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Abstract

We present a path algorithm for the generalized lasso problem. This problem penalizes
the `1 norm of a matrix D times the coefficient vector, and has a wide range of applications,
dictated by the choice of D. Our algorithm is based on solving the dual of the generalized lasso,
which facilitates computation and conceptual understanding of the path. For D = I (the usual
lasso), we draw a connection between our approach and the well-known LARS algorithm. For
an arbitrary D, we derive an unbiased estimate of the degrees of freedom of the generalized
lasso fit. This estimate turns out to be quite intuitive in many applications.
Keywords: lasso; path algorithm; Lagrange dual; LARS; degrees of freedom

1 Introduction

Regularization with the `1 norm seems to be ubiquitous throughout many fields of mathematics and
engineering. In statistics, the best-known example is the lasso, the application of an `1 penalty to
linear regression [31, 7]. Let y ∈ Rn be a response vector and X ∈ Rn×p be a matrix of predictors. If
the response and the predictors have been centered, we can omit an intercept term from the model,
and then the lasso problem is commonly written as

minimize
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1, (1)

where λ ≥ 0 is a tuning parameter. There are many fast algorithms for solving the lasso (1) at a
single value of the parameter λ, or over a discrete set of parameter values. The least angle regression
(LARS) algorithm, on the other hand, is unique in that it solves (1) for all λ ∈ [0,∞] [11] (see also
the earlier homotopy method of [23], and the even earlier work of [3]). This is possible because the
lasso solution is piecewise linear with respect to λ.

The LARS path algorithm may provide a computational advantage when the solution is desired at
many values of the tuning parameter. For large problems, this is less likely to be the case because the
number of knots (changes in slope) in the solution path tends to be very large, and this renders the
path intractable. Computational efficiency aside, the LARS method fully characterizes the tradeoff
between goodness-of-fit and sparsity in the lasso solution (this is controlled by λ), and hence yields
interesting statistical insights into the problem. Most notably, the LARS paper established a result
on the degrees of freedom of the lasso fit, which was further developed by [35].

The first of its kind, LARS inspired the development of path algorithms for various other opti-
mization problems that appear in statistics [16, 25, 19, 20], and our case is no exception. In this
paper, we derive a path algorithm for problems that use the `1 norm to enforce certain structural
constraints—instead of pure sparsity—on the coefficients in a linear regression. These problems are
nicely encapsulated by the formulation:

minimize
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1, (2)
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where D ∈ Rm×p is a specified penalty matrix. We refer to problem (2) as the generalized lasso.
Depending on the application, we choose D so that sparsity of Dβ corresponds to some other desired
behavior for β, typically one that is structural or geometric in nature. In fact, various choices of D
in (2) give problems that are already well-known in the literature: the fused lasso, trend filtering,
wavelet smoothing, and a method for outlier detection. We derive a simple path algorithm for the
minimization (2) that applies to a general matrix D, hence this entire class of problems. Like the
lasso, the generalized lasso solution is piecewise linear as a function of λ. We also prove a result
on the degrees of freedom of the fit for a general D. It is worth noting that problem (2) has been
considered by other authors, for example [28]. This last work establishes some asymptotic properties
of the solution, and proposes a computational technique that relates to simulated annealing.

The paper is organized as follows. We begin in Section 2 by motivating the use of a penalty
matrix D, offering several examples of problems that fit into this framework. Section 3 explains that
some instances of the generalized lasso can be transformed into a regular lasso problem, but many
instances cannot, which emphasizes the need for a new path approach. In Section 4 we derive the
Lagrange dual of (2), which serves as the jumping point for our algorithm and all of the work that
follows. For the sake of clarity, we build up the algorithm over the next 3 sections. Sections 5 and
6 consider the case X = I. In Section 5 we assume that D is the 1-dimensional fused lasso matrix,
in which case our path algorithm takes an especially simple (and intuitive) form. In Section 6 we
give the path algorithm for a general penalty matrix D, which requires adding only one step in the
iterative loop. Section 7 extends the algorithm to the case of a general design matrix X. Provided
that X has full column rank, we show that our path algorithm still applies, by rewriting the dual
problem in a more familiar form. We also outline a path approach for the case when X has rank
less than its number of columns. Practical considerations for the path’s computation are given in
Section 8.

In Section 9 we focus on the lasso case, D = I, and compare our method to LARS. Above,
we described LARS as an algorithm for computing the solution path of (1). This actually refers
to LARS in its “lasso” state, and although this is probably the best-known version of LARS, it is
not the only one. In its original (unmodified) state, LARS does not necessarily optimize the lasso
criterion, but instead performs a more “democratic” form of forward variable selection. It turns out
that with an easy modification, our algorithm gives this selection procedure exactly. In Section 10
we derive an unbiased estimate of the degrees of freedom of the fit for a general matrix D. The
proof is quite straightforward because it utilizes the dual fit, which is simply the projection onto a
convex set. As we vary D, this result yields interpretable estimates of the degrees of freedom of the
fused lasso, trend filtering, and more. Finally, Section 11 contains some discussion.

To save space (and improve readability), many of the technical details in the paper are deferred
to a supplementary document, available online at http://www-stat.stanford.edu/~ryantibs/.

2 Applications

There are a wide variety of interesting applications of problem (2). What we present below is not
meant to be an exhaustive list, but rather a set of illustrative examples that motivated our work on
this problem in the first place. This section is split into two main parts: the case when X = I (often
called the “signal approximation” case), and the case when X is a general design matrix.

2.1 The signal approximation case, X = I

When X = I, the solution of the lasso problem (1) is given by soft-thresholding the coordinates of
y. Therefore one might think that an equally simple formula exists for the generalized lasso solution
when the design matrix is the identity—but this is not true. Taking X = I in the generalized lasso
(2) gives an interesting and highly nontrivial class of problems. In this setup, we observe data y ∈ Rn
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which is a noisy realization of an underlying signal, and the rows of D ∈ Rm×n reflect some believed
structure or geometry in the signal. The solution of problem (2) fits adaptively to the data while
exhibiting some of these structural properties. We begin by looking at piecewise constant signals,
and then address more complex features.

2.1.1 The fused lasso

Suppose that y follows a 1-dimensional structure, that is, the coordinates of y correspond to succes-
sive positions on a straight line. If D is the (n− 1)× n matrix

D1d =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
. . .

0 0 0 . . . −1 1

 , (3)

then problem (2) penalizes the absolute differences in adjacent coordinates of β, and is known as the
1d fused lasso [32]. This gives a piecewise constant fit, and is used in settings where coordinates in the
true model are closely related to their neighbors. A common application area is comparative genomic
hybridization (CGH) data: here y measures the number of copies of each gene ordered linearly along
the genome (actually y is the log ratio of the number of copies relative to a normal sample), and
we believe for biological reasons that nearby genes will exhibit a similar copy number. Identifying
abnormalities in copy number has become a valuable means of understanding the development of
many human cancers. See Figure 1 for an example of the 1d fused lasso applied to some CGH data
on glioblastoma multiformes, a particular type of malignant brain tumor, taken from [5].
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Figure 1: The 1d fused lasso applied to some glioblastoma multiforme data. The red line represents the
inferred copy number from the 1d fused lasso solution (for λ = 3).

A natural extension of this idea penalizes the differences between neighboring pixels in an image.
Suppose that y represents a noisy image that has been unraveled into a vector, and each row of D
again has a 1 and −1, but this time arranged to give both the horizontal and vertical differences
between pixels. Then problem (2) is called the 2d fused lasso [32], and is used to denoise images
that we believe should obey a piecewise constant structure. This technique is a special type of
total variation denoising, a well-studied problem that carries a vast literature spanning the fields
of statistics, computer science, electrical engineering, and others (for example, see [26]). Figure 2
shows the 2d fused lasso applied to a toy example.
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(a) Original (b) Noisy (c) Denoised

Figure 2: An example of the 2d fused lasso for image denoising. We started with a toy signal, shown in
(a). The colors green, blue, purple, red in the image correspond to the numeric levels 1, 2, 3, 4, respectively.
We then added noise, shown in (b), interpolating between colors to display the intermediate values. This is
used as the data y in the 2d fused lasso problem. The solution (for λ = 1) is shown in (c), and it is a fairly
accurate reconstruction. The fused lasso is effective here because the original image is piecewise constant.

We can further extend this idea by defining adjacency according to an arbitrary graph structure,
with n nodes and m edges. Now the coordinates of y ∈ Rn correspond to nodes in the graph, and
we penalize the difference between each pair of nodes joined by an edge. Hence D is m × n, with
each row having a −1 and 1 in the appropriate spots, corresponding to an edge in the graph. In this
case, we simply call problem (2) the fused lasso. Note that both the 1d and 2d fused lasso problems
are special cases of this, with the underlying graph a chain and a 2d grid, respectively. But the fused
lasso is a very general problem, as it can be applied to any graph structure that exhibits a piecewise
constant signal across adjacent nodes. See Figure 3 for application in which the underlying graph
has US states as nodes, with two states joined by an edge if they share a border. This graph has 48
nodes (we only include the mainland US states) and 105 edges.

The observant reader may notice a discrepancy between the usual fused lasso definition and ours,
as the fused lasso penalty typically includes an additional term ‖β‖1, the `1 norm of the coefficients
themselves. We refer to this as the sparse fused lasso, and to represent this penalty we just append
the n × n identity matrix to the rows of D. Actually, this carries over to all of the applications
yet to be discussed—if we desire pure sparsity in addition to the structural behavior that is being
encouraged by D, we append the identity matrix to the rows of D.

2.1.2 Linear and polynomial trend filtering

Suppose again that y follows a 1-dimensional structure, but now D is the (n− 2)× n matrix

Dtf,1 =


−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0
. . .

0 0 0 . . . −1 2 −1

 .
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(a) Data (b) Fused Lasso Solution

Figure 3: An example of the fused lasso on an irregular graph. The data y are the log proportion of H1N1
flu cases for each (mainland) US state in the year 2009, shown in (a). This was taken from [6]. The color
map uses white to reflect the lowest measured log proportion, and dark red to reflect the highest, with yellow,
orange, and red in between. We can think of the data as noisy measurements of the true log probabilities
of infection in each state, which likely exhibits some geographic trend. Therefore, we solve the fused lasso
problem on a custom underlying graph, where we connect two states by an edge if they share a border. Shown
in (b) is the solution (for λ = 0.25). Here, groups of states are assigned the same color or “fused” on the west
coast, in the mid west, in the south east, and in the north east. The colors suggest that, among these regions,
you are most likely to get H1N1 flu if you live in the north east, then the west coast, then the midwest, and
then the south east. But there certainly are states that don’t get fused into these regions, like Wisconsin and
Illinois, where the infection rates are exceptionally high.

Then problem (2) is equivalent to linear trend filtering (also called `1 trend filtering) [21]. Just as
the 1d fused lasso penalizes the discrete first derivative, this technique penalizes the discrete second
derivative, and so it gives a piecewise linear fit. This has many applications, namely, any settings
in which the underlying trend is believed to be linear with (unknown) changepoints. Moreover, by
recursively defining

Dtf,k = D1d ·Dtf,k−1 for k = 2, 3, . . . ,

(here D1d is the (n− k− 1)× (n− k) version of (3)) we can fit a piecewise polynomial of any order
k, further extending the realm of applications. We call this polynomial trend filtering of order k.
Figure 4 shows examples of linear, quadratic, and cubic fits.
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(a) Linear
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(b) Quadratic
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(c) Cubic

Figure 4: Solutions of (2) for three problems, with D equal to (a) Dtf,1, (b) Dtf,2, and (c) Dtf,3. These
are piecewise linear, quadratic, and cubic, respectively. (For each problem we chose a different value of the
regularization parameter λ.)

The polynomial trend filtering fits (especially for k = 3) are similar to those that one could obtain
using regression splines and smoothing splines. However, the knots (changes in kth derivative)
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in the trend filtering fits are selected adaptively based on the data, jointly with the inter-knot
polynomial estimation. This phenomenon of simultaneous selection and estimation—analogous to
that concerning the nonzero coefficients in the lasso fit, and the jumps in the piecewise constant
fused lasso fit—does not occur in regression and smoothing splines. Regression splines operate on
a fixed set of knots, and there is a substantial literature on knot placement for this problem (see
Chapter 9.3 of [17], for example). Smoothing splines place a knot at each data point, and implement
smoothness via a generalized ridge regression on the coefficients in a natural spline basis. As a result
(of this `2 shrinkage), they cannot represent both global smoothness and local wiggliness in a signal.
On the other hand, trend filtering has the potential to represent both such features, a property
called “time and frequency localization” in the signal processing field, though this idea has been
largely unexplored. The classic example of a procedure that allows time and frequency localization
is wavelet smoothing, discussed next.

2.1.3 Wavelet smoothing

This is a quite a popular method in signal processing and compression. The main idea is to model
the data as a sparse linear combination of wavelet functions. Perhaps the most common formulation
for wavelet smoothing is SURE shrinkage [9], which solves the lasso optimization problem

minimize
θ∈Rn

1

2
‖y −Wθ‖22 + λ‖θ‖1, (4)

where W ∈ Rn×n has an orthogonal wavelet basis along its columns. By orthogonality, we can
change variables to β = Wθ and then (4) becomes a generalized lasso problem with D = WT .

In many applications it is desirable to use an overcomplete wavelet set, so that W ∈ Rn×m with
n < m. Now problem (4) and the generalized lasso (2) with D = WT (and X = I) are no longer
equivalent, and in fact give quite different answers. In signal processing, the former is called the
synthesis approach, and the latter the analysis approach, to wavelet smoothing. Though attention
has traditionally been centered around synthesis, a recent paper by [12] suggests that synthesis may
be too sensitive, and shows that it can be outperformed by its analysis counterpart.

2.2 A general design matrix X

For any of the fused lasso, trend filtering, or wavelet smoothing penalties discussed above, the
addition of a general matrix X of covariates significantly extends the domain of applications. For a
fused lasso example, suppose that each row of X represents a k1× k2× k3 MRI image of a patient’s
brain, unraveled into a vector (so that p = k1 · k3 · k3). Suppose that y contains some continuous
outcome on the patients, and we model these as a linear function of the MRIs, E(yi|Xi) = βTXi.
Now β also has the structure of a k1×k2×k3 image, and by choosing the matrix D to give the sparse
3d fused lasso penalty (that is, the fused lasso on a 3d grid with an additional `1 penalty of the
coefficients), the solution of (2) attempts to explain the outcome with a small number of contiguous
regions in the brain.

As another example, the inclusion of a design matrix X in the trend filtering setup provides an
alternative way of fitting varying-coefficient models [18, 8]. We consider a data set from [18], which
examines n = 88 observations on the exhaust from an engine fueled by ethanol. The response y is
the concentration of nitrogen dioxide, and the two predictors are a measure of the fuel-air ratio E,
and the compression ratio of the engine C. Studying the interactions between E and C leads the
authors of [18] to consider the model

E(yi|Ei, Ci) = β0(Ei) + β1(Ei) · Ci. (5)

This is a linear model with a different intercept and slope for each Ei, subject to the (implicit)
constraint that the intercept and slope should vary smoothly along the Ei’s. We can fit this using
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(2), in the following way: first we discretize the continuous observations E1, . . . En so that they fall
into, say, 25 bins. Our design matrix X is 88× 50, with the first 25 columns modeling the intercept
β0 and the last 25 modeling the slope β1. The ith row of X is

Xij =


1 if Ei lies in the jth bin

Ci if Ei lies in the (j + 25)th bin

0 otherwise.

Finally, we choose

D =

[
Dtf,3 0

0 Dtf,3

]
,

where Dtf,3 is the cubic trend filtering matrix (the choice Dtf,3 is not crucial and of course can be
replaced by a higher or lower order trend filtering matrix.) The matrix D is structured in this way so
that we penalize the smoothness of the first 25 and last 25 components of β = (β0, β1)T individually.
With X and D as described, solving the optimization problem (2) gives the coefficients shown in
Figure 5, which appear quite similar to those plotted in [18].
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Figure 5: The intercept and slope of the varying-coefficient model (5) for the engine data of [18], fit using
(2) with a cubic trend filtering penalty matrix (and λ = 3). The dashed lines show 85% bootstrap confidence
intervals from 500 bootstrap samples.

We conclude this section with a generalized lasso application of [29], in which the penalty is not
structurally-based, unlike the examples discussed previously. Suppose that we observe y1, . . . yn, and
we believe the majority of these points follow a linear model E(yi|Xi) = βTXi for some covariates
Xi = (Xi1, . . . Xip)

T , except that a small number of the yi are outliers and do not come from this
model. To determine which points are outliers, one might consider the problem

minimize
z∈Rn, β∈Rp

1

2
‖z −Xβ‖22 subject to ‖z − y‖0 ≤ k (6)

for a fixed integer k. Here ‖x‖0 =
∑
i 1(xi 6= 0). Thus by setting k = 3, for example, the solution

ẑ of (6) would indicate which 3 points should be considered outliers, in that ẑi 6= yi for exactly 3
coordinates. A natural convex relaxation of problem (6) is

minimize
z∈Rn, β∈Rp

1

2
‖z −Xβ‖22 + λ‖z − y‖1, (7)
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where we have also transformed the problem from bound form to Lagrangian form. Letting α = y−z,
this can be rewritten as

minimize
α∈Rn, β∈Rp

1

2
‖y − α−Xβ‖22 + λ‖α‖1, (8)

which fits into the form of problem (2), with design matrix X̃ = [ I X ], coefficient vector β̃ = (α, β)T ,
and penalty matrix D = [ I 0 ]. Figure 6 shows a simple example with p = 1.
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Figure 6: A simple example of using problem (2) to perform outlier detection. Written in the form (8), the
blue line denotes the fitted slope β̂, while the red circles indicate the outliers, as determined by the coordinates
of α̂ that are nonzero (for λ = 8).

After reading the examples in this section, a natural question is: when can a generalized lasso
problem (2) be transformed into a regular lasso problem (1)? (Recall, for example, that this is
possible for an orthogonal D, as we discussed in the wavelet smoothing example.) We discuss this
in the next section.

3 When does a generalized lasso problem reduce to a lasso
problem?

If D is p× p and invertible, we can transform variables in problem (2) by θ = Dβ, yielding the lasso
problem

minimize
θ∈Rp

1

2
‖y −XD−1θ‖22 + λ‖θ‖1. (9)

More generally, if D is m× p and rank(D) = m (note that this necessarily means m ≤ p), then we

can still transform variables and get a lasso problem. First we construct a p× p matrix D̃ =

[
D
A

]
with rank(D̃) = p, by finding a (p−m)×p matrix A whose rows are orthogonal to those in D. Then

we change variables to θ = (θ1, θ2)T = D̃β, so that the generalized lasso (2) becomes

minimize
θ∈Rp

1

2
‖y −XD̃−1θ‖22 + λ‖θ1‖1. (10)

8



This is almost a regular lasso, except that the `1 penalty only covers part of the coefficient vector.
First write XD̃−1θ = X1θ1 + X2θ2; then, it is clear that at the solution the second block of the
coefficients is given by a linear regression:

θ̂2 = (XT
2 X2)−1XT

2 (y −X1θ̂1).

Therefore we can rewrite problem (10) as

minimize
θ1∈Rm

1

2
‖(I − P )y − (I − P )X1θ1‖22 + λ‖θ1‖1, (11)

where P = XT
2 (XT

2 X2)−1XT
2 , the projection onto the column space of X2. The LARS algorithm

provides the solution path of such a lasso problem (11), from which we can back-transform to get

the generalized lasso solution: β̂ = D̃−1θ̂.
However, if D is m× p and rank(D) < m, then such a transformation is not possible, and LARS

cannot be used to find the solution path of the generalized lasso problem (2). Further, in this case,
the authors of [12] establish what they call an “unbridgeable” gap between problems (1) and (2),
based on the geometric properties of their solutions.

While several of the examples from Section 2 satisfy rank(D) = m, and hence admit a lasso
transformation, a good number also fall into the case rank(D) < m, and suggest the need for a novel
path algorithm. These are summarized in Table 1. Therefore, in the next section, we derive the
Lagrange dual of problem (2), which leads to a nice algorithm to compute the solution path of (2)
for an arbitrary penalty matrix D.

rank(D) = m

• The 1d fused lasso

• Polynomial trend filtering of any order

• Wavelet smoothing with an orthogonal
wavelet basis

• Outlier detection

rank(D) < m

• The fused lasso on any graph that has
more edges than nodes (for example, the
2d fused lasso)

• The sparse fused lasso on any graph

• Wavelet smoothing with an overcomplete
wavelet set

Table 1: Examples from Section 2 that fall into the cases rank(D) = m and rank(D) < m.

4 The Lagrange dual problem

Roughly speaking, the generalized lasso problem (2) is difficult to analyze directly because the
nondifferentiable `1 penalty is composed with a linear transformation of β. We hence turn to the
corresponding Lagrange dual problem where the story is conceptually clearer. First we consider the
generalized lasso in the signal approximation case, X = I:

minimize
β∈Rn

1

2
‖y − β‖22 + λ‖Dβ‖1. (12)

Following an argument of [21], we rewrite this problem as

minimize
β∈Rn, z∈Rm

1

2
‖y − β‖22 + λ‖z‖1 subject to z = Dβ.

9



The Lagrangian is hence

L(β, z, u) =
1

2
‖y − β‖22 + λ‖z‖1 + uT (Dβ − z),

and to derive the dual problem, we minimize this over β, z. The terms involving β are just a
quadratic, and up to some constants (not depending on u)

min
β

(
1

2
‖y − β‖22 + uTDβ

)
= −1

2
‖y −DTu‖22,

while

min
z

(
λ‖z‖1 − uT z

)
=

{
0 if ‖u‖∞ ≤ λ
−∞ otherwise.

Therefore the dual problem of (12) is

minimize
u∈Rm

1

2
‖y −DTu‖22 subject to ‖u‖∞ ≤ λ. (13)

Immediately we can see that (13) has a “nice” constraint set, {u : ‖u‖∞ ≤ λ}, which is simply a
box, free of any linear transformation. It is also important to note the difference in dimension: the
dual problem has a variable u ∈ Rm, whereas the original problem (12), called the primal problem,
has a variable β ∈ Rn.

When rank(D) < m, the dual problem is not strictly convex, and so it can have many solutions.
On the other hand, the primal problem is always strictly convex and always has a unique solution.
The primal problem is also strictly feasible (it has no constraints), and so strong duality holds
(see Section 5.2 of [4]). Let us denote the solutions of the primal problem (12) and dual problem

(13) by β̂λ and ûλ, respectively, to emphasize their dependence on λ. By taking the gradient of
the Lagrangian L(β, z, u) with respect to β and setting this equal to zero, we get the primal-dual
relationship

β̂λ = y −DT ûλ. (14)

Taking the gradient of L(β, z, u) with respect to z and setting this equal to zero, we find that each
coordinate i = 1, . . .m of the dual solution satisfies

ûλ,i ∈


{+λ} if (Dβ̂λ)i > 0

{−λ} if (Dβ̂λ)i < 0

[−λ, λ] if (Dβ̂λ)i = 0.

(15)

This last equation tells us that the dual coordinates that are equal to λ in absolute value,

B = {i : |ûλ,i| = λ}, (16)

are the coordinates of Dβ̂λ that are “allowed” to be nonzero. But this does necessarily mean that
(Dβ̂λ)i 6= 0 for all i ∈ B.

For a general design matrix X, we can apply a similar argument to derive the dual of (2):

minimize
u∈Rm

1

2
(XT y −DTu)T (XTX)+(XT y −DTu) (17)

subject to ‖u‖∞ ≤ λ, DTu ∈ row(X),

This looks complicated, certainly in comparison to problem (13). However, the inequality constraint
on u is still a simple (un-transformed) box. Moreover, we can make (17) look like (13) by changing
the response y and penalty matrix D. This will be discussed later in Section 7.
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In the next two sections, Sections 5 and 6, we restrict our attention to the case X = I and
derive an algorithm to find a solution path of the dual (13). This gives the desired primal solution
path, using the relationship (14). Since our focus is on solving the dual problem, we write simply
“solution” or “solution path” to refer to the dual versions. Though we will eventually consider an
arbitrary matrix D in Section 6, we begin by studying the 1d fused lasso in Section 5. This case is
especially simple, and we use it to build the framework for the path algorithm in the general D case.

5 The 1d fused lasso

In this setting we have D = D1d, the (n − 1) × n matrix given in (3). Now the dual problem (13)
is strictly convex (since D1d has rank equal to its number of rows), and therefore it has a unique
solution. In order to efficiently compute the solution path, we use a lemma that allows us, at different
stages, to reduce the dimension of the problem by one.

5.1 The boundary lemma

Consider the constraint set {u : ‖u‖∞ ≤ λ} ⊆ Rn−1: this is a box centered around the origin with
side length 2λ. We say that coordinate i of u is “on the boundary” (of this box) if |ui| = λ. For the
1d fused lasso, it turns out that coordinates of the solution that are on the boundary will remain on
the boundary indefinitely as λ decreases. This idea can be stated more precisely as follows:

Lemma 1 (The boundary lemma). Suppose that D = D1d, the 1d fused lasso matrix in (3). For
any coordinate i, the solution ûλ of (13) satisfies

ûλ0,i = λ0 ⇒ ûλ,i = λ for all 0 ≤ λ ≤ λ0,

and
ûλ0,i = −λ0 ⇒ ûλ,i = −λ for all 0 ≤ λ ≤ λ0.

The proof is given in the online supplement. It is interesting to note a connection between the
boundary lemma and a lemma of [14], which states that

β̂λ0,i = β̂λ0,i+1 ⇒ β̂λ,i = β̂λ,i+1 for all λ ≥ λ0 (18)

for this same problem. In other words, this lemma says that no two equal primal coordinates can
become unequal with increasing λ. In general |ûλ,i| = λ is not equivalent to (Dβ̂λ)i 6= 0, but these
two statements are equivalent for the 1d fused lasso problem (see the primal-dual correspondence in
Section 5.3), and therefore the boundary lemma is equivalent to (18).

5.2 Path algorithm

This section is intended to explain the path algorithm from a conceptual point of view, and no
rigorous arguments for its correctness are made here. We defer these until Section 6.1, when we
revisit the problem in the context of a general matrix D.

The boundary lemma describes the behavior of the solution as λ decreases, and therefore it is
natural to construct the solution path by moving the parameter from λ = ∞ to λ = 0. As will be
made apparent from the details of the algorithm, the solution path is a piecewise linear function of
λ, with a change in slope occurring whenever one of its coordinate paths hits the boundary. The key
observation is that, by the boundary lemma, if a coordinate hits the boundary it will stay on the
boundary for the rest of the path down to λ = 0. Hence when it hits the boundary we can essentially
eliminate this coordinate from consideration (since we know its value at each smaller λ), recompute
the slopes of the other coordinate paths, and move until another coordinate hits the boundary.
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As we construct the path, we maintain two lists: B = B(λ), which contains the coordinates
that are currently on the boundary; and s = s(λ), which contains their signs. For example, if we
have B(λ) = (5, 2) and s(λ) = (−1, 1), then this means that ûλ,5 = −λ and ûλ,2 = λ. We call the
coordinates in B the “boundary coordinates”, and the rest the “interior coordinates”. Now we can
describe the algorithm:

Algorithm 1 (Dual path algorithm for the 1d fused lasso).

• Start with λ0 =∞, B = ∅, and s = ∅.

• For k = 0, . . . n− 2:

1. Compute the solution at λk by least squares, as in (20).

2. Continuing in a linear direction from the solution, compute λk+1, when an interior coor-
dinate will next hit the boundary, as in (21) and (22).

3. Add this coordinate to B and its sign to s.

The algorithm’s details appear slightly more complicated, but this is only because of notation.
If B = (i1, . . . ik), then we define for a matrix A and a vector x

AB =

 Ai1
...
Aik

 and xB = (xi1 , . . . xik)T ,

where Ai is the ith row of A. In words: AB gives the rows of A that are in B, and xB gives
the coordinates of x in B. We use the subscript −B, as in A−B or x−B, to index over the rows
or coordinates except those in B. Note that B as defined above (in the paragraph preceding the
algorithm) is consistent with our previous definition (16), except that here we treat B as an ordered
list instead of a set (its ordering only needs to be consistent with that of s). Also, we treat s as a
vector when convenient.

When λ =∞, the problem is unconstrained, and so clearly B = ∅ and s = ∅. But more generally,
suppose that we are at the kth iteration, with boundary set B = B(λk) and signs s = s(λk). By the
boundary lemma, the solution satisfies

ûλ,B = λs for all λ ∈ [0, λk].

Therefore, for λ ≤ λk, we can reduce the optimization problem (13) to

minimize
u−B

1

2
‖y − λ(DB)T s− (D−B)Tu−B‖22 subject to ‖u−B‖∞ ≤ λ, (19)

which involves solving for just the interior coordinates. By construction, ûλk,−B lies strictly between
−λk and λk in every coordinate. Therefore it is found by simply minimizing the objective function
in (19), which gives the least squares estimate

ûλk,−B =
(
D−B(D−B)T

)−1
D−B

(
y − λk(DB)T s

)
. (20)

Now let a− λkb denote the right-hand side above. For λ ≤ λk, the interior solution will continue to
be ûλ,−B = a − λb until one of its coordinates hits the boundary. This critical value is determined
by solving, for each i, the equation ai − λbi = ±λ; a simple calculation shows that the solution is

ti =
ai

bi ± 1
=

[(
D−B(D−B)T

)−1
D−By

]
i[(

D−B(D−B)T
)−1

D−B(DB)T s
]
i
± 1

(21)
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(only one of +1 or −1 will yield a value ti ∈ [0, λk]), which we call the “hitting time” of coordinate
i. We take λk+1 to be maximum of these hitting times

λk+1 = max
i

ti. (22)

Then we compute
ik+1 = argmax

i
ti and sk+1 = sign

(
ûλk+1,ik+1

)
,

and append ik+1 and sk+1 to B and s, respectively.

5.3 Properties of the solution path

Here we study some of the path’s basic properties. Again we defer any rigorous arguments until
Section 6.2, when we consider a general penalty matrix D. Instead we demonstrate them by way of
a simple example.

Consider Figure 7(a), which shows the coordinate paths ûλ,i for an example with n = 8. Recall
that it is natural to interpret the paths from right to left (λ =∞ to λ = 0). Initially all of the slopes
are zero, because when λ = ∞ the solution is just the least squares estimate (DDT )−1Dy, which
has no dependence on λ. When a coordinate path first hits the boundary (the topmost path, drawn
in red) the slopes of the other paths change, and they don’t change again until another coordinate
hits the boundary (the bottommost path, drawn in green), and so on, until all coordinates are on
the boundary.
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Figure 7: Dual and primal coordinate paths for a small problem with n = 8.

The picture suggests that the path ûλ is continuous and piecewise linear with respect to λ, with
changes in slope or “kinks” at the values λ1, . . . λn−1 visited by the algorithm. (Piecewise linearity
is obvious from the algorithm’s construction of the path, but continuity is not.) This is also true in
the general D case, although the solution path can have more than m kinks for an m×n matrix D.
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On the other hand, Figure 7(b) shows the corresponding primal coordinate paths

β̂λ,i = (y −DT ûλ)i.

As ûλ is a continuous piecewise linear function of λ, so is β̂λ, again with kinks at λ1, . . . λn−1. In
contrast to the dual versions, it is natural to interpret the primal coordinate paths from left to right,
because in this direction the coordinate paths become adjoined, or “fused”, at some values of λ. The
primal picture suggests that these fusion values are the same as the kinks λ1, . . . λn−1, that is:

• Primal-dual correspondence for the 1d fused lasso. The values of λ at which two primal
coordinates fuse are exactly the values of λ at which a dual coordinate hits the boundary.

A similar property holds for the fused lasso on an arbitrary graph, though the primal-dual corre-
spondence is a little more complicated for this case.

Note that as λ decreases in Figure 7(a), no dual coordinate paths leave the boundary. This is
prescribed by the boundary lemma. As λ increases in Figure 7(b), no primal two coordinates split
apart, or “un-fuse”. This is prescribed by a lemma of [14] that we paraphrased in (18), and the two
lemmas are equivalent.

6 A general penalty matrix D

Now we consider (13) for general m × n matrix D. The first question that comes to mind is: does
the boundary lemma still hold? If DDT is diagonally dominant, that is

(DDT )ii ≥
∑
j 6=i
|(DDT )ij | for i = 1, . . .m, (23)

then indeed the boundary lemma is still true. (See the online supplement.) Therefore the path
algorithm for such a D is the same as that presented in the previous section, Algorithm 1.

It is easy to check the 1d fused lasso matrix is diagonally dominant, as both the left- and right-
hand sides of the inequality in (23) are equal to 2 when D = D1d. Unfortunately, neither the 2d
fused lasso matrix nor any of the trend filtering matrices satisfy condition (23). In fact, examples
show that the boundary lemma does not hold for these cases. However, inspired by the 1d fused
lasso, we can develop a similar strategy to compute the full solution path for an arbitrary matrix D.
The difference is: in addition to checking when coordinates will hit the boundary, we have to check
when coordinates will leave the boundary as well.

6.1 Path algorithm

Recall that we defined, at a particular λk, the “hitting time” of an interior coordinate path to the
value of λ ≤ λk at which this path hits the boundary. Similarly, let us define the “leaving time”
of a boundary coordinate path to be the value of λ ≤ λk at which this path leaves the boundary
(we will make this idea more precise shortly). We call the coordinate with the largest hitting time
the “hitting coordinate”, and the one with the largest leaving time the “leaving coordinate”. As
before, we maintain a list B of boundary coordinates, and s contains their signs. The algorithm for
a general matrix D is:

Algorithm 2 (Dual path algorithm for a general D).

• Start with k = 0, λ0 =∞, B = ∅, and s = ∅.

• While λk > 0:

1. Compute a solution at λk by least squares, as in (26).
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2. Compute the next hitting time hk+1, as in (27) and (28).

3. Compute the next leaving time lk+1, as in (29), (30), and (31).

4. Set λk+1 = max{hk+1, lk+1}. If hk+1 > lk+1 then add the hitting coordinate to B and
its sign to s, otherwise remove the leaving coordinate from B and its sign from s. Set
k = k + 1.

Although the intuition for this algorithm comes from the 1d fused lasso problem, its details
are derived from a more technical point of view, via the Karush-Kuhn-Tucker (KKT) optimality
conditions. For our problem (13), the KKT conditions are

DDT ûλ −Dy + αγ = 0, (24)

where ûλ, α, γ are subject to the constraints

‖ûλ‖∞ ≤ λ (25a)

α ≥ 0 (25b)

α · (‖ûλ‖∞ − λ) = 0 (25c)

‖γ‖1 ≤ 1 (25d)

γT ûλ = ‖ûλ‖∞. (25e)

Constraints (25d), (25e) say that γ is a subgradient of the function x 7→ ‖x‖∞ evaluated at x = ûλ.
Subgradients are a generalization of gradients to the case of nondifferentiable functions—for an
overview, see [2].

A necessary and sufficient condition for ûλ to be a solution to (13) is that ûλ, α, γ satisfy (24)
and (25a)–(25e) for some α and γ. The basic idea is that hitting times are events in which (25a)
is violated, and leaving times are events in which (25b)–(25e) are violated. We now describe what
happens at the kth iteration. At λ = λk, the path’s solution is ûλk,B = λks for the boundary
coordinates, and the least squares estimate

ûλk,−B =
(
D−B(D−B)T

)+
D−B

(
y − λk(DB)T s

)
(26)

for the interior coordinates. Here A+ denotes the (Moore-Penrose) pseudoinverse of a matrix A,
which is needed as D may not have full row rank. Write ûλk,−B = a− λkb. Like the 1d fused lasso
case, we decrease λ and continue in a linear direction from the interior solution at λk, proposing
ûλ,−B = a − λb. We first determine when a coordinate of a − λb will hit the boundary. Setting
ai − λbi = ±λ and solving for λ gives the hitting time of the ith interior coordinate,

t
(hit)
i =

ai
bi ± 1

=

[(
D−B(D−B)T

)+
D−By

]
i[(

D−B(D−B)T
)+
D−B(DB)T s

]
i
± 1

. (27)

(Only one of +1 or −1 will yield a value in [0, λk].1) Hence the next hitting time is

hk+1 = max
i

t
(hit)
i . (28)

The new step is to determine when a boundary coordinate will next leave the boundary. After
examining the constraints (25b)–(25e), we first define

ci = si ·
[
DB
[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

]
y

]
i

(29)

di = si ·
[
DB
[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

]
(DB)T s

]
i

,

1If i is the coordinate that left the boundary in the last iteration, then the choice of ±1 here is actually determined
by the sign of the boundary opposite to the one it left.
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and then we can express the leaving time of the ith boundary coordinate as

t
(leave)
i =

{
ci/di if ci < 0 and di < 0

0 otherwise.
(30)

Therefore the next leaving time is

lk+1 = max
i

t
(leave)
i . (31)

The last step of the iteration moves until the next critical event—hitting time or leaving time,
whichever happens first. We can verify that the path visited by the algorithm satisfies the KKT
conditions (24) and (25a)–(25e) at each λ, and hence is indeed a solution path of the dual problem
(13). This argument, as well a derivation of the leaving times given in (29) and (30), can be found
in the online supplement.

6.2 Properties of the solution path

Suppose that the algorithm terminates after T iterations. By construction, the returned solution
path ûλ is piecewise linear with respect to λ, with kinks at λ1 ≥ . . . ≥ λT . Continuity, on the other
hand, is a little more subtle: because of the specific choice of the pseudoinverse solution in (26), the
path ûλ is continuous over λ. (When A does not have full column rank, there are many minimizers
of ‖z − Ax‖2, and x = (ATA)+AT z is only one of them.) The proof of continuity appears in the
online supplement.

Since the primal solution path β̂λ can be recovered from ûλ by the linear transformation (14),

the path β̂λ is also continuous and piecewise linear in λ. The kinks in this path are necessarily a
subset of {λ1, . . . λT }. However, this could be a strict inclusion as rank(D) could be < m, that is,
DT could have a nontrivial null space. So when does the primal solution path change slope? To
answer this question, it helps to write the solutions in a more explicit form.

For any given λ, let B = B(λ) and s = s(λ) be the current boundary coordinates and their signs.
Then we know that the dual solution can be written as

ûλ,B = λs

ûλ,−B =
(
D−B(D−B)T

)+
D−B

(
y − λ(DB)T s

)
.

This means that the dual fit DT ûλ is just

DT ûλ = (DB)T ûλ,B + (D−B)T ûλ,−B = λ(DB)T s+ Prow(D−B)

(
y − λ(DB)T s

)
, (32)

where PM denotes the projection operator onto a linear subspace M (here the row space of D−B).
Therefore, applying (14), the primal solution is given by

β̂λ =
(
I − Prow(D−B)

)(
y − λ(DB)T s

)
= Pnull(D−B)

(
y − λ(DB)T s

)
. (33)

Equation (33) is useful for several reasons. Later, in Section 10, we use it along with a geometric

argument to prove a result on the degrees of freedom of β̂λ. But first, equation (33) can be used

to answer our immediate question about the primal path’s changes in slope: it turns out that β̂λ
changes slope at λk+1 if null(D−B(λk)) 6= null(D−B(λk+1)), that is, the null space of D−B changes
from iterations k to k + 1. (The proof is left to the online supplement.) Thus we have achieved a
generalization of the primal-dual correspondence of Section 5.3:

• Primal-dual correspondence for a general D. The values of λ at which at which the primal
coordinates changes slope are the values of λ at which the null space of D−B(λ) changes.
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For various applications, the null space of D−B can have a nice interpretation. We present the
case for the fused lasso on an arbitrary graph G, with m edges and n nodes. We assume without
a loss of generality that G is connected (otherwise the problem decouples into smaller fused lasso
problems). Recall that in this setting each row of D gives the difference between two nodes connected
by an edge. Hence the null space of D is spanned by the vector of all ones

1 = (1, 1, . . . 1)T ∈ Rn.

Furthermore, removing a subset of the rows, as in D−B, is like removing the corresponding subset
of edges, yielding a subgraph G−B. It is not hard to see that the dimension of the null space of D−B
is equal to the number of connected components in G−B. In fact, if G−B has connected components
A1, . . . Ak, then the null space of D−B is spanned by 1A1

, . . .1Ak ∈ Rm, the indicator vectors on
these components,

(1Ai)j = 1(node j ∈ Ai) for j = 1, . . . n.

When G−B has connected components A1, . . . Ak, the projection Pnull(D−B) performs a coordinate-
wise average within each group Ai:

Pnull(D−B)(x) =

k∑
i=1

(
(1Ai)

Tx

|Ai|

)
· 1Ai .

Therefore, recalling (33), we see that coordinates of the primal solution β̂λ are constant (or in other
words, fused) on each group Ai.

As λ decreases, the boundary set B can both grow and shrink in size; this corresponds to adding
an edge to and removing an edge from the graph G−B, respectively. Since the null space of D−B can
only change when G−B undergoes a change in connectivity, the general primal-dual correspondence
stated above becomes:

• Primal-dual correspondence for the fused lasso on a graph. In two parts:

(i) the values of λ at which two primal coordinate groups fuse are the values of λ at which
a dual coordinate hits the boundary and disconnects the graph G−B(λ);

(ii) the values of λ at which two primal coordinate groups un-fuse are the values of λ at which
a dual coordinate leaves the boundary and reconnects the graph G−B(λ).

Figure 8 illustrates this correspondence for a graph with n = 6 nodes and m = 9 edges. Note
that the primal-dual correspondence for the fused lasso on a graph, as stated above, is consistent
with that given in Section 5.3. This is because the 1d fused lasso corresponds to a chain graph, so
removing an edge always disconnects the graph, and furthermore, no dual coordinates ever leave the
boundary by the boundary lemma.

7 A general design matrix X

In the last two sections, we focused on the signal approximation case X = I. In this section we
consider the problem (2) when X is a general n× p matrix of predictors (and D is a general m× p
penalty matrix). Our strategy is to again solve the equivalent dual problem (17). At first glance
this problem looks much more difficult than the dual (13) when X = I. Moreover, the relationship
between the primal and dual solutions is now

β̂λ = (XTX)+(XT y −DT ûλ) + b, (34)

where b ∈ null(X), which is also more complicated.
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Figure 8: Dual and primal coordinate paths for the fused lasso applied to the shown graph structure. As λ
decreases, the first dual coordinate to hit the boundary is u9, but removing the corresponding edge doesn’t
disconnect the graph, so nothing happens in the primal setting. Then u6 hits the boundary, and again,
removing its edge doesn’t affect the graph’s connectivity, so nothing happens. But when u5 hits the boundary
next, removing its edge disconnects the graph (the node marked β5 becomes its own connected component),
and hence two primal coordinate paths fuse. Note that u8 leaves the boundary at some point (the red dashed
vertical line). Adding its edge reconnects the graph, and therefore two primal coordinates un-fuse.
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It turns out that we can make (17) look more familiar—that is, more like (13)—by defining

ỹ = XX+y and D̃ = DX+. (35)

(Here the pseudoinverse of a rectangular matrix A is A+ = (ATA)+AT .) Abbreviating P = Pcol(X) =
XX+, the objective function in (17) becomes

(XT y −DTu)T (XTX)+(XT y −DTu) = yTPy − 2yT D̃Tu+ uT D̃D̃Tu

= (y − D̃Tu)TP (y − D̃Tu)

= (y − D̃Tu)TP 2(y − D̃Tu)

= (ỹ − D̃Tu)T (ỹ − D̃Tu).

The first equality above is by the definition of D̃; the second holds because PD̃T = D̃T ; the third
is because P is idempotent; and the fourth is again due to the identity PD̃T = D̃T . Therefore we
can rewrite the dual problem (17) in terms of our transformed data and penalty matrix:

minimize
u∈Rm

1

2
‖ỹ − D̃Tu‖22 (36)

subject to ‖u‖∞ ≤ λ, DTu ∈ row(X),

It is also helpful to rewrite the relationship (34) in terms of our new data and penalty matrix:

β̂λ = X+(ỹ − D̃T ûλ) + b, (37)

where b ∈ null(X), which implies that the fit is simply

Xβ̂λ = ỹ − D̃T ûλ. (38)

Modulo the row space constraint, DTu ∈ row(X), problem (36) has exactly the same form as
the dual (13) studied in Section 6. In the case that X has full column rank, this extra constraint
has no effect, so we can treat the problem just as before. We discuss this next.

7.1 The case rank(X) = p

Suppose that rank(X) = p, so row(X) = Rp (note that this necessarily means p ≤ n). Hence we
can remove the constraint DTu ∈ row(X) from problem (36), so that it is really just the same as

problem (13) that we solved in Section 6, except with y,D replaced by ỹ, D̃, respectively. Therefore
we can apply Algorithm 2 to find a dual solution path ûλ. This gives the (unique) primal solution
path using (37) with b = 0 (since null(X) = {0}), or the fit using (38).

Fortunately, all of the properties in Section 6.2 apply to the current setting as well. First, we
know that the constructed dual path ûλ is continuous and piecewise linear, because we are using the
same algorithm as before, just with a different data vector and penalty matrix. This means that β̂λ
is also continuous and piecewise linear, since it is given by the linear transformation (37). Next, we

can follow the same logic in writing out the dual fit D̃T ûλ to conclude that

β̂λ = X+Pnull(D̃−B)

(
ỹ − λ(D̃−B)T s

)
, (39)

or
Xβ̂λ = Pnull(D̃−B)

(
ỹ − λ(D̃−B)T s

)
. (40)

Hence 0 = D̃−BXβ̂λ = D−Bβ̂λ, which means that β̂λ ∈ null(D−B), as before.
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Though working with equations (39) and (40) may seem complicated (as one would need to

expand the newly defined variables ỹ, D̃ in terms of y,D), it is straightforward to show that the
general primal-dual correspondence still holds here. This is given in the online supplement. That is:
the primal path β̂λ changes slope at the values of λ at which the null space of D−B(λ) changes. For
the fused lasso on a graph G, we indeed still get fused groups of coordinates in the primal solution,
since β̂λ ∈ null(D−B) implies that β̂λ is fused on the connected components of G−B. Therefore,
fusions still correspond to dual coordinates hitting the boundary and disconnecting the graph, and
un-fusions still correspond to dual coordinates leaving the boundary and reconnecting the graph.

7.2 The case rank(X) < p

If rank(X) < p, then row(X) is a strict subspace of Rp. One easy way to avoid dealing with the
constraint DTu ∈ row(X) of (36) is to add an `2 penalty to our original problem, giving

minimize
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1 +

ε

2
‖β‖22, (41)

where ε > 0 is fixed. This is analogous to the elastic net, which adds an `2 penalty to the lasso
criterion [34]. Problem (41) can be rewritten as

minimize
β∈Rp

1

2
‖y∗ − (X∗)β‖22 + λ‖Dβ‖1,

where y∗ = (y, 0)T and X∗ =

[
X√
εI

]
. Since rank(X∗) = p, we can now use the strategy discussed

in the last section, which is just applying Algorithm 2 to a transformed problem, to find the solution
path of (41). Putting aside computational concerns, it may still be preferable to study problem (41)
instead of the original generalized lasso problem (2). Some reasons are:

• the (unique) solution path of (41) may be more stable than the (non-unique) generalized lasso
path, analogous to the behavior of the elastic net and lasso paths;

• the fit of (41) may actually outperform the generalized lasso fit in terms prediction error, again
like the comparison between the elastic net and lasso prediction errors.

Though adding an `2 penalty is easier and, as we suggested, perhaps even desirable, we can still
solve the unmodified problem (2) in the rank(X) < p case, by looking at its dual (36). We only give
a rough sketch of the path algorithm because in the present setting the solution and its computation
are more complicated.

We can rewrite the row space constraint in (36) as DTu ⊥ null(X). Write P = Pnull(X), and
then problem (36) is

minimize
u∈Rm

1

2
‖ỹ − D̃Tu‖22 (42)

subject to ‖u‖∞ ≤ λ, (DP )Tu = 0.

To find a solution path of (42), the KKT conditions (24) and (25a)-(25e) need to be modified to
incorporate the new equality constraint. These are now

D̃D̃T ûλ − D̃ỹ + αγ +DPδ = 0,

where ûλ, α, γ, δ are subject to the same constraints as before, (25a)–(25e), and additionally (DP )T ûλ =
0. Instead of simply using the appropriate least squares estimate at each iteration, we now need to
solve for ûλ and δ jointly. When λ =∞, this can be done by solving the block system[

D̃D̃T DP
(DP )T 0

] [
ûλ
δ

]
=

[
D̃ỹ
0

]
, (43)
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and in future iterations the expressions are similar. Having done this, satisfying the rest of the
constraints (25a)–(25e) can be done by finding the hitting and leaving times just as we did previously.

8 Computational considerations

Here we discuss an efficient implementation of Algorithm 2, which gives the solution path of the
signal approximation problem (12), after applying the transformation (14) from dual to primal
variables. For a design with rank(X) = p, we can modify y and X as in (35), and then the same
algorithm gives the solution path of (2), this time relying on the transformation (37) (with b = 0)
for the primal path.

At each iteration of the algorithm, the dominant work is in computing expressions of the form(
D−B(D−B)T

)+
D−Bx

for a vector x ∈ Rn, where B is the current boundary set (see equations (27) and (29)). Equivalently,
the complexity of each iteration is based on finding

argmin
v

{
‖v‖2 : v ∈ argmin

w
‖x− (D−B)Tw‖2

}
, (44)

the least squares solution with the smallest `2 norm. In the next iteration, D−B has either one less
or one more row (depending on whether a coordinate hit or left the boundary).

We can exploit the fact that the problems (44) are highly related from one iteration to the next
(our strategy that is similar to that in the LARS implementation). Suppose that when B = ∅, we
solve the problem (44) by using a matrix factorization (for example, a QR decomposition). In future
iterations, this factorization can be efficiently updated after a row has been deleted from or added
to D−B. This allows us to compute the new solution of (44) with much less work than it would take
to solve the problem from “scratch”.

Recall that D is m× n, and the dual variable u is m-dimensional. Let T denote the number of
iterations taken by the algorithm (note that T ≥ m, and can be strictly greater if dual coordinates
leave the boundary). When m ≤ n, we can use a QR decomposition of DT to compute the full dual
solution path in

O(mn2 + Tm2)

operations. When m > n, using a QR decomposition of D allows us to compute the full dual solution
path in

O(m2n+ Tn2)

operations. The main idea behind this implementation is fairly straightforward. However, the
details are somewhat complicated because we require the minimum `2 norm solution (44), instead
of a generic solution, to the appropriate least squares problem at each iteration. See Chapters 5 and
12 of [15] for an extensive coverage of the QR decomposition.

We mention two simple points to improve practical efficiency:

• The algorithm starts at the fully regularized end of the path (λ =∞) and works towards the
un-regularized solution (λ = 0). Therefore, for problems in which the highly or moderately
regularized solutions are the only ones of interest, the algorithm can compute only part of the
path and terminate early. This could end up being a large savings in practice.

• One can obtain an approximate solution path by not permitting dual coordinates to leave the
boundary (achieved by setting lk+1 = 0 in Step 3 of Algorithm 2). This makes T = m, and so
computing this approximate path only requires O(mn2) or O(m2n) operations when m ≤ n
or m > n, respectively. This approximation can be quite accurate if the number times a dual
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coordinate leaves the boundary is (relatively) small. Furthermore, its legitimacy is supported
by the following fact: for D = I (the lasso problem) and rank(X) = p, this approximate path
is exactly the LARS path when LARS is run in its original (unmodified) state. We discuss
this in the next section.

Finally, it is important to note that if one’s goal is to find the solution of (12) or (2) over a discrete
set of λ values, and the problem size is very large, then it is unlikely that our path algorithm is the
most efficient approach. A reason here is the same reason that LARS is not generally used to solve
large-scale lasso problems: the set of critical points (changes in slope) in the piecewise linear solution

path β̂λ becomes very dense as the problem size increases. But there is a further disadvantage is
that is specific to the generalized lasso (and not the lasso). At the regularized end of the path (which
is typically the region of interest), the generalized lasso solution is orthogonal to many of the rows
of D; therefore we must solve large least squares problems, as in (26), in order to compute the path.
On the other hand, at the regularized end of the lasso path, the solution lies in the span of a small
number of columns of X; therefore we only need to solve small least squares problems to compute
the path.

For solving a large generalized lasso (or lasso) problem at a fixed λ, it is preferable to use a
convex optimization technique that was specifically developed for the purposes of computational
efficiency. First-order methods, for example, can efficiently solve large-scale instances of (12) or (2)
for λ in a discrete set (see [1] as an example). Another optimization method of recent interest is
coordinate descent [33], which is quite efficient in solving the lasso at discrete values of λ [14], and is
favored for its simplicity. But coordinate descent cannot be used for the minimizations (12) and (2),
because the penalty term ‖Dβ‖1 is not separable in β, and therefore coordinate descent does not
necessarily converge. In the important signal approximation case (12), however, the dual problem
(13) is separable, so coordinate descent will indeed converge if applied to the dual. Moreover, for
various applications, the matrix D is sparse and structured, which means that the coordinate-wise
updates for (13) are very fast. This makes coordinate descent on the dual a promising method for
solving many of the signal approximation problems from Section 2.1.

9 Connection to LARS

In this section, we return to the LARS algorithm, described in the introduction as a point of
motivation for our work. Here we assume that D = I, so that (2) is the same as the standard lasso

problem (1); furthermore we assume that rank(X) = p. Our algorithm computes the lasso path β̂λ,

via the dual path ûλ (using Algorithm 2 applied to ỹ, D̃ as defined in (35)). Another way of finding
the lasso path is to use the LARS algorithm in its “lasso” mode. Since the problem is strictly convex
(X has full column rank), there is only one solution at each λ, so of course these two algorithms
must give the same result.

In its original or unmodified state, LARS returns a different path, obtained by selecting variables
in order to continuously decrease the maximal absolute correlation with the residual (technically
these are inner products with the residual, but they become correlations if we think of standardized
data). We refer to this as the “LARS path”. Interestingly, the LARS path can be viewed as an
approximation to the lasso path (see [11] for an elegant interpretation and discussion of this). In our
framework, we can obtain an approximate dual solution path if we never check for dual coordinates
leaving the boundary, which can be achieved by dropping Step 3 from Algorithm 2 (or more precisely,
by setting lk+1 = 0 for each k). If we denote the resulting dual path by ũλ, then this suggests a
primal path

β̃λ = (XTX)−1(XT y − ũλ), (45)

based on the transformation (34) (noting that b = 0 as null(X) = {0}). The question is: how does
this approximate solution path β̃λ compare to the LARS path?
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Figure 9 shows the two paths in question. On the left is the familiar plot of [11], showing the
LARS path for the “diabetes data”. The colored dots on the x-axis mark when variables enter the
model. The right plot shows our approximate solution path on this same data set, with vertical
dashed lines marking when variables (coordinates) hit the boundary. The paths look identical, and
this is not a coincidence: we show that our approximate path, which is given by ignoring dual
coordinates leaving the boundary, is equal to the LARS path in general.

0 500 1000 1500 2000 2500 3000 3500

−
50

0
0

50
0

LARS

l1 norm

123 4 5 67 89 10
1

2

3

4

5

6

7

8

9

10
●●● ● ● ●● ●● ●

0 500 1000 1500 2000 2500 3000 3500

Our approximation

l1 norm

C
oe

ffi
ci

en
t p

at
hs

Figure 9: Comparing the LARS path and our approximate lasso path, on the diabetes data. For this data
set n = 442 and p = 10. The paths by parametrized by the `1 norm of their (respective) coefficient vectors.

Lemma 2 (Equivalence to LARS). Suppose that rank(X) = p and consider using Algorithm 2

to compute an approximate lasso path in the following way: we use ỹ = XX+y, D̃ = X+ in place of
y,D, and we ignore Step 3 (that is, set lk+1 = 0). Let ũλ denote the corresponding dual path, and
define a primal path β̃λ according to (45). Then β̃λ is exactly the LARS path.

Proof. First define the residual rλ = y −Xβ̃λ. Notice that by rearranging (45), we get ũλ = XT rλ.
Therefore, the coordinates of the dual path are equal to the correlations (inner products) of the
columns of X with the current residual. Hence we have a procedure that:

• moves in a direction so that the absolute correlation with the current residual is constant
within B (and maximal among all variables) for all λ;

• adds variables to B once their absolute correlation with the residual matches that realized in
B.

This almost proves that β̃λ is the LARS path, with B being the “active set” in LARS terminology.
What remains to be shown is that the variables not in B are all assigned zero coefficients. But,
recalling that D = I, the same arguments given in Section 6.2 and Section 7.1 apply here to give
that β̃λ ∈ null(I−B) (really, ũλ still solves a sequence of least squares problems, and the only
difference between ũλ and ûλ is in how we construct B). This means that β̃λ,−B = 0, as desired.
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10 Degrees of freedom

In applied statistics, degrees of freedom describes the effective number of parameters used by a
fitting procedure. This is typically easy to compute for linear procedures (linear in the data y) but
difficult for nonlinear, adaptive procedures. In this section, we derive the degrees of freedom of the
fit of the generalized lasso problem, when rank(X) = p and D is an arbitrary penalty matrix. This
produces corollaries on degrees of freedom for various problems presented in Section 2. We then
briefly discuss model selection using these degrees of freedom results, and lastly we discuss the role
of shrinkage, a fundamental property of `1 regularization.

10.1 Degrees of freedom results

We assume that the data vector y ∈ Rn is drawn from the normal model

y ∼ N(µ, σ2I),

and the design matrix X is fixed (nonrandom). For a function g : Rn → Rn, with ith coordinate
function gi : Rn → R, the degrees of freedom of g is defined as

df(g) =
1

σ2

n∑
i=1

Cov
(
gi(y), yi

)
.

For our problem, the function of interest is g(y) = Xβ̂λ(y), for fixed λ.
An alternative and convenient formula for degrees of freedom comes from Stein’s unbiased risk

estimate [30]. If g is continuous and almost differentiable, then Stein’s formula states that

1

σ2

n∑
i=1

Cov
(
gi(y), yi

)
= E[(∇ · g)(y)]. (46)

Here ∇ · g =
∑n
i=1 ∂gi/∂yi is called the divergence of θ. This is useful because typically the right-

hand side of (46) is easier to calculate; for our problem this is the case. But using Stein’s formula
requires checking that the function is continuous and almost differentiable. In addition to checking
these regularity conditions for g(y) = Xβ̂λ(y), we establish below that for almost every y the fit

Xβ̂λ(y) is a locally affine projection. Essentially, this allows us to take the divergence in (33) when
X = I, or (40) for the general X case, and treat B and s as constants.

As in our development of the path algorithm in Sections 5, 6, and 7, we first consider the case
X = I, because it is easier to understand. Notice that we can express the dual fit as DT ûλ(y) =
PCλ(y), the projection of y onto the convex polytope

Cλ = {DTu : ‖u‖∞ ≤ λ} ⊆ Rn.

From (14), the primal solution is just the residual from this projection, β̂λ(y) = (I − PCλ)(y). The
projection map onto a convex set is always nonexpansive, that is, Lipschitz continuous with constant
1. In fact, so is the residual from projecting onto a convex set (for example, see the proof of Theorem

1.2.2 in [27]). Therefore β̂λ(y) is nonexpansive in y, and hence continuous and almost differentiable
(this follows from the standard proof a result called “Rademacher’s theorem”; for example, see
Theorem 2 in Section 3.2 of [13]).

Furthermore, thinking geometrically about the projection map onto Cλ yields a crucial insight.
Examine Figure 10—as drawn, it is clear that we can move the point y slightly and it still projects
to the same face of Cλ. In fact, it seems that the only points y for which this property does not hold
necessarily lie on rays that emanate orthogonally from the corners of Cλ (two such rays are drawn
leaving the bottom right corner). In other words, we are lead to believe that for almost every y, the
projection map onto Cλ is a locally constant affine projection. This is indeed true:
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Lemma 3. For fixed λ, there exists a set Nλ such that:

(a) Nλ has Hausdorff dimension n− 1, hence Lebesgue measure zero;

(b) for any y /∈ Nλ, there exists a neighborhood U of y such that PCλ : U → Rn is simply the
projection onto an affine subspace. In particular, the affine subspace is

λ(DB)T s+ row(D−B), (47)

where B and s are the boundary set and signs for a solution ûλ(y) of the dual problem (13),

B = {i : |ûλ,i(y)| = λ} and s = sign
(
ûλ,B(y)

)
.

The quantity (47) is well-defined in the sense that it is invariant under different choices of B
and s (as the dual solution may not be unique).

The proof, which follows the intuition described above, is given in the online supplement.

y

Cλ = {DTu : ‖u‖∞ ≤ λ}

λ(DB)T s+ row(D−B)
β̂λ(y)

DT ûλ(y)

0

1

Figure 10: An illustration of the geometry surrounding ûλ and β̂λ, for the case X = I. Recall that β̂λ(y) =
y−DT ûλ(y), where DT ûλ(y) is the projection of y onto the convex polytope Cλ = {DTu : ‖u‖∞ ≤ λ}. Almost
everywhere, small perturbations of y don’t change the face on which its projection lies. The exceptional set
Nλ of points for which this property does not hold has dimension n− 1, and is a union of rays like the two
drawn as dotted lines in the bottom right of the figure.

Hence we have the following result:

Theorem 1. For fixed λ, the solution β̂λ of the signal approximation problem (12) has degrees of
freedom

df(β̂λ) = E[nullity(D−B(y))],

where the nullity of a matrix is the dimension of its null space. The expectation here is taken over
B(y), the boundary set of a dual solution ûλ(y).
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Note: above, we can choose any dual solution at y to construct the boundary set B(y), because
by Lemma 3, all dual solutions give rise to the same linear subspace null(D−B(y)) (almost everywhere
in y).

Proof. Consider y /∈ Nλ, and let B and s be the boundary set and signs of a dual solution ûλ(y).
By Lemma 3, there is a neighborhood U of y such that

β̂λ(y′) = (I −DT ûλ)(y′) = Pnull(D−B)

(
y′ − λ(DB)T s

)
for all y′ ∈ U . Taking the divergence at y we get

(∇ · β̂λ)(y) = tr(Pnull(D−B)) = nullity(D−B),

since the trace of a projection matrix is just its rank. This holds for almost every y because Nλ has
measure zero, and we can use Stein’s formula to conclude that df(β̂λ) = E[nullity(D−B(y))].

We now consider problem (2), with the predictor matrix satisfying rank(X) = p, and it turns out

that the same degrees of freedom formula holds for the fit Xβ̂λ. This is relatively straightforward
to show, but requires sorting out the details of how to turn statements involving ỹ, D̃ into those
involving y,D. First, by the same arguments as before, we know that Xβ̂λ(ỹ) is nonexpansive as

a function of ỹ. But ỹ = Pcol(X)(y) is nonexpansive in y, so Xβ̂λ(y) is indeed nonexpansive, hence
continuous and almost differentiable, as a function of y.

Next we must establish that D̃T ûλ(y) is a locally affine projection for almost every y. Well,

by Lemma 3, this is true of D̃T ûλ(ỹ) for ỹ /∈ Nλ, so we have the desired result except on Mλ =
(Pcol(X))

−1(Nλ). Following the arguments in the proof of Lemma 3, it is not hard to see that Nλ
now has dimension p− 1, so Mλ has measure zero.

With these properties satisfied, we have the general result:

Theorem 2. Suppose that rank(X) = p. For fixed λ, the fit Xβ̂λ of the generalized lasso (2) has
degrees of freedom

df(Xβ̂λ) = E[nullity(D−B(y))],

where B(y) is the boundary set of a dual solution ûλ(y).

Note: as before, we can construct the boundary set B(y) from any dual solution at y, because
by Lemma 3 the quantity null(D−B(y)) is invariant (almost everywhere in y).

Proof. Let y /∈ Mλ. We show that (∇ · Xβ̂λ)(y) = nullity(D−B(y)), and then applying Stein’s
formula (along with the fact that Mλ has measure zero) gives the result.

Let B denote the boundary set of a dual solution ûλ(y). Then the fit is

Xβ̂λ(y) = Pnull(D̃−B)
Pcol(X)y + c,

where c denotes the terms that have zero derivative with respect to y. Using the fact null(X+) =

null(XT ), and that null(D̃−B) ⊇ null(X+),

Pnull(D̃−B)
Pcol(X) = Pnull(D̃−B)

− Pnull(D̃−B)
Pnull(X+)

= Pnull(D̃−B)
− Pnull(X+).

Therefore, computing the divergence:(
∇ ·Xβ̂λ

)
(y) = nullity(D−BX

+)− nullity(X+)

= nullity(D−B),

where the last equality follows because X has full column rank. This completes the proof.
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We saw in Section 6.2 that the null space of D has a nice interpretation for the fused lasso
problem. In this case, the theorem also becomes easier to interpret:

Corollary 1 (Degrees of freedom of the fused lasso). Suppose that rank(X) = p and that D

corresponds to the fused lasso penalty on an arbitrary graph. Then for fixed λ, the fit Xβ̂λ of (2)
has degrees of freedom

df(Xβ̂λ) = E[ number of fused groups in β̂λ(y) ].

Proof. If G denotes the underlying graph, we showed in Section 6.2 that nullity(D−B(y)) is the
number of connected components in G−B(y). We also showed (see Section 7.1 for the extension to a

general design X) that the coordinates of β̂λ(y) are fused on the connected components of G−B(y),
giving the result.

By slightly modifying the penalty matrix, we can also derive the degrees of freedom of the sparse
fused lasso:

Corollary 2 (Degrees of freedom of the sparse fused lasso). Suppose that rank(X) = p and
write Xi ∈ Rp for the ith row of X. Consider the sparse fused lasso problem:

minimize
β∈Rp

n∑
i=1

(yi −XT
i β)2 + λ1

p∑
i=1

|βi|+ λ2
∑

(i,j)∈E
|βi − βj |, (48)

where E is an arbitrary set of edges between nodes β1, . . . βp. Then for fixed λ1, λ2, the fit Xβ̂λ1,λ2

of (48) has degrees of freedom

df(Xβ̂λ1,λ2
) = E[ number of nonzero fused groups in β̂λ1,λ2

(y) ].

Proof. We can write (48) in the generalized lasso framework by taking λ = λ2 and

D =

[
Dfuse

λ1

λ2
I

]
,

where Dfuse is the fused lasso matrix corresponding to the underlying graph, with each row giving
the difference between two nodes connected by an edge.

In Section 6.2, we analyzed the null space of Dfuse to interpret the primal-dual correspondence
for the fused lasso. A similar interpretation can be achieved with D as defined above. Let G denote
the underlying graph and suppose that it has m edges (and p nodes), so that Dfuse is m×p and D is
(m+ p)× p. Also, suppose that we decompose the boundary set as B = B1 ∪B2, where B1 contains
the dual coordinates in {1, . . .m} and B2 contains those in {m+ 1, . . .m+ p}. We can associate the
first m coordinates with the m edges, and the last p coordinates with the p nodes. Then the matrix
D−B defines a subgraph G−B that can be constructed as follows:

1. delete the edges of G that correspond to coordinates in B1, yielding G−B1 ;

2. delete the nodes of G−B1
that correspond to coordinates in −B2, and delete also all connected

nodes, yielding G−B.

It is straightforward to show that the nullity of D−B is the number of connected components in G−B.
Furthermore, the solution β̂λ1,λ2(y) is fused on each connected component of G−B and zero in all
other coordinates. Applying Theorem 2 gives the result.
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The above corollary proves a conjecture of [32], in which the authors hypothesize that the degrees
of freedom of the sparse 1d fused lasso fit is equal to the number of nonzero fused coordinate groups,
in expectation. But Corollary 2 covers any underlying graph, which makes it a much more general
result.

By examining the null space of D−B for other applications, and applying Theorem 2, one can
obtain more corollaries on degrees of freedom. We omit the details for the sake of brevity, but list
some such results in Table 2, along with those on the fused lasso for the sake of completeness. The
table’s first result, on the degrees of freedom of the lasso, was already established in [35]. The results
on trend filtering and outlier detection can actually be derived from this lasso result, because these
problems correspond to the case rank(D) = m, and can be transformed into a regular lasso problem
(11). For the outlier detection problem, we actually need to make a modification in order for the
design matrix to have full column rank. Recall the problem formulation (8), where the coefficient
vector is (α, β)T , the first block concerning the outliers, and the second the regression coefficients.
We set α1 = . . . = αp = 0, the interpretation being that we know a priori p points y1, . . . yp come
from the true model, and only rest of the points yp+1, . . . yn can possibly be outliers (this is quite
reasonable for a method that simultaneous performs a p-dimensional linear regression and detects
outliers).

Problem Unbiased estimate of df(Xβ̂λ)

Lasso Number of nonzero coordinates

Fused lasso Number of fused groups

Sparse fused lasso Number of nonzero fused groups

Polynomial trend filtering, order k Number of knots + k + 1

Outlier detection Number of outliers + p

Table 2: Corollaries of Theorem 2, giving unbiased estimates of df(Xβ̂λ) for various problems discussed in
Section 2. These assume that rank(X) = p.

10.2 Model selection

Note that the estimates Table 2 are all easily computable from the solution vector β̂λ. The estimates
for the lasso, (sparse) fused lasso, and outlier detection problems can be obtained by simply counting

the appropriate quantities in β̂λ. The estimate for trend filtering may be difficult to determine
visually, as it may be difficult to identify the knots in a piecewise polynomial by eye, but the knots
can be counted from the nonzeros of Dβ̂λ. All of this is important because it means that we can
readily use model selection criteria like Cp or BIC for these problems, which employ degrees of

freedom to assess risk. For example, for the estimate Xβ̂λ of the underlying mean µ, the Cp statistic
is

Cp(λ) = ‖y −Xβ̂λ‖22 − nσ2 + 2σ2df(Xβ̂λ),

(see [22] for the classic linear regression case), and is an unbiased estimate of the true risk E
[
‖µ −

Xβ̂λ‖22
]
. Hence we can define

Ĉp(λ) = ‖y −Xβ̂λ‖22 − nσ2 + 2σ2nullity(D−B),

replacing df(Xβ̂λ) by its own unbiased estimate nullity(D−B). This modified statistic Ĉp(λ) is still

unbiased as an estimate of the true risk, and this suggests choosing λ to minimize Ĉp(λ). For this
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task, it turns out that Ĉp(λ) obtains its minimum at one of the critical points {λ1, . . . λT } in the

solution path of β̂λ. This is true because nullity(D−B) is a step function over these critical points,

and the residual sum of squares ‖y − Xβ̂λ‖22 is monotone nondecreasing for λ in between critical
points (this can be checked using (40)). Therefore Algorithm 2 can be used to simultaneously

compute the solution path and select a model, by simply computing Ĉp(λk) at each iteration k.

10.3 Shrinkage and the `1 norm

At first glance, the results in Table 2 seem both intuitive and unbelievable. For the fused lasso,
for example, we are told that on average we spend a single degree of freedom on each group of
coordinates in the solution. But these groups are being adaptively selected based on the data, so
aren’t we using more degrees of freedom in the end? As another example, consider the trend filtering
result: for a cubic fit, the degrees of freedom is the number of knots + 4, in expectation. A cubic
regression spline also has degrees of freedom equal to the number of knots + 4; however, in this
case we fix the knot locations ahead of time, and for cubic trend filtering the knots are selected
automatically. How can this be?

This seemingly remarkable property—that searching for the nonzero coordinates, fused groups,
knots, or outliers doesn’t cost us anything in terms of degrees of freedom—is explained by the
shrinking nature of the `1 penalty. Looking back at the criterion in (2), it is not hard to see that

the nonzero entries in Dβ̂λ are shrunken towards zero (imagine the problem in constrained form,
instead of Lagrangian form). For the fused lasso, this means that once the groups are “chosen”,
their coefficients are shrunken towards each other, which is less greedy than simply fitting the group
coefficients to minimize the squared error term. Roughly speaking, this makes up for the fact that
we chose the fused groups adaptively, and in expectation, the degrees of freedom turns out “just
right”: it is simply the number of groups.

This leads us to think about the `0-equivalent of problem (2), which is achieved by replacing
the `1 norm by an `0 norm (giving best subset selection when D = I). Solving this problem
requires a combinatorial optimization, and this makes it difficult to study the properties of its
solution in general. However, we do know that the solution of the `0 problem does not enjoy any
shrinkage property like that of the lasso solution: if we fix which entries of Dβ are nonzero, then the
penalty term is constant and the problem reduces to an equality-constrained regression. Therefore,
in light of our above discussion, it seems reasonable to conjecture that the `0 fit has greater than
E[nullity(D−B)] degrees of freedom. When D = I, this would mean that the degrees of freedom of
the best subset selection fit is more than the number of nonzero coefficients, in expectation.

11 Discussion

We have studied a generalization of the lasso problem, in which the penalty is ‖Dβ‖1 for a matrix D.
Several important problems (such as the fused lasso and trend filtering) can be expressed as a special
case of this, corresponding to a particular choice of D. We developed an algorithm to compute a
solution path for this general problem, provided that the design matrix X has full column rank.
This is achieved by instead solving the (easier) Lagrange dual problem, which, using simple duality
theory, yields a solution to the original problem after a linear transformation.

Both the dual solution path and the primal (original) solution path are continuous and piecewise

linear with respect to λ. The primal solution β̂λ can be written explicitly in terms of the boundary
set B, which contains the coordinates of the dual solution that are equal to ±λ, and the signs of
these coordinates s. Further, viewing the dual solution as a projection onto a convex set, we derived
a simple formula for the degrees of freedom of the generalized lasso fit. For the fused lasso problem,
this result reveals that the number of nonzero fused groups in the solution is an unbiased estimate
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of the degrees of freedom of the fit, and this holds true for any underlying graph structure. Other
corollaries follow, as well.

An implementation of our path algorithm, following the ideas presented in Section 8, is a direction
for future work, and will be made available as an R package “genlasso” on the CRAN website [24].

There are several other directions for future research. We describe three possibilities below.

• Specialized implementation for the fused lasso path algorithm. When D is the fused lasso matrix
corresponding to a graph G, projecting onto the null space of D−B is achieved by a simple
coordinate-wise average on each connected component of G−B. It may therefore be possible
(when X = I) to compute the solution path β̂λ without having to use any linear algebra, but
by instead tracking the connectivity of G. This could improve the computational efficiency
of each iteration, and could also lead to a parallelized approach (in which we work on each
connected component in parallel).

• Number of steps until termination. The number of steps T taken by our path algorithm, for
a general D, is determined by how many times dual coordinates leave the boundary. This is
related to an interesting problem in geometry studied by [10], and investigating this connection
could lead to a more definitive statement about the algorithm’s computational complexity.

• Connection to forward stagewise regression. When D = I (and rank(X) = p), we proved that
our path algorithm yields the LARS path (when LARS is run in its original, unmodified state)
if we just ignore dual coordinates leaving the boundary. LARS can be modified to give forward
stagewise regression, which is the limit of forward stepwise regression when the step size goes
to zero (see [11]). A natural follow-up question is: can our algorithm be changed to give this
path too?

In general, we believe that Lagrange duality deserves more attention in the study of convex
optimization problems in statistics. The dual problem can have a complementary (and interpretable)
structure, and can offer novel mathematical or statistical insights into the original problem.
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