
Trend Filtering on Graphs

Yu-Xiang Wang1 James Sharpnack3 Alex Smola1,4 Ryan J. Tibshirani1,2
1 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213

2 Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213
3 Mathematics Department, University of California at San Diego, La Jolla, CA 10280

4 Google, Strategic Technologies, Mountain View, CA 94303

Abstract

We introduce a family of adaptive estimators on
graphs, based on penalizing the `1 norm of dis-
crete graph differences. This generalizes the idea
of trend filtering [11, 26], used for univariate
nonparametric regression, to graphs. Analogous
to the univariate case, graph trend filtering ex-
hibits a level of local adaptivity unmatched by
the usual `2-based graph smoothers. It is also de-
fined by a convex minimization problem that is
readily solved (e.g., by fast ADMM or Newton
algorithms). We demonstrate the merits of graph
trend filtering through examples and theory.

1 INTRODUCTION

Nonparametric regression has a rich history in statistics,
carrying well over 50 years of associated literature. The
goal of this paper is to port a successful idea in univariate
nonparametric regression, trend filtering [24, 11, 26, 29],
to the setting of estimation on graphs. The proposed esti-
mator, graph trend filtering, shares three key properties of
trend filtering in the univariate setting.

1. Local adaptivity: graph trend filtering can adapt to
inhomogeneity in the level of smoothness of an ob-
served signal across nodes. This stands in constrast to
the usual `2-based methods, e.g., Laplacian regular-
ization [22], which enforce smoothness globally with
a much heavier hand, and tend to yield estimates that
are either smooth or else wiggly throughout.

2. Computational efficiency: graph trend filtering is de-
fined by a regularized least squares problem, in which
the penalty term is nonsmooth, but convex and struc-
tured enough to permit efficient computation.

Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2015, San Diego,
CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the
authors.

3. Analysis regularization: the graph trend filtering
problem directly penalizes (possibly higher order) dif-
ferences in the fitted signal across nodes. Therefore
graph trend filtering falls into what is called the anal-
ysis framework for defining estimators. Alternatively,
in the synthesis framework, we would first construct
a suitable basis over the graph, and then regress the
observed signal over this basis; e.g., [21] study such
an approach using wavelets; likewise, kernel methods
regularize in terms of the eigenfunctions of the graph
Laplacian [12]. An advantage of analysis regulariza-
tion is that it easily yields complex extensions of the
basic estimator by mixing penalties.

A Motivating Example. Consider an estimation problem
on 402 census tracts of Allegheny County, PA, arranged
into a graph with 402 vertices and 2382 edges by connect-
ing spatially adjacent tracts. To illustrate the adaptive prop-
erty of graph trend filtering we generated an artificial sig-
nal with inhomogeneous smoothness across the nodes, and
two sharp peaks near the center of the graph, as can be
seen in the top left panel of Figure 1. (This was generated
from a mixture of Gaussians in the underlying spatial co-
ordinates.) We drew noisy observations around this signal,
shown in the top right panel, and we fit graph trend filter-
ing, graph Laplacian smoothing, and wavelet smoothing to
these observations. Graph trend filtering is to be defined in
Section 2 (here we used k = 2, quadratic order); the latter
two, recall, are defined by the optimization problems

min
β∈Rn

‖y − β‖22 + λβ>Lβ (Laplacian smoothing),

min
θ∈Rn

1

2
‖y −Wθ‖22 + λ‖θ‖1 (wavelet smoothing).

Above, y ∈ Rn is the vector of observations across nodes,
n = 402, L ∈ Rn×n is the unnormalized Laplacian matrix
over the graph, andW ∈ Rn×n is a wavelet basis built over
the graph (we followed the prescription of [21]). The three
estimators each have their own regularization parameters
λ; hence as a common measure for the complexities of the
fitted models, we use degrees of freedom (df).

The middle left panel of Figure 1 shows the graph trend fil-

Trend Filtering on Graphs

True signal Noisy observations

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.056
0.111
0.167
0.223
0.278
0.334
0.389
0.445
0.501
0.556
0.612
0.667
0.723
0.779
0.834
0.89
0.945
1.001
1.057
1.112

Graph trend filtering, 68 df Laplacian smoothing, 68 df

Laplacian smoothing, 132 df Wavelet smoothing, 160 df

Figure 1: Color maps for the Allegheny County example.

tering estimate with 68 df. We see that it adaptively fits to
the sharp peaks in the center of the graph, and smooths out
the surrounding regions appropriately. The graph Lapla-
cian estimate with 68 df (middle right), substantially over-
smooths the high peaks in the center, while at 132 df (bot-
tom left), it begins to detect the high peaks in the center,
but undersmooths neighboring regions. Wavelet smooth-
ing performs quite poorly across all df values—it appears
to be most affected by the level of noise in the observations.

Furthermore, Figure 2 shows the mean squared errors be-
tween the estimates and the true signal. The differences
in performance here are analogous to the univariate case,
when comparing trend filtering to smoothing splines [26].
At the smaller df values, Laplacian smoothing, due to its
global considerations, fails to adapt to local differences
across nodes. Trend filtering performs much better at low
df values, and yet it matches Laplacian smoothing when
both are sufficiently complex, i.e., in the overfitting regime.
This demonstrates that the local flexibility of trend filtering
estimates is a key attribute.

Outline. Section 2 defines graph trend filtering and cov-

0 100 200 300 400

0.
01

0.
02

0.
05

Degrees of Freedom

M
ea

n
S

qu
ar

ed
 E

rr
or

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●
●●●
●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●
●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

Trend filtering
Laplacian smoothing
Wavelet smoothing

Figure 2: Mean squared errors for the Allegheny County
example. Results were averaged over 10 simulations; the
bars denote ±1 standard errors.

ers basic properties. Section 3 examines computational ap-
proaches, Section 4 looks at more examples, and Section 5
presents theory. Section 6 concludes with a discussion.

Notation. For X ∈ Rm×n, we write XA to extract the
rows of X corresponding to a subset A ⊆ {1, . . .m}, and
X−A to extract the complementary rows. Similarly for vec-
tors. We write row(X) and null(X) for the row and null
spaces of X , respectively, and X† for the pseudoinverse of
X , with X† = (X>X)†X> when X is rectangular.

2 TREND FILTERING ON GRAPHS

2.1 Review: Univariate Trend Filtering

We begin by reviewing trend filtering in the univariate set-
ting. Here discrete difference operators play a central role.
Suppose that we observe y = (y1, . . . yn) ∈ Rn across
equally spaced input locations x = (x1, . . . xn); for sim-
plicity, say x = (1, . . . n). Given an integer k ≥ 0, the kth
order trend filtering estimate β̂ = (β̂1, . . . β̂n) is defined as

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖D(k+1)β‖1, (1)

where λ ≥ 0 is a tuning parameter, and D(k+1) is the dis-
crete difference operator of order k + 1. When k = 0,
problem (1) employs the first difference operator,

D(1) =

 −1 1 0 . . . 0
0 −1 1 . . . 0

.

.

.
. . .

. . .
0 0 . . . −1 1

, (2)

Yu-Xiang Wang, James Sharpnack, Alex Smola, Ryan J. Tibshirani

hence ‖D(1)β‖1 =
∑n−1
i=1 |βi+1 − βi|, and the 0th order

trend filtering estimate in (1) reduces to the 1-dimensional
fused lasso estimator [25], also called 1-dimensional total
variation denoising [17]. For k ≥ 1 we define D(k+1) re-
cursively by

D(k+1) = D(1)D(k), (3)

with D(1) above denoting the (n − k − 1) × (n − k) ver-
sion of the first difference operator in (2), i.e. D(k+1) is
given by taking first differences of kth differences. The in-
terpretation is hence that problem (1) penalizes the changes
in the kth discrete differences of the fitted trend. The esti-
mated components β̂1, . . . β̂n exhibit the form of a kth or-
der piecewise polynomial function, evaluated over the input
locations x1, . . . xn. This can be formally verified [26, 29]
by examining a continuous-space analog of (1).

2.2 Trend Filtering over Graphs

Let G = (V,E) be an graph, with vertices V = {1, . . . n}
and undirected edges E = {e1, . . . em}, and suppose that
we observe y = (y1, . . . yn) over the nodes. Following the
univariate definition in (1), we define the kth order graph
trend filtering (GTF) estimate β̂ = (β̂1, . . . β̂n) by

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖∆(k+1)β‖1. (4)

In broad terms, this problem (like univariate trend filtering)
is a type of generalized lasso problem [27], in which the
penalty matrix ∆(k+1) is a suitably defined graph differ-
ence operator, of order k + 1. In fact, the novelty in our
proposal lies entirely within the definition of this operator.

When k = 0, we define first order graph difference oper-
ator ∆(1) in such a way it yields the graph-equivalent of a
penalty on local differences:

‖∆(1)β‖1 =
∑

(i,j)∈E

|βi − βj |.

In this case, the penalty term in (4) sums the absolute dif-
ferences across connected nodes in G. To achieve this, we
let ∆(1) ∈ {−1, 0, 1}m×n be the oriented incidence matrix
of the graph G, containing one row for each edge in the
graph; specifically, if e` = (i, j), then ∆(1) has `th row

∆
(1)
` = (0, . . .−1

↑
i

, . . . 1
↑
j

, . . . 0), (5)

where the sign orientations are arbitrary. By construction,
the 0th order graph trend filtering estimate is piecewise
constant over nodes of G, and it is identical to the fused
lasso estimate on G [9, 27, 19].

For k ≥ 1, we use a recursion to define the higher order
graph difference operators, in a manner similar to the uni-
variate case. The recursion alternates in multiplying by the

first difference operator ∆(1) and its transpose, taking into
account that this matrix not square:

∆(k+1) =

{
(∆(1))>∆(k) = L

k+1
2 for odd k

∆(1)∆(k) = DL
k
2 for even k.

(6)

Above we exploited the fact that ∆(2) = (∆(1))>∆(1) is
the unnormalized graph Laplacian L of G, and we abbrevi-
ated ∆(1) by D. Note that ∆(k+1) ∈ Rn×n for odd k, and
∆(k+1) ∈ Rm×n for even k.

There may be multiple ways to generalize the univariate
discrete difference operators (2), (3) to graphs, so why this
particular definition? Intuition surrounding (5), (6) can
be developed by considering piecewise polynomial signals
over graphs; due to a lack of space, we defer this discussion
to the supplementary document. Another important reasur-
rance is that our graph definitions (5), (6) reduce to the uni-
variate ones (2), (3) in the case of a chain graph (in which
V = {1, . . . n} and E = {(i, i + 1) : i = 1, . . . n − 1}),
modulo boundary terms.

2.3 `1 versus `2 Regularization

It is instructive to compare the graph trend filtering estima-
tor, as defined in (4), (5), (6) to Laplacian smoothing [22].
Standard Laplacian smoothing uses the same least squares
loss as in (4), but replaces the penalty term with β>Lβ. A
natural generalization would be to allow for a power of the
Laplacian matrix L, and define kth order graph Laplacian
smoothing according to

β̂ = argmin
β∈Rn

‖y − β‖22 + λβ>Lk+1β. (7)

The above penalty term can be written as ‖L k+1
2 β‖22 for

odd k, and ‖DL k
2 β‖22 for even k; i.e., the penalty in (7)

is exactly ‖∆(k+1)β‖22 for the graph difference operator
∆(k+1) defined previously.

As we can see, the critical difference between graph Lapla-
cian smoothing (7) and graph trend filtering (4) lies in the
choice of penalty norm: `2 in the former, and `1 in the lat-
ter. The effect of the `1 penalty is that the GTF program can
set many (higher order) graph differences to zero exactly,
and leave others at large nonzero values; i.e., the GTF es-
timate can simultaneously be smooth in some parts of the
graph and wiggly in others. On the other hand, due to the
(squared) `2 penalty, the graph Laplacian smoother can-
not set any graph differences to zero exactly, and roughly
speaking, must choose between making all graph differ-
ences small or large. The relevant analogy here is the com-
parison between the lasso and ridge regression, or univari-
ate trend filtering and smoothing splines [26], and the high-
level conclusion is that GTF can adapt to the proper local
degree of smoothness, while Laplacian smoothing cannot.

Trend Filtering on Graphs

2.4 Related Work

Some authors from the signal processing community, e.g.,
[4, 18], have studied total generalized variation (TGV), a
higher order variant of total variation regularization. More-
over, several discrete versions of these operators have been
proposed. They are often similar to the construction that
we have. However, the focus of this work is mostly on
how well a discrete functional approximates its continuous
counterpart. This is quite different from our concern, as a
signal on a graph (say a social network) may not have any
meaningful continuous-space embedding at all. In addi-
tion, we are not aware of any study on the statistical prop-
erties of these regularizers. In fact, our theoretical analysis
in Section 5 may extend to these methods too.

2.5 Basic Structure and Degrees of Freedom

We now describe the basic structure of graph trend filter-
ing estimates, and present an unbiased estimate for their
degrees of freedom. Let the tuning parameter λ be arbi-
trary but fixed. By virtue of the `1 penalty in (4), the so-
lution β̂ satisfies supp(∆(k+1)β̂) = A for some active set
A (typically A is smaller when λ is larger). Trivially, we
can reexpress this as ∆

(k+1)
−A β̂ = 0, or β̂ ∈ null(∆

(k+1)
−A).

Therefore, the basic structure of GTF estimates is revealed
by analyzing the null space of the suboperator ∆

(k+1)
−A .

Lemma 1. Assume without a loss of generality that G is
connected (otherwise the results apply to each connected
component of G). Let D,L be the oriented incidence ma-
trix and Laplacian matrix of G.

For even k, let A ⊆ {1, . . .m}, and let G−A denote the
subgraph induced by removing the edges indexed byA (i.e.,
removing edges e`, ` ∈ A). Let C1, . . . Cs be the connected
components of G−A. Then

null(∆
(k+1)
−A) = span{1}+ (L†)

k
2 span{1C1

, . . .1Cs
},

where 1 = (1, . . . 1) ∈ Rn, and 1C1
, . . .1Cs

∈ Rn are the
indicator vectors over connected components. For odd k,
let A ⊆ {1, . . . n}. Then

null(∆
(k+1)
−A) = span{1}+ {(L†)

k+1
2 v : v−A = 0}.

The proof of Lemma 1 is straightforward and we omit it.
The lemma is useful for a few reasons. First, as motivated
above, it describes the coarse structure of GTF solutions.
When k = 0, we can see (as (L†)

k
2 = I) that β̂ will indeed

be piecewise constant over groups of nodes C1, . . . Cs of
G. When k = 2, 4, . . ., this structure is smoothed by mul-
tiplying such piecewise constant levels by (L†)

k
2 . Mean-

while, for k = 1, 3 . . ., the structure of the GTF estimate is
based on assigning nonzero values to a subset A of nodes,
and smoothing through multiplication by (L†)

k+1
2 . Both

of these smoothing operations, which depend on L†, have

interesting interpretations in terms of to the electrical net-
work perspective for graphs; see the supplement.

Second, Lemma 1 leads to a simple expression for the de-
grees of freedom, i.e., the effective number of parameters,
of the GTF estimate β̂. From results on generalized lasso
problems [27, 28], we have df(β̂) = E[nullity(∆

(k+1)
−A)],

with A denoting the support of ∆(k+1)β̂ (and nullity(M)
the dimension of the null space of a matrix M). Applying
Lemma 1 then gives the following.

Lemma 2. Assume that G is connected. Let β̂ denote the
GTF estimate at a fixed but arbitrary value of λ. Under the
normal error model y ∼ N (β0, σ

2I), the GTF estimate β̂
has degrees of freedom

df(β̂) =

{
E [max {|A|, 1}] odd k
E [no. of connected components of G−A] even k.

Here A = supp(∆(k+1)β̂) denotes the active set of β̂.

As a result of Lemma 2, we can form simple unbiased es-
timate for df(β̂); for k odd, this is max{|A|, 1}, and for k
even, this is the number of connected components of G−A,
where A is the support of ∆(k+1)β̂. When reporting de-
grees of freedom for graph trend filtering (as in the example
in the introduction), we use these unbiased estimates.

2.6 Extensions

The GTF problem in (4) lies in the analysis framework,
wherein the estimate is defined through direct regulariza-
tion via an analyzing operator (penalty term) ‖∆(k+1)β‖1.
A nice feature of this framework is that we can easily alter
or extend the GTF estimator by adding other penalty terms.
For example, by adding a pure `1 penalty on β itself, we ar-
rive at sparse graph trend filtering,

β̂ = argmin
β∈Rn

1

2
‖y−β‖22 +λ1‖∆(k+1)β‖1 +λ2‖β‖1, (8)

with two tuning parameters λ1, λ2 ≥ 0. Under the proper
tuning, the sparse GTF estimate will be zero at many nodes
in the graph, and will otherwise deviate smoothly from
zero. This can be useful in scenarios where the observed
signal represents a difference between two smooth pro-
cesses that are mostly similar, but exhibit (perhaps sig-
nificant) differences over a few regions of the graph. We
give an example of sparse GTF in Section 4. Aside from
this particular extension, many others are possible, e.g., by
changing the loss to suit a classification problem, mixing
graph difference penalties of various orders, or tying to-
gether several denoising tasks with a group penalty.

3 COMPUTATION

Graph trend filtering is defined by a convex optimization
problem (4), and in principle this means that (at least for

Yu-Xiang Wang, James Sharpnack, Alex Smola, Ryan J. Tibshirani

small or moderately sized problems) its solutions can be
reliably computed using a variety of standard algorithms.
In order to handle large-scale problems, we describe two
specialized algorithms that improve on generic procedures
by taking advantage of the structure of ∆(k+1).

3.1 A Fast ADMM Algorithm

We reparametrize (4) by introducing auxiliary variables, so
that we can apply ADMM. For even k, we use a special
transformation that is critical for fast computation (follow-
ing [16] in univariate trend filtering); for odd k, this is not
possible. The reparametrizations for even and odd k are

min
β,z∈Rn

1

2
‖y − β‖22 + λ‖Dz‖1 s.t. z = L

k
2 x,

min
β,z∈Rn

1

2
‖y − β‖22 + λ‖z‖1 s.t. z = L

k+1
2 x,

respectively. Recall D is the oriented incidence matrix and
L is the graph Laplacian. The augmented Lagrangian is

1

2
‖y − β‖22 + λ‖Sz‖1 +

ρ

2
‖z − Lqβ + u‖22 −

ρ

2
‖u‖22,

where S = D or S = I depending on whether k is even
or odd, and likewise q = k/2 or q = (k + 1)/2. ADMM
then proceeds by iteratively minimizing the augmented La-
grangian over β, minimizing over z, and performing a dual
update over u. The β and z updates are of the form

β ← (I + ρL2q)−1b, (9)

z ← argmin
x∈Rn

1

2
‖b− x‖22 +

λ

ρ
‖Sx‖1, (10)

for some b. The linear system in (9) is well-conditioned,
sparse, and can be solved efficiently using the precondi-
tioned conjugate gradient method. This involves only mul-
tiplication with Laplacian matrices. For a small enough ρ
(augmented Lagrangian parameter), the system (9) is diag-
onally dominant, and thus we can solve it in almost linear
time using a special Laplacian/SDD solver [23, 13, 10].

The update in (10) is soft-thresholding when S = I , and
when S = D it is given by graph TV denoising, i.e., the
graph fused lasso. For the graph TV denoising problem, we
rely on a direct solver based on parametric max-flow [6]. In
fact, this algorithm solves (4) directly when k = 0, and is
much faster empirically than its worst case complexity [3].

3.2 A Fast Newton Method

As an alternative to ADMM, the projected Newton method
[2, 1] can be used to solve (4) via its dual problem:

v̂ = argmin
v∈Rr

‖y − (∆(k+1))>v‖22 s.t. ‖v‖∞ ≤ λ.

The solution of (4) is then given via β̂ = y − (∆(k+1))>v̂.
(For univariate trend filtering, [11] adopt a similar strategy,

but instead use an interior point method.) Projected New-
ton method takes update steps using a reduced Hessian, so
abbreviating ∆ = ∆(k+1), each iteration boils down to

v ← a+ (∆>I)†b, (11)

for some a, b and set of indices I . The linear system in
(11) is always sparse, but conditioning becomes an issue
as k grows (note: the same problem does not exist in (9)
because of the addition of the identity matrix I). We have
found empirically that a preconditioned conjugate gradient
method works quite well for (11) for k = 1, but for larger
k it can struggle due to poor conditioning.

3.3 Computation Summary

In our experience with practical experiments, the following
algorithms work best for the various graph trend orders k.

Order Algorithm
k = 0 Parametric max-flow [6]
k = 1 Projected Newton method [2, 1]
k = 2, 4, . . . ADMM with parametric max-flow
k = 3, 5, . . . ADMM with soft-thresholding

Figure 3 demonstrates that the projected Newton method
converges faster than ADMM (superlinear versus at best
linear convergence), so when its updates can be performed
efficiently (k = 1), it is preferred. The figure also shows
that the special ADMM algorithm (with max-flow) con-
verges faster than the naive one (with soft-thresholding),
so when applicable (k = 2), it is preferred. We remark that
orders the k = 0, 1, 2 are of most practical interest, so we
do not often run naive ADMM with soft-thresholding.

GTF with k = 1 GTF with k = 2

0 50 100 150 200 250
10

−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

ADMM residual
ProjNewton duality gap

0 50 100 150 200 250
10

−3

10
−2

10
−1

10
0

10
1

Iterations

Special ADMM residual
Naive ADMM residual

Figure 3: Convergence plots for projected Newton method
and ADMM for solving GTF with k = 1 and k = 2. The
algorithms are all run on a 2d grid graph (an image) with
16,384 nodes and 32,512 edges. For projected Newton, we
plot the duality gap across iterations; for the ADMM rou-
tines, we plot the average of the primal and dual residuals
in the ADMM framework (which also serves as a valid sub-
optimality bound).

Trend Filtering on Graphs

Dense Poisson equation Sparse Poisson equation Inhomogeneous random walk

−30 −25 −20 −15 −10 −5 0 5 10
−35

−30

−25

−20

−15

−10

−5

Noise Level: Negative SnR (in dB)

D
en

oi
se

d
N

eg
at

iv
e

S
nR

 (
in

 d
B

)

Trend filtering k=0
Trend filtering k=1
Trend filtering k=2
Laplacian smoothing
Wavelet smoothing

−30 −25 −20 −15 −10 −5 0 5 10
−45

−40

−35

−30

−25

−20

−15

−10

Noise Level: Negative SnR (in dB)
D

en
oi

se
d

N
eg

at
iv

e
S

nR
 (

in
 d

B
)

Trend filtering k=0
Trend filtering k=1
Trend filtering k=2
Laplacian smoothing
Wavelet smoothing

−30 −25 −20 −15 −10 −5 0 5 10
−35

−30

−25

−20

−15

−10

−5

0

Noise Level: Negative SnR (in dB)

D
en

oi
se

d
N

eg
at

iv
e

S
nR

 (
in

 d
B

)

Trend filtering k=0
Trend filtering k=1
Trend filtering k=2
Laplacian smoothing
Wavelet smoothing

Figure 4: Performance of GTF and others for three generative models on the Facebook graph. The x-axis shows the
negative SnR: 10 log10(nσ2/‖x‖22), where n = 4039, x is the underlying signal, and σ2 is the noise variance. Hence the
noise level is increasing from left to right. The y-axis shows the denoised negative SnR: 10 log10(MSE/‖x‖22), so the
achieved MSE is increasing from bottom to top.

4 EXAMPLES

4.1 Trend Filtering over the Facebook Graph

In the introduction, we examined the denoising power of
graph trend filtering in a spatial setting. Here we examine
the behavior of graph trend filtering on a nonplanar graph:
the Facebook graph from the Stanford Network Analy-
sis Project (http://snap.stanford.edu). This is
composed of 4039 nodes representing Facebook users, and
88,234 edges representing friendships, collected from real
survey participants; the graph has one connected compo-
nent, but the observed degree sequence is very mixed, rang-
ing from 1 to 1045 (see [15] for more details).

We generated synthetic measurements over the Facebook
nodes (users) based on three different ground truth models,
so that we can precisely evaluate and compare the estima-
tion accuracy of GTF, Laplacian smoothing, and wavelet
smoothing. The three ground truth models represent very
different scenarios for the underlying signal x, each one
favorable to different estimation methods. These are:

1. Dense Poisson equation: we solved the Poisson
equation Lx = b for x, where b is arbitrary and dense
(its entries were i.i.d. normal draws).

2. Sparse Poisson equation: we solved the Poisson
equation Lx = b for x, where b is sparse and has 30
nonzero entries (again i.i.d. normal draws).

3. Inhomogeneous random walk: we ran a set of de-
caying random walks at different starter nodes in the
graph, and recorded in x the total number of visits at
each node. Specifically, we chose 10 nodes as starter
nodes, and assigned each starter node a decay prob-
ability uniformly at random between 0 and 1 (this is

the probability that the walk ends at any step instead
of travelling to a neighboring node). At each starter
node, we also sent out a varying number of random
walks, chosen uniformly between 0 and 1000.

In each case, the synthetic measurements were formed by
adding noise to x. We note that model 1 is designed to be
favorable for Laplace smoothing; model 2 is designed to be
favorable for GTF; and in the inhomogeneity in model 3 is
designed to be challenging for Laplacian smoothing, and
favorable for the more adaptive GTF and wavelet methods.

Figure 4 shows the performance of the three estimation
methods, over a wide range of noise levels in the synthetic
measurements; performance here is measured by the best
achieved mean squared error, allowing each method to be
tuned optimally at each noise level. The summary is that
GTF estimates are (expectedly) superior when the struc-
tured sparsity pattern exists (model 2), but are nonetheless
highly competitive in both other settings—the dense case,
in which Laplacian smoothing thrives, and the inhomoge-
neous random walk case, in which wavelets thrive.

4.2 Event Detection with NYC Taxi Trips Data

To illustrate the sparse graph trend filtering variant of our
proposed regularizers, we apply it to the problem of de-
tecting events based on abnormalities in the number of taxi
trips at different locations of New York city. (This data set
was kindly provided by authors of Doraiswamy et al. [7],
who obtained the data from NYC Taxi & Limosine Com-
mission. These authors also considered event detection, but
their topological definition of an “event” is very different
from what we considered here, and hence our results not
directly comparable.) Specifically, we consider the graph

http://snap.stanford.edu

Yu-Xiang Wang, James Sharpnack, Alex Smola, Ryan J. Tibshirani

The true parade route Sparse trend filtering Sparse Laplacian smoothing

Figure 5: Comparison of sparse GTF and sparse Laplacian smoothing. In the plots, yellow corresponds to a zero estimate.
We can see qualitatively that sparse GTF delivers better event detection with fewer false positives (zoomed-in, the sparse
Laplacian plot shows a scattering of many non-yellow colors.

to be the road network of Manhattan, which contains 3874
nodes (junctions) and 7070 edges (sections of roads that
connect two junctions).

For measurements over the nodes, we used the number of
taxi pickups and dropoffs over a particular time period of
interest: 12:00–2:00 pm on June 26, 2011, corresponding
to the Gay Pride parade. As pickups and dropoffs do not
generically occur at road junctions, we used interpolation
to form counts over the graph nodes. A baseline seasonal
average was calculated by considering data from the same
time block 12:00–2:00 pm on the same day of the week
across the nearest eight weeks. The measurements y were
then taken to be the difference between the counts observed
during the Gay Pride parade and the seasonal averages.

Note that the nonzero node estimates from sparse GTF ap-
plied to y, after proper tuning, mark events of interest, be-
cause they convey substantial differences between the ob-
served and expected taxi counts. According to descriptions
in the news, we know that the Gay Pride parade was a giant
march down at noon from 36th St. and Fifth Ave. all the
way to Christopher St. in Greenwich Village, and traffic
was blocked over the entire route for two hours (meaning
no pickups and dropoffs could occur). We therefore hand-
labeled this route as a crude “ground truth” for the event of
interest, illustrated in the left panel of Figure 5.

In the middle and right panels of Figure 5, we compare
sparse GTF (with k = 0) and a sparse variant of Laplacian
smoothing (k = 1), defined by adding an `1 penalty to its
criterion (7), as in (8). For a qualitative visual compari-
son, the smoothing parameter λ1 was chosen so that both

methods have 200 degrees of freedom (without any sparsity
imposed). The sparsity parameter was then set as λ2 = 0.2.
Similar to what we have seen already, GTF is able to better
localize its estimates around strong inhomogenous spikes
in the measurements, and in this setting, is able to better
capture the event of interest.

5 THEORY

In this section we assume that y ∼ N (β0, σ
2I) and derive

asymptotic error guarantees for graph trend filtering. (The
normal model could be relaxed but is used for simplicity.)
Throughout we abbreviate ∆ = ∆(k+1), and denote by r
for the number of rows of ∆ (r = m for k even, and r = n
for k odd). All proofs are deferred to the supplement.

Using arguments in line with the basic inequality for the
lasso [5], we can establish the following bound.
Theorem 3. Assume that null(∆) has constant dimension,
and let B denote the maximum `2 norm of columns of ∆†.
Then for λ = Θ(B

√
log r), the estimate β̂ in (4) satisfies

‖β̂ − β0‖22
n

= OP

(
B
√

log r

n
· ‖∆β0‖1

)
.

When the true signal is bounded under the GTF operator,
‖∆β0‖1 = O(1), the theorem says that the average squared
error of GTF converges at the rateB

√
log r/n, in probabil-

ity. Theorem 3 is quite general, as it applies to trend filter-
ing on any graph; indeed, it covers any generalized lasso
problem, since ∆ is treated as an arbitrary linear operator.
One might therefore think that it cannot yield sharp rates.

Trend Filtering on Graphs

Still, as we show next, it does imply consistency in certain
cases.

Corollary 4. Consider the trend filtering estimate β̂ of or-
der k, with a choice of λ as in Theorem 3. Then:

1. for univariate trend filtering (essentially, GTF on a
chain), ‖β̂ − β0‖22/n = OP(

√
log n/n · nk‖∆β0‖1);

2. for GTF on an Erdos-Renyi random graph, with edge
probability p, and expected degree d = np ≥ 1,
‖β̂ − β0‖22/n = OP(

√
log(nd)/(nd

k+1
2) · ‖∆β0‖1);

3. for GTF on a Ramanujan d-regular graph, and d ≥ 1,
‖β̂ − β0‖22/n = OP(

√
log(nd)/(nd

k+1
2) · ‖∆β0‖1).

The results for cases 2 and 3 of Corollary 4 are based on
the simple bound B ≤ ‖∆†‖2, the largest singular value of
∆†. When ∆ is the (k + 1)st order graph difference op-
erator, it is not hard to see that ‖∆†‖2 ≤ 1/λmin(L)

k+1
2 ,

where λmin(L) is the smallest nonzero eigenvalue of the
Laplacian L (also known as the Fiedler value [8]). In gen-
eral, λmin(L) can be very small, leading to a loose er-
ror bound; but for the particular graphs in question, it is
well-controlled. When ‖∆β0‖1 is bounded, cases 2 and
3 of the corollary show the GTF estimate to be converg-
ing at the rate

√
log(nd)/(nd

k+1
2); surely, as k increases,

this rate grows stronger, but so does the assumption that
‖∆β0‖1 = ‖∆(k+1)β0‖1 is bounded.

The rate for case 1 in Corollary 4, on univariate trend filter-
ing, is based on direct calculation of B using specific facts
about the univariate operator ∆†. In the univariate setting,
it is natural to assume that nk‖∆(k+1)β0‖1 is bounded;
e.g., this happens when β0 contains the evaluations of a
kth order spline function f0 over [0, 1], and TV(f

(k)
0) is

bounded. Under this assumption, the above corollary yields
a convergence rate of

√
log n/n for univariate trend filter-

ing. We note that this rate does not depend on k, and it is
not tight and can be improved to n−(2k+2)/(2k+3) [26]. The
latter rate is optimal for the univariate case, and is proved
using more sophisticated metric entropy arguments [14].
Transferring over such entropy calculations to the general
graph case is a topic for future work.

Even without metric entropy, the bound in Theorem 3 can
be improved by assuming a type of incoherence condition.

Theorem 5. Let ξ1 ≤ . . . ≤ ξn denote the singular values
of ∆, ordered to be increasing, and let ψ1, . . . ψr be the left
singular vectors (recall that r is the number of rows of ∆).
Assume the incoherence condition:

‖ψi‖∞ ≤ µ/
√
n, i = 1, . . . r,

for some µ > 0. Now let i0 ∈ {1, . . . n} with i0 →∞, and
let λ = Θ(µ[log r/n

∑n
i=i0+1 ξ

−2
i]1/2). Then β̂ satisfies

‖β̂ − β0‖22
n

= OP

 i0
n

+
µ

n

√√√√ log r

n

n∑
i=i0+1

1

ξ2i
· ‖∆β0‖1

 .

Again we emphasize that this theorem is general in that it
does not assume a priori that ∆ is a graph difference oper-
ator, and only leverages the properties of ∆ through its sin-
gular value decomposition. Compared to the basic bound
in Theorem 3, the result in Theorem 5 is clearly stronger
because it allows us to replace B—which can grow like
the reciprocal of the minimum nonzero singular value of
∆—with something akin to the average reciprocal of larger
singular values. But it does, of course, also make stronger
assumptions (incoherence of the singular vectors of ∆).

It is interesting to note that the functional in Theorem 5,∑n
i=i0+1 ξ

−2
i , was also determined to play a leading role

in an error bound for a graph Fourier based scan statistic in
the hypothesis testing framework [20].

Graphs that are expected to exhibit the incoherence condi-
tion will be regular in the sense in that neighborhoods of
different vertices look roughly the same. Social networks
are likely to have this property for the bulk of their vertices
(i.e., with the exception of a small number of high degree
nodes). Another particular graph of this type is the regular
torus in 2 dimensions with `× ` vertices. We finish with a
corollary regarding this graph.
Corollary 6. Let G be a regular square ` × ` torus with
n = `2, and let k = 1. Then, with an appropriate choice of
λ as in Theorem 5,

‖β̂ − β0‖22
n

= OP

(
(log n)2/7

n4/7
· ‖∆β0‖1

)
.

6 DISCUSSION

In this work, we proposed graph trend filtering as a useful
alternative to Laplacian and wavelet smoothers on graphs.
This is analogous to the utility of univariate trend filtering
in nonparametric regression, as an alternative to smooth-
ing splines and wavelets [26]. We have documented em-
pirical evidence for the superior local adaptivity of the `1-
based GTF over the `2-based graph Laplacian smoother,
and the superior robustness of GTF over wavelet smoothing
in high-noise scenarios. Our theoretical analysis provides a
basis for a deeper understanding of the estimation proper-
ties of GTF, and it is conjectured that metric entropy argu-
ments will reveal an even sharper characterization for cer-
tain graph models. This and many other extensions, such
as a compressed version of GTF, and a multitask version of
GTF, are well within reach.

Acknowledgments

YW was supported by the Singapore National Research
Foundation under its International Research Centre @ Sin-
gapore Funding Initiative and administered by the IDM
Programme Office. JS was supported by NSF Grant DMS-
1223137. AS was supported by a Google Faculty Research
Grant. RT was supported by NSF Grant DMS-1309174.

Yu-Xiang Wang, James Sharpnack, Alex Smola, Ryan J. Tibshirani

References

[1] A. Barbero and S. Sra. Fast Newton-type methods for
total variation regularization. In Proceedings of the
28th International Conference on Machine Learning
(ICML-11), pages 313–320, 2011.

[2] D. P. Bertsekas. Projected Newton methods for op-
timization problems with simple constraints. SIAM
Journal on control and Optimization, 20(2):221–246,
1982.

[3] Y. Boykov and V. Kolmogorov. An experimental
comparison of min-cut/max-flow algorithms for en-
ergy minimization in vision. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 26(9):1124–1137,
2004.

[4] K. Bredies, K. Kunisch, and T. Pock. Total general-
ized variation. SIAM Journal on Imaging Sciences, 3
(3):492–526, 2010.

[5] P. Buhlmann and S. van de Geer. Statistics for High-
Dimensional Data. Springer, Berlin, 2011.

[6] A. Chambolle and J. Darbon. On total variation mini-
mization and surface evolution using parametric max-
imum flows. International journal of computer vi-
sion, 84(3):288–307, 2009.

[7] H. Doraiswamy, N. Ferreira, T. Damoulas, J. Freire,
and C. Silva. Using topological analysis to support
event-guided exploration in urban data. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
PP(99):1–1, 2014. ISSN 1077-2626. doi: 10.1109/
TVCG.2014.2346449.

[8] M. Fiedler. Algebraic connectivity of graphs.
Czechoslovak Math. J., 23(98):298–305, 1973.

[9] H. Hoefling. A path algorithm for the fused lasso
signal approximator. Journal of Computational and
Graphical Statistics, 19(4):984–1006, 2010.

[10] J. Kelner, L. Orecchia, A. Sidford, and Z. Zhu. A
simple, combinatorial algorithm for solving sdd sys-
tems in nearly-linear time. In Symposium on theory
of computing. ACM, 2013.

[11] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky. `1
trend filtering. SIAM Review, 51(2):339–360, 2009.

[12] R. Kondor and J. D. Lafferty. Diffusion kernels on
graphs and other discrete structures. In Proc. Intl.
Conf. Machine Learning, pages 315–322, San Fran-
cisco, CA, 2002. Morgan Kaufmann.

[13] I. Koutis, G. L. Miller, and R. Peng. A nearly-m log
n time solver for sdd linear systems. In Foundations
of Computer Science (FOCS), pages 590–598. IEEE,
2011.

[14] E. Mammen and S. van de Geer. Locally apadtive
regression splines. Annals of Statistics, 25(1):387–
413, 1997.

[15] J. McAuley and J. Leskovec. Learning to discover
social circles in ego networks. Advances in Neural
Information Processing Systems, 25, 2012.

[16] A. Ramdas and R. J. Tibshirani. Fast and flex-

ible admm algorithms for trend filtering. arXiv:
1406.2082, 2014.

[17] L. I. Rudin, S. Osher, and E. Faterni. Nonlinear total
variation based noise removal algorithms. Physica D:
Nonlinear Phenomena, 60:259–268, 1992.

[18] S. Setzer, G. Steidl, and T. Teuber. Infimal convolu-
tion regularizations with discrete l1-type functionals.
Comm. Math. Sci, 9(3):797–872, 2011.

[19] J. Sharpnack, A. Rinaldo, and A. Singh. Sparsistency
via the edge lasso. International Conference on Arti-
ficial Intelligence and Statistics, 15, 2012.

[20] J. Sharpnack, A. Rinaldo, and A. Singh. Changepoint
detection over graphs with the spectral scan statistic.
arXiv preprint arXiv:1206.0773, 2012.

[21] J. Sharpnack, A. Krishnamurthy, and A. Singh. De-
tecting activations over graphs using spanning tree
wavelet bases. International Conference on Artifical
Intelligence and Statistics, 16, 2013.

[22] A. J. Smola and R. Kondor. Kernels and regular-
ization on graphs. In Conf. Computational Learning
Theory, pages 144–158, 2003.

[23] D. A. Spielman and S.-H. Teng. Nearly-linear time al-
gorithms for preconditioning and solving symmetric,
diagonally dominant linear systems. arXiv preprint
cs/0607105, 2006.

[24] G. Steidl, S. Didas, and J. Neumann. Splines in
higher order TV regularization. International Jour-
nal of Computer Vision, 70(3):214–255, 2006.

[25] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and
K. Knight. Sparsity and smoothness via the fused
lasso. Journal of the Royal Statistical Society: Series
B, 67(1):91–108, 2005.

[26] R. J. Tibshirani. Adaptive piecewise polynomial esti-
mation via trend filtering. Annals of Statistics, 42(1):
285–323, 2014.

[27] R. J. Tibshirani and J. Taylor. The solution path of the
generalized lasso. Annals of Statistics, 39(3):1335–
1371, 2011.

[28] R. J. Tibshirani and J. Taylor. Degrees of freedom
in lasso problems. Annals of Statistics, 40(2):1198–
1232, 2012.

[29] Y.-X. Wang, A. Smola, and R. J. Tibshirani. The
falling factorial basis and its statistical properties.
International Conference on Machine Learning, 31,
2014.

	INTRODUCTION
	TREND FILTERING ON GRAPHS
	Review: Univariate Trend Filtering
	Trend Filtering over Graphs
	1 versus 2 Regularization
	Related Work
	Basic Structure and Degrees of Freedom
	Extensions

	COMPUTATION
	A Fast ADMM Algorithm
	A Fast Newton Method
	Computation Summary

	EXAMPLES
	Trend Filtering over the Facebook Graph
	Event Detection with NYC Taxi Trips Data

	THEORY
	DISCUSSION

