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Abstract

We study the statistical properties of the it-
erates generated by gradient descent, applied
to the fundamental problem of least squares
regression. We take a continuous-time view,
i.e., consider infinitesimal step sizes in gradi-
ent descent, in which case the iterates form a
trajectory called gradient flow. Our primary
focus is to compare the risk of gradient flow
to that of ridge regression. Under the calibra-
tion t = 1/λ—where t is the time parameter
in gradient flow, and λ the tuning parameter
in ridge regression—we prove that the risk of
gradient flow is no more than 1.69 times that
of ridge, along the entire path (for all t ≥ 0).
This holds in finite samples with very weak
assumptions on the data model (in particular,
with no assumptions on the features X). We
prove that the same relative risk bound holds
for prediction risk, in an average sense over
the underlying signal β0. Finally, we exam-
ine limiting risk expressions (under standard
Marchenko-Pastur asymptotics), and give sup-
porting numerical experiments.

1 INTRODUCTION

Given the sizes of modern data sets, there is a grow-
ing preference towards simple estimators that have a
small computational footprint and are easy to imple-
ment. Additionally, beyond efficiency and tractability
considerations, there is mounting evidence that many
simple and popular estimation methods perform a kind
of implicit regularization, meaning that they appear to
produce estimates exhibiting a kind of regularity, even
though they do not employ an explicit regularizer.

Research interest in implicit regularization is growing,
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but the foundations of the idea date back at least 30
years in machine learning, where early-stopped gradi-
ent descent was found to be effective in training neural
networks (Morgan and Bourlard, 1989), and at least
40 years in applied mathematics, where the same idea
(here known as early-stopped Landweber iterations)
was found ill-posed linear inverse problems (Strand,
1974). After a wave of research on boosting with early
stopping (Buhlmann and Yu, 2003; Rosset et al., 2004;
Zhang and Yu, 2005; Yao et al., 2007), more recent
work focuses on the regularity properties of particular
algorithms for underdetermined problems in matrix
factorization, regression, and classification (Gunasekar
et al., 2017; Wilson et al., 2017; Gunasekar et al., 2018).
More broadly, algorithmic regularization plays a key
role in training deep neural networks, via batch nor-
malization, dropout, and other techniques.

In this paper, we focus on early stopping in gradient
descent, when applied specifically to least squares re-
gression. This is a basic problem and we are of course
not the only authors to consider it; there is now a
large literature on this topic (see references above, and
more to come when we discuss related work shortly).
However, our perspective differs from existing work in
a few important ways: first, we study gradient descent
in continuous-time (i.e., with infinitesimal step sizes),
leading to a path of iterates known as gradient flow;
second, we examine the regularity properties along the
entire path, not just its convergence point (as is the
focus in most of the work on implicit regularization);
and third, we focus on analyzing and comparing the
risk of gradient flow directly, which is arguably what
we care about the most, in many applications.

A strength of the continuous-time perspective is that it
facilitates the comparison between early stopping and
`2 regularization. While the connection between these
two mechanisms has been studied by many authors
(and from many angles), our paper provides some of
the strongest evidence for this connection to date.

Summary of Contributions. Our contributions in
this paper are as follows.

• We prove that, in finite samples, under very weak
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assumptions on the data model (and with no as-
sumptions on the feature matrix X), the estima-
tion risk of gradient flow at time t is no more than
1.69 that of ridge regression at tuning parameter
λ = 1/t, for all t ≥ 0.

• We show that the same result holds for in-sample
prediction risk.

• We show that the same result is also true for out-
of-sample prediction risk, but now in an average
(Bayes) sense, with respect to a spherical prior on
the underlying signal β0.

• For Bayes risk, under optimal tuning, our results
on estimation, in-sample prediction, and out-of-
sample prediction risks can all be tightened. We
prove that the relative risk (measured in any of
these three ways) of optimally-tuned gradient flow
to optimally-tuned ridge is in between 1 and 1.22.

• We derive exact limiting formulae for the risk of
gradient flow, in a Marchenko-Pastur asymptotic
model where p/n (the ratio of the feature dimen-
sion to sample size) converges to a positive con-
stant. We compare these to known limiting formu-
lae for ridge regression.

• We support our theoretical results with numeri-
cal simulations that show the coupling between
gradient flow and ridge can be extremely tight in
practice (even tighter than suggested by theory).

Related Work. Various authors have made connec-
tions between `2 regularization and the iterates gener-
ated by gradient descent (when applied to different loss
functions of interest): Friedman and Popescu (2004)
were among the first make this explicit, and gave sup-
porting numerical experiments, followed by Ramsay
(2005), who adopted a continuous-time (gradient flow)
view, as we do. Yao et al. (2007) point out that early
stopped gradient descent is a spectral filter, just like `2
regularization. Subsequent work in nonparametric data
models (specifically, reproducing kernel Hilbert space
models), studied early-stopped gradient descent from
the perspective of risk bounds, where it is shown to
perform comparably to explicit `2 regularization, when
each method is optimally tuned (Bauer et al., 2007;
Lo Gerfo et al., 2008; Raskutti et al., 2014; Wei et al.,
2017). Other works have focused on the bias-variance
trade-off in early-stopped gradient boosting (Buhlmann
and Yu, 2003; Zhang and Yu, 2005).

After completing this work, we became aware of the
interesting recent paper by Suggala et al. (2018), who
gave deterministic bounds between gradient flow and
ridge regularized estimates, for problems in which the
loss function is strongly convex. Their results are very

different from ours: they apply to a much wider variety
of problem settings (not just least squares problems),
and are driven entirely by properties associated with
strong convexity; our analysis, specific to least squares
regression, is much more precise, and covers the im-
portant high-dimensional case (in which the strong
convexity assumption is violated).

There is also a lot of related work on theory for ridge re-
gression. Recently, Dobriban and Wager (2018) studied
ridge regression (and regularized discriminant analysis)
in a Marchenko-Pastur asymptotics model, deriving
limiting risk expressions, and the precise form of the
limiting optimal tuning parameter. Dicker (2016) gave
a similar asymptotic analysis for ridge, but under a
somewhat different problem setup. Hsu et al. (2012) es-
tablished finite-sample concentration bounds for ridge
risk. Low-dimensional theory for ridge dates back much
further, see Goldenshluger and Tsybakov (2001) and
others. Lastly, we point out an interesting risk infla-
tion result in that is vaguely related to ours: Dhillon
et al. (2013) showed that risk of principal components
regression is at most four times that of ridge, under a
natural calibration between these two estimator paths
(coupling the eigenvalue threshold for the sample co-
variance matrix with the ridge tuning parameter).

Outline. Here is an outline for the rest of the paper.
Section 2 covers preliminary material, on the problem
and estimators to be considered. Section 3 gives basic
results on gradient flow, and its relationship to ridge
regression. Section 4 derives expressions for the esti-
mation risk and prediction risk of gradient flow and
ridge. Section 5 presents our main results on relative
risk bounds (of gradient flow to ridge). Section 6 stud-
ies the limiting risk of gradient flow under standard
Marchenko-Pastur asymptotics. Section 7 presents nu-
merical examples that support our theoretical results,
and Section 8 concludes with a short discussion.

2 PRELIMINARIES

2.1 Least Squares, Gradient Flow, and Ridge

Let y ∈ Rn and X ∈ Rn×p be a response vector and a
matrix of predictors or features, respectively. Consider
the standard (linear) least squares problem

minimize
β∈Rp

1

2n
‖y −Xβ‖22. (1)

Consider gradient descent applied to (1), with a con-
stant step size ε > 0, and initialized at β(0) = 0, which
repeats the iterations

β(k) = β(k−1) + ε · X
T

n
(y −Xβ(k−1)), (2)
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for k = 1, 2, 3, . . .. Letting ε→ 0, we get a continuous-
time ordinary differential equation

β̇(t) =
XT

n
(y −Xβ(t)), (3)

over time t ≥ 0, subject to an initial condition β(0) = 0.
We call (3) the gradient flow differential equation for
the least squares problem (1).

To see the connection between (2) and (3), we simply
rearrange (2) to find that

β(k) − β(k−1)

ε
=
XT

n
(y −Xβ(k−1)),

and setting β(t) = β(k) at time t = kε, we recognize
the left-hand side above as the discrete derivative of
β(t) at time t, which approaches its continuous-time
derivative as ε→ 0.

In fact, starting from the differential equation (3), we
can view gradient descent (2) as one of the most ba-
sic numerical analysis techniques—the forward Euler
method—for discretely approximating the solution (3).

Now consider the `2 regularized version of (1), called
ridge regression (Hoerl and Kennard, 1976):

minimize
β∈Rp

1

n
‖y −Xβ‖22 + λ‖β‖22, (4)

where λ > 0 is a tuning parameter. The explicit ridge
solution is

β̂ridge(λ) = (XTX + nλI)−1XT y. (5)

Though apparently unrelated, the ridge regression so-
lution path and gradient flow path share striking simi-
larities, and their relationship is our central focus.

2.2 The Exact Gradient Flow Solution Path

Thanks to our focus on least squares, the gradient flow
differential equation in (3) is a rather special one: it is
a continuous-time linear dynamical system, and has a
well-known exact solution.

Lemma 1. Fix a response y and predictor matrix X.
Then the gradient flow problem (3), subject to β(0) = 0,
admits the exact solution

β̂gf(t) = (XTX)+(I − exp(−tXTX/n))XT y, (6)

for all t ≥ 0. Here A+ is the Moore-Penrose generalized
inverse of a matrix A, and exp(A) = I +A+A2/2! +
A3/3! + · · · is the matrix exponential.

Proof. This can be verified by differentiating (6) and
using basic properties of the matrix exponential.

In continuous-time, early stopping corresponds to tak-
ing the estimator β̂gf(t) in (6) for any finite value of
t ≥ 0, with smaller t leading to greater regularization.
We can already see that (6), like (5), applies a type of
shrinkage to the least squares solution; their similari-
ties will become more evident when we express both in
spectral form, as we will do shortly in Section 3.1.

2.3 Discretization Error

In what follows, we will focus on (continuous-time) gra-
dient flow rather than (discrete-time) gradient descent.
Standard results from numerical analysis give uniform
bounds between discretizations like the forward Euler
method (gradient descent) and the differential equation
path (gradient flow). In particular, the next result is a
direct application of Theorem 212A in Butcher (2016).

Lemma 2. For least squares, consider gradient descent
(2) initialized at β(0) = 0, and gradient flow (6), subject
to β(0) = 0. For any step size ε < 1/smax where smax

is the largest eigenvalue of XTX/n, and any K ≥ 1,

max
k=1,...,K

‖β(k)−β̂gf(kε)‖2 ≤
ε‖XT y‖2

2n
(exp(Kεsmax)−1).

The results to come can therefore be translated to the
discrete-time setting, by taking a small enough ε and
invoking Lemma 2, but we omit details for brevity.

3 BASIC COMPARISONS

3.1 Spectral Shrinkage Comparison

To compare the ridge (5) and gradient flow (6) paths,
it helps to rewrite them in terms of the singular value
decomposition of X. Let X =

√
nUS1/2V T be a singu-

lar value decomposition, so that XTX/n = V SV T is
an eigendecomposition. Then straightforward algebra
brings (5), (6), on the scale of fitted values, to

Xβ̂ridge(λ) = US(S + λI)−1UT y, (7)

Xβ̂gf(t) = U(I − exp(−tS))UT y. (8)

Letting si, i = 1, . . . , p denote the diagonal entries of
S, and ui ∈ Rn, i = 1, . . . , p denote the columns of U ,
we see that (7), (8) are both linear smoothers (linear
functions of y) of the form

p∑
i=1

g(si, κ) · uiuTi y,

for a spectral shrinkage map g(·, κ) : [0,∞) → [0,∞)
and parameter κ. This map is gridge(s, λ) = s/(s+ λ)
for ridge, and ggf(s, t) = 1− exp(−ts) for gradient flow.
We see both apply more shrinkage for smaller values
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of s, i.e., lower-variance directions of XTX/n, but do
so in apparently different ways.

While these shrinkage maps agree at the extreme ends
(i.e., set λ = 0 and t = ∞, or set λ = ∞ and t = 0),
there is no single parametrization for λ as a function
of t, say φ(t), that equates gridge(·, φ(t)) with ggf(·, t),
for all t ≥ 0. But the parametrization φ(t) = 1/t gives
the two shrinkage maps grossly similar behaviors: see
Figure 1 for a visualization. Moreover, as we will show
later in Sections 5–7, the two shrinkage maps (under
the calibration φ(t) = 1/t) lead to similar risk curves
for ridge and gradient flow.
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Figure 1: Comparison of ridge and gradient flow spectral
shrinkage maps, plotted as heatmaps over (s, λ) (ridge) and
(s, t) (gradient flow) with the calibration λ = 1/t.

3.2 Underlying Regularization Problems

Given our general interest in the connections between
gradient descent and ridge regression, it is natural to
wonder if gradient descent iterates can also be expressed
as solutions to a sequence of regularized least squares
problems. The following two simple lemmas certify that
this is in fact the case, in both discrete- and continuous-

time; their proofs may be found in the supplement.

Lemma 3. Fix y,X, and let XTX/n = V SV T be an
eigendecomposition. Assume that we initialize β(0) = 0,
and we take the step size in gradient descent to satisfy
ε < 1/smax, with smax denoting the largest eigenvalue
of XTX/n. Then, for each k = 1, 2, 3, . . ., the iterate
β(k) from step k in gradient descent (2) uniquely solves
the optimization problem

minimize
β∈Rp

1

n
‖y −Xβ‖22 + βTQkβ,

where Qk = V S((I − εS)−k − I)−1V T .

Lemma 4. Fix y,X, and let XTX/n = V SV T be an
eigendecomposition. Under the initial condition β(0) =
0, for all t > 0, the solution β(t) of the gradient flow
problem (3) uniquely solves the optimization problem

minimize
β∈Rp

1

n
‖y −Xβ‖22 + βTQtβ,

where Qt = V S(exp(tS)− I)−1V T .

Remark 1. The optimization problems that underlie
gradient descent and gradient flow, in Lemmas 3 and
4, respectively, are both quadratically regularized least
squares problems. In agreement with the intuition from
the last subsection, we see that in both problems the
regularizers penalize the lower-variance directions of
XTX/n more strongly, and this is relaxed as t or k grow.
The proof of the continuous-time is nearly immediate
from (8); the proof of the discrete-time result requires a
bit more work. To see the link between the two results,
set t = kε, and note that as k →∞:

((1− ts/k)−k − 1)−1 → (exp(ts)− 1)−1.

4 MEASURES OF RISK

4.1 Estimation Risk

We take the feature matrix X ∈ Rn×p to be fixed and
arbitrary, and consider a generic response model,

y|β0 ∼ (Xβ0, σ
2I), (9)

which we write to mean E(y|β0) = Xβ0, Cov(y|β0) =
σ2I, for an underlying coefficient vector β0 ∈ Rp and
error variance σ2 > 0. We consider a spherical prior,

β0 ∼ (0, (r2/p)I) (10)

for some signal strength r2 = E‖β0‖22 > 0.

For an estimator β̂ (i.e., measurable function of X, y),
we define its estimation risk (or simply, risk) as

Risk(β̂;β0) = E
[
‖β̂ − β0‖22

∣∣β0

]
.
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We also define its Bayes risk as Risk(β̂) = E‖β̂ − β0‖22.

Next we give expressions for the risk and Bayes risk of
gradient flow; the derivations are straightforward and
found in the supplement. We denote by si, i = 1, . . . , p
and vi, i = 1, . . . , p the eigenvalues and eigenvectors,
respectively, of XTX/n.

Lemma 5. Under the data model (9), for any t ≥ 0,
the risk of the gradient flow estimator (6) is

Risk(β̂gf(t);β0) =
p∑
i=1

(
|vTi β0|2 exp(−2tsi) +

σ2

n

(1− exp(−tsi))2

si

)
,

(11)

and under the prior (10), the Bayes risk is

Risk(β̂gf(t)) =

σ2

n

p∑
i=1

(
α exp(−2tsi) +

(1− exp(−tsi))2

si

)
, (12)

where α = r2n/(σ2p). Here and henceforth, we take by
convention (1− e−x)2/x = 0 when x = 0.

Remark 2. Compare (11) to the risk of ridge regres-
sion,

Risk(β̂ridge(λ);β0) =
p∑
i=1

(
|vTi β0|2

λ2

(si + λ)2
+
σ2

n

si
(si + λ)2

)
. (13)

and compare (12) to the Bayes risk of ridge,

Risk(β̂ridge(λ)) =
σ2

n

p∑
i=1

αλ2 + si
(si + λ)2

, (14)

where α = r2n/(σ2p). These ridge results follow from
standard calculations, found in many other papers; for
completeness, we give details in the supplement.

Remark 3. For ridge regression, the Bayes risk (14) is
minimized at λ∗ = 1/α. There are (at least) two easy
proofs of this fact. For the first, we note the Bayes risk
of ridge does not depend on the distributions of y|β0

and β0 in (9) and (10) (just on the first two moments);
in the special case that both distributions are normal,
we know that β̂ridge(λ∗) is the Bayes estimator, which
achieves the optimal Bayes risk (hence certainly the
lowest Bayes risk over the whole ridge family). For the
second proof, following Dicker (2016), we rewrite each
summand in (14) as

αλ2 + si
(si + λ)2

=
α

αsi + 1
+

s(λα− 1)2

(si + λ)2(αsi + 1)
,

and observe that this is clearly minimized at λ∗ = 1/α.

Remark 4. As far as we can tell, deriving the tuning
parameter value t∗ minimizing the gradient flow Bayes
risk (12) is difficult. Nevertheless, as we will show in
Section 5.3, we can still obtain interesting bounds on
the optimal risk itself, Risk(β̂gf(t∗)).

4.2 Prediction Risk

We now define two predictive notions of risk. Let

x0 ∼ (0,Σ) (15)

for a positive semidefinite matrix Σ ∈ Rp×p, and as-
sume x0 is independent of y|β0. We define in-sample
prediction risk and out-of-sample prediction risk (or
simply, prediction risk) as, respectively,

Riskin(β̂;β0) =
1

n
E
[
‖Xβ̂ −Xβ0‖22

∣∣β0

]
,

Riskout(β̂;β0) = E
[
(xT0 β̂ − xT0 β0)2

∣∣β0

]
,

and their Bayes versions as, respectively, Riskin(β̂) =
(1/n)E‖Xβ̂ −Xβ0‖22, Riskout(β̂) = E[(xT0 β̂ − xT0 β0)2].

For space reasons, in the remainder, we will focus on
out-of-sample prediction risk, and defer detailed dis-
cussion of in-sample prediction risk to the supplement.
The next lemma, proved in the supplement, gives ex-
pressions for the prediction risk and Bayes prediction
risk of gradient flow. We denote Σ̂ = XTX/n.

Lemma 6. Under (9), (15), the prediction risk of the
gradient flow estimator (6) is

Riskout(β̂gf(t);β0) = βT0 exp(−tΣ̂)Σ exp(−tΣ̂)β0 +

σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ

]
, (16)

and under (10), the Bayes prediction risk is

Riskout(β̂gf(t)) =
σ2

n
tr
[
α exp(−2tΣ̂)Σ +

Σ̂+(I − exp(−tΣ̂))2Σ
]
. (17)

Remark 5. Compare (16) and (17) to the prediction
risk and Bayes prediction risk of ridge, respectively,

Riskout(β̂ridge(λ);β0) =

λ2βT0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0 +

σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ

]
, (18)

Riskout(β̂ridge(λ)) =
σ2

n
tr
[
λ2α(Σ̂ + λI)−2Σ +

Σ̂(Σ̂ + λI)−2Σ
]
. (19)

These ridge results are standard, and details are given
in the supplement.
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Remark 6. The Bayes prediction risk of ridge (19) is
again minimized at λ∗ = 1/α. This is not at all clear
analytically, but it can be established by specializing to
a normal-normal likelihood-prior pair, where (for fixed
x0) we know that xT0 β̂

ridge(λ∗) is the Bayes estimator
for the parameter xT0 β0 (similar to the arguments in
Remark 3 for the Bayes estimation risk).

5 RELATIVE RISK BOUNDS

5.1 Relative Estimation Risk

We start with a simple but key lemma.

Lemma 7. For all x ≥ 0, we have (a) e−x ≤ 1/(1+x)
and (b) 1− e−x ≤ 1.2985x/(1 + x).

Proof. Fact (a) can by shown via Taylor series and (b)
by numerically maximizing x 7→ (1−e−x)(1+x)/x.

A bound on the relative risk of gradient flow to ridge,
under the calibration λ = 1/t, follows immediately.

Theorem 1. Consider the data model (9).

(a) For all β0 ∈ Rp, and all t ≥ 0, Risk(β̂gf(t);β0) ≤
1.6862 · Risk(β̂ridge(1/t);β0).

(b) The inequality in part (a) holds for the Bayes risk
with respect to any prior on β0.

(c) The results in parts (a), (b) also hold for in-sample
prediction risk.

Proof. For part (a), set λ = 1/t and compare the ith
summand in (11), call it ai, to that in (13), call it bi.
Then

ai = |vTi β0|2 exp(−2tsi) +
σ2

n

(1− exp(−tsi))2

si

≤ |vTi β0|2
1

(1 + tsi)2
+
σ2

n
1.29852 t2si

(1 + tsi)2

≤ 1.6862

(
|vTi β0|2

(1/t)2

(1/t+ si)2
+
σ2

n

si
(1/t+ si)2

)
= 1.6862 bi,

where in the second line, we used Lemma 7. Summing
over i = 1, . . . , p gives the desired result.

Part (b) follows by taking an expectation on each side
of the inequality in part (a). Part (c) follows similarly,
with details given in the supplement.

Remark 7. For any t > 0, gradient flow is in fact a
unique Bayes estimator, corresponding to a normal like-
lihood in (9) and normal prior β0 ∼ N(0, (σ2/n)Q−1

t ),
where Qt is as in Lemma 4. It is therefore admissible.
This means the result in part (a) in the theorem (and
part (b), for the same reason) cannot be true for any
universal constant strictly less than 1.

5.2 Relative Prediction Risk

We extend the two simple inequalities in Lemma 7 to
matrix exponentials. We use � to denote the Loewner
ordering on positive semidefinite matrices, i.e., we use
A � B to mean that B −A is positive semidefinite.

Lemma 8. For all X � 0, we have (a) exp(−2X) �
(I +X)−2 and (b) X+(I − exp(−X))2 � 1.6862X(I +
X)−2.

Proof. All matrices in question are simultaneously di-
agonalizable, so the claims reduce to ones about eigen-
values, i.e., reduce to checking that e−2x ≤ 1/(1 + x)2

and (1− e−x)2/x ≤ 1.6862x/(1 + x)2, for x ≥ 0, and
these follow by manipulating the facts in Lemma 7.

With just a bit more work, we can bound the relative
Bayes prediction risk of gradient flow to ridge, again
under the calibration λ = 1/t.

Theorem 2. Consider the data model (9), prior (10),
and (out-of-sample) feature distribution (15). For all
t ≥ 0, Riskout(β̂gf(t)) ≤ 1.6862 · Riskout(β̂ridge(1/t)).

Proof. Consider the matrices inside the traces in (17)
and (19). Applying Lemma 8, we have

α exp(−2tΣ̂) + Σ̂+(I − exp(−tΣ̂))2

� α(I + tΣ̂)−2 + 1.6862 t2Σ̂(I + tΣ̂)−2

� 1.6862
(
α(1/t)2(I/t+ Σ̂)−2 + Σ̂(I/t+ Σ̂)−2

)
.

Let A,B be the matrices on the first and last lines in
the above display, respectively. As A � B and Σ � 0,
we have tr(AΣ) ≤ tr(BΣ), completing the proof.

Remark 8. The Bayes perspective here is critical; the
proof breaks down for prediction risk, at an arbitrary
fixed β0, and it is not clear to us whether the result is
true for prediction risk in general.

5.3 Relative Risks at Optima

We present one more helpful inequality, and defer its
proof to the supplement (it is more technical than the
proofs of Lemmas 7 and 8, but still straightforward).

Lemma 9. For all X � 0, it holds that exp(−2X) +
X+(I − exp(−X))2 � 1.2147 (I +X)−1.

We now have the following result, on the relative Bayes
risk (and Bayes prediction risk), of gradient descent to
ridge regression, when both are optimally tuned.

Theorem 3. Consider the data model (9), prior (10),
and (out-of-sample) feature distribution (15).

(a) It holds that

1 ≤ inft≥0 Risk(β̂gf(t))

infλ≥0 Risk(β̂ridge(λ))
≤ 1.2147.
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(b) The same result as in part (a) holds for both in-
sample and out-of-sample prediction risk.

Proof. For part (a), recall from Remark 3 that the
optimal ridge tuning parameter is λ∗ = 1/α and further,
in the special case of a normal-normal likelihood-prior
pair, we know that β̂ridge(λ∗) is the Bayes estimator so
the Bayes risk of β̂gf(t), for any t ≥ 0, must be at least
that of β̂ridge(λ∗). But because these Bayes risks (12),
(14) do not depend on the form of likelihood and prior
(only on their first two moments), we know that the
same must be true in general, which proves the lower
bound on the risk ratio. For the upper bound, we take
t = α, and compare the ith summand in (12), call it
ai, to that in (14), call it bi. We have

ai = α exp(−2αsi) +
(1− exp(−αsi))2

si

≤ 1.2147
α

1 + αsi
= 1.2147 bi,

where in the second line, we applied Lemma 9 (to the
case of scalar X). Summing over i = 1, . . . , p gives the
desired result.

Parts (b) follows similarly, with details in the supple-
ment.

6 ASYMPTOTIC RISK ANALYSIS

6.1 Marchenko-Pastur Asymptotics

Notice the Bayes risk for gradient flow (12) and ridge
regression (14) depend only on the predictor matrix
X via the eigenvalues of the (uncentered) sample co-
variance Σ̂ = XTX/n. Random matrix theory gives
us a precise understanding of the behavior of these
eigenvalues, in large samples. The following assump-
tions are standard ones in random matrix theory (e.g.,
Bai and Silverstein 2010). Given a symmetric ma-
trix A ∈ Rp×p, recall that its spectral distribution
is defined as FA(x) = (1/p)

∑p
i=1 1(λi(A) ≤ x), where

λi(A), i = 1, . . . , p are the eigenvalues of A, and 1(·)
denotes the 0-1 indicator function.

Assumption A1. The predictor matrix satisfies X =
ZΣ1/2, for a random matrix Z ∈ Rn×p of i.i.d. entries
with zero mean and unit variance, and a deterministic
positive semidefinite covariance Σ ∈ Rp×p.
Assumption A2. The sample size n and dimension
p both diverge, i.e., n, p→∞, with p/n→ γ ∈ (0,∞).

Assumption A3. The spectral measure FΣ of the
predictor covariance Σ converges weakly as n, p→∞
to some limiting spectral measure H.

Under the above assumptions, the seminal Marchenko-
Pastur theorem describes the weak limit of the spectral
measure FΣ̂ of the sample covariance Σ̂.

Theorem 4 (Marchenko and Pastur 1967; Silverstein
1995; Bai and Silverstein 2010). Assuming A1–A3, al-
most surely, the spectral measure FΣ̂ of Σ̂ converges
weakly to a law FH,γ , called the empirical spectral dis-
tribution, that depends only on H, γ.

Remark 9. In general, a closed form for the empirical
spectral distribution FH,γ is not known, except in very
special cases (e.g., when Σ = I for all n, p). However,
numerical methods for approximating FH,γ have been
proposed (see Dobriban 2015 and references therein).

6.2 Limiting Gradient Flow Risk

The limiting Bayes risk of gradient flow is now imme-
diate from the representation in (12).

Theorem 5. Assume A1–A3, as well as a data model
(9) and prior (10). Then as n, p→∞ with p/n→ γ ∈
(0,∞), for each t ≥ 0, the Bayes risk (12) of gradient
flow converges almost surely to

σ2γ

∫ [
α0 exp(−2ts) +

(1− exp(−ts))2

s

]
dFH,γ(s),

(20)
where α0 = r2/(σ2γ), and FH,γ is the empirical spectral
distribution from Theorem 4.

Proof. Note that we can rewrite the Bayes risk in (12)
as (σ2p)/n[

∫
αh1(s) dFΣ̂(s) +

∫
h2(s) dFΣ̂(s)], where

we let h1(s) = exp(−2ts), h2(s) = (1 − exp(−ts))2/s.
Weak convergence of FΣ̂ to FH,γ , from Theorem 4, im-
plies

∫
h(s) dFΣ̂(s)→

∫
h(s) dFH,γ(s) for all bounded,

continuous functions h, which proves the result.

A similar result is available for the limiting Bayes in-
sample prediction risk, given in the supplement. Study-
ing the the limiting Bayes (out-of-sample) prediction
risk is much more challenging, as (17) is not simply
a function of eigenvalues of Σ̂. The proof of the next
result, deferred to the supplement, relies on a key fact
on the Laplace transform of the map x 7→ exp(xA),
and the asymptotic limit of a certain trace functional
involving Σ̂,Σ, from Ledoit and Peche (2011).

Theorem 6. Under the conditions of Theorem 5, also
assume E(Z12

ij ) ≤ C1, ‖Σ‖2 ≤ C2, for all n, p and con-
stants C1, C2 > 0. For each t ≥ 0, the Bayes prediction
risk (17) of gradient flow converges almost surely to

σ2γ

[
α0f(2t) + 2

∫ t

0

(f(u)− f(2u)) du

]
, (21)

where f is the inverse Laplace transform of the function

x 7→ 1

γ

(
1

1− γ + γxm(FH,γ)(−x)
− 1

)
,

and m(FH,γ) is the Stieltjes transform of FH,γ (defined
precisely in the supplement).
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An interesting feature of the results (20), (21) is that
they are asymptotically exact (no hidden constants).
Analogous results for ridge (by direct arguments, and
Dobriban and Wager 2018, respectively) are compared
in the supplement, for space reasons.

7 NUMERICAL EXAMPLES

We give numerical evidence for our theoretical results:
both our relative risk bounds in Section 5, and our
asymptotic risk expressions in Section 6. We generated
features via X = Σ1/2Z, for a matrix Z with i.i.d.
entries from a distribution G (with mean zero and unit
variance), for three choices of G: standard Gaussian,
Student t with 3 degrees of freedom, and Bernoulli
with probability 0.5 (the last two distributions were
standardized). We took Σ to have all diagonal entries
equal to 1 and all off-diagonals equal to ρ = 0 (i.e.,
Σ = I), or ρ = 0.5. For the problem dimensions, we
considered n = 1000, p = 500 and n = 500, p = 1000.
For both gradient flow and ridge, we used a range of
200 tuning parameters equally spaced on the log scale
from 2−10 to 210. Lastly, we set σ2 = r2 = 1, where σ2

is the noise variance in (9) and r2 is the prior radius in
(10). For each configuration of G,Σ, n, p, we computed
the Bayes risk and Bayes prediction risk gradient flow
and ridge, as in (12), (14), (17), (19). For Σ = I, the
empirical spectral distribution from Theorem 4 has a
closed form, and so we computed the limiting Bayes
risk for gradient flow (20) via numerical integration
(and similarly for ridge, details in the supplement).

Figure 2 shows the results for Gaussian features, Σ = I,
n = 500, and p = 1000; the supplement shows results
for all other cases (the results are grossly similar). The
top plot shows the risk curves when calibrated accord-
ing to λ = 1/t (as per our theory). Here we see fairly
strong agreement between the two risk curves, espe-
cially around their minimums; the maximum ratio of
gradient flow to ridge risks is 1.2164 over the entire
path (cf. the upper bound of 1.6862 from Theorem 1),
and the ratio of the minimums is 1.0036 (cf. the upper
bound of 1.2147 from Theorem 3). The bottom plot
shows the risks when parametrized by the `2 norms of
the underlying estimators. We see remarkable agree-
ment over the whole path, with a maximum ratio of
1.0050. Moreover, in both plots, we can see that the
finite-sample (dotted lines) and asymptotic risk curves
(solid lines) are identical, meaning that the convergence
in Theorem 5 is very rapid (and similarly for ridge).

8 DISCUSSION

In this work, we studied gradient flow (i.e., gradient de-
scent with infinitesimal step sizes) for least squares, and
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Figure 2: Comparison of Bayes risks for gradient flow and
ridge, with Gaussian features, Σ = I, n = 500, p = 1000.

pointed out a number of connections to ridge regression.
We showed that, under minimal assumptions on the
data model, and using a calibration t = 1/λ—where t
denotes the time parameter in gradient flow, and λ the
tuning parameter in ridge—the risk of gradient flow is
no more than 1.69 times that of ridge, for all t ≥ 0. We
also showed that the same holds for prediction risk, in
an average (Bayes) sense, with respect to any spherical
prior. Though we did not pursue this, it is clear that
these risk couplings could be used to port risk results
from the literature on ridge regression (e.g., Hsu et al.
2012; Raskutti et al. 2014; Dicker 2016; Dobriban and
Wager 2018, etc.) to gradient flow.

Our numerical experiments revealed that calibrating
the risk curves by the underlying `2 norms of the esti-
mators results in a much tighter coupling; developing
theory to explain this phenomenon is an important
challenge left to future work. Other interesting direc-
tions are to analyze the risk of a continuum version of
stochastic gradient descent, or to study gradient flow
beyond least squares, e.g., for logistic regression.
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