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Abstract

Permutation tests date back nearly a century to Fisher’s randomized exper-
iments, and remain an immensely popular statistical tool, used for testing
hypotheses of independence between variables and other common inferen-
tial questions. Much of the existing literature has emphasized that, for the
permutation p-value to be valid, one must first pick a subgroup G of per-
mutations (which could equal the full group) and then recalculate the test
statistic on permuted data using either an exhaustive enumeration of G, or
a sample from G drawn uniformly at random. In this work, we demonstrate
that the focus on subgroups and uniform sampling are both unnecessary for
validity—in fact, a simple random modification of the permutation p-value
remains valid even when using an arbitrary distribution (not necessarily uni-
form) over any subset of permutations (not necessarily a subgroup). We pro-
vide a unified theoretical treatment of such generalized permutation tests,
recovering all known results from the literature as special cases. Thus, this
work expands the flexibility of the permutation test toolkit available to the
practitioner.
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1 Introduction

Suppose we observe data X1, . . . , Xn ∈ X , and would like to test the null
hypothesis

H0 : X1, . . . , Xn are exchangeable. (1.1)
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(Note that the hypothesis that the Xi’s are i.i.d., is a special case of this
null.) We assume that we have a pre-specified test statistic, which is a func-
tion T : X n → IR, where, without loss of generality, we let larger values of
T (X) = T (X1, . . . , Xn) indicate evidence in favor of an alternative hypoth-
esis.

Since the null distribution of the Xi’s is not specified exactly, we usually
do not know the null distribution of T (X). The permutation test avoids this
difficulty by comparing T (X) against the same function applied to permu-
tations of the data. To elaborate, let Sn denote the set of all permutations
on [n] := {1, . . . , n}, and define

xσ := (xσ(1), . . . , xσ(n))

for any x ∈ X n and any σ ∈ Sn. Then, we can compute a p-value

(1.2)

which ranks T (X) amongst {T (Xσ)}σ∈Sn sorted in decreasing order. Then,
under the null hypothesisH0, P is a valid p-value, meaning PH0 {P ≤ α} ≤ α
for all α ∈ [0, 1].1

As an example, suppose that the observed data set actually consists of
pairs (Xi, Yi), which are assumed to be i.i.d. from some joint distribution. If
we are interested in testing , we can reframe this question as
testing whetherX1, . . . , Xn are i.i.d. conditional on Y1, . . . , Yn—in particular,
under H ′

0, it holds that X follows an exchangeable distribution conditional
on Y . Our test statistic T might be chosen as

T (X) =
∣
∣Corr

(

(X1, . . . , Xn), (Y1, . . . , Yn)
)∣
∣ .

In order to see whether the observed correlation is sufficiently large to be
statistically significant, we would compare T (X,Y ) to the correlations com-
puted on permuted data,

T (Xσ) =
∣
∣Corr

(

(Xσ(1), . . . , Xσ(n)), (Y1, . . . , Yn)
)∣
∣ .

The resulting p-value computed as in Eq. 1.2 is then a valid p-value under
the null hypothesis H ′

0. In addition to testing independence, permutation

1Note that we always have P > 0, because of the identity permutation σ = Id ∈ Sn

(for which Xσ = X and thus . Other permutation p-values in this
paper, like Eq. 1.3, may explicitly include a “1+” term in the numerator and denominator,
but their similarity to the above formula can be intuitively justified by thinking of the extra
“1+” as resulting from the identity permutation.
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tests are also commonly used for testing other hypotheses, such as whether
two samples follow the same distribution.2

The p-value P computed in Eq. 1.2 requires computing T (Xσ) for every
σ ∈ Sn. One may naturally be interested in reducing the computational
cost of this procedure, since computing T (Xσ) for |Sn| = n! many permuta-
tions may be computationally prohibitive for even moderately large n. As is
well known, we can obtain valid p-values by uniformly randomly sampling
permutations from Sn and computing

(1.3)

in which σ1, . . . , σM are i.i.d. uniform draws from Sn.
In a different direction, one can also reduce the set of permutations σ to

subsets of Sn. Specifically, let G ⊆ Sn be any subset, and define

(1.4)

where |G| is the cardinality of G.
Clearly, if G does not contain the identity permutation, then P cannot

be a p-value because it could potentially take on the value zero. However,
including the identity permutation is not sufficient. The literature repeatedly
emphasizes that P defined in Eq. 1.4 is a valid p-value only if the subset
G ⊆ Sn is in fact a subgroup3 (Hemerik and Goeman, 2018, Theorem 1).

The subgroup G mentioned above may be chosen strategically to bal-
ance between computational efficiency and the power of the test (see, e.g.,
Hemerik and Goeman (2018) & Koning and Hemerik (2022)). In case G has

2Permutation tests are a special case of “invariance-based testing” (Lehmann et al., 2005,
Chapter 6).
3For completeness, a group is a set paired with an operation that takes any two elements
of the set and produces a third, such that the operation is associative, an identity element
exists, and every element has an inverse. A subgroup is just a subset of the original group
that maintains the same properties—in particular, any subgroup must contain the identity
element. The group Sn is called the symmetric group; its elements are the n! permutations
over n objects. The operation is denoted ◦, sometimes called “composition”; its action is
to compose any two permutations σ, σ′ to yield a third one ν := σ ◦ σ′ which is given by
ν(i) = σ(σ′(i)) for i ∈ [n]. The inverse of σ, denoted σ−1, is defined by setting σ−1(i) = j
if σ(j) = i, so that σ ◦ σ−1 always equals the identity permutation introduced earlier.
Note that Sn is not an Abelian group, meaning that ◦ is not commutative, since usually,
σ ◦ σ′ �= σ′ ◦ σ. For a subset G ⊆ Sn, we can verify that G is a subgroup if it is closed
under composition (i.e., σ ◦ σ′ ∈ G for any σ, σ′ ∈ G).
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a large cardinality, the aforementioned references show that sampling permu-
tations uniformly at random from G also yields valid p-values—that is, the
randomized p-value P from Eq. 1.3 is valid if σ1, . . . , σM are i.i.d. samples
drawn uniformly from G rather than from Sn. Again, choosing G to be a
subgroup (rather than an arbitrary subset), and sampling uniformly rather
than from an arbitrary distribution, are both important for the validity of
the resulting p-value.

1.1. Contributions The background above naturally leads to the follow-
ing question: while it is indeed correct that P from Eq. 1.4 is not a p-value
for general subsets G ⊆ Sn, is it possible to slightly modify the definition
of P so that it retains its validity for subsets G that are not subgroups?
Further, while sampling the σm’s nonuniformly from G would destroy the
validity of P from Eq. 1.3, can we modify the definition of P so that nonuni-
form sampling from a set is allowed? The first question is addressed by
Hemerik and Goeman (2018), as we will describe below; to our knowledge,
the second question has not been addressed in the literature.

In this paper, we will broaden the applicability of permutation tests
and present generalizations, which yield valid p-values even when we sample
permutations—with or without replacement—from a non-uniform distribu-
tion over all permutations or from an arbitrary subset of permutations. In
doing so, we shall carefully explain how this generalization relates and ex-
tends all previous options. This generalization yields new and more flexible
permutation test methods; we leave a detailed study of pros and cons of
these generalizations (such as how they trade off the two types of errors) to
future work.

2 A Generalized Permutation Test

2.1. Testing with an Arbitrary Distribution We now present our first
generalization of the permutation test. It allows us to use any (not neces-
sarily uniform) distribution over Sn in order to construct our permutation
p-value.

Theorem 2.1. Let q be any distribution over σ ∈ Sn. Let σ0 ∼ q be a
random draw, and define

(2.1)

Then P is a valid p-value, i.e., PH0 {P ≤ α} ≤ α for all α ∈ [0, 1].

In this theorem, validity is retained when conditioning on the order
statistics of the data, meaning that PH0

{

P ≤ α|X(1), . . . , X(n)

}

≤ α, where
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X(1) ≤ · · · ≤ X(n) are the order statistics of X = (X1, . . . , Xn).
4 The rea-

son that this holds is simply because H0 remains true even conditional on
the order statistics—that is, if X is exchangeable, then X | (X(1), . . . , X(n))
is again exchangeable. The same conditional validity holds for all results
to follow, as well. However, one cannot condition on σ0; the result only
holds marginally over σ0, and this external randomization is key to retaining
validity.

We defer the proof to Section 2.3—we will first discuss connections to
the existing literature in order to provide more context and intuition for the
above theorem.

Uniform Distribution Over a Subgroup To begin with, assume q is
the uniform distribution over a fixed subgroup G of Sn. Then in this case,
the p-value in Eq. 2.1 takes the special form

where the second equality holds because a subgroup G is closed under in-
verses and composition, so {σ ◦ σ−1

0 : σ ∈ G} = G for any σ0 ∈ G. This
simple observation recovers a well-known fact we discussed earlier; namely,
one can restrict the set of permutations to an arbitrary subgroup, and
the p-value P defined in Theorem 2.1 will then coincide with our earlier
definition Eq. 1.4 (proved to be a valid p-value in (Hemerik and Goeman,
2018, Theorem 1)).

Uniform Distribution Over a Subset Consider now a uniform distri-
bution over an arbitrary subset S that is not a subgroup. In this case, the
definition of P in Theorem 2.1 is equal to

(2.2)

as proposed earlier by Hemerik and Goeman (2018). This is, in general, not
the same as

(2.3)

4The notation of the order statistics implicitly assumes X = IR. More generally, for
an arbitrary space X , the validity of P is retained when conditioning on the unordered
observed data, i.e., the multiset {X1, . . . , Xn}.
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(which is equivalent to the quantity defined in Eq. 1.4 earlier, with the sub-
set S in place of a subgroup G). As we shall see below, P ′ is generally
not a p-value, a fact which can cause large issues in practice, as has been
frequently emphasized. For example, consider the tool of balanced permuta-
tions—in the setting of testing whether a randomly assigned treatment has
a zero or nonzero effect, this method has been proposed as a variant of the
permutation test in this setting, where the subset S consists of all permuta-
tions such that the permuted treatment group contains exactly half of the
original treatment group, and half of the original control group. Southworth
et al. (2009) show that the quantity P ′ computed in Eq. 2.3 for this choice
of subset S can be substantially anti-conservative, i.e., P {P ≤ α} > α, par-
ticularly for low significance levels α. (See also Hemerik and Goeman (2018)
for additional discussion of this issue.)

A simple example may help to illustrate this point, and to give intuition
for the role of the random permutation σ0.

Example 2.1. Let n = 4, and consider the set

S = {Id, σ1↔3,2↔4, σ1↔4,2↔3},
where, e.g., σ1↔3,2↔4 is the permutation swapping entries 1 and 3 and also
swapping 2 and 4. LetX1, X2, X3, X4

iid∼ N (0, 1) be standard normal random
variables (so that the null hypothesis of exchangeability, H0, is satisfied), and
set T (X) = X1 +X2. Then the quantity P ′ defined in Eq. 2.3 is equal to

This gives

P ′ =

{
1+0+0

3 = 1
3 , if X3 +X4 < X1 +X2,

1+1+1
3 = 1, otherwise

and, therefore,

P ′ =

{
1
3 , with probability1

2 ,

1, with probability1
2 .

We can thus see that P ′ is anti-conservative at the threshold α = 1
3 .

Next, we will see how the correction in Eq. 2.2 fixes the failure described
above. Denote by Pσ the p-value in Eq. 2.2 calculated conditional on the
random σ0 being equal to σ, so that

P =

⎧

⎪⎨

⎪⎩

PId, w.p. 1/3,

Pσ1↔4,2↔3 , w.p. 1/3,

Pσ1↔3,2↔4 , w.p. 1/3.

(2.4)
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Then, the calculation that was previously performed effectively shows that

PId =

{
1
3 , if X3 +X4 < X1 +X2,

1, otherwise.

A similar straightforward calculation then yields

Pσ1↔3,2↔4 = Pσ1↔4,2↔3 =

{
2
3 , if X3 +X4 < X1 +X2,

1, otherwise.

Put together, we obtain

P =

⎧

⎪⎨

⎪⎩

1
3 , w.p. 1/6,
2
3 , w.p. 1/3,

1, w.p. 1/2.

(2.5)

This is indeed stochastically larger than uniform, and is thus a valid p-value.

The role of σ0 To better understand the role of the random permuta-
tion σ0, let us consider Example 2.1 again, and look more closely at what
goes wrong there. We observe that P ′ compares the observed statistic T (X)
against the set {T (Xσ)}σ∈S = {T (XId), T (Xσ1↔3,2↔4), T (Xσ1↔4,2↔3)}. For
P ′ to be a valid p-value, given the (unordered) set of potential data vectors
{XId, Xσ1↔3,2↔4 , Xσ1↔4,2↔3}, it suffices that the actual observed data X is
equally likely to be any one of these three. Now suppose this set is equal to
{(0.8, 0.5, 0.2, 1.0), (1.0, 0.2, 0.5, 0.8), (0.5, 0.8, 1.0, 0.2)}, in no particular or-
der. Each of these three vectors have equal likelihood under H0 (due to
exchangeability). Counterintuitively, however, our knowledge of the sub-
set of permutations S implies that we must have X = (1.0, 0.2, 0.5, 0.8)—
otherwise we could not have obtained this particular set. For instance, if
X = (0.8, 0.5, 0.2, 1.0), then we would have Xσ1↔3,2↔4 = (0.2, 1.0, 0.8, 0.5)—
but this does not lie in our set, so it cannot be the correct value of X. In
other words, if we condition on the unordered set {Xσ}σ∈S , which is the
orbit of the data X under the actions of permutations σ ∈ S, our intuition
tells us that X is equally likely to be any element of this orbit—but in fact,
for a non-subgroup S, X might be uniquely identified from its orbit.

Now consider what happens if we compute the corrected p-value P in
Eq. 2.2 and let us once more examine the question of identifying the data X
from its orbit. The p-value P compares the observed statistic T (X) against
the set {T (Xσ◦σ−1

0
)}σ∈S , and so now the question is whether we can identify
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X from the set {Xσ◦σ−1
0
}σ∈S , which is the orbit of Xσ−1

0
for a randomly

drawn σ0 ∈ S. Identifying X is no longer possible because of the random σ0.
For instance, working again with Example 2.1, suppose this set {Xσ◦σ−1

0
}σ∈S

is equal to {(0.8, 0.5, 0.2, 1.0), (1.0, 0.2, 0.5, 0.8), (0.5, 0.8, 1.0, 0.2)}, in no par-
ticular order. We can identify that this is the orbit of x = (1.0, 0.2, 0.5, 0.8)
under S—that is, this set is equal to {xσ}σ∈S . Then the following three
possibilities are equally likely:

• σ0 = Id and so X = xId−1 = x = (1.0, 0.2, 0.5, 0.8);

• σ0 = σ1↔3,2↔4 and so X = xσ−1
1↔3,2↔4

= (0.5, 0.8, 1.0, 0.2);

• σ0 = σ1↔4,2↔3 and so X = xσ−1
1↔4,2↔3

= (0.8, 0.5, 0.2, 1.0).

In other words, X is now equally likely to be any of the three values in our
set, and validity is restored.

2.2. Random samples from an arbitrary distribution Our second gener-
alization concerns permutations that are randomly chosen from an arbitrary
distribution.

Theorem 2.2. Let q be any distribution over σ ∈ Sn. Let σ0, σ1, . . . ,

σM
iid∼ q, and define

(2.6)

Then P is a valid p-value, i.e., PH0 {P ≤ α} ≤ α for all α ∈ [0, 1].

This result is closely related to Besag and Clifford (1989)’s well known
construction for obtaining exchangeable samples from Markov chain Monte
Carlo (MCMC) sampling—the details are deferred to Section 4.2.

Just as before, some special cases of this result are well known to
statisticians.

Random permutations from Sn In the simple case where q is the uni-
form distribution over Sn, Theorem 2.2 states that

(2.7)
is a valid p-value. The equality in distribution above holds because the
σm ◦ σ−1

0 ’s are i.i.d. draws from Sn. Hence, this recovers the most commonly
implemented form of the permutation test.
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Random permutations from a subgroup The distributional equality
Eq. 2.7 extends to any uniform distribution q over a subgroup G of Sn

since in this case, as before, the random variables σm ◦ σ−1
0 are i.i.d. draws

from G. This gives the following well-known result (see, e.g., Hemerik and
Goeman (2018, Theorem 2)):

Corollary 2.1. Let G ⊆ Sn be a subgroup, and sample σ1, . . . , σM
iid∼

Unif(G). Then

(2.8)

is a valid p-value, i.e., PH0 {P ≤ α} ≤ α for all α ∈ [0, 1].

Random permutations from a subset Consider now the case where
q is a uniform distribution over an arbitrary subset S. When S is not a
subgroup, the p-value

may not have the same distribution as

Here, Theorem 2.2 gives:

Corollary 2.2. Let S ⊆ Sn be any fixed subset of permutations. Sample

σ0, σ1, . . . , σM
iid∼ Unif(S). Then

(2.9)

is a valid p-value, i.e., PH0 {P ≤ α} ≤ α for all α ∈ [0, 1].

To the best of our knowledge, this statement had not been recorded
in the literature. As a variant, the same result holds if we instead draw
permutations without replacement.

Corollary 2.3. Consider the variant of Corollary 2.2 in which the per-
mutations are drawn without replacement. Then the p-value P defined in
Eq. 2.9 is a valid p-value, i.e., PH0 {P ≤ α} ≤ α for all α ∈ [0, 1]. In the
special case where S is a subgroup, the same conclusion also applies for the
p-value P defined in Eq. 2.8.
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Proof. Let S′ ⊆ S be a subset of sizeM+1 chosen uniformly at random.
Let σ0, σ1, . . . , σM be a random ordering of S′—in particular, this means that
σ0 is drawn uniformly from S′. Then by Theorem 2.1, applied with q taken
to be the uniform distribution over S′, P is a valid p-value.

The second claim follows from the fact that

(σ1 ◦ σ−1
0 , . . . , σM ◦ σ−1

0 )
d
= (σ1, . . . , σM ),

whenever S is a subgroup.

To guide the reader, Fig. 1 summarizes the connections between all the
results presented thus far in the paper. Interestingly, as highlighted in the
figure, Theorems 2.1 and 2.2 can be derived from each other; we will elabo-
rate on this connection below.

Finally, we present another simple example to highlight the necessity of
the σ0 term, in the case of nonuniform sampling. Indeed, even “intuitive”
modifications of the uniform sampling scheme may fail to produce valid p-
values.

Example 2.2. If one considers to be a
Monte Carlo estimate of the p-value computed
in Eq. 1.2, then a lower-variance estimate may be obtained by “antithetic
sampling”—that is, pairing a random draw σm ∈ Sn with its reverse
Rev(σm) = (σm(n), . . . , σm(1)) (see, e.g., Mitchell et al. (2022) for an ex-
ample of this variance reduction technique). However, using antithetic sam-
pling can lead to an invalid p-value—specifically, if σ1, . . . , σM/2 are drawn
uniformly at random from Sn (or from some subgroup G ⊆ Sn), and we

Figure 1: A flowchart to illustrate the connections between (most of) the
results presented in this paper. Arrows point from more general results to
their special cases
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then set σM/2+i = Rev(σi) for each i = 1, . . . ,M/2, then the quantity P ′

may not be a valid p-value. For instance, suppose we take M = 2, so that
σ2 = Rev(σ1) where σ1 is drawn uniformly from Sn. Take T (x) = X1 +Xn,

and draw Xi
iid∼ N (0, 1). Then

Then we can verify that, conditional on σ1, if {σ1(1), σ1(n)} = {1, n} then
P = 1, while if {σ1(1), σ1(n)} �= {1, n} then P ′ = 1

3 or P ′ = 1 each with
probability 1

2 , which yields

P

{

P ′ =
1

3

}

=
1

2
− 1

n(n− 1)
>

1

3
,

with the last step holding if n > 3. We can thus see that P ′ is anti-
conservative at the threshold α = 1

3 .

2.3. Proof of Theorem 2.1 First, for any fixed σ′ ∈ Sn, we have

(2.10)

because X
d
= Xσ′ under H0 (and note that (Xσ′)σ◦σ′−1 = Xσ). Next, we

will apply a deterministic inequality by Harrison (2012): for all t1, . . . , tN ∈
[−∞,∞] and all α,w1, . . . , wN ∈ [0,∞],

Applying this bound with q(σ)’s in place of the wi’s, and T (Xσ)’s in place
of the ti’s, we obtain

(2.11)
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Finally, we have

where the third step holds since σ0 ∼ q is drawn independently of the data
X, while the last two steps apply Eq. 2.10 and Eq. 2.11.

2.4. Connecting Theorems 2.1 and 2.2 As mentioned earlier, Theo-
rems 2.1 and 2.2 can be derived from each other. We now give these proofs
to show the connection.

Alternative proof of Theorem 2.1 (via Theorem 2.2). Let
σ0, σ1, σ2, . . .

iid∼ q, and for any fixed M , define

By the Law of Large Numbers, we see that almost
surely for all σ ∈ Sn, and therefore, PM → P almost surely, where P is the
p-value defined in Eq. 2.1. In particular, this implies that PM converges to
P in distribution, and therefore

P {P ≤ α} = lim
M→∞

P {PM ≤ α} ≤ α,

where the last step holds since, for every M ≥ 1, PM is a valid p-value by
Theorem 2.2.

Proof of Theorem 2.2 (via Theorem 2.1). Let σ0, σ1, . . . , σM
iid∼ q,

and define the empirical distribution

q̂ =
1

M + 1

M∑

m=0

δσm ,
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where δσ is the point mass at σ. Now we treat q̂ as fixed. Let k be drawn
uniformly from {0, . . . ,M} (that is, σk is drawn at random from q̂). Applying
Theorem 2.1 with q̂ in place of q, we then see that

is a valid p-value conditional on q̂, and therefore also valid after marginalizing
over q̂. Since σ0, . . . , σM are drawn i.i.d. and are therefore in a random order,
we see that

which is the desired p-value.

2.5. Another perspective: exchangeable permutations Many of the re-
sults described above can be viewed through the lens of exchangeability—
not on the data X (which we assume to be exchangeable under the null
hypothesis H0), but on the collection of permutations used to define the
p-value P .

Theorem 2.3. Let σ0, σ1, . . . , σM ∈ Sn be a random set of permutations,
which are exchangeable, i.e.,

(σ0, σ1, . . . , σM )
d
= (σπ(0), σπ(1), . . . , σπ(M))

for any fixed permutation π on {0, . . . ,M}. Then

is a valid p-value, i.e., PH0 {P ≤ α} ≤ α for all α ∈ [0, 1].

Many of the results stated earlier can be viewed as special cases—in
particular, the results for a subgroup G, or for a subset S, as well as our
more general result Theorem 2.2 for permutations drawn i.i.d. from q.

Proof. To be clear, this theorem is essentially just a new perspective,
and can be proved as a corollary to Theorem 2.1. To see why, let σ0, . . . , σM
be exchangeable, and let q̂ = 1

M+1

∑M
m=0 δσm be the empirical distribution
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induced by the unordered set of drawn permutations. Then since σ0, . . . , σM
is exchangeable, conditional on q̂ it holds that σ0 is a random draw from q̂.
Applying Theorem 2.1 with q̂ in place of q gives the conclusion.

However, we can also prove this result in a more intuitive way, using the
framework of exchangeability:

Alternative proof of Theorem 2.3. Since the sequence σ0, σ1, . . . ,
σM is exchangeable,

T (Xσ0), T (Xσ1), . . . , T (XσM )

is also exchangeable conditional on X. It is thus still exchangeable after
marginalizing over X. Therefore, under the null hypothesis H0, the test
statistic values

T (X) = T (Xσ0◦σ−1
0
), T (Xσ1◦σ−1

0
), . . . , T (XσM◦σ−1

0
) (2.12)

are also exchangeable—this follows immediately from the previous line because

X
d
= Xσ−1

0
under H0. This shows that the p-value P defined in Theorem 2.3

is valid.

3 Averaging to reduce variance

The p-value P defined in Eq. 2.1 can equivalently be written as

P = Pσ∼q

{

T (Xσ◦σ−1
0
) ≥ T (X)|X,σ0

}

.

It is clear that P is random even if we condition on the observed data X,
because of the randomness due to σ0. Consequently, in some settings P may
be quite variable conditional on the data X, and this may be undesirable.

To address this issue, we can also consider averaging over σ0 (in addition
to averaging over σ) in the calculation of P . This alternative definition is
now a deterministic function of the observed data X, but may no longer be
a valid p-value. Nonetheless, the following theorem shows a bound on the
Type I error.

Theorem 3.1. Let q be any distribution over σ ∈ Sn. Define

(3.1)



Generalized Permutation Tests 15

or equivalently,

P̄ = P
σ,σ0

iid∼ q

{

T (Xσ◦σ−1
0
) ≥ T (X)

∣
∣
∣X

}

.

Then P̄ is a valid p-value up to a factor of 2, i.e., PH0

{

P̄ ≤ α
}

≤ 2α for
all α ∈ [0, 1]. In other words, the quantity min{2P̄ , 1} is a valid p-value.

Proof. Draw σ
(1)
0 , σ

(2)
0 , . . .

iid∼ q. Let

for each m ≥ 1. Then by Theorem 2.1, each Pm is a valid p-value. It
is known (Rüschendorf, 1982; Vovk and Wang, 2020) that the average of
valid p-values is a valid up to a factor of 2, i.e., for any M ≥ 1 the average
P̄M = 1

M

∑M
m=1 Pm satisfies P

{

P̄M ≤ α
}

≤ 2α for all α ∈ [0, 1]. We can
equivalently write

By the Law of Large Numbers, P̄M converges almost surely to the p-value
P̄ defined in Eq. 3.1, which completes the proof.

Returning to Example 2.1, we see that while P was a mixture of PId,
Pσ1↔4,2↔3 , Pσ1↔3,2↔4 , we now have that P̄ is an average of these, meaning
P̄ = 1

3(PId + Pσ1↔4,2↔3 + Pσ1↔3,2↔4). Simplifying, we get

P̄ =

{
5
9 , w.p. 1/2,

1, w.p. 1/2.

It is worth noting that this new quantity P̄ is neither more conservative nor
more anti-conservative than the p-value P in Eq. 2.5 from earlier. This is
perhaps a more general phenomenon: the average of p-values need not in
general be anti-conservative, and indeed it could often be more conservative,
than the original p-values.

Analogously, the p-value in Theorem 2.2, computed via random samples
from q, can also be averaged to reduce variance.

Theorem 3.2. Let q be any distribution over σ ∈ Sn. Let σ0, σ1, . . . ,

σM
iid∼ q, and define

(3.2)
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Then P is a valid p-value up to a factor of 2, i.e., PH0 {P ≤ α} ≤ 2α for all
α ∈ [0, 1]. Thus, as before, the quantity min{2P̄ , 1} is a valid p-value.

The proof is similar to that of Theorem 3.1, and we omit it for brevity.

4 Connections to the Literature

We next mention a few connections to the broader literature.
4.1. Permutation tests vs randomization tests Hemerik and Goeman

(2021) describe the difference between two testing frameworks, permutation
tests (as studied in our present work) versus randomization tests. The dif-
ference is subtle, because randomization tests may still use permutations.
Specifically, Hemerik and Goeman (2021) highlight

an important difference in mathematical reasoning between these
classes: a permutation test fundamentally requires that the set
of permutations has a group structure, in the algebraic sense;
the reasoning behind a randomisation test is not based on such a
group structure, and it is possible to use an experimental design
that does not correspond to a group.

To better understand this distinction, we can consider a scenario where
a fixed subset S ⊆ Sn, which is not a subgroup, is used for a randomiza-
tion test rather than a permutation test. Consider a study comparing a
treatment versus a placebo, with n/2 many subjects assigned to each of the
two groups. We can use a permutation σ to denote the treatment assign-
ments, with σ(i) ≤ n/2 indicating that subject i receives the treatment, and
σ(i) > n/2 indicating that subject i receives the placebo. Now we switch
notation, to be able to compare to permutation tests more directly—writing
X = (1, . . . , 1, 0, . . . , 0), suppose that we will assign treatments via the per-
muted vector Xσ, i.e., for each subject i = 1, . . . , n, under this permutation
σ the ith subject will receive the treatment if Xσ(i) = 1, or the placebo if
Xσ(i) = 0.

Now suppose that we draw a random treatment assignment σasgn ∼
Unif(S), from a fixed subset S ⊆ Sn (for example, S may be chosen to re-
strict to treatment assignments that are equally balanced across certain sub-
populations). After the treatments are administered, the measured response
variable is given by Y = (Y1, . . . , Yn). Fix any test statistic T (X) = T (X,Y )
(we will implicitly condition on Y ), and compute

(4.1)



Generalized Permutation Tests 17

Since σasgn was drawn uniformly from S, this quantity P is a valid p-value. In
the terminology of Hemerik and Goeman (2021), this test is a randomization
test, not a permutation test. While the set of possible treatment assigments
{Xσ : σ ∈ S} happens to be indexed by permutations σ, the group structure
of permutations is not used in any way, and we do not rely on any invariance
properties.

Comparing to the invalid p-value considered
in Eq. 2.3, we can easily see the distinction: for a randomization test, the
observed statistic is T (Xσasgn) for a randomly drawn σasgn ∼ Unif(S), while
in the permutation test in Eq. 2.3, the observed statistic is T (X) (i.e., using
the fixed permutation Id in place of a randomly drawn σasgn). For this reason,
the randomization test p-value in Eq. 4.1 is valid, while the permutation test
calculation in Eq. 2.3 is not valid in general.

Now we again consider Hemerik and Goeman (2018)’s method using a
fixed subset. This test in Eq. 2.2 is a permutation test, not a randomization
test—the observed dataX, and its corresponding statistic T (X), do not arise
from a random treatment assignment. More generally, our proposed test in
Eq. 2.1 using an arbitrary distribution q on Sn is again a permutation test
rather than a randomization test—that is, the observed data is given by X
itself, not by a randomly chosen treatment assignment Xσasgn for σasgn ∼ q.
Nonetheless, we are able to produce a valid p-value without assuming an
underlying group structure or uniform sampling for the permutations con-
sidered by the test.

4.2. Exchangeable MCMC The result of Theorem 2.2, which allows for
random samples drawn from an arbitrary distribution q on Sn, is closely con-
nected to Besag and Clifford (1989)’s well known construction for obtaining
exchangeable samples from Markov chain Monte Carlo (MCMC) sampling.

Consider a distribution Q0 on Z, and suppose we want to test

H0 : Z ∼ Q0

with some test statistic T (Z). To find a significance threshold for T (Z),
we would ideally like to draw from the null distribution, i.e., compare T (Z)

against T (Z1), . . . , T (ZM ) for Z1, . . . , ZM
iid∼ Q0. However, in many set-

tings, sampling directly from Q0 is impossible, but we instead have access to
a Markov chain whose stationary distribution is Q0. If we run the Markov
chain initialized at Z to obtain draws Z1, . . . , ZM (say, running the Markov
chain for some fixed number of steps s between each draw), then dependence
among these sequentially drawn samples means that Z,Z1, . . . , ZM are not
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i.i.d., and are not even exchangeable. Without studying the mixing prop-
erties of the Markov chain, we cannot determine how large the number of
steps needs to be for the dependence to become negligible. Instead, Besag
and Clifford (1989) propose a construction where the samples are drawn in
parallel (rather than sequentially), which ensures exchangeability:

Theorem 4.1 (Besag and Clifford (1989, Section 2)). Let Q0 be any dis-
tribution on a probability space Z. Construct a Markov chain on Z with
stationary distribution Q0, whose forward and backward transition distribu-
tions (initialized at z ∈ Z) are denoted by Q→(·|z) and Q←(·|z). Let Qs

→(·|z)
and Qs

←(·|z) denote the forward and backward transition distributions after
running s steps of the Markov chain, for some fixed s ≥ 1. Given an initial-
ization Z, suppose we generate data as in the left plot of Fig. 2:

{

First, draw Z∗ ∼ Qs
←(·|Z);

Then, draw Z1, . . . , ZM
iid∼ Qs

→(·|Z∗).

If it holds marginally that Z ∼ Q0, then the draws Z,Z1, . . . , ZM are
exchangeable.

Given this exchangeability property, the quantity
is then a valid p-value for testing H0 : Z ∼ Q0.

Now we will see how Theorem 2.2 is related to this result. Let Z = X n,
and let Q0 be any exchangeable distribution. In the setting of this paper,
we do not know Q0 precisely, which makes it a bit different from a typical
setting where Besag and Clifford (1989)’s method is applied. However, we

Figure 2: Left: Besag and Clifford (1989)’s parallel construction (with
s = 1). Right: the construction used in Theorem 2.2
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will work with a Markov chain for which any exchangeable distribution Q0

is stationary, and in fact, Theorem 4.1 holds regardless of whether Q0 is the
unique stationary distribution for the Markov chain.

Consider the Markov chain given by applying a randomly chosen permu-
tation σ ∼ q, that is, for x = (x1, . . . , xn),

Q→(·|x) =
∑

σ∈S
q(σ) · δxσ ,

where δxσ is the point mass at xσ, while the backward transition probabilities
are given by

Q←(·|x) =
∑

σ∈S
q(σ) · δxσ−1 .

Then, to implement the test described in Theorem 2.2, we run Besag and
Clifford (1989)’s method (with s = 1): we define X∗ = Xσ−1

0
, and then

define Xm = (X∗)σm = Xσm◦σ−1
0

for m = 1, . . . ,M . This is illustrated on

the right-hand side of Fig. 2. If X is exchangeable (that is, it is drawn from
some exchangeable Q0), then the exchangeability of X,X1, . . . , XM follows
by Theorem 4.1, and this verifies that P is a valid p-value, thus completing
the proof of Theorem 2.2.

Of course, we have only written out our method for the s = 1 case (where
s is the number of steps of the Markov chain). New variants of our method
can be constructed by taking s > 1 backward steps to the hidden node, and
the same number s of forward steps to the permuted data. All of these are
valid for the same reason as the s = 1 case.

5 Conclusion

We proposed a new method for permutation testing that generalizes pre-
vious methods. This idea naturally opens up new lines of theoretical and
practical enquiry. In this work, we have focused on validity, but it is of
course also important to examine the consistency and power of such meth-
ods. In particular, Dobriban (2022) & Kim et al. (2022) study the power
of the permutation test when using the full permutation group Sn; it would
be interesting to examine this question in the context of using only a subset
S ⊆ Sn or a nonuniform distribution over Sn. In addition, the theoretical
guarantees for all the permutation tests considered here ensure a p-value P
that is valid in the sense of satisfying PH0 {P ≤ α} ≤ α, which means that P
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could potentially be quite conservative under the null (for instance, we saw
this behavior when ‘fixing’ the failure example in Section 2.1). It would also
be interesting to understand which types of tests reduce overly conservative
outcomes.

In conclusion, it is perhaps remarkable that one can still gain new under-
standing about classical permutation methods. In turn, this enhanced un-
derstanding can inform other areas of inference. As an example, the results
from this paper were motivated by questions in conformal prediction (Vovk
et al., 2005), a method for distribution-free predictive inference. Classically,
conformal prediction has relied on exchangeability of data points (e.g., train-
ing and test data are drawn i.i.d. from the same unknown distribution), and
thus the joint distribution of the data (including both training samples and
a test point) is invariant under an arbitrary permutation. In contrast, in our
recent work (Barber et al., 2023), we studied the problem of constructing pre-
diction intervals when the data do not satisfy exchangeability; for instance,
the distribution of observations may simply drift over time in an unknown
fashion. Thus the data is no longer invariant under an arbitrary permutation,
and so we instead restrict attention to a weighted distribution over simple
permutations that only swap the test point with a random training point,
which at least approximately preserve the distribution of the data. These
swaps clearly do not form a subgroup of permutations, and are weighted non-
uniformly; understanding how permutation tests operate in this setting, as
in Theorem 2.1, is key to the findings in our aforementioned work.
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