
Supplement: Proofs and Technical Details for “The Solution

Path of the Generalized Lasso”

Ryan J. Tibshirani Jonathan Taylor

In this document we give supplementary details to the paper “The Solution Path of the Gen-
eralized Lasso”. We use the prefix “GL” when referring to equations, sections, etc. in the original
paper, as in equation (GL-1) or Section GL-1 (this stands for Generalized Lasso).

1 Proof of the boundary lemma

We prove the boundary lemma when D = D1d, but first we give a helpful lemma.

Lemma 1. Let Tλ denote the function that truncates outside of the interval [−λ, λ]:

Tλ(x) =

−λ if x < −λ
x if |x| ≤ λ
λ if x > λ.

Then for any λ0, λ and x, y,

|Tλ0(x)− Tλ(y)| ≤ max{|x− y|, |λ0 − λ|}.

Proof. Suppose without a loss of generality that λ0 > λ. We enumerate the possible cases:

• x > λ, y > λ : |Tλ0(x)− Tλ(y)| ≤ λ0 − λ;

• x ≤ λ, y > λ : |Tλ0
(x)− Tλ(y)| ≤ |x− y|;

• x > λ, y ≤ λ : |Tλ0
(x)− Tλ(y)| ≤ |x− y|;

• |x| ≤ λ, |y| ≤ λ : |Tλ0(x)− Tλ(y)| = |x− y|.

The remaining cases follow by symmetry.

Proof of the boundary lemma. Our approach for the proof is a little unusual: we consider the use of
coordinate descent to find the solution ûλ, starting at the point ûλ0

as an initial guess. Because the
coordinate updates are especially simple, we can track how the iterates change, and hence we can
guarantee that ûλ and ûλ0 are close together. Namely, we show that

‖ûλ0 − ûλ‖∞ ≤ λ0 − λ,

which implies the desired result.
First we describe the coordinate descent updates for finding the solution ûλ of the dual (GL-13),

when D = D1d. We note that any limit point of the coordinate descent algorithm is indeed a solution
by Theorem 4.1 of [1]. We take u(0) = ûλ0

as an initial guess, and cycle through the coordinates in

1

the order i = 1, . . . n − 1. To derive the ith update, we fix uj for all j 6= i and minimize over ui.
Because of the simple structure of D, we only need to consider two terms:

minimize
ui

1

2

(
yi − (ui − ui−1)

)2
+

1

2

(
yi − (ui+1 − ui)

)2
subject to |ui| ≤ λ.

This is just a quadratic constrained to lie in an interval, and so the ith coordinate update is

ui ← Tλ

(
yi+1 − yi + ui+1 + ui−1

2

)
,

where we let u0 = un = 0 for notational convenience.
Therefore in the first iteration of the coordinate descent algorithm, we get

u
(1)
i = Tλ

(
yi+1 − yi + u

(0)
i+1 + u

(1)
i−1

2

)
.

Using the fact that ûλ0 is itself the solution corresponding to λ0,

|ûλ0,i − u
(1)
i | =

∣∣∣∣∣Tλ0

(
yi+1 − yi + ûλ0,i+1 + ûλ0,i−1

2

)
− Tλ

(
yi+1 − yi + u

(0)
i+1 + u

(1)
i−1

2

)∣∣∣∣∣ .
But this is ≤ max{|ûλ0,i−1 − u

(1)
i−1|/2, λ0 − λ} by the helpful lemma. Therefore, by induction, it

follows that ‖ûλ0
− u(1)‖∞ ≤ λ0 − λ.

Continuing the same line of argument shows that ‖ûλ0
− u(k)‖∞ ≤ λ0 − λ for all iterations k.

Letting k →∞, we get ‖ûλ0 − ûλ‖∞ ≤ λ0 − λ, as desired.

It is important to note that if DDT is diagonally dominant, in other words

(DDT)ii ≥
∑
j 6=i

|(DDT)ij |

for each i = 1, . . .m, then the proof of the boundary lemma is similar to that given for the 1d fused
lasso case. The coordinate updates are now

ui ← Tλ

(
(Dy)i −

∑
j 6=i(DD

T)ijuj

(DDT)ii

)
,

but the rest of the proof remains the same, so the boundary lemma still holds.

2 Derivation details for Algorithm GL-2

This section is divided into two parts: 1) details for the algorithm’s steps at each iteration, and 2)
the insertion-deletion lemma. The first part relies on the insertion-deletion lemma when verifying
the KKT conditions (hence establishing the algorithm’s correctness), and we present and prove this
lemma in the second part for the sake of clarity. The insertion-deletion lemma also proves that
constructed solution path is continuous over λ.

2

2.1 The algorithm at the kth iteration

We propose a solution ûλ = f(λ), with γ = g(λ) and α = h(λ), in order to satisfy the KKT
conditions. First we define

f(λ)B = λs

f(λ)−B =
(
D−B(D−B)T

)+
D−B

(
y − λ(DB)T s

)
.

Next we define g(λ) and h(λ) to satisfy the stationarity equation (GL-24). We examine this in two
blocks: the interior coordinates, −B, and the boundary coordinates, B. For the first block, the
equation is:(

DDT f(λ)
)
−B − (Dy)−B + αγ−B

= λD−B(DB)T s+D−B(D−B)T
(
D−B(D−B)T

)+
D−B

(
y − λ(DB)T s

)
− (Dy)−B + αγ−B

= αγ−B. (1)

Now for the second block:(
DDT f(λ)

)
B − (Dy)B + αγB

= −DB
[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

](
y − λ(DB)T s

)
+ αγB. (2)

We want to choose γ = g(λ) and α = h(λ) to make both (1) and (2) equal to zero. Consider defining

h(λ) =
∥∥∥DB[I − (D−B)T

(
D−B(D−B)T

)+
D−B

](
y − λ(DB)T s

)∥∥∥
1
.

If h(λ) = 0 then we let g(λ) to be any subgradient of ‖f(λ)‖∞. Otherwise we let g(λ)−B = 0 and

g(λ)B =
1

h(λ)
·DB

[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

](
y − λ(DB)T s

)
.

Now we must check that the constraints are met with ûλ = f(λ), γ = g(λ), and α = h(λ) as
defined above. First we consider the case λ = λk:

• (GL-25a): This holds because ‖f(λk)B‖∞ = λk, and ‖f(λk)−B‖∞ ≤ λk by Lemma 3 (we delay
presenting this lemma until Section 2.2.

• (GL-25b): This is true by construction.

• (GL-25c): This is true because ‖f(λk)‖∞ = λk when B 6= ∅, and otherwise h(λk) = 0.

• (GL-25d) and (GL-25e): Here we need to show that g(λk) is indeed a subgradient of ‖f(λk)‖∞.
This is true by definition when h(λk) = 0, so suppose h(λk) 6= 0. Note first that ‖g(λk)‖1 = 1
by construction. Further, sign

(
g(λk)B

)
= sign

(
f(λk)B

)
by Lemma 4 (presented in Section

2.2), and hence g(λk)T f(λk) = ‖f(λk)‖∞. This verifies the subgradient constraint.

As we decrease λ, note that only two of the above conditions can break: ‖f(λ)−B‖∞ ≤ λ, or
sign

(
g(λ)B

)
= sign

(
f(λ)B

)
. The first one will break when one of the interior coordinate paths

crosses the boundary. This occurs at the next hitting time. Writing f(λ)−B = a − λb and solving
ai − λbi = ±λ for i /∈ B, we find that the hitting times are

t
(hit)
i =

ai
bi ± 1

=

[(
D−B(D−B)T

)+
D−By

]
i[(

D−B(D−B)T
)+
D−B(DB)T s

]
i
± 1

,

3

where only one of +1 or −1 above will yield a value in [0, λk]. (For i corresponding to the coordinate
that left the boundary in the last iteration, the value of ±1 here is fixed at the sign of the boundary
opposite to the one it left.) Thus the next hitting time is

hk+1 = max
i

t
(hit)
i ,

and the hitting coordinate and its sign are

i
(hit)
k+1 = argmax

i
t
(hit)
i and s

(hit)
k+1 = sign

(
f(hk+1)

i
(hit)
k+1

)
.

The second condition, sign
(
g(λ)B

)
= sign

(
f(λ)B

)
, can be expressed as

si ·
[
DB

[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

](
y − λ(DB)T s

)]
i

≥ 0

for all i ∈ B. Letting

ci = si ·
[
DB

[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

]
y

]
i

di = si ·
[
DB

[
I − (D−B)T

(
D−B(D−B)T

)+
D−B

]
(DB)T s

]
i

,

we can rewrite this as
ci − λdi ≥ 0 (3)

for all i ∈ B. Because we know that ci − λkdi ≥ 0, the inequality (3) can only fail at some λ ≤ λk if
ci and di are both negative. Accordingly, the leaving times are

t
(leave)
i =

{
ci/di if ci < 0 and di < 0

0 otherwise.

Therefore the next leaving time is

lk+1 = max
i

t
(leave)
i ,

and the leaving coordinate and its sign are

i
(leave)
k+1 = argmax

i
t
(leave)
i and s

(leave)
k+1 = sign

(
f(lk+1)

i
(leave)
k+1

)
.

For the final step of the iteration, we take

λk+1 = max{hk+1, lk+1}.

This ensures the algorithm’s correctness through the kth iteration, because we have satisfied the
KKT conditions for all λ ≥ λk+1. In preparation for the next iteration: if hk+1 > lk+1 we add

the hitting coordinate i
(hit)
k+1 to B and append its sign s

(hit)
k+1 to s; otherwise we delete the leaving

coordinate i
(leave)
k+1 from B and its sign s

(leave)
k+1 from s.

2.2 The insertion-deletion lemma

The insertion-deletion lemma is important because it leads to Lemmas 3 and 4, which we used in
the previous section to argue the correctness of our constructed path ûλ. Moreover, it directly gives
the continuity of ûλ with respect to λ.

4

While it may appear complicated, its concept is pretty simple: the insertion-deletion lemma
states that the point f(λk+1) is the same with f as defined in iteration k or iteration k+ 1 (in other
words, it is the same if we define f using the boundary set and signs from iteration k or iteration
k + 1). Note that iteration k could have ended in one of two ways: a coordinate was added to B
(insertion), or a coordinate was removed from B (deletion). Therefore the lemma has two statements,
corresponding to these two cases.

Lemma 2 (The insertion-deletion lemma). At the kth iteration of the algorithm, let B and s
denote the boundary coordinates and their signs, and let B∗ and s∗ denote the same quantities at
the beginning of the next iteration. The two possibilities are:

1. (Insertion) If a coordinate hit the boundary at λk+1, that is, B∗ and s∗ are given by adding
elements to B and s, then:[(

f(λk+1)−B
)
−i(hit)

k+1

f(λk+1)
i
(hit)
k+1

]
=

[(
D−B∗(D−B∗)

T
)+
D−B∗

(
y − λk+1(DB∗)

T s∗
)

λk+1 · s(hit)k+1

]
. (4)

2. (Deletion) If a coordinate left the boundary at λk+1, that is, B∗ and s∗ are given by deleting
elements from B and s, then:

[
f(λk+1)−B

λk+1 · s(leave)k+1

]
=

[(
D−B∗(D−B∗)

T
)+
DB∗

(
y − λk+1(DB∗)

T s∗
)]
−i(leave)k+1[(

D−B∗(D−B∗)
T
)+
DB∗

(
y − λk+1(DB∗)

T s∗
)]
i
(leave)
k+1

 . (5)

Proof. The proof of each part relies on a block matrix decomposition. The arguments are not
conceptually difficult but detailed. We treat the two cases separately.

Case 1: Insertion. Let [
x1
x2

]
=

[(
f(λk+1)−B

)
−i(hit)k+1

f(λk+1)
i
(hit)
k+1

]
,

the left-hand side of (4). By definition i
(hit)
k+1 hits the boundary at λk+1, so that exactly

x2 = f(λk+1)
i
(hit)
k+1

= λk+1 · s(hit)k+1 .

Now we consider x1. Assume without a loss of generality that i
(hit)
k+1 is the last of the interior

coordinates. Then we can write[
x1
x2

]
= f(λk+1)−B =

(
D−B(D−B)T

)+
D−B

(
y − λk+1(DB)T s

)
.

The point (x1, x2)T is the minimum `2 norm solution to the linear equation:

D−B(D−B)T
[
x1
x2

]
= D−B

(
y − λk+1(DB)T s

)
.

Decomposing this into blocks, we get D−B∗(D−B∗)
T D−B∗

(
D
i
(hit)
k+1

)T
D
i
(hit)
k+1

(D−B∗)
T D

i
(hit)
k+1

(
D
i
(hit)
k+1

)T
[x1

x2

]
=

[
D−B∗

D
i
(hit)
k+1

] (
y − λk+1(DB)T s

)
.

5

Solving for x1 gives

x1 =
(
D−B∗(D−B∗)

T
)+
D−B∗

[
y − λk+1(DB)T s−

(
D
i
(hit)
k+1

)T
x2

]
+ b

=
(
D−B∗(D−B∗)

T
)+
D−B∗

(
y − λk+1(DB∗)

T s∗
)

+ b,

where b ∈ null
(
(D−B∗)

T
)
. The value of b can be determined by considering the squared norm of x1,

‖x1‖22 =
∥∥∥(D−B∗(D−B∗)T)+D−B∗(y − λk+1(DB∗)

T s∗
)∥∥∥2

2
+ ‖b‖22,

which is minimal when b = 0. This completes the proof.

Case 2: Deletion. This case is similar but a little more complicated. Let

[
x1
x2

]
=

[(
D−B∗(D−B∗)

T
)+
DB∗

(
y − λk+1(DB∗)

T s∗
)]
−i(leave)k+1[(

D−B∗(D−B∗)
T
)+
DB∗

(
y − λk+1(DB∗)

T s∗
)]
i
(leave)
k+1

 .
If we assume without a loss of generality that i

(leave)
k+1 is the largest of all the boundary coordinates,

then (x1, x2)T is the minimum `2 norm solution of the equation: D−B(D−B)T D−B
(
D
i
(leave)
k+1

)T
D
i
(leave)
k+1

(D−B)T D
i
(leave)
k+1

(
D
i
(leave)
k+1

)T
[x1

x2

]
=

[
D−B
D
i
(leave)
k+1

] (
y − λk+1(DB∗)

T s∗
)
.

Solving this system for x1 in terms of x2 yields

x1 =
(
D−B(D−B)T

)+
D−B

[
y − λk+1(DB∗)

T s∗ −
(
D
i
(leave)
k+1

)T
x2

]
+ b,

where b ∈ null
(
(D−B)T

)
, and as we argued before, we must have b = 0 in order for x1 to have

minimal `2 norm. Therefore it suffices to show that x2 = λk+1 · s(leave)k+1 . To this end, we continue
the block elimination and solve for x2. After a bit of algebra, this is

x2 =
[
D
i
(leave)
k+1

P
(
D
i
(leave)
k+1

)T]−1
D
i
(leave)
k+1

P
[
y − λk+1(DB)T s+ λk+1

(
D
i
(leave)
k+1

)T
s
(leave)
k+1

]
, (6)

where P = Pnull(D−B). But by definition of i
(leave)
k+1 ,

D
i
(leave)
k+1

P
(
y − λk+1(DB)T s

)
= 0.

Furthermore D
i
(leave)
k+1

P
(
D
i
(leave)
k+1

)T
is just a scalar, and it is nonzero (otherwise this implies that

P
(
D
i
(leave)
k+1

)T
= 0 as P is a projection matrix, and so λk+1 = 0 by definition of the leaving time,

which makes the result trivial). Therefore (6) becomes x2 = λk+1 · s(leave)k+1 , which completes the
proof.

Now we give Lemmas 3 and 4, which we used in Section 2.1 to verify the KKT conditions.

Lemma 3. At the kth iteration of the algorithm, ‖f(λk)−B‖∞ ≤ λk.

Proof. The proof is a straightforward application of induction and Lemma 2. At k = 0 this is
trivially true since λ0 =∞. Now assume the statement holds for iteration k. Depending on whether
a coordinate hit or left the boundary in iteration k, the statement for k+ 1 is verified by taking the
`∞ norm of the right-hand side of (4) or (5), respectively.

6

Lemma 4. At the kth iteration of the algorithm, sign
(
g(λk)B

)
= sign

(
f(λk)B

)
.

Proof. Again we use induction. At k = 0 this is trivially true because B = ∅. Suppose that the
statement holds for all iterations ≤ k. Given that we have already proved Lemma 3, the inductive
hypothesis is really that the constructed path ûλ is the solution path for all λ ≥ λk+1. Let B, s, f ,
and g refer to the versions defined at the beginning of iteration k + 1. By Lemma 2 we know that
ûλk+1

= f(λk+1) is indeed the solution at λk+1. Hence β̂λk+1
= y−DT f(λk+1) is indeed the primal

solution at λk+1. Noting that g(λk+1)B = DBβ̂λk+1
, and recalling the relationship (GL-15), we have

sign
(
g(λk+1)B

)
= sign

(
f(λk+1)B

)
.

3 Proof of the primal-dual correspondence for a general D

Here we prove that the primal solution changes slope at λk+1 if and only if the null space of D−B
changes from iterations k to k+1. Again we use the notation B, s and B∗, s∗ to denote the boundary
set and signs at iteration k, respectively k + 1. This was claimed in Section GL-6.2 for the case
X = I, and later in Section GL-7.1 for a general X with rank(X) = p. We divide our proof into two
parts, accordingly.

3.1 The case X = I

Consider the vector of coordinate-wise slopes of the solution path β̂λ, as a function of λ. Using
(GL-33), the limits of this as λ→ λk+1 from above and below are

a+ = Pnull(D−B)(DB)T s and a− = Pnull(D−B∗)(DB∗)
T s∗, (7)

respectively. Suppose that a coordinate hit the boundary at λk+1. Then we have (DB∗)
T s∗ =

(DB)T s+
(
D
i
(hit)
k+1

)T
s
(hit)
k+1 , and if null(D−B) = null(D−B∗) then

a− = Pnull(D−B)(DB)T s+ Pnull(D−B)

(
D
i
(hit)
k+1

)T
s
(hit)
k+1 = a+,

where the identity Pnull(D−B)

(
D
i
(hit)
k+1

)T
s
(hit)
k+1 = 0 follows from

(
D
i
(hit)
k+1

)T
s
(hit)
k+1 ∈ row(D−B) ⊥ null(D−B).

A similar argument holds in the case that a coordinate left the boundary at λk+1. Therefore the
slope of β̂λ changes at λk+1 only if null(D−B) 6= null(D−B∗).

The converse statement, that the slope of β̂λ changes at λk+1 if null(D−B) 6= null(D−B∗), is only
true for (Lebesgue) almost every y ∈ Rn. Hence, for any reasonable model of the data y, it holds

with probability one. To show this, we first note that the limits of β̂λ as λ→ λk+1 from above and
below can be expressed as

β̂+ = Pnull(D−B)(y)− λk+1a+ and β̂− = Pnull(D−B∗)(y)− λk+1a−,

respectively, where a−, a+ are defined in (7). By the continuity of β̂λ, we know that β̂+ = β̂−.
Suppose that null(D−B) 6= null(D−B∗). Then these two linear spaces differ in dimension by one
(depending on whether or not a coordinate hit or left the boundary at λk+1). Hence Pnull(D−B)(y) 6=
Pnull(D−B∗)(y) for almost every y ∈ Rn. Therefore, for any such y, we must have a+ 6= a− in order

to satisfy β̂+ = β̂−.

7

3.2 The case of a general X, rank(X) = p

The proof is quite similar. Now the limiting slopes are, from equation (GL-39),

a+ = X+Pnull(D̃−B)
(D̃B)T s and a− = X+Pnull(D̃−B∗)

(D̃B∗)
T s∗.

Recalling that D̃−B = D−BX
+, we have

null(D−B) = null(D−B∗) ⇒ null(D̃−B) = null(D̃−B∗),

which implies that a− = a+, using the same arguments as we gave for the case X = I.
The converse is again true for almost every y ∈ Rn. This is because

null(D−B) 6= null(D−B∗) ⇒ null(D̃−B) 6= null(D̃−B∗),

as X+ has rank p, which implies that a+ 6= a− for almost every y using similar arguments to those
given above.

4 Proof of Lemma GL-3

Note that for a set B ⊆ {1, . . .m}, the matrix DBPnull(D−B) may have some rows that are entirely
zero. We let Z(B) denote the set of such rows. Now define

Nλ =
⋃
B,s

⋃
i∈B\Z(B)

{
x : DiPnull(D−B)x = λDiPnull(D−B)(DB)T s

}
⊆ Rn,

where the first union is taken over all subsets B ⊆ {1, . . .m} and all sign vectors s ∈ {−1, 1}|B|.
Note that Nλ is a finite union of affine subspaces of dimension n− 1, and hence has measure zero.
This establishes part (a) of the lemma.

Now, for y /∈ Nλ, let ûλ(y) be a dual solution with boundary set B and signs s. We show that:

1. there is a neighborhood U of y such that for any y′ ∈ U , there exists a dual solution ûλ(y′)
with the same boundary set B and signs s;

2. if u∗λ(y) is another dual solution at y, with a different boundary set B∗ and signs s∗, then

λ(DB)T s+ row(D−B) = λ(DB∗)
T s∗ + row(D−B∗).

If we show these two statements then this would imply part (b) of the lemma.

4.1 Proof of statement 1

First note that we can rewrite the optimality conditions (GL-24) and (GL-25a)–(GL-25e) for our
dual problem as

‖ûλ‖∞ ≤ λ (8)

D(y −DT ûλ) ∈ K, (9)

where K ⊆ Rm is the cone generated by
{

sign(ûλ,i) · ei : i ∈ {j : |uj | = λ}
}

(and ei denotes the ith

standard basis vector). Focusing first on the point y, let a = D
(
y −DT ûλ(y)

)
∈ K, and note that

K is generated by {si · ei : i ∈ B}. Note also that a−B = 0, and using the fact that ûλ,B(y) = λ · s,
this means

D−B
(
y − λ(DB)T s

)
−D−B(D−B)T ûλ,−B(y) = 0.

8

Hence we can write the dual solution ûλ(y) as

ûλ,B(y) = λ · s

ûλ,−B(y) =
(
D−B(D−B)T

)+
D−B

(
y − λ(DB)T s

)
+ b,

where b ∈ null
(
(D−B)T

)
. By definition of the boundary set, ‖ûλ,−B(y)‖∞ < λ. Now we can also

write
aB = DBPnull(D−B)

(
y − λ(DB)T s

)
.

Some rows of the matrix DBPnull(D−B) may be entirely zero; recall that these are denoted by Z(B).
Since y /∈ Nλ, we know that ai 6= 0 for all i ∈ B \ Z(B).

For a new point y′, consider defining ûλ(y′) as

ûλ,B(y′) = λ · s

ûλ,−B(y′) =
(
D−B(D−B)T

)+
D−B

(
y′ − λ(DB)T s

)
+ b.

By continuity of the affine mapping (note that B, s, b are fixed)

x 7→
(
D−B(D−B)T

)+
D−B

(
x− λ(DB)T s

)
+ b,

there exists a neighborhood U1 of y such that ‖ûλ,−B(y′)‖∞ < λ for all y′ in U1. This establishes the
first optimality condition (8) and shows that ûλ(y′) has boundary set B and signs s, for all y′ ∈ U1.
To establish the second optimality condition (9), we must check that

a′ = DPnull(D−B)

(
y′ − λ(DB)T s

)
∈ K.

Well a′−B = 0 and also a′Z(B) = 0. By continuity of the affine mapping (again B, s are fixed)

x 7→ DB\Z(B)Pnull(D−B)

(
x− λ(DB)T s

)
,

there exists another neighborhood U2 of y such that a′i 6= 0 and further sign(a′i) = sign(ai) for all
i ∈ B \ Z(B) and y′ ∈ U2. As a ∈ K, this means that a′ ∈ K for all y′ ∈ U2. Letting U = U1 ∩ U2,
we have verified that ûλ(y′) has boundary set B and signs s, and is indeed a dual solution, for all
y′ ∈ U .

4.2 Proof of statement 2

Given another dual solution u∗λ(y) at y with a different boundary set B∗ and signs s∗, we know from
statement 1 that there is a neighborhood U∗ of y such that

u∗λ,B∗(y
′) = λ · s∗

u∗λ,−B∗(y
′) =

(
D−B∗(D−B∗)

T
)+
D−B∗

(
y′ − λ(DB∗)

T s∗
)

+ b∗

is a dual solution for all y′ ∈ U∗, where b∗ ∈ null
(
(D−B∗)

T
)
. By uniqueness of the dual fit, we have

λ(DB)T s+ Prow(D−B)

(
y′ − λ(DB)T s

)
= λ(DB∗)

T s∗ + Prow(D−B∗)

(
y′ − λ(DB∗)

T s∗
)

for all y′ ∈ U ∩ U∗ 6= ∅, and therefore

λ(DB)T s+ row(D−B) = λ(DB∗)
T s∗ + row(D−B∗).

References

[1] Tseng, P. [2001], ‘Convergence of a block coordinate descent method for nondifferentiable min-
imization’, Journal of Optimization Theory and Applications 109(3), 475–494.

9

