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Abstract

We study tools for inference conditioned on model selection events that are defined by the
generalized lasso regularization path. The generalized lasso estimate is given by the solution of
a penalized least squares regression problem, where the penalty is the £; norm of a matrix D
times the coefficient vector. The generalized lasso path collects these estimates as the penalty
parameter \ varies (from oo down to 0). Leveraging a (sequential) characterization of this path
from |Tibshirani & Taylor| (2011)), and recent advances in post-selection inference from |Lee et al.
(2016)), [Tibshirani et al.| (2016)), we develop exact hypothesis tests and confidence intervals for
linear contrasts of the underlying mean vector, conditioned on any model selection event along
the generalized lasso path (assuming Gaussian errors in the observations).

Our construction of inference tools holds for any penalty matrix D. By inspecting specific
choices of D, we obtain post-selection tests and confidence intervals for specific cases of generalized
lasso estimates, such as the fused lasso, trend filtering, and the graph fused lasso. In the fused lasso
case, the underlying coordinates of the mean are assigned a linear ordering, and our framework
allows us to test selectively chosen breakpoints or changepoints in these mean coordinates. This
is an interesting and well-studied problem with broad applications; our framework applied to the
trend filtering and graph fused lasso cases serves several applications as well. Aside from the
development of selective inference tools, we describe several practical aspects of our methods
such as (valid, i.e., fully-accounted-for) post-processing of generalized lasso estimates before
performing inference in order to improve power, and problem-specific visualization aids that may
be given to the data analyst for he/she to choose linear contrasts to be tested. Many examples,
from both simulated and real data sources, are presented to examine the empirical properties of
our inference methods.
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1 Introduction

Consider a classic Gaussian model for observations y € R™, with known marginal variance o2 > 0,
y ~ N(0,0%I), (1)

where the (unknown) mean 6 € R™ is the parameter of interest. In this paper, we examine problems
in which 6 is believed to have some specific structure (at least approximately so), in that it is sparse
when parametrized with respect to a particular basis. A key example is the changepoint detection
problem, in which the components of the mean 61, ...,6, correspond to ordered underlying positions
(or locations) 1,...,n, and many adjacent components 6, and ;11 are believed to be equal, with the
exception of a sparse number of breakpoints or changepoints to be determined. See the left plot in
Figure [I] for a simple example.

Many methods are available for estimation and detection in the changepoint problem. We
focus on the 1-dimensional fused lasso (Tibshirani et al.|[2005)), also called I-dimensional total
variation denoising (Rudin et al.[[1992) in signal processing, for reasons that will become clear shortly.
This method, which we call the 1d fused lasso (or simply fused lasso) for short, is often used for
piecewise constant estimation of the mean, but it does not come with associated inference tools after
changepoints have been detected. In the top right panel of Figure[I] we inspect the 1d fused lasso



estimate that has been tuned to detect two changepoints, in a data model where the mean 6 only
has one true changepoint. Writing the changepoint locations as 1 < I1 < I < n, we might consider
testing

Ho,jielj_l =...=9]j_1=91j =...=91.
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where we write Iy = 1 and I3 = n + 1 for notational convenience. If we were to naively ignore the
data-dependent nature of I, I (these are the estimated changepoints from the two-step fused lasso
procedure), i.e., treat them as fixed, then the natural tests for the null hypothesess Hy ;, j = 1,2
would be to reject for large magnitudes of the statistics

T = Yi1,0):1,-1) = YLy (Lya-1)s T = 1,2,

respectively, where we use §q.p = Z?:a yi/(b — a) to denote the average of components of y between
positions a and b. Indeed, these can be seen as likelihood ratio tests stemming from the Gaussian

model in .
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Figure 1: A simple ezample with n = 100 points generated around a piecewise constant mean with one true
changepoint at location 50, shown in the top left panel. The 1d fused lasso path, stopped at the (end of the)
second step, produces the estimate in the top right panel, with two detected changepoints at locations 11 and
50, labeled A and B in the figure. The table reports p-values from the naive Z-test, which does not account
for the data-dependent nature of the changepoints, and from our TG test for the 1d fused lasso, which does.

The table in Figure [1| shows the results of running such naive Z-tests. At location I5 (labeled
location B in the figure), which corresponds to a true changepoint in the underlying mean, the test
returns a very small p-value, as expected. But at location I; (labeled A in the figure), a spurious
detected changepoint, the naive Z-test also produces a small p-value. This happens because the
location I7 has been selected by the 1d fused lasso, which inexorably links it to an unusually large
magnitude of 77; in other words, it is no longer appropriate to compare T against its supposed



Gaussian null distribution, with mean zero and variance o%(1/(I; — Iy) + 1/(I — I1)). Also shown in
the table are the results of running our new truncated Gaussian (TG) test for the 1d fused lasso,
which properly accounts for the data-dependent nature of the changepoints detected by fused lasso,
and produces p-values that are exactly uniform under the nulEl7 conditional on I, Is having been
selected by the fused lasso in the first place. We now see that only the changepoint at location I
has a small associated p-value.

1.1 Summary

In this paper, we make the following contributions.

e We introduce the usage of post-selection inference tools to selection events defined by a class of
methods called generalized lasso estimators. The key mathematical task is to show that the
model selection event defined by any (fixed) step of the generalized lasso solution path can be
expressed as a polyhedron in the observation vector y (Section . The (conditionally valid)
TG tests and confidence intervals from Lee et al.| (2016, Tibshirani et al.| (2016) can then be
applied, to test or cover any linear contrast of the mean vector 6.

e We describe a stopping rule based on a generic information criterion (akin to AIC or BIC), to
select a step along the generalized lasso path at which we are to perform conditional inference.
We give a polyhedral representation for the ultimate model selection event that encapsulates
both the selected path step and the generalized lasso solution at this step (Section . Along
with the TG tests and confidence intervals, this makes for a practical (nearly-automatic) and
broadly applicable set of inference tools.

e We study various special cases of the generalized lasso problem—mnamely, the 1d fused lasso,
trend filtering, graph fused lasso, and regression problems—and for each, we develop specific
forms for linear contrasts that can be used to test different population quantities of interest
(Sections through . In each case, our tests represent new contributions to the space of
currently available inferential tools. For example, in the 1d fused lasso case, our tests are the
first that we know of that are specifically designed to yield proper inferences after changepoint
locations have been detected.

e We present two of extensions of the basic tools described above for post-selection inference in
generalized lasso problems: a post-processing tool, to improve the power of our methods, and a
visualization aid, to improve practical useability.

e We conduct a comprehensive simulations across the various special problem cases, to investigate
the (conditional) power of our methods, and verify their (conditional) type I error control
(Sections through . We also demonstrate a realistic application of our selective inference
tools for changepoint detection to a data set of comparative genomic hybridization (CGH)
measurements from two glioblas-toma multiforme (GBM) tumors (Section [5.6)).

1.2 Related work

Post-selection inference, also known as selective inference, is a new but rapidly growing field. Unlike
other recent developments in high-dimensional inference using a more classic full-population model,
the point of selective inference is to provide a means of testing hypotheses that stem from a selected
model, the output of an algorithm that has been applied to data at hand. In a sequence of papers,
Leeb & Potscher| (2003] 2006}, |2008)) prove impossibility results about estimating the post-selection
distribution of certain estimators in a classical regression setting. Berk et al.| (2013)), |Lockhart et al.

ISpecifically, the TG test here tests the hypotheses Hy,j : 97(1].71):(”,1) = é(Ij):(IjH—l)v 7 =1,2; this is what we
call the segment test in Section



(2014) circumvent this by considering different test statistics, rather than the standard studentized
pivot (the standard for inference without selection). The former work is very broad and considers all
selection mechanisms in regression (hence yielding more conservative inference); the latter is much
more specific and considers the lasso estimator in particular. [Lee et al. (2016), |Tibshirani et al.|
improve on the method in [Lockhart et al|(2014)), and introduce a pivot-based framework for
post-selection inference. [Lee et al.| (2016) describe the application to the lasso problem at a fixed
tuning parameter \; [Tibshirani et al.| (2016]) describe the application to the lasso path at a fixed
number of steps k& (and also, the least angle regression and forward stepwise paths). A number of
extensions to different problem settings are given in [Lee & Taylor| (2014)), Reid et al| (2014), Loftus|
|& Taylor| (2014)), (Choi et al| (2014). Asymptotics for non-Gaussian error distributions are presented
in Tian & Taylor| (2015a)), Tibshirani et al.| (2015)). A broad treatment of selective inference in
exponential family models and selective power is presented in [Fithian et al.|(2014). An improvement
based on auxiliary randomization is given in Tian & Taylor| (2015b). A study of selective sequential
tests and stopping rules is given in [Fithian et al.| (2015). Ours is the first work to consider selective
inference in structured problems like the generalized lasso.

Changepoint detection carries a huge body of literature; reviews can be found in, e.g.,
[Darkhovski| (1993)), |Chen & Guptal (2000)), [Eckley et al.| (2011]).

Far sparser is the literature on changepoint inference, say, inference for the location or size of
changepoints, or segment lengths. Hinkley| (1970), Worsley| (1986]), are some examples,
and [Jandhyala et al.| (2013), Horvath & Rice| (2014) provide nice surveys and extensions. Some tools
are built around likelihood ratio test statistics comparing two nested changepoint models, but at
fized locations. Since interesting locations to be tested are typically estimated, these inferences can
be clearly invalid (if estimation and inference are both done on the same data samples). Other tools
use likelihood ratio tests of the null hypothesis of no change, against an alternative of any possible
change. Because these are global tests, they are not directly comparable to our post-selection tests of
linear contrasts of the mean.

Probably most relevant to our goal of valid post-selection changepoint inference is [Frick et al.
, who develop a simultaneous confidence band for the mean in a changepoint model. Their
Simultaneous Multiscale Changepoint Estimator (SMUCE) seeks the most parsimonious piecewise
constant fit subject to an upper limit on a certain multiscale statisic, and is solved via dynamic
programming. Because the final confidence band has simultaneous coverage (over all components
of the mean), it also has valid coverage for any (data-dependent) post-selection target. In contrast,
our proposal does not give simultaneous coverage of the mean, but rather, selective coverage of
a particular post-selection target. An empirical comparison between the two methods (SMUCE,
and ours) is given in Section While this comparison is useful and informative, it is also worth
emphasizing that the framework in our paper applies far outside of the changepoint detection problem,
i.e., to trend filtering, graph clustering, and regression problems with structured coefficients.

1.3 Notation

For a matrix D, we will denote by Dg the submatrix whose rows are in a set S < {1,...,m}. We
write D_g to mean Dge = Dy mpg- Similarly, for a vector z, we write zg or z_g to extract the
subvector whose components are in S or not in S, respectively. We use A" for the pseudoinverse
of a matrix A, and row(A), col(A4), null(A) for the row space, column space, and null space of A,
respectively, and nullity(A) for the dimension of null(A). We write Py, for the projection matrix onto
a linear subspace L. Lastly, we will often abbreviate a subsequence (x4, Zq+1-..,2p) of a vector x by
La:b-



2 Preliminaries

2.1 The generalized lasso regularization path

Given a response y € R", the generalized lasso estimator is defined by the optimization problem
N 1
= argmin Sy — XBI3+ AIDBI, e)
BeR™

where X € R"*P is a predictor matrix, D € R™*? is a penalty matrix, and A > 0 is a regularization
parameter. (The solution in is not in general unique, but we will restrict our attention to problems
with rank(X) = p, in which case it is.) This matrix D is chosen so that sparsity of D@ induces
some type of desired structure in the solution B in . Important special cases, each corresponding
to a specific class of matrices D, include the 1d fused lasso, trend filtering, and graph fused lasso
problems. More details on these problems are given in Section [4} see also Section 2 in [Tibshirani &
Taylor| (2011]).

We review the algorithm of [Tibshirani & Taylor| (2011]) to compute the entire solution path in
(12), i.e., the continuum of solutions 5()\) as the regularization parameter A\ desends from oo to 0. For
now, we focus on the problem of signal approximation, where X = I:

A 1
B = argmin o[y — B3 + A| DB (3)
5€Rw,

For a general X, a simple modification to the arguments used for will deliver the solution path
for , and we refrain from describing this until Section The path algorithm of [Tibshirani &
Taylor| (2011)) for is derived from the perspective of its equivalent Lagrange dual problem, namely

@ € argmin |y — DT ul? subject to [u]e < A (4)
uER”".

(The solution in (@) is not necessarily unique when rank(D) < m.) The primal and dual solutions, 3
in and 4 in (4)), are related by
f=y-DTu, (5)
as well as .
{+A} i (DB
aie S {=A} if (DB);
)

0
0, i=1,...,m. (6)
[\ A] if (DB); =0

The strategy is now to compute a solution path @%(A) in the dual problem, as A descends from oo to
0, and then use to deliver the primal solution path. Therefore it suffices to describe the path
algorithm as it operates on the dual problem; this is given next.

Algorithm 1 (Dual path algorithm for the generalized lasso, X = I).
Given y € R™ and D € R™*™.

1. Compute i = (DDT)* Dy, and compute the first hitting time,

A1 = max il
i=1,....m

Define the hitting coordinate i1 to be the argmazx of the above expression, and define the hitting
sign r1 = sign(d;, ). Initialize the boundary set By = {i1} and the boundary sign list sg, = (r1).
Record the solution as 4(\) = 4 over A € [A1,), and set k = 1.

2. While A\, > 0:



(a) Compute a = (D_p, DT )* D_p,y and b= (D_p, DT 5 )* D_p, Df sp,. Also define

c= diag(slg,&.)Ds,c (y— DTB,C“)»
d = diag(ss, ) D, (D, s — DL, b).

(b) Compute the next hitting time,

Abit & 1{0< . <>\k}. (7)

max .
i¢By, re{—1,1} T + b;

Define the hitting coordinate z}lgﬁl and hitting sign r}c‘ijl to be the pair achieving the

mazimum in the above expression.
(c) Compute the next leaving time,
c
ARIe = argmax —- - 1{02- <0, d; < 0}, (8)
iEBk i

Define the leaving coordinate z}frie to be the argmaz of the above expression, and define
leave

the leaving sign riZi°® = Tjtease
(d) Define the next knot according to

Myt = mas { A, e} (9)
If the next hitting time is larger, )\}kﬁﬁl > )\Ik"j‘i", then define the new boundary set Byy1 by

appending the hitting coordinate z}k“jl to By, and define the new boundary sign list sg, |
by appending the hitting sign rﬂﬁl to sp, . Otherwise, define Biy1 by removing the leaving
coordinate from z}fﬂe from By and define sg, , by removing the leaving sign r}ﬁei‘{e from

sp, - Record the solution as 4(\) = a — \b over X € [Agy1, Ak], and update k =k + 1.

The dual path algorithm, in Algorithm |1} tracks the coordinates of the dual solution @(A) that
are equal to +, i.e., that lie on the boundary of the constraint region [—A, A\]™. The collection of
such coordinates, at any given step k in the path, is called the boundary set, and is denoted By.
Critical values of the regularization parameter at which the boundary set changes (i.e., at which
coordinates join or leave the boundary set) are called knots, and are denoted Ay = Ay = ... = 0.

From the form of the dual solution 4()\) as presented in Algorithm [I} and also the primal-dual
relationship , the primal solution path may be expressed in terms of the current boundary set By
and boundary sign vector sg,, as in

BN = Pau(p_s,)(y — ADE, s8,)  for A€ A1, i, (10)

The above shows that the primal solution lies in the subspace null(D_p, ), which means it expresses
a certain type of structure. This will become more concrete as we look at specific cases for D in
Section [4f but for now, the important point is that the structure of the generalized lasso solution
is determined by the boundary set B;. Thus, by conditioning on the observed boundary set By after
a certain number of steps k of the path algorithm, we are effectively conditioning on the observed
model structure in the generalized lasso solution at step k. This is essentially what is done in Section
Bl

Lastly, we note the following important point. In some generalized lasso problems, Step 2(c) in
Algorithm [I| does not need to be performed, i.e., we can formally replace this step by )\}f_'f_‘ie =0, and
accordingly, the boundary set By will only grow over iterations k. This is true, e.g., for all 1d fused
lasso problems; more generally, it is true for any generalized lasso signal approximator problem in
which DD is diagonally dominant.



2.2 Exact inference after polyhedral conditioning

Under the Gaussian observation model in (I]), Lee et al|(2016)), [Tibshirani et al| (2016) develop a
framework for inference on an arbitrary linear constrast v’ @ of the mean 6, conditional on y € G,
where G € R” is an arbitrary polyhedron. A core tool in these works is an exact pivotal statistic for
v7'0, conditional on y € G: they prove that there exists random variables V'©, V' such that

F£¥:UZUHUJH2 (v y) ‘ye G ~ Unif[0,1], (11)
where F [2:2] denotes the cumulative distribution function of Z ~ A/a: (1, 7%), a univariate normal

random varlate with mean p and variance 72, truncated to lie in the 1nterval [a,b]. The statistic in
is called the truncated Gaussian (TG) pivot.

Here is some insight into the construction of . Let us represent our polyhedron as G = {z :
'z > w}, where T' € R7*™ and w € R™ (and the inequality here is interpreted componentwise). Some
straightforward algebra shows that we can (essentially) write y € G <= V'° < vTy < V" where
Vo YU are defined by

Vl _'U y — min (Fy)]_wj’
J:pi>0 Py

Pup — T y — max (Fy)j — wj’
J:p; <0 Pj

and p = ['v/|v|?%. A simple rearrangement of the above expressions shows V'°, VP are functions of
Pj‘y alone, and so they are independent of v”y. This means that

lo u
Ty lye G, Pry ~ NDVVTITH 62 |0|2),

and hence

vT0,02v]3

IP(F[V10 V] (wTy) t’yeG, Pvly) =t forall0<t<1,

and integrating out over Py verifies the pivotal property in .

The TG pivotal statistic in enables us to test the null hypothesis Hy : v76 = 0 against the
one-sided alternative H; : v79 > 0. Namely, it is clear that the TG test statistic

up
T=1-FY 0"y (12)

is itself a p-value for Hy, with finite sample validity, conditional on y € G. (A two-sided test is also
possible: we simply use 2min{T,1 — T’} as our p-value; see [Tibshirani et al.|(2016) for a discussion
of the merits of one-sided and two-sided selective tests.) Confidence intervals follow directly from
as well. For an (equi-tailed) interval with exact finite sample coverage 1 — «, conditional on the
event y € G, we take [na/g, nl_a/g], where 74/2,71—q/2 are obtained by inverting the TG pivot, i.e.,
defined to satisfy

1— pVov (wTy) = a/2,

Nay2:02|v]13
plo yyup
L ] 2 (vTy) =1—a/2.

”]1—&/2702"0
A one-sided interval with coverage 1 — « of the form [7,,00) can be constructed similarly.

At this point, it may seem unclear how this framework applies to post-selection inference in
generalized lasso problems. The key ingredients are, of course, the polyhedron G and the contrast
vector v. In the next section, we will show how to construct polyhedra that correspond to model
selection events of interest, at points along the generalized lasso path. In the following section, we
will suggest choices of contrast vectors that lead to interesting and useful tests in specific settings,
such as the 1d fused lasso, trend filtering, and graph fused lasso problems.

(13)
1—



2.3 Can we not just use lasso inference tools?

When the penalty matrix D is square and invertible, the generalized lasso problem is equivalent
to a lasso problem, in the variable a = Df3, with design matrix X D~!. More generally, when D has
full row rank, problem is reducible to a lasso problem (see [Tibshirani & Taylor| (2011))). In this
case, existing inference theory for the lasso path (from |[Tibshirani et al.| (2016|)) could be applied to
the equivalent lasso problem, to perform post-selection inference on generalized lasso models. This
covers inference for the 1d fused lasso and trend filtering problems. But when D is row rank deficient
(when it has more rows than columns), the generalized lasso is not equivalent to a lasso problem
(see again |Tibshirani & Taylor| (2011))), and we cannot simply resort to lasso inference tools. This
would hence rule out treating problems like the 2d fused lasso, the graph fused lasso (for any graph
with more edges than nodes), the sparse 1d fused lasso, and sparse trend filtering from a pure lasso
perspective. Our paper presents a unified treatment of post-selection inference across all generalized
lasso problems, regardless of the penalty matrix D.

3 Inference along the generalized lasso path

3.1 The selection event after a given number of steps £

Here, we suppose that we have run a given (fixed) number of steps k of the generalized lasso path
algorithm, and we have a contrast vector v in mind, such that v7'@ is a parameter of interest (to be
tested or covered). Define the generalized lasso model at step £ of the path to be

hit rleave
MKZ(BbSBwRZ aIZ )7

where By, sp, are the boundary set and signs at step ¢, and ngit7 1 éea"e are quantities to be defined
shortly. We will show that the entire model sequence from steps £ = 1,...,k, denoted My, =
(Mjy, ..., My), is a polyhedral set in y. By this we mean the following: if M. (y) denotes the model
sequence as a function of y, and Mj.; a given realization, then the set

Gr={y: Ml:k(y) = M.}

is a polyhedron, more specifically, a convex cone, and can therefore be expressed as G = {y : T'y = 0}
for a matrix I' = I'(My.) that we will show how to construct, based on Mj k.

Our construction uses induction. When k = 1, and we write By = {i1} and sg, = (1), it is clear
from the first step of Algorithm |1 that (i1,71) is the hitting coordinate-sign pair if and only if

r[(DD")* DJ;,
r[(DDT)* DJ;,

= [(DDT)+D]lya i?éih
> —[(DD")Y* D]y, i#ii.

Hence we can construct I'(M7) to have the corresponding 2(m — 1) rows—to be explicit, these are
r[(DDTY* D);, £ [(DDT)* D), i # ;. We note that at the first step, there is no characterization
needed for Rt and I1°® (for simplicity, we may think of these as being empty sets).

Now assume that, given a model sequence My.(y11) = (M, ..., Mgi1), we have constructed a
polyhedral representation for Gy = {y : M;.5(y) = Mi.1}, i.e., we have constructed a matrix T'(M.x)
such that G = {y : I'(M1.) = 0}. To show that Gri1 = {y : I'(My,(x+1)) = 0} can also be written
in the analogous form, we will define I'(M1.x+1) by appending rows to I'(My.x) that capture the
generalized lasso model at step k + 1 of Algorithm [} We will add rows to characterize the hitting
time , leaving time , and the next action (either hitting or leaving) @D Keeping with the
notation in , a simple argument shows that the next hitting time can be alternatively written as

hit a;
M TR Sen(an) + b



Plugging in for a,b, we characterize the viable hitting signs at step k + 1, R}iY, = {sign(a;) : i ¢ By},
as well as the next hitting coordinate and hitting sign, 2211 and r,};ijl, by the following inequalities:
sign(a;) [(D,BkDTBk)J’D,Bk]i y=0, i¢ B,
T
[(D—BkD—Bk)+D—Bk]i2i_f_l Y - [(D—BkDTBk)JrD—Bk]iy
it 4 [(D—BkDTBk)+D—Bk:|i2i+tl D sp, ~ sign(ai) + [(D—p, DT 3 )*D_p,1; D 55,

i ¢ By.

This corresponds to 2(m — |Bg|) rows to be appended to I'(My.x).

For , we first define the viable leaving coordinates, denoted I }ff‘l’e, by the subset of i € By, for
which ¢; < 0 and d; < 0. We may write [, ,ief‘l’e = C}fj‘l’e N D}fﬁ‘l’e, where C,lff‘l’e is the set of ¢ for which
¢; <0, and D}fﬁ‘{e is the set of ¢ for which d; < 0. Plugging in for ¢, d, we notice that only the former
set C}°*7° depends on y, and D}*®° is deterministic once we have characterized M.;. This gives rise
to the following inequalities determining [;°21° = C}¢%1° n Djye:

[diag(sg, )Dp, (I — DXp, (D_p, D%, )" D_p,)],y <0, icCf° n DN,

[diag (SBk)DBk (I - DTBk (D—Bk DTBk)+D—Bk)]i y = 07 i€ (Cllfcf‘lm)c N D}ﬂcﬂ\{c’
which corresponds to |Dj#%°| < |By| rows to be appended to I'(M;.;). Given this characterization
for I}>7°, we may now characterize the next leaving coordinate ij°%° by:

[diag (s5.) Ds, (I = D5, (D, DL, )" Do) [yense v N
[diag (SBk)DBk (I - DTB;C (D5, DTBk )+D*Bk>]ifivle ng B, -

[diag(sBk)DBk (I - DZBk (D*Bk DZBk)jLD*Bk)]i Y ie Ileave
[diag(sBk)DBk (I - DTBk (D—Bk DTBk)+D—Bk)]i ng SBx 7 .

This corresponds to |1}°*7°| < |Bj| rows that must be appended to I'(Mi.;,). Recall that the leaving

leave

coordinate is given by 7% = 7jieave.
Lastly, for (), we either use

[(D-5, DLy, )" Dp,Jimie ¥
leclit + [(D—BkDZBk)+D_Bk]

=

i_:_'l ngsBk
[dia‘g(sBk)DBk (I - DIBk (D-s, DTB;@)+D*BIC)]¢}§5:‘1€ Yy
[diag(ss, ) Ds, (I = DT, (D-5, DT, )" D_3,)]

h
Yk

T
sy DB

if AIf, > Aje2%°, or the above with the inequality sign flipped, if AP, < Aj°®°. In either case, only
one more row is to be appended to I'(M7.). This completes the inductive proof.

It is worth noting that, in the inductive step that constructs I'(Mj.(41)) by appending rows to
['(Mj:x), we append a total of at most 2(m — [Bg|) + 2[Bg| + 1 = 2m + 1 rows. Therefore after k + 1
steps, the polyhedral representation for the model sequence M. ;1) uses a matrix I'(My,(x41)) with
at most (2m + 1)(k + 1) rows.

Combining the results of this subsection with the TG pivotal statistic from Section we are
now equipped to perform conditional inference on the model that is selected at any fixed step k of
the generalized lasso path. (Recall, we are assuming that a reasonable contrast vector v has been
determined such that v78 is a quantity of interest in the k-step generalized lasso model; in-depth
discussion of reasonable choices of contrast vectors, for particular problems, is given in Section ) of
course, the choice of which step k to analyze is somewhat critical. The high-level idea is to fix a step
k that is large enough for the selected model to be interesting, but not so large that our tests will
be low-powered. In some practical applications, choosing k a priori may be natural; e.g., in the 1d



fused lasso problem, where the selected model correponds to detected changepoints (as discussed in
the introduction), we may choose (say) k = 10 steps, if in our particular setting we are interested in
detecting and performing inference on at most 10 changepoints. But in most practical applications,
fixing a step k a priori is likely a difficult task. Hence, we present a rigorous strategy that allows the
choice of k to be data-driven, next.

3.2 The selection event after an IC-selected number of steps k

We develop approaches based on a generic information criterion (IC), like AIC or BIC, for selecting a
number of steps k£ along the generalized path that admits a “reasonable” model. By “reasonable”,
our IC approach admits a k-step generalized lasso solution balances training error and some notion of
complexity. Importantly, we specifically design our IC-based approaches so that the selection event
determining k is itself a polyhedral function of y. We establish this below.

Defined in terms of a generalized lasso model My, = (By, sBk,R};it7 I}fa"e) at step k, we consider
the general form IC:

J(My) = |ly — ]Dnull(D_sk)yug + P, (nullity(D,Bk)). (14)

The first term above is the squared loss between y and its projection onto the subspace null(D_g, );
recall that the k-step generalized lasso solution itself lies in this subspace, as written in , and so
here we have replaced the squared loss between y and B (k) with the squared error loss between y
and the unshrunken estimate P D_p, )Y (This is needed in order for our eventual IC-based rule
to be equivalent to a polyhedral constraint in y, as will be seen shortly.) The second term in
utilizes nullity(D_g, ), the dimension of null(D_g, ), i.e., the dimension of the solution subspace. It
hence penalizes the complexity associated with the k-step generalized lasso solution. Further, P, is a
penalty function that is allowed to depend on n and o2 (the marginal variance in the data model
(1)). Some natural choices are: P,(d) = 20*d, which makes resemble AIC; P,(d) = o%dlogn,
motivated by BIC; and P, (d) = o®(dlogn + 2ylog (7})), where v € (0, 1) is a parameter to be chosen
(say, v = 1/2 for simplicity), motivated by extended BIC of |(Chen & Chen| (2008)). Beyond these, any
choice of complexity penalty will do as long as P, (d) is an increasing function of d.

Unfortunately, choosing to stop the path at the step that minimizes the IC defined in does
not define a polyhedron in y. Therefore, we use a modified IC-based rule. We first define

) = {1} U {k €{2,3,...} :mull(D_g,) # null(D_kal)}, (15)

the set of steps at which we see action (nonzero adjacent differences) in the ICE| For k ¢ Ic (y), we
have null(D_g, ) = null(D_p, _,), meaning that the structure of the primal solution is unchanged
between steps k — 1 and k, and the IC is trivially constant as we move across these steps; we will
hence restrict our attention to candidate steps in Ic (y) in crafting our stopping rule. Denoting by
k1 < kg < k3 < ... the sorted elements of ./T\Ic(y), we define for each j =1,2,3, ...,

§j(y) = Sign(‘](Mij) - J(Mkj>)7

the sign of the difference in IC values between steps k; and kj+1 (two adjacent elements in y) at
which the IC values are known to change nontrivially). We are now ready to define our stopping rule,
which chooses to stop the path at the step

ly) = min {k; € P) : 5(9) = 1, Sia) = 1, -, Syrgaly) =1}, (16)

i.e., it chooses the smallest step k such that the IC defined in has g successive rises in a row,
among the elements of the candidate set ﬁc(y) Here ¢ > 1 is a prespecified integer; in practice, we
have found that ¢ = 2 often works well. It helps to see a visual depiction of the rule, see Figure

I'(

2For generalized lasso problems in which D is row rank deficient (e.g., the 2d fused lasso), it can happen at many
path steps & that null(D_g, ) = null(D_p, _,); for others in which D has full row rank (e.g., the 1d fused lasso) each
path step k marks a change in null(D_p, ). For more details, see Tibshirani & Taylor| (2011)).
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Figure 2: Two illustrations of the IC selection rule with ¢ = 2; on the left, an ezample where null(D_pg, )
changes at just 6 steps (representing, e.g., the 2d fused lasso case); on the right, an example where null(D_g, )
changes at every step (representmg, e.g., the 1d fused lasso case). In both panels, solid blue circles mark the
candidate set 1" Cly) in , and a large red circle is drawn around the IC-selected step in .

We now show that the following set is a polyhedron in y,
H= {y : Ml:(k_7‘+q)(y) = Ml:(kj+q)7 ]%(y) = kj7 gl:(j-‘rq—l)(y) = Sl:(j+q—1)7 Ay = 0}7

where A € RU+a=DX" i5 3 matrix whose th row a; € R” spans the difference between null(D_g, )
and null(D_ By, Dy for£=1,...,5+q¢—1. (Note that by specifying M. (kyea) (W) = My, ), We
have also 1mp1101t1y specified the first j + ¢ elements of C( ), and so we do not need to explicitly
include a realization of the latter set in the definition of H.) Write H = Hy n Hs, where

Hy, = {y : Ml:(kﬁq)(y) = M1:(kj+q)}7 Hy = {y : l%(y) = kj, 51:(j+q71)(y) = Sl:(jJrqfl)a Ay > 0}-

From the previous subsection, we already know that H; is polyhedral. Thus it suffices to study Ha,
given M., y; and as H> is defined by pairwise comparisons of IC values, it suffices to show that,
forany £ =1,....5+q—1,

I (Miy,y) = J(My,) (17)

is equivalent to a linear constraint on y. A symmetric argument shows that if we flip the inequality
sign above, this will still be equivalent to a linear constraint on y, and collecting these constraints
over steps £ = 1,...,j + g — 1 gives the polyhedral representation for Hy. Simply recalling the IC
definition in , and rearranging, we find that is equivalent to

Y (P D_s,,) — Pauli Do, )y = Py (nullity(D-p,,)) — P, (nullity (D, ). (18)

1
Note that, by construction, the sets By, and By, , differ by at most one element. For concreteness,
suppose that By, < By, ,; the other direction is similar. Then null(D_g,,) < null(D_g,, ), and
the two subspaces are of codimension 1. Further, it is not hard to see that the dlfference in
projection operators Py (p_ S Prap_ 5,) is itself the projection onto a subspace of dimension
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1E| Writing a, for the unit-norm basis vector for this subspace, and —b, for the right hand side in

, we see that becomes
—(ajy)* = —be.
Note that by > 0 (this is implied by nullity(D,Bk[H) > nullity(D_p,, ), and the complexity penalty

P, being an increasing function), and assume without loss of generality that the orientation of a, is
chosen so that aly > 0. Then the above becomes

agy < /be,

a linear constrast on y, as desired.

Altogether, with the final polyhedron H, we can use the TG pivot from Section to perform
valid inference on linear contrasts v7 @ of the mean 6, conditional on having chosen step k with our
IC-based stopping rule, and on having observed a given model sequence over the first k steps of the
generalized lasso path.

3.3 What is the conditioning set?

For a fixed k, suppose that we have computed k steps of the generalized lasso path and observed
a model sequence My.;(y) = Mi.x. From Section we can form a matrix I' = I'(Mj.) such that
{y : My.;(y) = My} = {y : T'y = 0}. From Section [2.2] for any vector v, we can invert the TG pivot
as in to compute a conditional confidence interval Ci_o = [1)a/2,M1—a 2], With the property

IP’(UTH €Ol

Miy) = Mlzk) —1-a. (19)

This holds for all possible realizations M., of model sequences, and thus we can marginalize along
any dimension to yield a valid conditional coverage statement. For example, by marginalizing over
all possible realizations M.(;_1) of model sequences up to step k — 1, we obtain

P(UTQ €0 a

Buly) = Bi. d6,(u) = s, BY* () = B, TEvo(y) = 16™) =10 (20)
Above, @k(y) is the boundary set at step k as a function of y, and likewise §p, (v), ézit(y), f,lfa"e(y)
are the boundary signs, viable hitting signs, and viable leaving coordinates at step k, respectively, as
functions of y. Since a data analyst typically never sees the viable hitting signs or viable leaving
coordinates at a generalized lasso solution (i.e., these are “hidden” details of the path computation,
at least compared to the boundary set and signs, which are reflected in the structure of solution
itself, recall and (@), the conditioning event in may seem like it includes “unnecessary”

details. Hence, we can again marginalize over all possible realizations R, I1°8v¢ to yield

Bu(y) = Bi 55, (y) = 51, ) = 1 - av (21)

Among , , , the latter is the cleanest statement and offers the simplest interpretation.
This is reiterated when we cover specific problem cases in Section [

Similar statements hold when k is chosen by our IC-based rule, from Section Applying the
TG framework from Section to the full conditioning set, in order to derive a confidence interval
C1i_q for v76, and following a reduction analogous to , , , we arrive at the property

P(UTG €Chu

]P’(vTH eCi_q

Bi(y) = Br. S5, (y) = s, k(y) = k) =1 -« (22)

Again this is a clean conditional coverage statement and offers a simple interpretation, for k& chosen
in a data-driven manner.

3This follows because, in general, if U, V are subspaces with U < V, then Py — Py = Py — Py Py = PﬁPV, but
also Py — Py = Py — Py Py = PVPé-. Since the product PIJ]'PV = PVP(JJ- commutes, it is itself a projection matrix,
onto the subspace UL n V.
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4 Special applications and extensions

4.1 Changepoint detection via the 1d fused lasso

Changepoint detection is an old topic with a vast literature. It has applications in many areas, e.g.,
bioinformatics, climate modeling, finance, and audio and video processing. Instead of attempting to
thoroughly review the changepoint detection literature, we refer the reader to the comprehensive
surveys and reviews in Brodsky & Darkhovski| (1993)), (Chen & Gupta) (2000), [Eckley et al.| (2011)).
Broadly speaking, a changepoint detection problem is one in which the distribution of observations
along an ordered sequence potentially changes at some (unknown) locations. In a slight abuse of
notation, we use the term changepoint detection to refer to the particular setting in which there
are changepoints in the underlying mean. Our focus is on conducting valid inference related to the
selected changepoints. The existing literature applicable to this goal is relatively small; it is reviewed
in Section [I.2 and compared to our methods in Section [5.2

Among various methods for changepoint detection, the 1d fused lasso (Tibshirani et al.|2005)),
also known as 1d total variation denoising in signal processing (Rudin et al.|[1992)), is of particular
interest in the current paper because it is a special case of the generalized lasso. Let y = (y1,-..,Yn)
denote values observed at 1,...,n. Then the 1d fused lasso estimator is defined as in , with the
penalty matrix being the discrete first difference operator, D = D(1) ¢ R(»=1)xn.

-1 1 0 0
0 -1 1 ... 0

DW= | o . (23)
0 0 -1 1

In the 1d fused lasso problem, the dual boundary set tracked by Algorithm [1| has a natural interpre-

tation: it provides the locations of changepoints in the primal solution, which we can see more or

less directly fro (see also [Tibshirani & Taylor| (2011)), |Arnold & Tibshirani| (2016])). Therefore,
(20}

we can rewrite as
) k+1
B = D1 bi(N L,y 1yiz,,  for A [Nega, il (24)
j=1

Here I; < ... < I denote the sorted elements of the boundary set By, with Iy = 0, Ixy; = n for
convenience, 1,., denotes a vector with 1 in positions p, ..., q and 0 elsewhere, and by N, b1 (N
denote levels estimated by the fused lasso with parameter A. Note that in , we have implicitly
used the fact that the boundary set after k steps of the path algorithm has exactly k elements;
this is true since the path algorithm never deletes coordinates from the boundary set in 1d fused
lasso problems (as mentioned following Algorithm . The dual boundary signs also have a natural
meaning: writing the elements of sg, as sy, ..., sy, , these record the signs of differences (or jumps)
between adjacent levels,

sign(5j+1(A) — ZA)]()\)) =8I, fOI‘j =1,.. .,k, AE [)‘k+1) )\k] (25)

Below, we describe several aspects of selective inference with 1d fused lasso estimates. Similar
discussions could be given for the different special classes of generalized lasso problems, like trend
filtering and the graph fused lasso, but for brevity we only go into such detail for the 1d fused lasso.

Contrasts for the fused lasso. The framework laid out in Section [3| allows us to perform post-
selection TG tests for hypotheses about v78, for any contrast vector v. We introduce two specific
forms of interesting contrasts, which we call the segment and spike contrasts. From the k-step fused
lasso solution, as portrayed in , , there are two natural questions one could ask about the
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changepoint [}, for some j € {1,...,k}: first, whether there is a difference in the underlying mean
exactly at I,
Hy:0r,41 =05, versus Hy:sp (07,41 —05;)>0. (26)

and second, whether there is an average difference in the mean between the regions separated by I;,

Hy : §(11‘+1)11.7’+1 = é(1.7—1+1)=1.7‘ versus  Hj : sy, (§(1.1+1)5I.i+1 - é(fj—l-*-l):fj) > 0. (27)

These hypotheses are fundamentally different: that in is sensitive to the exact location of the
underlying mean difference, whereas that in can be non-null even if the change in mean is not
exactly at ;. To test , we use the so-called spike contrast

Vspike = 81, (17,41 — 17;). (28)

The resulting TG test, as in with v = Uspike, is called the spike test, since it tests differences in
the mean 6 at exactly one location. To test , we use the so-called segment contrast

1 1
Useg = SI; <Ij+1_lj]l(1,-+1):lj+1 - Ij_lj_l]l(lj1+1):1j)~ (29)
The resulting TG test, as in with v = v, is called the segment test, because it tests average
differences across segments of the mean 6.

In practice, the segment test often has more power than the spike test to detect a change in the
underlying mean, since it averages over entire segments. However, it is worth pointing out that the
usefulness of the segment test at I; also depends on the quality of the other detected changepoints
1d fused lasso model (unlike the spike test, which does not), because these determine the lengths of
the segments drawn out on either side of I;. And, to emphasize what has already been said: unlike
the spike test, the segment test does not test the precise location of a changepoint, so a rejection
of its null hypothesis must not be mistakenly interpreted (also, refer to the corresponding coverage
statement in (30])).

Which test is appropriate ultimately depends on the goals of the data analyst. Figure [3]shows a
simple example of the spike and segment tests. The behaviors of these two tests will be explored
more thoroughly in Section [5.1

Alternative motivation for the contrasts. It may be interesting to note that, for the segment
contrast vseg in (29), the statistic

T _ _
UsegY = Y(I;4+1): L4010 — Y(IT;_141):1;

is the likelihood ratio test statistic for testing the null Hy : 0;,_, 11 = ... =05, =051 =... =07,
versus the alternative Hj : 01].71“ =...= HI], + 91j+1 =...= 9Ij+17 if the locations I;_1,1;, 11
were fized. An equivalent way to write these hypotheses, which will be a helpful generalization going

forward (as we consider other classes of generalized lasso problems), is
Ho:0enull(D_g,\(7,;) versus Hi:0emnull(D_g,).

In this notation, the segment contrast vseg in is the unique (up to a scaling factor) basis vector
for the rank 1 subspace null(D_g, )\null(D_g,\(1,3) = null(D_g,\(7,;)* nnull(D_g,), and vL,y is
the likelihood ratio test statistic for the above set of null and alternative hypotheses.

Lastly, both segment and spike tests can be viewed from an equivalent regression perspective,
after transforming the 1d fused lasso problem in , into an equivalent lasso problem (recall
Section . In this context, it can be shown that the segment test corresponds to a test of a partial
regression coefficient in the active model, whereas the spike test corresponds to a test of a marginal
regression coefficient.
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Figure 3: An example with n = 60 points, showing the differences between the spike and segment tests for
the fused lasso. The underlying mean has changepoints at locations 20 and 30; the 2-step fused lasso estimate,
drawn in blue, detects changepoints at locations 21 and 30, labeled A and B. P-values from the spike test run
on both locations are shown in the left panel, and from the segment test in the right panel. The segment and
spike contrast vectors corresponding to the test statistic at location B are visualized on the panels (the entries
of these vectors have been scaled up for visibility). We can see that both segment p-values are small, and both
segment null hypotheses defined around locations A and B should be rejected; but only the spike p-value at
location B is small, and only the the spike null hypothesis around location B should be rejected (as location A
does mot correspond to a true changepoint in the underlying mean, it is one position larger than the first true
changepoint).

Inference with an interpretable conditioning event. As explained in Section [3:3] there are
different levels of conditioning that can be used to interpret the results of the TG tests for model
selection events along the generalized lasso path. Here we demonstrate for the segment test in ,
what we see as the simplest interpretation of its conditional coverage property, with respect to its
parameter 0y, 1y.7,,, — 0(1,_,4+1):1,, for some j € {1,... k}. The TG interval C1—o = [a/2, N1—a/2]

in (L3), computed by inverting the TG pivot, has the exact finite sample property

P(g(1j+1)11j+1 - 0_(IJ71+1):IJ- €Cia | Iy, I, SIyy-s ka) =l-o (30)

obtained by marginalizing over some dimensions of the conditioning set, as done in Section In
words, the coverage statement says that, conditional on the estimated changepoints Iy, ..., I}
and estimated jump signs sy, ..., sy, in the k-step 1d fused lasso solution, the interval C_, traps
the jump in segment averages é(Iﬁl):]jH — 0_(1%1“):1]. with probability 1 — «. This all assumes
that the choice of step k is fixed; for k chosen by an IC-based rule as described in Section the
interpretation is very similar and we only need to add k to the right-hand side of the conditioning
bar in . A similar interpretation is also available for the spike test, which we omit for brevity.

One-sided or two-sided inference? We note that both setups in and use a one-sided
alternative hypothesis, and the contrast vectors in and are defined accordingly. To put it
in words, we are testing for changepoint in the underlying mean 6 (either exactly at one location,
or in an average sense across local segments) and are looking to reject when a jump in 6 occurs in
the direction we have already observed in the fused lasso solution, as dictated by the sign s;;. On
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the other hand, for coverage statements as in , we are implicitly using a two-sided alternative,
replacing the alternative in by H; : é([_j+l)1]j+1 + é(Ij_H_l):Ij (since the coverage interval is the
result of inverting a two-sided pivotal statistic). Two-sided tests and one-sided intervals are also
possible in our inference framework, however, we find them less natural, and our default is therefore
to consider the aforementioned versions.

4.2 Knot detection via trend filtering

Trend filtering can be seen as an extension of the 1d fused lasso for fitting higher-order piecewise
polynomials (Steidl et al.|[2006, [Kim et al.|2009, Tibshirani/|2014). It can be defined for any desired
polynomial order, written as r > 0, with r = 0 giving piecewise constant segments and reducing to
the 1d fused lasso of the last subsection. Here we focus on the case r = 1, where piecewise linear
segments are fitted. The general case r > 2 is possible by following the exact same logic, though for
simplicity, we do not cover it.

As before, we assume the data y = (y1,...,¥yn) has been measured at ordered locations 1,...,n.
The linear trend filtering estimate is defined as in with D = D@ e R("=2)x7_ the discrete second
difference operator:

D@ = | | L : (31)

For the linear trend filtering problem, the elements of the boundary set are in one-to-one corre-
spondence with knots, i.e., changes in slope, in the piecewise linear sequence B = (Bl, ey Bn) This
comes essentially from () (for more, see [Tibshirani & Taylor| (2011)), [Arnold & Tibshirani| (2016))).
Specifically, enumerating the elements of the boundary set By, as I; < ... < I, (and using Iy = 0
and I,y = 0 for convenience), each location I; + 1, j = 1,..., ¢ serves a knot in the trend filtering
solution, so that we may rewrite as

q+1
B(A) = Z <Bj(/\) + (M) (G — -1 — 1))]1(1j71+1):1j, for A € [Akt1, Ak (32)

Jj=1

Above, ¢ denotes the number of knots in the k-step linear trend filtering solution, which in general
need not be equal to k, since (unlike the 1d fused lasso) the path algorithm for linear trend filtering
can both add to and delete from the boundary set at each step. Also, for each j =1,...,¢ + 1, the
quantities Bj(A) and m;(A) denote the “local” intercept and slope parameters, respectively, of the
linear trend filtering solution, over the segment {I;_; +1,... ,Ij}ﬁ Denoting the dual boundary
signs sp, by sr,,...,s1,, we have, from and the fact that the linear pieces in the solution match
at the knots, that

sign(mj+1(/\) — Thj()\)) =5y, forj=1,...,¢, X€[Aps1, Axl, (33)

i.e.,the signs of changes in slopes between adjacent trend filtering segments.

Contrasts for linear trend filtering. We can construct both spike and segment tests for linear
trend filtering using similar motivations as in the 1d fused lasso. Given the trend filtering solution
in (32), (33), we consider testing a particular knot location I; + 1, for some j = 1,...,q. The spike
contrast is defined by

Uspike = S1; (11, — 217,41 + 17,42), (34)

4The parameters Bj()\), mj(\), j=1,...,q+ 1 are not completely free to vary; the slopes are defined so that the
linear pieces in the trend filtering solution match at the knots, 7i;(X) = (bj41(A) —b;(N))/(Ij — Ij—1), j=1,...,q.
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and the TG statistic in with v = vgpike provides us with a test for

0r, + 05,
HO : 9[].+1 = % versus H1 : S]j (9[]. - 29]j+1 + 0[j+2) > 0. (35)
The segment contrast is harder to define explicitly from first principles, but can be defined following
one of the alternative motivations for the segment contrast in the 1d fused lasso problem: consider
the rank 1 subspace null(D_pg, )\null(D_g,\(7,}) = null(D_Bk\{lj})J- nnull(D_p, ), and define w to
be a basis vector for this subspace (unique up to scaling). The segment contrast is then

Vseg = sign(wy, — 2wy, 41 + wy, 12)S1,w, (36)

i.e., we align w so that its second difference around location I; + 1 matches that in the trend filtering
solution. To test vg;gﬁ = 0, we can use the TG statistic in with v = vgeq; however, as w is not
easy to express in closed-form, this null hypothesis is also not easy to express in closed-form. Still,

we can rewrite it in a slightly more explicit manner:

Hy: h'(6 — 6P™) =0 where h=(0,...,0,1,2,3,....,n—I; —2) and 6" = P,

;_\/__/
Ij+1 TL*Ij*l

ull(D,Bk\“j))ea

(37)
versus the appropriate one-sided alternative hypothesis. In words, #P™I is the projection of 6 onto
the space of piecewise linear vectors with knots at locations I, + 1, £ & j, and h is a single piecewise
linear activation vector that rises from zero at location I; + 1.

The same high-level points comparing the spike and segment tests for the fused lasso also carry
over to the linear trend filtering problem: the segment test can often deliver more power, but at a
given location I; 4 1, the power of the segment test will depend on the other knot locations in the
estimated model. The spike test at location I;;; does not depend on any other knot points in the
trend filtering solution. Furthermore, the segment null does not specify a precise knot location, and
one must be careful in interpreting a rejection here. Figure [4| gives examples of the segment test for
linear trend filtering. More examples are investigated in Section [5.3

4.3 Cluster detection via the graph fused lasso

The graph fused lasso is another generalization of the 1d fused lasso, in which we depart from the
1-dimensional ordering of the components of y = (y1,...,yn). Now we think of these components as
being observed over nodes V' = {1,...,n} of a given (undirected) graph, with edges F = {e1,...,en},
where say each ey = (i, j¢) joins some nodes iy and jy, for £ = 1,...,m. Note that the 1d fused lasso
corresponds to the special case in which E = {(i,44+ 1) : ¢ = 1,...,n}, called the chain graph. For a
general graph G = (V, E), we define its edge incidence matrix Dg € R™*™ by having rows of the
form

Dgz(O,...—l,...%,...O), (38)
ztz Je

when the ¢th edge is ey = (i, jo), with iy < jg, for £ = 1,...,m. The graph fused lasso problem,
also called graph total variation denoising, is given by with D = D¢. This has been studied by
many authors, particularly in the case when G is a 2-dimensional grid, and the resulting program,
called the 2d fused lasso, is useful for image denoising (see, e.g., [Friedman et al.| (2007)), (Chambolle
& Darbon| (2009), [Hoefling| (2010J), [ Tibshirani & Taylor| (2011)), Sharpnack et al.| (2012), |Arnold &
Tibshirani| (2016))). Trend filtering can also be extended to graphs (Wang et al.[2016)); in principle
our inferential treatment here extends to this problem as well, though we do not discuss it.

The boundary set constructed by the dual path algorithm, Algorithm has the following
interpretation for the graph fused lasso problem (Tibshirani & Taylor|2011, [Arnold & Tibshirani|2016]).
Denoting By, = {I1,...,I;}, each element I, corresponds to an edge ey, in the graph, £ =1,...,¢. The
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Figure 4: An ezample with n = 60 points, portraying two segment tests for trend filtering. The underlying
piecewise linear mean has knots at locations 20 and 40; the 2-step linear trend filtering estimate, in blue,
detects knots at locations 17 and 39, labeled A and B. The left plot shows the result the segment test at knot
A, and the right plot at knot B. In each, the segment contrast is visualized. Both p-values are small.

graph fused lasso solution is then piecewise constant over the sets C1,..., ), which form partition
of {1,...,n}, and are defined by the connected components of G = (V, E\{ey, : {,...,q}), i.e., the
original graph with the edges er,, £ = 1,..., ¢ removed. That is, we may express as

p
B = D1bi(Mic,, for A€ [Aes1, Arl, (39)
j=1

where p denotes the number of connected components, 1¢; denotes the indicator vector €, having
ith entry 1 if ¢ € C; and 0 otherwise, and b;(\) denotes an estimated level for component C;, for
j=1,...,p. The dual boundary signs sg, = {s1,,...,5r,}, capture the signs of differences between
levels in the graph fused lasso solution,

sign(ﬁje (N — BAZ-Z ()\)) = sy,, when ey, = (ig,jg), with iy < jo,
for £=1,...,q, and X € [Ags1, \e]- (40)

Contrasts for the graph fused lasso. For the graph fused lasso problem, it is more natural to
consider segment (rather than spike) type contrasts, conforming with the notation and concepts
introduced for the 1d fused lasso problem. Even restricting our attention to segments tests, many
possibilities are available to us, given the graph fused lasso solution as in , . Say, we may
choose any two “neighboring” connected components C, and C, for some a,b = 1,...,p, meaning
that there exists at least one edge (in the original graph) between C, and C}, and test

HO : gca = écb versus H1 : Sab(écb — éCa) > O, (41)

where sq, = sy, for some element I, € By, such that ej, = (i0,7¢), with ip < jg, and iy € Cy, jo € Ch.
Above, we use the notation s = >},_¢ 0;/|S| for a subset S. The hypothesis in tests whether
the average of 8 over components C, and Cj are equal, versus the alternative that they differ and
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their difference matches the sign witnessed in the graph fused lasso solution. To test , we can
use the TG statistic in with v = vgeg, Where

1 1
Useg = Sab<wﬂcb — mﬂcQ). (42)

As in the 1d fused lasso problem, the above contrast can also be motivated by the fact that vszgy is
the likelihood ratio test for an appropriate pair of null and alternative hypotheses. More advanced
segment tests are also possible, say, by testing whether averages of § are equal over two subsets, each
given by a union of connected components among C1, ..., CpEl Figure |5 shows a simple example of a
segment test of the form , for the graph fused lasso. Section gives another example.

Initial graph Step 46 Step 47

Group 1
(mean = 0)

AN |

(5O
;5‘?10'
W ‘lr:,tf A“‘h 2t ‘,A

(mean = 3) \. ‘

Figure 5: An example with n = 60 nodes illustrating the segment test for the graph fused lasso. The graph
was generated using a simple stochastic block model with 3 groups of 20 nodes each. The edge probabilities
were 0.5 for nodes in the same group and 0.05 for nodes in different groups. This resulted in m = 369 edges.
The group means were defined to be 0, 1, and 3 (colored in white, light blue, and dark blue, above). Data were
generated by adding i.i.d. centered Gaussian noise, with standard deviation 0.15. The left plot displays the
initial graph, with 321 total edges. The middle plot displays the graph fused lasso estimate after 46 path steps,
where there is only one edge left separating group 3 from groups 1 and 2. At step 47, in the right plot, this
last edge is removed and the segment test , is applied, with C, being the union of groups 1 and 2
(white and light blue) and Cy being group 3 (dark blue). The p-value is small, around 0.03.

4.4 Problems with additional sparsity

The generalized lasso signal approximator problem in can be modified to impose pure sparsity
regularization on f itself, as in

~ 1
B = argmin [y — B3 + AIDB|1 + a8, (43)
BeR™

where a > 0 is an another tuning parameter. The above may be called the sparse generalized lasso
signal approximation problem. In fused lasso settings, both 1d and graph-based, the estimate 3 in
will now be piecewise constant across its components, with many attained levels being equal
to zero exactly (for a large enough value of o > 0). In fact, the fused lasso as originally defined by
Tibshirani et al. (2005) was just as in (43)), with both fusion and sparsity penalties. In trend filtering
settings, the estimate B in will be similar, except that it will now have a piecewise polynomial
structure whenever it is nonzero. There are many examples in which pure sparsity regularization

5However, here it is unclear how to perform a one-sided test, since the preferred sign for rejection is not generally
specified by the graph fused lasso model selection event.

19



is a useful addition, see Section and also, e.g., [Tibshirani et al.| (2005)), [Friedman et al.| (2007)),
Tibshirani & Wang| (2008)), Tibshirani (2014)).

Of course, problem is still a generalized lasso problem, since the two penalty terms in the
criterion can be represented by A|DJ|1, where D € R(™+™)*" ig given by row-binding D € R"™*"
and ol € R™*™. This means that all the tools presented so far in this paper are applicable, and
post-selection inference can be performed for problems like the sparse fused lasso and sparse trend
filtering.

4.5 Generalized lasso regression problems

Up until this point, our applications have focused on the signal approximation problem in , but
all of our methodology carries over to the generalized lasso regression problem in . Allowing for a
general regression matrix X € R"*P greatly extends the scope of applications; see Section and
the discussions and examples in, e.g., Tibshirani et al.| (2005), [Friedman et al. (2007)), Tibshirani &
Taylor| (2011)), |Arnold & Tibshirani (2016)).

To tackle the regression problem in with our framework, we must assume that rank(X) = p
(which requires n > p). We follow the transformation suggested by [Tibshirani & Taylor| (2011)),

. 1 . 1 -
B =argmin |y — XB|5 + A|DB|1 < 6 =argmin ~|g— 0[5+ A|D0|1,
perr 2 gern 2

where j = XX 1y, D = DX, and the equivalence between solutions B,é is=X B . From what we
can see above, a generic generalized lasso regression problem can be transformed into a generalized
lasso signal approximation problem (just with a modified response vector § and penalty matrix [))
and so all of our tools can be applied to this transformed signal approximation problem in order to
perform inference.

When rank(X) < p (which always happens in the high-dimensional case n < p), we can simply
add a small ridge penalty, which brings us back to the case in which the effective regression matrix is
full column rank (see [Tibshirani & Taylor| (2011)). Then the above transformation can be applied.

4.6 Post-processing and visual aids

We briefly discuss two extensions for the post-selection inference workflow.

Post-processing. The choices of contrasts outlined in Sections [4.1H4.5| are defined automatically
from the generalized lasso selected model. Given such a selected model, before we test a hypothesis
or build a confidence interval, we can optionally choose to ignore or change some of the components
of the selected model, in defining a contrast of interest. We refer to this as “post-processing”; to be
clear, it only affects the contrast vector being used, and not the conditioning set in any way.

It helps to give specific examples. In the 1d fused lasso problem, empirical examples reveal that
the estimator sometimes places several small jumps close to one larger jump. The practitioner could
choose to merge nearby jumps before forming the segment contrast of Section we can see from
that this would correspond to extending the segment lengths on either side of the breakpoint in
question, which could result in greater power to detect a change in the underlying mean. See the left
panel of Figure [f] for an example. In trend filtering, a practitioner could also choose to merge nearby
knots before forming the segment contrast in , from Section See the right panel of Figure
[6] for an example. Similar post-processing ideas could be carried out for the graph fused lasso and
generalized lasso regression problems.

Visual aids. In designing contrasts, the data analyst may also benefit from visualization of the
generalized lasso selected model. Such a “visual aid” has a similar goal to that of post-processing,
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Figure 6: Examples showing the segment test contrasts before and after post-processing or “decluttering” for
the 1d fused lasso, in the left panel, and trend filtering, in the right panel. In both problems, the p-values for
testing at locations marked by blue dashed vertical lines dropped considerably; on the left, the p-value dropped
from 0.236 to <0.001, and on the right, from 0.09 to 0.001. For trend filtering, it can also be demonstrated
that decluttering at one location helps the power for testing at another location that is farther away, but this
phenomenon is absent in the fused lasso case (due to of the finite support of the segment test contrasts).
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Figure 7: An example showing a 1d fused lasso solution after J steps, in the left panel, and its corresponding
step-sign plot, in the right panel. Based on the step-sign plot, the data analyst may, e.g., deem locations 18
and 20 to be too close to be both interesting, and merge them before conducting segment tests.

namely, to improve the quality of the question asked, i.e., the hypothesis tested, following a generalized
lasso selection event. For the eventual inferences to be valid, the visual aid must not reveal information
about the data y that is not contained in the selection event, M. (y) = M.k, defined in Section
3.1| (assuming a fixed step number k, for simplicity). Again, it helps to consider the fused lasso
as a specific use case. See Figure [7] for an example. We cannot, e.g., reveal the 4-step fused lasso
solution to the analyst, ask him/her to hand-craft a contrast to be tested, and then expect type
I error control after applying our post-selection inference tools. This is because the solution itself
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contains information about the data not contained in the selection event—the magnitudes of the
fitted jumps—and the decision of which contrast to test could likely be affected by this information.
This makes the conditioning set incomplete (said differently, it means that the contrast vector no
longer measurable with respect to the conditioning event), and we should not expect our previously
established inference guarantees to apply, as a result. We can, however, reveal a characature of the
solution, as long as this characature is based entirely on the selection event. For the 1d fused lasso,
this means that the characature must be defined in terms of the changepoint locations and signs of
the fitted jumps, and we refer to it as a “step-sign plot”. Examination of the jump locations and
signs can aid the analyst in designing interesting contrasts to test.

5 Empirical examples

5.1 1d fused lasso examples

One-jump signal. First, we examine a problem setup with n = 60, and where # € R% has one
changepoint at location 30, of height §. Data y € R were generated by adding i.i.d. A/(0,1) noise
to #. We considered three settings for the signal strength: § = 0 (no signal), 6 = 1 (moderate signal),
and ¢ = 2 (strong signal). See the top left panel of Figure [§] for an example. Over 10,000 repetitions
of the data generation process, we fit the 1-step fused lasso estimate, and computed both the spike
and segment tests at the detected changepoint location. Their p-values are displayed via QQ plots,
in the top middle and top right panels of Figure [§] restricted to repetitions for which the detected
location was 30. (This corresponded to roughly 2.2%, 30%, and 65% of the 10,000 total trials when
0 =0, 1, and 2, respectively.) When ¢ = 0, we see that both the spike and segment tests deliver
uniform p-values, as they should. When ¢ = 1 and 2, we see that the segment test provides much
better power than the segment test, and has essentially full power at the strong signal level § = 2.

When the fused lasso detects a changepoint at location 29 or 31, i.e., a location that is off by one
from the true changepoint at location 30, the spike and segment tests again perform very differently.
The spike test yields uniform p-values, as it should, while the segment test offers nontrivial power.
See Appendix [A] for QQ plots of these results.

Two-jump signal. Next, we examine a problem with n = 60 and where § € R has two
changepoints, at locations 20 and 40, each of height § = 2. Data y € R5° were again generated around
6 by adding i.i.d. M'(0,1) noise. See the bottom left panel of Figure [§] for an example. Over 10,000
repetitions, we fit 2 steps of the fused lasso and recorded spike and segment p-values, at each step,
for testing the significance of location 20. The bottom middle and bottom right panels of Figure
display QQ plots, restricted at step 1 to simulations in which location 20 was detected (corresponding
to about 32% of the total number of simulations), and restricted at step 2 to simulations in which
locations 20 and 40 were detected (in either order, corresponding to again about 32% of the total
simulations). We see that the spike test has better power at step 1 versus step 2, however, for the
segment test, the story is reversed. The spike test contrast for testing at location 20 does not change
between steps 1 and 2; the extra conditioning incurred at step 2 only hurts its power. On the other
hand, the segment test uses a different contrast between steps 1 and 2, and the contrast at step 2
provides better power, because it leads to an average over a shorter segment (to the right of location
20) over which the mean is truly constant.

Confidence intervals. As explained in Section post-selection confidence intervals are given
by inverting the TG pivot. In the 1d changepoint detection setting, the quantity v”6 being covered
corresponds to a measure of jump size in the signal. We note that for the spike test contrast , it
is exactly the jump size, and for the segment test contrast , it is the mean difference between
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Figure 8: Ezamination of p-values and confidence intervals coming from the spike and segment tests, in the
one-jump (top row) and two-jump (bottom row) settings, with n = 60 points in each case. In the one-jump
setting, we considered three signal strengths: § = 0,1,2. The top left panel shows an example simulated
data set from a one-jump signal with height 6 = 2, and the middle and right panels show the p-values from
the spike and segment tests, collected over simulations for which the 1-step fused lasso correctly detected a
changepoint at location 30. We see that the segment test has uniformly higher power. The tables below the
plots report empirical coverages of one-sided 95% confidence intervals of the form [no.05,0), along with the
median lower bounds 1no.05. The lower bounds from the segment test are greater than the corresponding lower
bounds from the spike test.

In the two-jump setting, we only considered the signal strength of 6 = 2, and the left panel of the bottom
row shows an example simulated data set. The middle and right panels show p-values coming from the spike
and segment tests conducted at location 20, after 1 or 2 steps of the fused lasso. The p-values at step 1
were collected over simulations in which location 20 was detected, and at step 2 over simulations in which
locations 20 and 40 were detected (in either order). The power of the segment test improves after 2 steps, as
it incorporates the correct second jump into the contrast, while the power of the spike test degrades due to the
increased conditioning with the same contrast. The tables below the plots report the empirical coverages for
one-sided confidence intervals that trap the selected jump size after each step.
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segments adjacent to the jump. Figure [8| reports coverages and median bound sizes from confidence
intervals computed in a variety of settings.

IC-based stopping rules. The left panel of Figure[J]shows the segment test applied to a one-jump
signal of length n = 20, with a jump at location 10 of height §, but this time incorporating the
IC-based stopping rules (to determine where along the fused lasso solution path to perform the test).
This is a more practical performance gauge because it requires minimal user input on model selection.
Shown are power curves (fraction of rejections, at the 0.05 level of type I error control) as functions
of 4, computed over p-values from simulations in which location 10 was detected in the final model
selected by the AIC- or BIC-type rule described in Section using ¢ = 2 (i.e., stopping after 2
rises in the criterion). Note that the p-values here were all adjusted by the number of changepoints
in the final AIC- or BIC-selected model, using a Bonferroni correction (so that the familywise type I
error is under control). The BIC-type rule has better power than the AIC-type rule, as the latter
leads to larger models (AIC stops at 2.5 steps on average versus 1.7 from BIC), resulting in further
conditioning and also misleading additional detected locations, both of which hurt its performance.

The results are compared to those from the segment test carried out at the 1-step fused lasso
solution, over p-values from simulations in which location 10 was detected. With less conditioning
(and no need for multiplicity correction), this method dominates the IC-based rules in terms of power.
The results are also compared to an oracle rule who knows the correct segments and carries out a
test for equality of means (with no conditioning); this serves as an upper bound for what we can
expect from our methods. The right panel of Figure [9] shows BIC power curves as the sample size
n increases from 20 to 80, in increments of 20. We see a uniform improvement in power across all
signal strengths §, as n increases. However, at n = 80, the BIC-based test still delivers a power that
is noticeably worse than that of the oracle rule at n = 20.

5.2 Comparison to SMUCE-based inference

Here we compare our post-selection confidence intervals for the 1d fused lasso to those based on
the Simultaneous Multiscale Changepoint Estimator (SMUCE) of [Frick et al.| (2014)). The SMUCE
approach provides a simultaneous confidence band for the components of the mean vector 6, from
which confidence intervals for any linear contrast of the mean can be obtained, and therefore, valid
confidence intervals for post-selection targets can be obtained. Admittedly, a simultaneous band
is a much broader goal, and SMUCE was not designed for post-selection confidence intervals, so
we should expect such intervals to be wider than those from our method. It is worthwhile to make
empirical comparisons nonetheless.

Data were generated as in the top left panel of Figure[§], with the signal strength parameter ¢
varying between 0 and 4. We computed the 1d fused lasso path, and stopped using the 2-rise BIC
rule. Over simulations in which the location 30 appeared in the eventual model selected by this rule,
we computed the segment test contrast vs, around location 30, and used the SMUCE band with a
nominal confidence level of 0.95 to compute a post-selection interval for vg;gﬁ. A power curve was
then computed, as a function of d, by keeping track of the fraction of times this interval did not
contain 0. Again over simulations in which the location 30 appeared in the model chosen by the BIC
rule, we used the TG test to compute p-values for the null hypothesis vST;gH = 0. These p-values were
Bonferroni-corrected to account for the multiplicity of changepoints in the model selected by the BIC
rule, and a power of curve was computed, as a function of d, by recording the fraction of p-values
below 0.05. In the middle panel of Figure [I0} we can see that the TG test provides better power
until § is about 2.5, after which both methods provides strong power. The right panel investigates
the empirical type I error of each method, as n varies. The SMUCE bands are asymptotically valid,
and recall, the TG p-values and intervals are exact in finite samples (assuming Gaussian errors). We
can see that SMUCE begins anti-conservative, before the asymptotics have “kicked in”, and then as
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Figure 9: Power curves for a one-jump signal with n = 20 points on the left, and n = 20,40, 60,80 on the
right, and in each case, having a jump at location n/2, of height §. The left panel shows the results from the
segment test, either at step 1 (labeled “Fized”, in green), or at a step selected by the 2-rise AIC or BIC rule
(labeled “AIC” and “BIC”, in blue and red, respectively). The power curves were computed from p-values over
stmulations in which location 10 appeared in the selected model (and the AIC- and BIC-based rules applied
appropriate corrections for multiplicity). The left panel also shows the results of applying an oracle test at
location 10, for equality of means. We can see a clear drop in power from the oracle to the fixed rule to the
I1C-based rules. The right panel shows the improvement in BIC power curves as n increases.

n grows, becomes overly conservative as a means of testing post-selection targets, because these tests
are derived from a much more stringent simultaneous coverage property.

5.3 Trend filtering example

We examine a problem with n = 40, and where 6 € R*? has its first 20 components equal to zero,
and its next 20 components exhbiting a linear trend of slope §/20. Data y € R®® were generated
by adding i.i.d. M(0,1) noise to 8. We considered the four settings: § = 0 (no signal), § = 1 (weak
signal), § = 2 (moderate signal), and 6 = 5 (strong signal). See the left panel of Figure [L1| for an
example. We computed the trend filtering path, stopped using the 2-rise BIC rule, and considered
the segment test at location 20. The right panel of Figure [11| shows the resulting p-values, restricted
to repetitions in which location 20 appeared in the eventual model. We can see that when § = 0, the
p-values are uniformly distributed, as we should expect them to be. As § increases, we can also see
the increase in power, with the jump from § = 2 to § = 5 providing the segment test with nearly full
power.

5.4 2d fused lasso example

We examine a problem setup where the mean 6 is defined over a 2d grid of dimension 10 x 10 (so
that n = 100), having all components set to zero, except for a 5 x 5 patch in the lower left corner
where all components are equal to §. Data y € R% were generated by adding i.i.d. N'(0,1) noise to
6. We considered the following settings: 6 = 0 (no signal), § = 3 (medium signal), and § = 5 (strong
signal). See the left panel of Figure 12| for a visualization of the mean 6, and the middle panel for
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Figure 10: Comparison of p-values from the TG test, and derived from the SMUCE simultaneous confidence
band, for testing the same null hypothesis. Data were generated under a problem setup that is the same as
that in the top left panel of Figure[8 but with the signal strength & varying between 0 and 4. The top left
panel of the current figure shows an example with § = 2. In each simulation, the 1d fused lasso path was
stopped using the 2-rise BIC rule, and segment test contrasts were formed around the detected changepoints.
The middle panel shows power curves, computed over simulations in which the location 30 appeared in the
model selected by BIC. These power curves were computed either from the SMUCE band having nominal
confidence level 0.95, or the TG test with a type I error control of 0.05. We can see that the latter method
has better power for smaller §, and both perform well for larger §, with the SMUCE-based method providing
slightly more power. The right panel displays the empirical type I error of the two testing methods, which
emphasizes that the SMUCE guarantees are only asymptotic, and this method can quite become conservative
for large n, because in a way simultaneous coverage is a more ambitious goal that post-selection coverage.

example data y, both when § = 3.

Over many draws of data from the described simulation setup, we computed the 2d fused lasso
solution path, and used the 1-rise BIC stopping ruleﬁ For 6 = 3,5, we retained only the repetitions
in which the BIC-chosen 2d fused lasso estimate had exactly two separate fused components—the
bottom left 5 x 5 patch, and its complement—and computed segment test p-values with respect to
these two components. For § = 0, we collected the segment test p-values over all repetitions, which
were computed with respect to two arbitrary components appearing in the BIC-chosen estimate, in
each data instance. The right panel of Figure [[2] shows QQ plots for each value of § in consideration.
When é = 0, we see uniform p-values, as expected; when § = 3,5, we see clear power.

5.5 Regression example

We consider a semi-synthetic stock example, with n = 251 timepoints, and data y € R?%! simulated
from a linear model of log daily returns of 3 real Dow Jones Industrial Average (DJIA) stocks, from
the year 2015. Data was obtained from the quantmod R package. See the left panel of Figure [13] for
a visualization of these stocks (note that what is displayed is not the log daily returns of the stocks,
but the raw stock prices themselves).

6In the 2d fused lasso, and more generally in problems in which the penalty matrix D does not have full row rank,
we recommend a 1-rise rule in place of our typical 2-rise rule. The reason is that, in such problems, most steps in the
path algorithm lead to a change in the dual solution, but not in the primal solution (see |Tibshirani & Taylor| (2011])
for details); using the 2-rise rule, therefore, leads to excessive conditioning.
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Figure 11: Inferences from the segment test, in a setup with n = 40 points, and one knot in the underlying
piecewise linear mean at location 20, with the change in slope is §/20. We considered the settings 6 = 0,1,2,5.
The left panel displays an example simulated data set from this setup, for § = 5. The right panel shows QQ
plots of segment test p-values at location 20, computed from the trend filtering path, stopped by the 2-rise
BIC rule. The p-values were restricted to repetitions in which location 20 appeared in the BIC-selected model.
When 6 = 0, we see uniform p-values, as appropriate; when & = 5, we see nearly full power.
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Figure 12: Inferences from the segment test, in a 2d problem setup with n = 100, and a mean parameter 0
shaped into a piecewise constant 10 x 10 image. The bottom 5 x 5 block of the mean is assigned a height of 6,
and the rest of its components 0. We considered the settings § = 0,3,5. The left panel visualizes the mean 6,
when 6 = 3; the middle panel shows an example noisy realization y, again for 6 = 3. The right panel shows
QQ plots of the segment test, with respect to two fused components appearing in the 2d fused lasso estimate,
stopped by the 1-rise BIC stopping rule. When 6 = 3,5 these p-values are restricted to data instances in
which the components being tested are the lower left 5 x 5 block and its complement; when § = 0, all p-values
are shown. The p-values behave as we would expect: uniform for 6 =0, and increasing power for 6 = 3,5.
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Denoting the log daily returns as X; € R?51 5 =1,2,3, our model for the response was

3
ye= . XiiBh + €, € ~N(0,0%), iid, fort=1,.. T (44)
j=1

The coefficient vectors 5F € R**!, j = 1,2,3 were taken to be piecewise constant; the first coefficient
vector Sf had two changepoints at locations 83 and 166, and had constant levels -1, 1, -1 from left to
right; the second coefficient vector 83 had one changepoint at location 125, switching from levels -1
to 1; the third coefficient vector 85 had no changepoints, and was set to have a constant level of
1. We generated data once from the model in , with o = 0.002 (this is a reasonable noise level,
as the log daily returns are on a comparable scale). We then computed the fused lasso regression
path, where 1d fused lasso penalties were placed on the coefficient vectors for each of the 3 stocks, in
order to enforce piecewise constant behavior in the estimates Bj e R, j = 1,2,3. The path was
terminated using the 2-rise BIC stopping rule, which gave a final model with 9 changepoints among
the coefficient estimates. After post-processing (“decluttering”) changepoints that occurred within
10 locations of each other, we retained 5 changepoints: 2 in the first estimated coefficient vector, 2
in the second, and 1 in the third. Segment test p-values were computed at each of the decluttered
changepoints, and 3 changepoints that approximately coincided with true changepoints were found
to be significant, while the other 2 were found insignificant. See the right panel of Figure For
more details on the fused lasso optimization problem, and the contrasts used to define the segment
tests, see Appendix

5.6 Application to CGH data

We examine the use of our fused lasso selective inference tools on a data set of array comparative
genomic hybridization (CGH) measurements from two glioblas-toma multiforme (GBM) tumors,
from the cghFLasso R package. CGH is a molecular cytogenetic method for determining DNA copy
numbers of selected genes in a genome, and array CGH is an improved method which provides higher
resolutions measurement. Each CGH measurement is a log ratio of the number of DNA copies of
a gene compared to a reference measurement—aberrations give nonzero log ratios. [Tibshirani &
Wang (2008]) considered the sparse 1d fused lasso as a method for identifying regions of DNA copy
number aberrations from CGH data, and analyzed the GBM tumor data set as a specific example,
with n = 990 data points.

Using the same GBM tumor data set, we examine the significance of changepoints that appear
in the 10th step of the 1d fused lasso path, and separately, changepoints that appear in the 28th
step of the sparse 1d fused lasso path (in general, unlike the 1d fused lasso, the sparse 1d fused lasso
can add and delete changepoints at each step of the path; the estimate at the 28th step here only
had 7 changepoints). These steps were chosen by the 2-rise and 1-rise BIC rules, respectivelyE] The
resulting estimates are plotted along with the GBM tumor data, in Figure Displayed below this
is a step-sign plot of the sparse 1d fused lasso estimate, serving as example of what might be shown
to the scientist to allow him/her to hand-design interesting contrasts to be tested.

Below the plot is a table containing the p-values from segment tests of the changepoints in the
two models, i.e., from the 1d fused lasso and sparse 1d fused lasso. The segment test contrasts were
post-processed (i.e., “decluttered”) so as to exclude changepoints that occurred within 2 locations
of each other—this only affected the locations labeled E and F in the sparse 1d fused lasso model
(and as a result, the significance of changepoint at location F was not tested). Commonly detected
changepoints occur at locations labeled A, D, E, and G; the segment tests from the 1d fused lasso

7As already mentioned, for generalized lasso problems in which the penalty matrix D is full row rank (like the 1d
fused lasso or trend filtering) we have found the 2-rise BIC stopping rule to work well; for problems in which D is not
full row rank (like the sparse 1d fused lasso, sparse trend filtering, or the graph fused lasso over a graph with more
edges than nodes), we have found the 1-rise BIC stopping rule to work well.
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raw stock prices from three DJIA stocks; response data were generated according to a linear model with the
log daily returns of these stocks as predictors, and time-varying coefficients. The true piecewise constant
time-varying coefficients are displayed in the right panel. The fused lasso regression path was run, and stopped
by the 2-rise BIC rule, delivering the estimated coefficients also displayed in the right panel. After decluttering,
segment tests were applied to the detected changepoints and 3 approzimately correct locations are deemed
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model yield significant p-values at each of these locations, but those from the sparse 1d fused lasso
model only yield a significant p-value at location E. This apparent loss of power with the sparse 1d
fused lasso may be due to the larger amount of conditioning involved.

We also compare the above to results from simple changepoint tests carried out using sample
splitting. This is possible in a structured problem like ours, where there is a sensible way to split the
data (note that in a less structured setting, like a generic graph fused lasso problem, there would be
no obvious splitting scheme). We divided the GBM data set into two halves, based on odd and even
numbered locations. On the first half, the “estimation set”, we fit the 1d fused lasso path and chose
the stopping point using 5-fold cross-validation (CV), where the folds were defined to include every
5th data point in the estimation set. After determining the path step that minimized the CV error,
we moved back towards the start of the path (back towards step 1) until a further move would yield
a CV error greater than one standard error away from the minimum (this is often called the “one
standard error rule”, see, e.g., Chapter 7.10 of [Hastie et al.| (2009))). This gave a path step of 18,
and hence 18 changepoints in the final 1d fused lasso model. Using the second half of the data set,
the “testing set”, we then ran simple Z-tests to test for the equality of means between every pair of
adjacent segments partitioned by the 18 derived changepoints from the estimation set. For simplicity,
in the table in Figure we only show p-values at locations that are comparable to the common
locations labeled A, D, E, G from the fused lasso estimation procedures run on the full data set. All
are significant.

Lastly, we note that to apply all tests in this subsection, it was necessary to estimate the noise
variance o2. To do so, we ran 5-fold CV on the full data set, chose the stopping point using the one
standard error rule, and estimated o2 based on the residuals. This gave & = 0.46.

6 Discussion

We have extended the post-selection inference framework of |Lee et al.| (2016)), Tibshirani et al.| (2016)
to the model selection events along the generalized lasso path, as studied by [Tibshirani & Taylor
(2011). The generalized lasso framework covers a fairly wide range of problem settings, such as the
1d fused lasso, trend filtering, the graph fused lasso, and regression problems in which fused lasso or
trend filtering penalties are applied to the coefficients. In this work, we developed a set of tools for
conducting formal inferences on components of the adaptively fitted generalized lasso model—these
are, e.g., adaptively fitted changepoints in the 1d fused lasso, knots in trend filtering, and clusters in
the graph fused lasso. Our methods allow for inferences to be conducted at any fixed step of the
generalized lasso solution path, or alternatively, at a step chosen by a rule that tracks AIC or BIC
until a given number of rises in the criterion is encountered.

It is worth noting the following important point. In the language of [Fithian et al.| (2014} 2015)),
the development of post-selection tests in this paper was done under a “saturated model” for the
mean parameter §—this treats € as an arbitrary vector in R™, and the hypotheses being tested are
all phrased in terms of certain linear contrasts of the mean parameter begin zero, as in v76 = 0.
Fithian et al.| (2014} [2015) show how to also conduct tests under the “selected model”—to use the 1d
fused lasso as an example, this would model the mean as a vector that is piecewise constant with
breaks at the selected changepoints. The techniques developed in [Fithian et al|(2015)), allow us to
perform sequential tests of the selected model—again to use the 1d fused lasso as an example, this
would allow us to test, at each step of the 1d fused lasso path, that the mean is piecewise constant
in the changepoints detected over all previous steps, and thus a failure to reject would mean that
all relevant changepoints have already been found. The selected model tests of [Fithian et al.| (2015)
have the following desirable properties: (i) they do not require the marginal error variance o2 to
be known; (ii) they often display better power (compared to the tests from this paper) when the
selected model is false; (iii) they yield independent p-values across steps in the path for which the
selected model is true. The latter property allows us to apply p-value aggregation rules, like the
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Figure 14: A CGH data set of two GBM tumors, from |Tibshirani & Wang (2008), with n = 990 points.
The plot displays the 1d fused lasso and sparse 1d fused lasso estimates, in blue and red, respectively, each
chosen using an appropriate BIC-based stopping rule (after 2-rises for the non-sparse estimate, and I1-rise
for the sparse estimate). The detected changepoints in each of the two models are also labeled. Shown at
the bottom of the plot is a step-sign plot of the sparse 1d fused lasso solution. Below the plot are two tables,
the first filled with segment test p-values of the changepoints in the 1d fused lasso and sparse 1d fused lasso
models. Post-processing of changepoints was applied to rule out changepoints within 2 locations of each other;
this only affected the location labeled F in the sparse 1d fused lasso model (hence location F was not tested).
The second table shows p-values from a simple sample splitting scheme, where the odd numbered locations
were used for fused lasso model fitting and the even numbered locations for testing segment differences using
two-sample t-tests. We can see that all three tests mostly agree on the significance of common locations labeled
A, D, E, and G, though the sparse 1d fused lasso p-values appear to be underpowered.
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“ForwardStop” rule of |Grazier G’Sell et al.| (2016)), to choose a stopping point in the path, with a
guarantee on the FDR. This is an appealing alternative to the AIC- or BIC-based stopping rules
described in Section [3:2] The downside of the selected model tests is that they are computationally
expensive (compared to those described in this paper), and require sampling (rather than analytic
computation, using a truncated Gaussian pivot) to compute p-values. Furthermore, once we use the
selected model p-values to choose a stopping point in the path, it is not clear how to carry out valid
post-selection tests in the resulting model (due to the corresponding conditioning region being very
complicated). Investigation of selected model inference along the generalized lasso path will be the
topic of future work.

There are several other possible follow-up ideas for future work. One that we are particularly
keen on is the attachment of post-selection inference tools to existing, commonly-used methods for
1d changepoint detection. It is not hard to show that the selection events associated with many such
methods—Ilike binary segmentation, wild binary segmentation of [Fryzlewicz (2014)), and all wavelet
thresholding procedures (provided that soft- or hard-thresholding is used)—can be characterized as
polyhedral sets in the data y. The ideas in this paper can therefore be used to conduct significance
tests for the detected changepoints after any number of steps of binary segmentation, wild binary
segmentation, or wavelet thresholding, this number of steps either being fixed or chosen by an AIC-
or BIC-type rule. Because other 1d changepoint detection methods can often outperform the 1d
fused lasso in terms of their accuracy in selected relevant changepoints (wild binary segmentation,
specifically, has this property), pairing them with formal tools for inference could have important
practical implications.
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A QQ plots for the 1d fused lasso at one-off detections

We consider the same simulation setup as in the top row of Figure [8] where, recall, the sample size
was n = 60 and the mean 6 € R had a single changepoint at location 30. Here we consider the
changepoint to have height § = 2, draw data y € R around € using i.i.d. N'(0,1) errors, and retain
instances in which 1 step of the fused lasso path detects a changepoint at location 29 or 31, i.e., off
by one from the true location 30. Figure [15| (right panel) shows QQ plots for the spike and segment
tests, applied to test the significance of the detected changepoint, in these instances. We can see that
the spike test p-values are uniformly distributed, which is appropriate, because when the detected
changepoint is off by one, the spike test null hypothesis is true. The segment test, on the other hand,
delivers very small p-values, giving power against its own null hypothesis, which is false in the case
of a one-off detection.

B Regression example details

Recall the notation of Section where X; € R?1 j = 1,2,3 denote the log daily returns of 3 real
DJIA stocks, and BJ* e R, j = 1,2,3 were synthetic piecewise constant coefficient vectors. Denote
by 6 € R?>! the mean vector, having components

3
O = > Xi;B%, t=1,...,251

j=1
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Figure 15: The left panel is copied from Figure@ in the main text, and shows an example data set with
n = 60 and a piecewise constant mean 6 with one jump at location 30. The right panel shows QQ plots from
the spike and segment tests run at the detected changepoint from the 1-step fused lasso, over data instances in
which the detected changepoint occurred at location 29 or 30, i.e., off by one from the true location 30. We
can see that the spike test p-values are uniform, and the segment test p-values are highly sub-uniform.

Denote by X € R2°1%753 the predictor matrix
X = [ diag(X1) diag(Xz) diag(Xs) ],

where diag(X;) € R?1*251 jg the diagonal matrix in the entries X;1,..., X; 253, j = 1,2, 3. Also, let
B* = (Bf, B¥, B%) € R™3. Then, in this abbreviated notation, the mean is simply § = X 3*, and data
is generated according to the model regression model y ~ N(6,0%I).

Optimization problem. The fused lasso regression problem that we consider is

1
B = argmin 3y = X815 + MDBI + lBl3, (45)
S

where X € R?51%753 ig ag defined above, and using a block decomposition 3 = (81, 2, 83) € R™!,
with each 8; € R, we may write the penalty matrix D € R750%251 a5

-1 1 0
DW 0 -1 1 ... 0
D=| DD |, where DW= . . . € R250%251
D) : P
o 0 ... -1 1

so that | DSy = Zf: IDMB;||;. Note that small ridge penalty has been added to the criterion in
(45) (i-e., p > 0 is taken to be a small fixed constant), making the problem strictly convex, thus
ensuring it has a unique solution, and also ensuring that we can run the dual path algorithm of
Tibshirani & Taylor| (2011). Of course, the blocks of the solution B = (31,32, Bg) in serve as
estimates of the underlying coefficient vectors 85, 85, B5.
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Segment test contrasts. Having specified the details of the generalized lasso regression problem
solved in Section 5.5} it remains to specify the contrasts that were used to form the segment tests.
Let B < {1,...,753} be the indices of changepoints in the solution 8, assumed to be in sorted order.
We can decompose B = By U (251 + Bs) u (452 4 Bs), where each B; < {1,...,251}, j = 1,2,3. Write
X e RPIXIBI+3 for the “effective” design matrix when changepoints occur in B, whose columns are
defined by splitting each X; into segments that correspond to breakpoints in B;, and collecting these
across j = 1,2,3. For example, if B; = {60,125}, then X; gets split into |B;| + 2 = 3 columns:

X; 0 0
X 60 0 0
0 X 61 0
0 Xj7125 0
0 0 Xj’126
L 0 _ L 0 _ | Xj,251 i

For each detected changepoint I; € B, we now define a segment test contrast vector by

vscg = st (Xg)T(Oa ey Oa _17

rr.+1
I 1;

— =
j=}
=]
~

(46)

where sy, is the observed sign of the difference between coordinates [; and I; + 1 of the fused lasso
solution 3, and 7y, is the rank of I; in B. Then the TG statistic in , with v = Vgeg, tests

Hy:(0,...,0,—1, 1 ,0,...,00" X0 =0 versus Hj:s7,(0,...,0,—1, 1 ,0,...,00"X£0>0.
TI; TIJ.T+1 I TIJ.T-H
(47)
In words, this tests whether the best linear model fit to the mean 6, using the effective design Xpz,
yields coefficents that match on either side of the changepoint I;. The alternative hypothesis is that
they are different and the sign of the difference is the same as the sign in the fused lasso solution.

Alternative motivation for the contrasts. An alternative motivation for the above definition
of contrast at a changepoint I; € B stems from consideration of the hypotheses

Hy : 0 € col(Xp\(7,)) versus Hj: 0 € col(Xp).

When B is considered fixed (and hence so are these hypotheses), the corresponding likelihood ratio
test is is vil y, where vy is a unit vector spanning the rank 1 subspace col(XB\{Ij})L N col(Xp), ie.,

’UlikUIT;k = Pcol(XB) - Pcol(XB\(Ij})~ (48)
We now prove that indeed, vy in and vgeg in are equal up to normalization. Abbreviate

w=(0,...,0,—1, 1 ,0,...,0),
£

TIj r1j+1
and M = B, m = Xp\(s,;- It suffices to show that

(X)) Twwt X3, o0 X X3, — X X
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To verify the above, multiply from the left by X}, and from the right by Xy, and assuming with a
loss of generality that X, has full column rank, we get
ww? o« X1 X — X X Xoh X
= X — X X,0) X s
= Xlr{dpcjal(Xm)XM

= X Paoyxy Poox,) X -

But it is easy to see that lev}Pctl(Xm)Pél(Xm)XM is proportional to ww”, because if a is any vector
that has identical entries across coordinates r;, and r;; + 1, then

C C

PaixoyXama = Poy .,y Xma' =0,

where o’ is simply a with its (r7,)th coordinate removed. This completes the proof.
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