf‖2
L2(X )

≤ C‖f‖2
H3(X )

ε2.

Therefore it remains only to upper bound A2 in L2(X ) norm. To do so, we recall (1.34) of [28]: for
any ε < i0 and all x ∈X , the Jacobian Jx(v) satisfies the upper bound

|Jx(v)− 1| ≤ CmK0ε
2, for all v ∈ B(0, ε) ⊆ Tx(X ).
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Combining this estimate with the Cauchy–Schwarz inequality, we conclude that

‖A2‖2
L2(X )

≤ Cm2K2
0

[∫
B(0,1)

(w(εv)− w(0))2 η(‖v‖)q(εv) dv

]
·
[∫

B(0,1)

η(‖v‖)q(εv) dv

]
≤ Cm2K2

0ση(1+ Lqε)

∫
B(0,1)

(w(εv)− w(0))2 η(‖v‖)q(εv) dv

≤ Cm2K2
0σ 2

η (1+ Lqε)pmaxε2|f |2H1(X )
,

with the final inequality following from (3.2) of [15]. Combining our estimates on A1 and A2 yields the
claim.

E.4 Estimate of non-local Sobolev seminorm

In this subsection we establish that the upper bound (E.5) holds when f ∈ Hs(X ) and p ∈ Cs−1(X ).
We first consider s = 2, and then s = 3.

Case 1: s = 2. When s = 2, the triangle inequality implies that

〈Ls
P,εf , f 〉P ≤ 2pmax

(
‖LP,εf − L̃P,ε‖2

L2(X )
+ ‖̃LP,εf‖2

L2(X )

)
The first term on the right-hand side is upper bounded in (E.2), and the second term is upper bounded in
(E.3). Together these estimates imply the claim.

Case 2: s = 3. When s = 3, the triangle inequality implies that

〈Ls
P,εf , f 〉P = EP,ε(LP,εf ; X ) ≤ 3(EP,ε(LP,εf − L̃P,εf ; X )+ EP,ε(̃LP,εf − σηΔPf ; X )

+ σ 2
η EP,ε(ΔPf ; X ))

We now upper bound each of the three terms on the right-hand side of the above inequality. First, we
note that by Lemma E.9 and (E.2),

EP,ε(LP,εf − L̃P,εf ; X ) ≤ C

ε2
‖LP,εf − L̃P,εf‖2

L2(X )
≤ C|f |2H1(X )

.

An equivalent upper bound on EP,ε(̃LP,εf − σηΔPf ; X ) follows from Lemma E.9 and (E.4). Finally,

we notice that f ∈ H3(X ) and p ∈ C2(X ) implies ΔPf ∈ H1(X ), and furthermore |ΔPf |H1(X ) ≤‖p‖C2(X ) · ‖f‖H3(X ). We conclude from Lemma E.10 that

EP,ε(ΔPf ; X ) ≤ C|ΔPf |2H1(X )
≤ C‖f‖2

H3(X )
,

where in the final inequality we have absorbed ‖p‖C2(X ) into the constant C. Together, these upper
bounds prove the claim.
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E.5 Integrals

Recall the Dirichlet energy EP,ε(f ; X ) = 〈LP,εf , f 〉P, defined in (D.25). Now we establish some
estimates on EP,ε(f ; X ) that hold in the manifold setting, and under various assumptions regarding the
regularity of f .

Lemma E.9. In the manifold setting, suppose additionally that f ∈ L2(X ). Then there exists a constant
C such that

EP,ε(f ; X ) ≤ C

ε2 ‖f‖2
L2(X )

. (E.9)

Lemma E.10. In the manifold setting, suppose additionally that f ∈ H1(X ). Then there exist constants
c and C which do not depend on f such that for any 0 < ε < c,

EP,ε(f ; X ) ≤ C|f |2H1(X )
. (E.10)

We use Lemma E.11 to help upper bound the error incurred using ‖ · ‖ rather than dX (·, ·). Recall
the notation ε̃ = (1+ 27ε2/R2)ε, where R is the reach of X .

Lemma E.11. In the manifold setting, suppose additionally that f ∈ H1(X ). There exist constants c and
C such that for any ε < c,∫

X

∫
X

(
f (x′)− f (x)

)2 1{ε < dX (x′, x) ≤ ε̃} dμ(x′) dμ(x) ≤ Cε4+m‖f‖2
H1(X )

(E.11)

Finally, we use Lemma E.12 to show that the pure bias component of 〈Ls
nf , f ,〉 n is small in

expectation. This is analogous to Lemma D.8.

Lemma E.12. In the manifold setting, suppose additionally that f ∈ H1(X ), and let Dif be defined with
respect to a kernel η that satisfies (K4). Then there exists a constant C which does not depend on f or n,
such that for any i, j ∈ [n] and j ∈ [n]s,

E

[
|Djf (Xi)| · |f (Xi)− f (Xj)|

]
≤ Cε2+mk · ‖f‖2

H1(X )
,

where k + 1 is the number of distinct indices in ijj.

Proof of Lemmas E.9 and E.10. Define the non-local energy ẼP,ε with respect to geodesic distance,

ẼP,ε(f ; X ) := 〈̃LP,εf , f 〉P =
∫
X

∫
X

(
f (x′)− f (x)

)2
η

(
dX (x′, x)

ε

)
dP(x′) dP(x).

From the lower bound in (E.7), it follows that EP,ε(f ; X) ≤ ẼP,ε(f ; X ), and from the upper bounds
p(x) ≤ pmax and η(|x|) ≤ ‖η‖∞ · 1{x ∈ [−1, 1]} we further have

ẼP,ε(f ; X ) ≤ p2
max‖η‖∞ ·

∫
X

∫
BX (ε)

(
f (x′)− f (x)

)2
dμ(x′) dμ(x).
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The estimates (E.9) and (E.10) then respectively follow from (3.1) and Lemma 3.3 of [15].

Proof (of Lemma E.11). Following exactly the steps of the proof of Lemma 3.3 of Burago et al. [15], but
replacing all references to a ball of radius r by references to the set difference between balls of radius ε̃

and ε, we obtain that∫
X

∫
X

(
f (x′)− f (x)

)2 1{ε < dX (x′, x) ≤ ε̃} dμ(x′) dμ(x) ≤ (1+ CmK0ε
2)

·
∫
X

∫
Δ(ε,̃ε)

|d1
x f (v)|2 dv dμ(x).

Here Δm(ε, ε̃) = {v : ε ≤ ‖v‖ ≤ ε̃}, and d1
x f (v) is the directional derivative of f at the point x in the

direction v. From (2.7) of Burago et al. [15], we further have∫
X

∫
Δm(ε,̃ε)

|d1
x f (v)|2 dv dμ(x) = νm

2+ m
(̃ε2+m − ε2+m)

∫
X
|d1

x f |2 dμ(x)

= 27
νm

(2+ m)R2 ε4+m‖d1f‖2
L2(X )

.

Noting that ‖d1f‖2
L2(X )

≤ ‖f‖2
H1(X )

, we see that this implies the claim of Lemma E.11.

Proof of Lemma E.12. The proof of Lemma E.12 is identical to the proof of Lemma D.8, upon substituting
the ambient dimension m for the intrinsic dimension d, and using Lemma E.10 rather than Lemma D.7
to establish (D.35).

F. Lower bound on empirical norm

In this section we prove Propositions 6 (in Section F.1) and 9 (in Section F.2).

F.1 Proof of Proposition 6

In this section we establish Proposition 6. As mentioned, the proof of this proposition follows from the
Gagliardo–Nirenberg interpolation inequality, and a one-sided Bernstein’s inequality (Lemma I.17).

Lemma F.13. (Gagliardo–Nirenberg interpolation inequality). In the flat Euclidean setting, suppose
additionally that f ∈ Hs(X ) for some s ≥ d/4. Then there exist constants C1 and C2 that do not
depend on f , such that

‖f‖L4(X ) ≤ C1|f |d/4s
Hs(X )

‖f‖1−d/(4s)
L2(X )

+ C2‖f‖L2(X ) (F.1)

Proof of Proposition 6. Rearranging (F.1) and raising both sides to the fourth power, we see that

E[f 4(X)]

‖f‖4
P

≤ C

(‖f‖L4(X )

‖f‖L2(X )

)4

≤ C1

( |f |Hs(X )

‖f‖L2(X )

)d/s

+ C2;
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here the constants C1, C2 are not the same as in (F.1). Taking the constant C in assumption (3.18) to be
sufficiently large relative to C1 and C2, such that

C1

( |f |Hs(X )

‖f‖L2(X )

)d/s

≤ δn

64
,

we conclude

E[f 4(X)]

‖f‖4
P

≤ δn

8
+ 8C3

2.

The claim then follows from Lemma I.17, upon taking c = 1/(64C3
2) in the statement of Proposition 6.

F.2 Proof of Proposition 9

The proof of Proposition 9 follows exactly the same steps as the proof of Proposition 6, upon replacing
Lemma F.13 by Lemma F.14.

Lemma F.14. (c.f Theorem 3.70 of Aubin [4]). In the manifold setting, suppose additionally that f ∈
Hs(X ) for some s ≥ m/4. Then there exist constants C1 and C2 that do not depend on f , such that

‖f‖L4(X ) ≤ C1|f |m/4s
Hs(X )

‖f‖1−m/(4s)
L2(X )

+ C2‖f‖L2(X ). (F.2)

G. Proofs of main results

G.1 Estimation Results

Proof of Theorem 1. We condition on the event that the design points X1, . . . , Xn satisfy

〈Ln,εf0, f0〉n ≤
C

δ
M2 and λk ≥ c ·min

{
ρk,

1

ε2

}
for all 1 ≤ k ≤ n. (G.1)

Note that by Propositions 3 and 5, these statements are both satisfied with probability at least 1 − δ −
Cn exp{−cnεd}.

Conditional on (G.1), we have from Lemma C.1 that for any 1 ≤ K ≤ n,

‖̂f − f0‖2
n ≤ C

{
M2

δ(ρK+1 ∧ ε−2)
+ K

n

}
,

either deterministically (when K = 0), or with probability at least 1− exp(−K) (when K ≥ 1). Further,
from the bounds ε ≤ c0K−1/d (Assumption (P1)) and ρK+1 ≥ c(K + 1)2/d ((B.4), Weyl’s Law) we can
simplify the above expression to the following:

‖̂f − f0‖2
n ≤ C

{
M2

δ
(K + 1)−2/d + K

n

}
. (G.2)
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We now upper bound the right-hand side of (G.2), based on the value of K chosen in (P1). When possible

we choose K = ⌊
M2n

⌋d/(2+d)
to balance bias and variance, in which case (G.2) implies

‖̂f − f0‖2
n ≤

C

δ
M2(M2n)−2/(2+d).

If M2 < n−1, then we take K = 1, and from (G.2) we get

‖̂f − f0‖2
n ≤

C

nδ
.

Finally if M > n1/d, we take K = n. In this case, we note that f̂ (Xi) = Yi for all i = 1, . . . , n, and it
immediately follows that

‖̂f − f0‖2
n =

1

n

n∑
i=1

w2
i ≤ 5,

with probability at least 1 − exp(−n). Combining these three separate cases yields the conclusion of
Theorem 1.

Proof of Theorem 3. Follows identically to the proof of Theorem 1, except substituting Ls
n,ε for Ln,ε, λs

k
for λk, and using Proposition 4 rather than Proposition 3 and Assumption (P3) rather than Assumption
(P1).

Proof of Theorem 7. Follows identically to the proof of Theorem 1, substituting Ls
n,ε for Ln,ε, λs

k for λk, and
using Proposition 7 rather than Proposition 3, Proposition 8 rather than Proposition 5 and Assumption
(P5) rather than Assumption (P2).

G.2 Testing Results

Proof of Theorem 2. We have already upper bounded the Type I error of ϕ in Lemma C.2, and it remains
to upper bound the Type II error. To do so, we condition on the event that the design points X1, . . . , Xn
satisfy

〈Ln,εf0, f0〉n ≤
C

δ
M2, and λk ≥ c ·min{ρk, ε−2} for all 2 ≤ k ≤ n, (G.3)

as well as that

‖f0‖2
n ≥

1

2
‖f0‖2

P. (G.4)

Note that by Propositions 3 and 5, both statements in (G.3) are satisfied with probability at least 1− δ−
Cn exp{−cnεd}. Additionally, by Proposition 6 and the assumption in (3.5) that ‖f0‖2

P ≥ CM2/(bn2/d),
the one-sided inequality (G.4) follows with probability at least 1− exp{−(cn ∧ 1/b)}. Setting δ = b/3
and taking n ≥ N to be sufficiently large, the bottom line is that both (G.3) and (G.4) are together satisfied
with probability at least 1− b/2.
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Now, to complete the proof of Theorem 2, we would like to invoke Lemma C.2, and conclude that
conditional on X1, . . . , Xn satisfying (G.3) and (G.4), our test ϕ will equal 1 with probability at least
1− b/2. To use Lemma C.2, we will need to establish that (C.4) is satisfied.

On the one hand, we have that the right-hand side of (C.4) is upper bounded,

〈Ln,εf0, f0〉n
λK+1

+
√

2K

n

[
2

√
1

a
+

√
2

b
+ 32

bn

]
≤ C

(
M2

b min{ρK+1, ε−2} +
√

2K

n

[√
1

a
+ 1

b

])

≤ C

(
M2

b
(K + 1)−2/d +

√
2K

n

[√
1

a
+ 1

b

])
,

with the second inequality following by the assumption ε ≤ K−1/d and Weyl’s Law. On the other hand,
we have that ‖f0‖2

n ≥ ‖f0‖2
P/2. Consequently, to prove Theorem 2, it remains only to verify that

‖f0‖2
P ≥ C

(
M2

b
(K + 1)−2/d +

√
2K

n

[√
1

a
+ 1

b

])
. (G.5)

As in the estimation case, we can further upper bound the right-hand side of (G.5), depending on the

value of K chosen in (P2). If K = ⌊
M2n

⌋d/(2+d)
then (G.5) is satisfied as long as

‖f0‖2
P ≥ CM2(M2n)−4/(4+d)

[√
1

a
+ 1

b

]
.

If M2 < n−1, then we take K = 1, and (G.5) is satisfied whenever

‖f0‖2
P ≥

C

n

[√
1

a
+ 1

b

]
.

Finally if M > n1/d, we take K = n, and (G.5) is satisfied if

‖f0‖2
P ≥ C

(
M2

n2/db
+ n−1/2

[√
1

a
+ 1

b

])
.

We conclude by observing that (3.5) implies each of these three inequalities, and thus implies (G.5).

Proof of Theorem 4. Follows identically to the proof of Theorem 1, except substituting Ls
n,ε for Ln,ε, λs

k
for λk, and using Proposition 4 rather than Proposition 3 and Assumption (P4) rather than Assumption
(P2).

Proof of Theorem 8. Follows identically to the proof of Theorem 1, except substituting Ls
n,ε for Ln,ε,

λs
k for λk, and using Proposition 7 rather than Proposition 3, Proposition 8 rather than Proposition 5,

Proposition 9 rather than Proposition 6 and Assumption (P6) rather than Assumption (P2).

Proof of Theorem 5. Note that our choices of K and ε ensure that (G.3) (with Ls
n,ε replacing Ln,ε) and

(G.4) are satisfied with probability at least 1− b/2. Proceeding as in the proof of Theorem 2, we upper
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bound the right-hand side of (C.4),

〈Ln,εf0, f0〉n
λK+1

+
√

2K

n

[
2

√
1

a
+

√
2

b
+ 32

bn

]
≤ C

(
M2

b min{ρK+1, ε−2} +
√

2K

n

[√
1

a
+ 1

b

])

≤ C

(
M2

b
ε2 +

√
2K

n

[√
1

a
+ 1

b

])
.

Unlike in the proof of Theorem 2, we note that in this case ε2 ≤ CρK rather than vice versa. From here,
proceeding as in the proof of Theorem 2 gives the claimed result.

H. Graph Laplacian methods and the cluster assumption

A main conclusion of our paper is that PCR-LE is minimax optimal for non-parametric regression over
certain Sobolev classes. It is not the only optimal method. For instance, kernel smoothing and least
squares using an appropriate set of basis functions as features are two other minimax optimal methods
over these Sobolev classes. We now give an example where PCR-LE is better than these two alternatives,
in the sense of having (much) smaller risk. This is possible because PCR-LE performs remarkably well
when the regression function f0 and design distribution P satisfy a cluster assumption: that is, when
the regression function is (approximately) piecewise constant over high-density clusters of the design
distribution P. On the other hand, kernel smoothing (with Euclidean distance) and least squares (using
eigenfunctions of an unweighted Laplace operator) cannot take advantage of the cluster assumption. We
call this property of PCR-LE density adaptivity.

H.1 Set-up

We begin by specifying a sequence of design densities and regression functions {(p(n), f (n)
0 ) : n ∈ N}.

These distributions will all be chosen to satisfy the cluster assumption. To that end, we define two clusters
Q1, Q2 ⊂ R using a cluster separation parameter r, as

Q1 := [0, 1/2− r], Q2 := [1/2+ r, 1],

and take the domain X (n) := Q1 ∪ Q2. We then take the design density to be uniform over X (n) and
the regression function to be a piecewise constant function over Q1 and Q2 of height θ ,

p(n)(x) := 1

1− 2r
1
{
x ∈ Q1 ∪ Q2

}
, f (n)

0 (x) := θ · (1 {
x ∈ Q1

}− 1
{
x ∈ Q2

})
. (H.1)

Thus p(n) and f (n)
0 belong to a two-parameter family, where the parameters are the cluster separation r

and height θ . Generally speaking, the smaller the separation r, and the larger the height θ , the more graph
Laplacian methods will outperform both kernel smoothing and linear regression using eigenfunctions of
the unweighted Laplace operator as features.

We now define kernel smoothing and least squares using eigenfunction of an unweighted Laplace
operator. For a kernel function ψ and bandwidth parameter h, the kernel smoothing estimator f̃KS is
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defined at a point x ∈X as

f̃KS(x) :=
⎧⎨⎩

0, if dn,h(x) = 0,

1
dn,h(x)

n∑
i=1

Yiψ

(
‖Xi−x‖

h

)
, otherwise. (H.2)

Let (λ1, φ1), (λ2, φ2), . . . be eigenpairs of the unweighted Laplace operator Δ on [0, 1], meaning

Δφk = λkφk, ‖φk‖L2([0,1]) = 1,
d

dx
φk(0) = d

dx
φk(1) = 0. (H.3)

In this case the eigenfunctions φk of Δ are simply cosine functions, with eigenvalues proportional to
their squared frequency. Noting that φ1(x) = 1 and λ1 = 0, for k = 2, 3, . . . we have

φk(x) =
√

2 · cos(2πkx), λk(Δ) = π2k2.

The least squares estimator using φ1, . . . , φK (1 ≤ K ≤ n) eigenfunctions as features is simply12

f̃K := argmin
f∈span{φ1,...,φK}

‖Y − f‖2
n = Φ(Φ�Φ)−1Φ�Y . (H.4)

Hereafter, we will refer to f̃K as the uniform least squares estimator.

H.2 Upper bounds on risk of PCR-LE

Now we are in a position to state our results. Both PCR-LE and kernel smoothing depend in part on the
choice of kernel. For simplicity, in our analysis we only consider the boxcar kernel,

η(z) = ψ(z) = 1{z ≤ 1}. (H.5)

This is strictly for convenience, and the following results will also hold for any kernel that satisfies (K1).

Proposition H.10. Suppose (X1, Y1), . . . (Xn, Yn) are sampled according to (H.1). Compute the PCR-
LE estimator f̂ using a kernel η which satisfies (H.5), number of eigenvectors K = 2, and radius ε = r/2.
Then,

E

[
‖̂f − f (n)

0 ‖2
n

]
≤

(
6θ2 + 1

n

)
· 8

r
exp(−nr/8)+ 1

n
. (H.6)

Proof of Proposition H.10. We begin by showing that, with high probability, the eigenvectors v1, v2
respect the cluster structure of p(n). Denote u1 = (1{Xi ∈ Q1})i∈[n], and likewise u2 = (1{Xi ∈ Q2})i∈[n].
We make the following two observations:

12 For convenience, we will assume Φ ∈ R
n×K is full rank. If this is not the case, the least squares estimator f̃K is not uniquely

defined, but any solution will equal Y in-sample, and will satisfy ‖̃fK − f0‖2
n ≥ 1/2 with high probability.
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1. Because ε < r and the kernel η is compactly supported on [0, 1], for each Xi ∈ Q1 and Xj ∈ Q2,
it must be the case that η(‖Xi − Xj‖/ε) = 0.

2. Using an elementary concentration argument (stated in Lemma I.19) and the triangle inequality,
we deduce that with probability at least 1− 4/ε exp(−nε/4) there exists a path in Gn,ε between
each Xi, Xj ∈ Q1, and likewise between each Xi, Xj ∈ Q2.

Together these observations imply that with high probability the neighbourhood graph Gn,ε consists
of exactly two connected components: one consisting of all design points Xi ∈ Q1, and the other
consisting of all design points Xi ∈ Q2. In other words,

P
(
span{v1, v2} = span{u1, u2}

) ≥ 1− 4/ε exp(−nε/4). (H.7)

Let us condition on the ‘good’ event E that the design points X1, . . . , Xn satisfy (I.1), and therefore
that span{v1, v2} = span{u1, u2}. Consider the empirical mean YQ := 1

�{Q∪X}
∑

i:Xi∈Q Yi. Since

span{v1, v2} = span{u1, u2}, the estimator f̂ = f̂LE will be piecewise constant on Q1 and Q2, and in
fact we have that

f̂ = YQ1
u1 + YQ2

u2. (H.8)

Therefore conditional on E ,

‖̂f − f (n)
0 ‖2

n = Pn(Q1) · (YQ1
− θ)2 + Pn(Q2) · (YQ2

+ θ)2

and consequently,

E

[
‖̂f − f (n)

0 ‖2
n

∣∣∣E ]
= E

[
E

[
‖̂f − f (n)

0 ‖2
n

∣∣X1, . . . , Xn

] ∣∣∣E ]
= 1

n
. (H.9)

Now we derive a crude upper bound on ‖̂f − f (n)
0 ‖n that will suffice to control the error conditional

on E c. We observe that the empirical norm of f̂ is bounded,

‖̂f‖2
n ≤

2

n

n∑
i=1

〈Y , v1〉2nv2
1,i + 〈Y, v2〉2nv2

2,i ≤ 2
(
〈Y, v1〉2n + 〈Y, v2〉2n

)
≤ 4‖Y‖2

n.

Noting that E[‖Y‖2
n|X1, . . . , Xn] = ‖f0‖2

n + 1/n = θ2 + 1/n, we conclude that

E

[
‖̂f − f0‖2

n · 1{E c}
]
≤ E

[
(2‖f0‖2

n + 4(θ2 + 1/n) · 1{E c}
]
≤ (6θ2 + n−1) · 4ε−1 exp(−nε/4).

Combining this with (H.9) implies (H.6).

H.3 Lower bounds on risk of kernel smoothing and least squares

Proposition H.11. Suppose (X1, Y1), . . . , (Xn, Yn) are sampled according to (H.1). Suppose (log n)2/n
≤ r ≤ c, where c is a universal constant.
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• Compute the kernel smoothing estimator f̃ = f̃KS as in (H.2), using a kernel ψ which satisfies (H.5).
Then there exist universal constants c, N > 0 such that for all n > N,

inf
h′>0

E

[
‖̃f − f (n)

0 ‖2
n

]
≥ c min

{
r−1

n
,

θ√
n

}
. (H.10)

• Compute the least squares estimator f̃ = f̃SP as in (H.4). Then there exist universal constants c, N > 0
such that for all n > N,

inf
1≤K≤n

E

[
‖̃f − f (n)

0 ‖2
n

]
≥ c min

{
r−1

n
,

1

log(n)
,

r−2/3

n
,

√
θ

n3/4

}
. (H.11)

The proof of Proposition H.11 is long, and we defer it until after some discussion of the implications
of the proposition.

Together, Propositions H.10 and H.11 illustrate that the risk of PCR-LE can be dramatically smaller
than that of kernel smoothing or uniform least squares. For instance, taking θ = n1/2 and r = n−3/4,
when appropriately tuned, f̂ satisfies

E

[
‖̂f − f (n)

0 ‖2
n

]
≤ C

(
n7/4 exp(−n1/4/8))+ 1

n

)
≤ C

n
,

for a universal constant C and all n larger than some universal constant N, whereas for f̃ = f̃KS,

inf
h′>0

E

[
‖̃f − f (n)

0 ‖2
n

]
≥ c

n1/4
,

and for f̃ = f̃SP,

inf
1≤K≤n

E

[
‖̃f − f (n)

0 ‖2
n

]
≥ c

n1/2 .

Other choices of θ and r lead to even more dramatic gaps between the risk of PCR-LE, and the risk of
kernel smoothing and least squares. The overall takeaway is that under Model H.1, estimators that use
the graph Laplacian can converge to the true regression function f (n)

0 at fast rates—parametric rates that

do not depend on the L2 norm of f (n)
0 —whereas other estimators, optimal for estimation over Sobolev

spaces, converge to f (n)
0 at slow rates—non-parametric rates that deteriorate as the L2 norm of f (n)

0 grows.
Some remarks:

• The lower bound on the in-sample risk of f̃KS given by (H.10) is larger than that of f̃SP given by
(H.11). This does not mean that kernel smoothing exhibits less adaptivity to the cluster assumption
than uniform least squares. Instead, we suspect it is due to looseness in our lower bounds: we are able
to tightly control the bias of kernel smoothing, whereas we must use a potentially loose bound on the
bias of uniform least squares. Experimentally, it appears that kernel smoothing usually outperforms
uniform least squares, under various instantiations of the cluster assumption.
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• The cluster assumption—in which the regression function is piecewise constant and p consists of
multiple connected components—is a very strong assumption. The low-density separation condition
is a related but weaker assumption, in which the regression function is assumed to be smoother (but
not constant) in regions of higher density. This is a rather general hypothesis which can formalized
in a number of different ways. For instance, one could insist that the regression function f0 belong to
a normed ball in a weighted Sobolev space, with semi-norm given by

|f0|Hs(P) := 〈Δs
Pf0, f0〉P.

Intuitively, when ‖f0‖Hs(P) is much smaller than ‖f0‖Hs(X ), density-adaptive learners such as PCR-
LE should have the advantage on non-density adaptive linear smoothers, such as kernel smoothing
or uniform least squares. Indeed, in the case of Model H.1 we see that

‖f (n)
0 ‖Hs(P(n)) = 0 for all s ∈ N, and all r, θ > 0,

whereas f (n)
0 does not even belong to the first-order Sobolev space H1([0, 1]). In words, this shows

the cluster assumption is an extreme case of the low-density separation condition. Unfortunately, it is
quite difficult to analyse graph-based estimators under the general low-density separation condition,
without making strong assumptions on P.

• Finally, we note that either changing the graph or the normalization of the Laplacian fundamentally
alters the type of density adaptivity displayed by graph-Laplacian-based estimators; see Hoffmann
et al. [35] for an extensive discussion.

H.4 Proof of Proposition H.11

First we show (H.10), then (H.11).

H.4.1 Proof of (H.10). A standard argument using the law of iterated expectation implies the
following lower bound on the pointwise risk in terms of squared-bias and variance-like quantities,

E

[(̃
f (Xi)− f0(Xi)

)2 |Xi = x
]
≥ (n− 1)

n
E

[(
f0(X)− f0(x)

)2 |X ∈ B(x, h′)
]
+ E

[
1

dn,h′(x)

]
.

The variance term can be lower bounded quite simply for any x ∈ X (n); noting that supx p(n)(x) < 2
and ν(B(x, h′) ∩X (n)) ≤ 2h′, it follows by Jensen’s inequality that

E

[
1

dn,h′(x)

]
≥ 1

E[dn,h′(x)]
≥ 1

4nh′
.

On the other hand the squared bias term is quite large for x close to 1/2. Precisely, if h′ ≥ 4r then a
simple calculation implies

E[(f0(X)− f0(x))
2|X ∈ B(x, h′)] ≥ θ2

8
for all x ∈ [(1− h′/2)+, 1/2− r].
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Combining these lower bounds on variance and squared bias terms and summing over X1, . . . , Xn, we
arrive at the following: if h′ ≤ 4r, then

E

[
‖̃f − f (n)

0 ‖2
n

]
= 1

n

n∑
i=1

E

[
E

[(̃
f (Xi)− f0(Xi)

)2 |Xi

]]
≥ 1

16rn
,

whereas if h′ > 4r then

E

[
‖̃f − f (n)

0 ‖2
n

]
= 1

n

n∑
i=1

E

[
E

[(̃
f (Xi)− f0(Xi)

)2 |Xi

]]

≥ 1

4nh′
+ θ2

8

(n− 1)

n
P(n)

(
[(1− h′/2)+, 1/2− r]

)
≥ 1

4nh′
+ θ2h′

64
.

In the latter case, setting the derivative equal to 0 shows that the right-hand side is always at least θ/
√

64n,
and taking the minimum over the two cases then yields (H.10).

H.4.2 Proof of (H.11). We begin by decomposing the risk into conditional bias and variance terms.
Let En = E[·|X1, . . . , Xn] denote expectation conditional on the design points X1, . . . , Xn. Then by the
law of iterated expectation, and the fact that En[w] = 0,

E

[
‖̃fSP − f0‖2

n

]
= E

[
‖EñfSP − f0‖2

n

]
+ E

[
‖̃fSP − EñfSP‖2

n

]
.

We separately lower bound the expected conditional squared bias and variance terms. To anticipate what
is to come we will show that the expected conditional variance is equal to K/n; also, we will show that
the expected conditional squared bias is lower bounded,

E

[
‖EñfSP − f0‖2

n

]
= K

n
and E

[
‖EñfSP − f0‖2

n

]
≥ θ2

2601π2K3
, (H.12)

with the lower bound holding so long as K ≤ min{1/(16r), n/(8 log(8n)), (
√

160π/r)2/3}. If K is larger
than this, then the expected conditional variance is lower bounded,

E

[
‖̃fSP − EñfSP‖2

n

]
≥ min

{
1

16rn
,

1

8 log(8n)
,
(
√

160π)2/3

r2/3n

}
(H.13)

Otherwise (H.12) implies that the in-sample risk is always at least

E

[
‖̃fSP − f0‖2

n

]
≥ θ2

2601π2K3
+ K

n
≥ 2

θ1/2

n3/4

1

(2601π2)1/4
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/2423/7265386 by guest on 17 O
ctober 2023



2496 A. GREEN ET AL.

Along with (H.13), this implies the claim. It remains to show the bounds on conditional bias and variance.

Conditional variance. The expected conditional variance is exactly equal to K/n, a standard fact that is
verified by the following calculations: first,

‖̃fSP − EñfSP‖2
n = ‖Φ(Φ�Φ)−1Φ�w‖2

n =
1

n
w�Φ(Φ�Φ)−1Φ�w;

thus standard properties of the Gaussian distribution and the trace trick imply

En

[
‖̃fSP − EñfSP‖2

n

]
= 1

n
tr(Φ(Φ�Φ)−1Φ�) = K

n
;

and finally by the law of iterated expectation and the independence of the noise (w1, . . . , wn) and the
design points X1, . . . , Xn,

E

[
En

[
‖̃fSP − EñfSP‖2

n

]
= K/n.

Conditional bias. It takes more work to lower bound the conditional bias. We will first upper bound the
Lipschitz constant of EñfSP in terms of the empirical norm ‖EñfSP‖n. Then we will use this upper bound
to argue that either EñfSP has empirical norm much larger than that of f0, or EñfSP is a smooth function,
in the sense of having a small Lipschitz constant. In the former case, the triangle inequality will then
imply that ‖EñfSP − f0‖n must be large. In the latter case, the smoothness of EñfSP will imply that EñfSP
must be far from f0 at many points Xi close to x = 1/2.

The following Lemma gives our upper bound on the Lipschitz constant of ‖EñfSP‖n. Here we treat
EñfSP = ∑K

k=1 β̃kφk as a function defined at all x ∈ [0, 1] by extending it in the canonical way.
As a function over [0, 1], clearly EñfSP ∈ C∞([0, 1]). Let Σ ∈ R

K×K be the covariance matrix of
(φ1, . . . , φK), i.e. the matrix with entries Σk	 = 〈φk, φ	,〉 P(n). Let Σ̂ := (Φ�Φ)/n be the empirical
covariance matrix. Let IK ∈ R

K×K be the identity matrix.

Lemma H.15. (Lipschitz regularity of EñfSP). Let f̃n = EñfSP. Then

‖̃fn‖2
C1(X )

≤ π2
K3 · ‖Σ1/2Σ̂−1Σ1/2‖op

(1− ‖IK −Σ‖F)
· ‖̃fn‖2

n. (H.14)

Moreover, suppose K ≤ 1/(16r) and r ≤ (1− 2−1/2)/2.

• (Matrix perturbation) Then

‖Σ − IK‖F ≤
1

2
. (H.15)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/2423/7265386 by guest on 17 O
ctober 2023



LAPLACIAN EIGENMAPS REGRESSION 2497

• (Matrix concentration, cf. [37]) If additionally n ≥ 8K log(K/δ) for some δ ∈ (0, 1/2), then with
probability at least 1− 2δ,

‖Σ1/2Σ̂−1Σ1/2‖op ≤ 5. (H.16)

Therefore, if K ≤ min{1/(16r), n/(8 log(K/δ))}, then with probability at least 1− 2δ,

‖̃fn‖2
C1(X )

≤ 10π2K3‖̃fn‖2
n. (H.17)

We defer the proof of Lemma H.15 until after we complete the proof of (H.11).
Now, if ‖̃fn‖2

n ≥ 3
2‖f0‖2

n, then by the triangle inequality

‖̃fn − f0‖n ≥ ‖̃fn‖n − ‖f0‖n ≥
√

3

2
· ‖f0‖n =

√
3

2
· θ .

Otherwise ‖̃fn‖2
n ≥ 3

2‖f0‖2
n. In this case, we show that |̃fn(Xi)−f0(Xi)|must be large (of the order of θ ) for

many points Xi which are close to x = 1/2. Let us suppose without loss of generality that f̃n(1/2) ≤ θ/2
and consider points Xi ∈ Q1 close to x = 1/2; otherwise if f̃n(1/2) > θ/2 we could obtain the exact same
bound by considering Xi ∈ Q2. For each point Xi ∈ Q1, by Lemma H.15 we have that with probability
at least 1− 2δ,

|̃fn(Xi)− f̃n(1/2)| ≤ CK3/2‖̃fn‖n · |Xi − 1/2| ≤ √10πK3/2θ · |Xi − 1/2|.

Since f̃n(1/2) ≤ θ/2 and f0(Xi) = θ/2 for all Xi ∈ Q1 it follows that

|̃fn(Xi)− f0(Xi)| ≥ θ −√10πK3/2θ · |Xi − 1/2|,

and consequently

|̃fn(Xi)− f0(Xi)| ≥ θ/2, for any Xi ∈ Q1 such that |Xi − 1/2| ≤ 1/(
√

40πK3/2).

This yields a lower bound on ‖̃fn − f0‖n; letting QK :=
[

1
2 − 1√

40πK3/2 , 1
2 − r

]
, we have that

‖̃fn − f0‖n ≥
θ

2
· Pn

(
Qk

)
.

Then as long as K−3/2 ≥ √160πr, from the multiplicative form of Hoeffding’s inequality (Lemma I.18)

P(n)(QK) ≥ 1√
160πK3/2

≥ 2r  ⇒ P

(
Pn(QK) ≥ 1√

640πK3/2

)
≥ 1− exp(−nr/4) ≥ 1− 4

n2 .
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Putting the pieces together, we conclude that if K ≤ min{1/(8r), n/(8 log(K/δ)), (
√

160π/r)2/3}, then

‖̃fn − f0‖n ≥
θ

51πK3/2
,

with probability at least 1− 2δ − 4n2. Taking δ = 1/8 then implies the claim.

Proof of Lemma H.15. Proof of (H.14). Recall that f̃n =
∑K

k=1 β̃kφk. Exchanging sum with derivative,
we have that

d

dx
f̃n(x) = −π

K∑
k=1

β̃kk sin(kπx).

Thus taking absolute value and applying the Cauchy–Schwarz inequality gives

|̃f ′n(x)|2 ≤ π2K2
K∑

k=1

(sin(kπx))2 ‖β‖2
2 ≤ π2K3‖β‖2

2.

On the other hand, we can also relate the empirical norm ‖̃fn‖2
n to the 	2 norm of β. Specifically,

‖̃fn‖2
n = β�Σ̂β ≥ ‖β‖2

2

‖Σ̂−1‖op
≥ ‖β‖2

2

‖Σ−1‖op · ‖Σ1/2Σ̂−1Σ1/2‖op
= ‖β‖2

2‖Σ‖op

‖Σ1/2Σ̂−1Σ1/2‖op

Rearranging, we see that

sup
x∈[0,1]

|̃f ′n(x)|2 ≤
π2K3

‖Σ‖op
‖Σ1/2Σ̂−1Σ1/2‖op ≤

π2K3

1− ‖IK −Σ‖F
‖Σ1/2Σ̂−1Σ1/2‖op

with the latter inequality following since ‖Σ‖op ≥ ‖IK‖op − ‖IK −Σ‖op ≥ 1− ‖IK −Σ‖F .

Proof of (H.15). We will show that for all 1 ≤ k < 	 ≤ K,

(1− 〈φk, φk〉P(n) )
2 ≤ 32r2, and |〈φk, φ	〉P(n) | ≤ 64r2. (H.18)

This implies ‖I −Σ‖2
F ≤ 32K2r2, so that ‖I −Σ‖F ≤ 1/2 so long as K ≤ 1/(16r).

The proof of (H.18) follows from computing some standard integrals. We separate the computation
based on whether k = 1 or k > 1.

Case 1: k = 1. When k = 1, 〈φ1, φ1〉P(n) = 1 and (1 − 〈φ1, φ1〉P(n) )2 = 0. Additionally, by symbolic
integration we find that

〈φk, φ	〉P(n) = −2
√

2

(1− 2r)
· cos(	π/2) sin(	πr)

	π
,
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and therefore

[〈φk, φ	〉P(n)

]2 ≤ 8

(1− 2r)2
·
(

sin(	πr)

	π

)2

≤ 8

(1− 2r)2
r2 ≤ 16r2,

where in the second-to-last inequality follows because sin(x)/x ≤ 1, and the last inequality follows by
our assumed upper bound on r.

Case 2: k > 1. When k > 1,

〈φk, φk〉P(n) = 1− 2

(1− 2r)

cos(kπ) sin(2kπr)

kπ
 ⇒ [

1− 〈φk, φk〉P(n)

]2

≤ 4

(1− 2r)2 ·
(

sin(2kπr)

kπ

)2

≤ 32r2.

Similarly,

〈φk, φ	〉P(n) = − 4

(1− 2r)

[
cos((k + 	)π) sin((k + 	)πr)

(k + 	)π
+ cos((k − 	)π) sin((k − 	)πr)

(k − 	)π

]

and therefore

[〈φk, φ	〉P(n)

]2 ≤ 16

(1− 2r)2

([
sin((k + 	)πr)

(k + 	)π

]2

+
[

sin((k − 	)πr)

(k − 	)π

]2)
≤ 64r2.

Proof of (H.16). Denote Φ(x) = (φ1, . . . , φK(x)) ∈ R
K for any x ∈ [0, 1]. Then for any x ∈ [0, 1],

‖Σ−1/2Φ(x)‖ ≤ ‖Σ−1‖1/2
op ‖Φ(x)‖2 ≤ ‖Σ−1‖1/2

op
√

2K ≤ 2
√

K

with the second-to-last inequality following from (H.15), and the last inequality following since |φk(x)| ≤√
2 for all k. Thus ‖Σ−1/2Φ(x)‖/√K ≤ 2, and (H.16) follows from Theorem 1 of Hsu et al. [37].

Proof of (H.17). Follows immediately.

I. Miscellaneous

Here we give assorted helpful Lemmas used at various points in the above proofs. We also review notation
and relevant facts regarding Taylor expansion.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/3/2423/7265386 by guest on 17 O
ctober 2023



2500 A. GREEN ET AL.

I.1 Concentration Inequalities

Lemma I.16 controls the deviation of a chi-squared random variable. It is from [45].

Lemma I.16. Let ξ1, . . . , ξN be independent N(0, 1) random variables, and let U := ∑N
k=1 ak(ξ

2
k − 1).

Then for any t > 0,

P
[
U ≥ 2‖a‖2

√
t + 2‖a‖∞t

] ≤ exp(−t).

In particular if ak = 1 for each k = 1, . . . , N, then

P

[
U ≥ 2

√
Nt + 2t

]
≤ exp(−t).

Lemma I.17 is an immediate consequence of the one-sided Bernstein’s inequality (14.23) in [70].
Lemma I.17. (One-sided Bernstein’s inequality). Let X, X1, . . . , Xn ∼ P, and f satisfy E[f 4(X)] < ∞.
Then

‖f‖2
n ≥

1

2
‖f‖2

P,

with probability at least 1− exp
(−n/8 · ‖f‖4

P/E[f 4(X)]
)
.

Lemma I.18 is a multiplicative form of Hoeffding’s inequality.

Lemma I.18. (Hoeffding’s Inequality, multiplicative form). Suppose Zi are independent random vari-
ables, which satisfy Zi ∈ [0, B] for i = 1, . . . , n. For any 0 < δ < 1, it holds that

P

(∣∣Sn − μ
∣∣ ≥ δμ

)
≤ 2 exp

(
−δ2μ

3B2

)
.

The following Lemma gives a ‘balls-in-bins’ result. More precisely, it gives a lower bound on the
probability that every bin

Qi1 = [i/m, (i+ 1)/m] · (1/2− r), Qi2 = 1/2+ [i/m, (i+ 1)/m] · (1/2− r).

will contain at least one ball.

Lemma I.19. Suppose (X1, Y1), . . . (Xn, Yn) are sampled according to (H.1), and suppose r ≤ 1/4. We
have that

P

(
�{Qij ∪ X} > 0 for all i = 1, . . . , m− 1 and j = 1, 2

)
≥ 1− 2m exp{−n/2m}. (I.1)

Proof of Lemma I.19. For each Qij, we have that P(Qij) = (1/2− r)/m ≥ 1/(2m). Therefore

P

(
�{Qij ∪ X} = 0

)
= (1− 1/(2m))n ≤ exp{−n/2m}.
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By a union bound,

P

(
�{Qij ∪ X} = 0 for any i = 1, . . . , m− 1 and j = 1, 2

)
≤ 2m exp{−n/2m}.

�
Let ε = 2/m. Note that by construction, (I.1) implies that any points x and x′ in adjacent intervals

Qij and Qi′j must be connected in Gn,ε. Likewise, it implies that for h = 1/m the degree dn,h(x) > 0 for
every x ∈ Q1 ∪ Q2.

I.2 Taylor expansion

We begin with some notation that allows us to concisely derivatives. For a given z ∈ R
d and s-times

differentiable function f : X → R, we denote
(
ds

xf
)
(z) := ∑

|α|=s Dαf (x)zα . We also write dsf :=∑
|α|=j Dαf . We point out that in the first-order case d1

x f is the differential of f at x ∈ X , while d1f is
the divergence of f .

Let u be a function which is s times continuously differentiable at all x ∈X , for k ∈ N\{0}. Suppose
that for some h > 0, x ∈ Xh and x′ ∈ B(x, h). We write the order-s Taylor expansion of u(x′) around
x′ = x as

u(x′) = u(x)+
s−1∑
j=1

1

j!

(
dj

xu
)

(x′ − x)+ rs
x′(x; u)

For notational convenience we have adopted the convention that
∑0

j=1 aj = 0. Thus
(

dj
xf
)

(z) is a degree-

j polynomial—and so a j-homogeneous function—in z, meaning for any t ∈ R,(
dj

xf
)

(tz) = tj ·
(

dj
xf
)

(z).

The remainder term rx′ is given by

rs
x′(x; f ) = 1

(j− 1)!

∫ 1

0
(1− t)j−1

(
ds

x+t(x′−x)f
)

(x′ − x) dt,

where we point out that the integral makes sense because x + t(x′ − x) ∈ B(x, h) ⊆ X . We now
give estimates on the remainder term in both sup-norm and L2(Xh) norm, each of which hold for any
z ∈ B(0, 1). In sup-norm, we have that

sup
x∈Xh

|rj
x+hz(x; f )| ≤ Chj‖f‖Cj(X ),

whereas in L2(Xh) norm we have∫
Xh

∣∣∣rj
x+thz(x; f )

∣∣∣2 dx ≤ h2j
∫
Xh

∫ 1

0
|dj

x+thzf (z)|2 dt dx ≤ h2j‖djf‖2
L2(X )

. (I.2)

Finally, we recall some facts regarding the interaction between smoothing kernels and polynomials.
Let qj(z) be an arbitrary degree-j (multivariate) polynomial. If η is a radially symmetric kernel and j is
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odd, then by symmetry it follows that ∫
B(0,1)

qj(z)η(‖z‖) dz = 0.

On the other hand, if ψ is an order-s kernel for some s > j, then by converting to polar coordinates we
can verify that ∫

B(0,1)

qj(z)η(‖z‖) dz = 0.

J. Sparsification

Recall that when s = 1, we have shown that PCR-LE is optimal when ε � (log n/n)1/d is (up to a
constant) as small as possible while still ensuring the graph G is connected. On the other hand, when
s > 1, we can show PCR-LE is optimal only when ε = ω(n−c) for some c < 1/d. For such a choice
of ε, the average degree in G will grow polynomially in n as n → ∞, and computing eigenvectors of
the Laplacian of a graph will be more computationally intensive than if the graph were sparse. In this
dense-graph setting, we now discuss a procedure to more efficiently compute an approximation to the
PCR-LE estimate: edge sparsification.

By now there exist various methods see (e.g. the seminal papers of Spielman and Teng [61, 62, 63], or
the overview by Vishnoi [68] and references therein) to efficiently remove many edges from the graph G
while only slightly perturbing the spectrum of the Laplacian. Specifically such algorithms take as input
a parameter σ ≥ 1, and return a sparser graph Ǧ, E(Ǧ) ⊆ E(G), with a Laplacian Ľn,ε satisfying

1

σ
· u�Ľn,εu ≤ u�Ln,εu ≤ σ · u�Ľn,εu for all u ∈ R

n.

Let f̌ be the PCR-LE estimator computed using the eigenvectors of the sparsified graph Laplacian Ľn,ε.

Because Ǧ is sparser than G, it can be (much) faster to compute the eigenvectors of Ľn,ε than the

eigenvectors of Ln,ε, and consequently much faster to compute f̌ than f̂ . Statistically speaking, letting λ̌k

be the kth eigenvalue of Ľn,ε, we have that conditional on {X1, . . . , Xn},

‖f̌ − f0‖2
n ≤

〈Ľs
n,εf0, f0〉n
λ̌s

K+1

+ 5K

n
≤ σ 2s 〈Ľs

n,εf0, f0〉n
λ̌s

K+1

+ 5K

n
,

with probability at least 1 − exp(−K). Consequently ‖̃f − f0‖2
nis at most σ 2s · ‖̂f − f0‖2

n, and for any
choice of σ that is constant in n the estimator f̌ will also be rate-optimal.

In fact the aforementioned edge sparsification algorithms are overkill for our needs. For one thing,
they are designed to work when σ is very close to 1, whereas in order for f̌ to be rate-optimal, setting σ

to be any constant greater than 1, say σ = 2, is sufficient. Additionally, edge sparsification algorithms
are traditionally designed to work in the worst-case, where no assumptions are made on the structure of
the graph G. But the geometric graphs we consider in this paper exhibit a special structure, in which very
roughly speaking no single edge is a bottleneck. As pointed out by Sadhanala et al. [52], in this special
case there are far simpler and faster methods for sparsification, which at least empirically seem to do
the job.
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