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Abstract

We study the problem of estimating the dis-
tribution of the out-of-sample prediction error
associated with ridge regression. In contrast,
the traditional object of study is the uncen-
tered second moment of this distribution (the
mean squared prediction error), which can be
estimated using cross-validation methods. We
show that both generalized and leave-one-out
cross-validation (GCV and LOOCV) for ridge
regression can be suitably extended to esti-
mate the full error distribution. This is still
possible in a high-dimensional setting where
the ridge regularization parameter is zero. In
an asymptotic framework in which the feature
dimension and sample size grow proportion-
ally, we prove that almost surely, with respect
to the training data, our estimators (exten-
sions of GCV and LOOCV) converge weakly
to the true out-of-sample error distribution.
This result requires mild assumptions on the
response and feature distributions. We also
establish a more general result that allows us
to estimate certain functionals of the error
distribution, both linear and nonlinear. This
yields various applications, including consis-
tent estimation of the quantiles of the out-of-
sample error distribution, which gives rise to
prediction intervals with asymptotically exact
coverage conditional on the training data.

1 INTRODUCTION

The out-of-sample error associated with a predictive
model is the difference between the true (unobserved)
response and the predicted response at a new draw
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from the feature distribution. Being able to accurately
estimate functionals of the out-of-sample error distri-
bution is of critical importance in practice, both for
model assessment and model selection purposes. By
far the most common functional considered is the un-
centered second moment of this error distribution—the
mean squared error of the predictive model. Estimating
this quantity has been the focus of many decades of
research in the statistics and machine learning commu-
nities, which has yielded numerous advances in both
theory and methodology. A central method in practice
for estimating the mean squared prediction error is
cross-validation (CV), which comes in many variants,
including generalized and leave-one-out cross-validation
(GCV and LOOCV, respectively). Classic references on
CV include Allen (1974); Stone (1974, 1977); Geisser
(1975); Golub et al. (1979); Wahba (1980, 1990); Li
(1985, 1986, 1987). See Arlot and Celisse (2010) for a
general review of CV.

In this paper, we study the problem of estimating the
entire out-of-sample error distribution. Part of reason
why so much past work in risk estimation has focused
on mean squared out-of-sample error is undoubtedly
the special analytical structure that it affords and the
associated bias-variance decomposition. A main goal
of this paper is to understand what other functionals of
the out-of-sample error distribution can be reliably esti-
mated using cross-validation. Such an understanding is
useful for not only theoretical purposes (necessitating
novel proof techniques to analyze generic functionals),
but practical ones as well, since cross-validation estima-
tors that work under such general settings then open
up the possibility of employing a wider range of met-
rics for model evaluation and selection, which may be
informative for the data analyst in any given problem
setting at hand.

Throughout, we will focus on ridge regression (Hoerl
and Kennard, 1970a,b) for the predictive model, a spe-
cial form of Tikhonov regularization (Tikhonov, 1943,
1963), which is very widely used in statistics and ma-
chine learning. We choose to focus on ridge regression
because GCV and LOOCV admit special forms for this
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Figure 1: A simulation with n = 2500 samples and p ∈ {100, 2000, 5000} features (a different p per panel above).
In each setting, we generated the feature vectors xi to have independent components from a t-distribution with 5
degrees of freedom, and generated the responses yi by adding t-distributed noise with 5 degrees of freedom to a
nonlinear (quadratic) function of xi. We then fit the minimum `2 norm least squares solution, as in (1) with
λ = 0. The blue curve in each panel is a histogram of the true prediction error distribution, computed from
105 independent test samples. The red curve is a histogram of the training errors; when p > n, this is just a
point mass at zero. The yellow curve is a histogram of GCV-reweighted training errors, as in (11) (for p < n, in
the first two panels) and (13) (for p > n, in the last panel). This tracks the blue curve very well in all settings.
Empirical results for LOOCV are given in the supplement.

estimator, and also because ridge has recently attracted
much attention—especially in the limiting case of zero
regularization, often called the “ridgeless” limit—due to
its somewhat exotic behavior in the overparametrized
regime (see, e.g., Bartlett et al., 2020; Belkin et al.,
2020; Hastie et al., 2019; Muthukumar et al., 2020, and
references therein). Importantly, it has been recently
shown that the ridgeless (minimum `2 norm) interpo-
lator can be optimal for mean squared out-of-sample
error, among all ridge models, for well-specified linear
models with certain data geometries and high signal-to-
noise ratios (Wu and Xu, 2020; Richards et al., 2020).
This has been corroborated empirically using real data
sets for ridge regression (Kobak et al., 2020) and ker-
nel ridge regression (Liang and Rakhlin, 2020). Thus,
providing theory that covers that ridgeless case is both
of foundational and practical importance.

Before summarizing our main contributions, we give
some empirical examples in Figure 1 to motivate our
study.

1.1 Summary of Contributions

An overview of our main contributions is as follows.

• We define natural extensions of GCV and LOOCV
in order to estimate the out-of-sample prediction
error distribution associated with ridge regression.
These are empirical distributions over reweighted
training errors (where the reweighting is tied to
GCV or LOOCV).

• Under an asymptotic framework where the feature

dimension p and sample size n grow proportionally,
p/n → γ ∈ (0,∞), we prove that, almost surely
with respect to the training data, these extensions
of GCV and LOOCV converge weakly to the true
out-of-sample error distribution of ridge regression.
This result requires mild assumptions; we do not
need the true regression model to be linear.

• The GCV and LOOCV extensions and the theory
we prove about them all accommodate the choice
of zero (or even negative) ridge regularization in
high dimensions, where p > n.

• For certain linear functionals of the error distribu-
tion P , which take the form

∫
t dP for a function

t, we prove that suitable plug-in estimators (based
on the GCV and LOOCV estimators of the entire
error distribution) are asymptotically consistent,
almost surely. This result requires t to satisfy cer-
tain continuity and growth conditions, but it can
be unbounded.

• Finally, we use a uniform convergence argument
to handle certain nonlinear functionals of the error
distribution (that can be written in a variational
form involving linear functionals). This allows us
to consistently estimate, as an application, quan-
tiles of the ridge error distribution.

1.2 Related Work

Among the different CV variants to assess prediction
accuracy, k-fold CV is widely used in practice (Györfi
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et al., 2006; Hastie et al., 2009). However, in a high-
dimensional regime where the feature dimension p is
comparable to the sample size n, small values of k (such
as k = 5 or 10) lead to bias in error estimation (see,
e.g., Rad and Maleki, 2020). LOOCV (where k = n)
mitigates these bias issues, and consequently LOOCV
and various approximations to it (that circumvent its
computational burden) have been of interest in recent
work, including Meijer and Goeman (2013); Liu et al.
(2014); Obuchi and Kabashima (2016); Beirami et al.
(2017); Wang et al. (2018); Stephenson and Broderick
(2020); Giordano et al. (2019); Wilson et al. (2020);
Rad et al. (2020); Xu et al. (2021). For recent results
on ridge regression in particular, where LOOCV can
be done efficiently via a “shortcut” formula, see Patil
et al. (2021).

On the inferential side, Bayle et al. (2020) prove central
limit theorems for CV error and a derive a consistent
estimator of its asymptotic variance under certain sta-
bility assumptions, similar to Kale et al. (2011); Kumar
et al. (2013); Celisse and Guedj (2016). Their results
yield asymptotic confidence intervals for the prediction
error and apply to k-fold CV (for a fixed k) as well as
LOOCV. See also Austern and Zhou (2020) for similar
guarantees. A prominent and distinctive aspect of our
work compared to these papers and others is the focus
on properties of the entire empirical distribution of the
CV errors, rather than specific functionals such as the
mean squared CV error.

In a contribution that is quite relevant to this paper,
Steinberger and Leeb (2016, 2018) construct prediction
intervals from quantiles of the empirical distribution of
the LOOCV errors and provide conditional coverage
guarantees, which hold in expectation. Their key as-
sumptions are algorithmic stability, as in Bousquet and
Elisseeff (2002), along with a bound in probability on
the prediction error at a new test point. Under a more
restrictive asymptotic regime in which p/n → γ < 1,
they show that the Kolmogorov-Smirnov distance be-
tween the empirical distribution of LOOCV errors and
the conditional prediction error distribution vanishes
in expectation. This general result is then applied to
yield corollaries for various predictive models, including
ridge regression, by leveraging model-specific stability
and error results from the literature.

In comparison, our paper focuses on ridge regression
alone, but we deliver stronger and broader guarantees.
To be specific, our results (1) accommodate the high-
dimensional regime, p/n → γ ≥ 1; (2) assume quite
weak conditions on the data (e.g., we do not require
a well-specified linear model); (3) hold uniformly over
the choice of regularization parameter (which includes
no regularization—the ridgeless limit); (4) yield not
only consistent estimation of the prediction error distri-

bution itself, but of a broad class of functionals of this
distribution (which includes unbounded and nonlinear
ones); and (5) produces guarantees that hold almost
surely—rather than in expectation or in probability—
with respect to the training data.

2 PRELIMINARIES

We adopt a standard regression setting, with i.i.d. sam-
ples (xi, yi), for i = 1, . . . , n, where each xi ∈ Rp is a
feature vector and yi ∈ R is its corresponding response
value. We will denote by X ∈ Rn×p the feature matrix
whose ith row is x>i , and by y ∈ Rn the response vector
whose ith entry is yi.

2.1 Ridge Regression

The ridge regression estimator β̂λ ∈ Rp, based on X, y,
is defined as the solution to the following problem:

minimize
β∈Rp

1
n
‖y −Xβ‖22 + λ‖β‖22.

Here λ is a regularization parameter. When λ > 0, the
above optimization problem is strictly convex and has
a unique solution:

β̂λ = (X>X/n+ λIp)−1X>y/n.

When λ = 0, and X>X is rank deficient (which will
always be the case when p > n), there will be infinitely
many solutions, and we focus on the solution with the
minimum `2 norm, which we refer to as the min-norm
solution for short. By defining the ridge estimator as

β̂λ = (X>X/n+ λIp)†X>y/n, (1)

where A† denotes the Moore-Penrose pseudoinverse of
a matrix A, we simultaneously accommodate the case
of λ > 0, in which case (1) reduces to the second to
last display, and the case of λ = 0, in which case (1)
becomes the min-norm solution (it lies in the column
space of (X>X)†, i.e., the row space of X, so it has the
minimum `2 norm among all least squares solutions).
In fact, the above display even accommodates the case
of λ < 0, in which case (1) remains well-defined.

The case of zero regularization is of particular interest
when rank(X) = n, because then any least squares
solution interpolates the training data, and the min-
norm solution β̂0 (by construction) has the minimum
`2 norm among all such interpolators.

2.2 Out-of-Sample Error

Let (x0, y0) denote a test point drawn independently
from the same distribution as the training data (xi, yi),
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i = 1, . . . , n, and denote the out-of-sample prediction
error of ridge regression at tuning parameter λ by

eλ = y0 − x>0 β̂λ. (2)

This is a scalar random variable, and we denote by Pλ
its distribution conditional the training data:1

Pλ = L
(
eλ | X, y

)
. (3)

We are interested in estimating Pλ using the training
data. A naive estimator would be to use the empirical
distribution over the training errors expressed as

P̂λ = 1
n

n∑
i=1

δ
(
yi − x>i β̂λ

)
. (4)

Here we use δ(z) for a point mass at z. Of course, this
can be very inaccurate in high dimensions (as we saw
in Figure 1); at the extreme case of rank(X) = n and
λ = 0, the naive estimator P̂λ trivially places all mass
at zero. In the next subsection, we will introduce more
sensible estimators based on cross-validation.

Aside from estimating Pλ itself, we may be interested
in estimating a particular functional of Pλ, denoted by
ψ(Pλ). Recall, a functional ψ acting on distributions
is such that P 7→ ψ(P ) ∈ R for all distributions P .

In the context of the out-of-sample error distribution
Pλ, the most common functional of interest is its un-
centered second moment,

ψ(Pλ) =
∫
z2 dPλ(z) = E

[
e2
λ | X, y

]
,

which is simply the mean squared prediction error. We
will consider general linear functionals of the form

ψ(Pλ) =
∫
t(z) dPλ(z) = E

[
t(eλ) | X, y

]
, (5)

for functions t (possibly nonlinear and unbounded, but
subject to certain continuity and growth conditions).
We will also consider certain nonlinear functionals such
as the level-τ quantile, for τ ∈ (0, 1):

ψ(Pλ) = Quantile(Pλ; τ) = inf{z : Fλ(z) ≥ τ}, (6)

where Fλ denotes the cumulative distribution function
(CDF) of Pλ.

2.3 Cross-Validation

GCV and LOOCV are two popular versions of cross-
validation that are used to estimate the mean squared

1To be clear, Pλ is itself a random quantity, because it
depends on the training data X, y. However, we suppress
this dependence notationally, for simplicity.

prediction error. GCV is traditionally defined for linear
smoothers only, but LOOCV is fully general: it applies
to any predictive model. In order to describe the details
for ridge regression, we introduce the notation:

Lλ = X(X>X/n+ λIp)†X>/n, (7)

for the ridge smoother matrix at regularization level
λ. Thus, by definition, we can express the fitted values
(predicted values at the training points xi, i = 1, . . . , n)
from ridge regression as Xβ̂λ = Lλ y.

The LOOCV estimate for the mean squared prediction
error of a given ridge model β̂λ can now be written as

1
n

n∑
i=1

(
yi − x>i β̂−i,λ

)2
= 1
n

n∑
i=1

(
yi − x>i β̂λ
1− [Lλ]ii

)2
, (8)

where β̂−i,λ denotes the ridge estimate when the ith

pair (xi, yi) is excluded from the training data set, and
[Lλ]ii denotes the ith diagonal element of Lλ. The left-
hand side in (8) is the usual definition of LOOCV for
any predictive model; the right-hand side is a so-called
“shortcut” formula that holds for ridge (and a handful
of other special linear smoothers; see, e.g., Chapter 7
of Hastie et al., 2009).

The GCV estimate for the mean squared error of β̂λ is
given by

1
n

n∑
i=1

(
yi − x>i β̂λ

1− tr[Lλ]/n

)2
, (9)

where tr[A] denotes the trace of a matrix A.

Caution needs to be taken in (8) and (9) when λ = 0
and rank(X) = n, in which case Lλ = In, and both of
the numerators and denominators in every summand
of (8), (9) are zero. To avoid this problem we redefine
them by their respective limits as λ→ 0, which gives
(see the supplement for details):

1
n

n∑
i=1

(
[(XX>)†y]i
[(XX>)†]ii

)2
and 1

n

n∑
i=1

(
[(XX>)†y]i

tr[(XX>)†]/n

)2
,

(10)
for LOOCV and GCV, respectively.

2.4 Proposed Estimators

We propose estimators for the out-of-sample prediction
error distribution Pλ in (3), building off the empirical
distributions of reweighted training errors, inspired by
GCV in (9) and LOOCV in (8). Precisely, we define

P̂ gcv
λ = 1

n

n∑
i=1

δ

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
, (11)
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which we refer to as the GCV estimate of the out-of-
sample error distribution, and

P̂ loo
λ = 1

n

n∑
i=1

δ

(
yi − x>i β̂λ
1− [Lλ]ii

)
, (12)

which we refer to as the LOOCV estimate of the out-
of-sample error distribution.

When λ = 0 and rank(X) = n, the above expressions
are ill-defined, and we redefine them based on the forms
of GCV and LOOCV in (10):

P̂ gcv
0 = 1

n

n∑
i=1

δ

(
[(XX>)†y]i

tr[(XX>)†]/n

)
, (13)

P̂ loo
0 = 1

n

n∑
i=1

δ

(
[(XX>)†y]i
[(XX>)†]ii

)
. (14)

To estimate a generic functional of ψ(Pλ) of the error
distribution, we simply use

ψ̂gcv
λ = ψ(P̂ gcv

λ ) and ψ̂loo
λ = ψ(P̂ gcv

λ ). (15)

For ψ(Pλ) =
∫
z2 dPλ(z), the plug-in estimates above

reduce to the standard GCV and LOOCV estimates of
the mean squared prediction error.

3 DISTRIBUTION ESTIMATION

We first cover distributional convergence results. We
impose the following mild structural and moment as-
sumptions on the feature and response distributions.
Assumption 1 (Feature distribution). Each feature
vector can be decomposed as xi = Σ1/2zi, for a deter-
ministic symmetric matrix Σ ∈ Rp×p whose maximum
eigenvalue is bounded above by rmax <∞, and mini-
mum eigenvalue is bounded below by rmin > 0, where
rmax and rmin are constants, and for a random vector
zi ∈ Rp whose entries are i.i.d. with mean zero, unit
variance, and E[|zij |4+µ] ≤Mz <∞, where µ > 0 and
Mz are constants.

The maximum eigenvalue bound for the feature covari-
ance matrix Σ is used to control the magnitude of ridge
predictions; the minimum eigenvalue bound is used
in the analysis of the min-norm interpolator. Both of
these can be relaxed further for some of our results,
but we do not pursue such refinements here.
Assumption 2 (Response distribution). Each yi has
mean zero and satisfies E[|yi|4+ν ] ≤My <∞, where
ν > 0 and My are constants.

The condition that each yi is centered is only used for
simplicity. When yi does not have mean zero, we would
simply include an intercept in the model defined in (1),
and all of our results would translate accordingly.

We work in an asymptotic regime where the number the
samples n and the number of features p both diverge
to ∞, and yet their ratio p/n converges to γ ∈ (0,∞).
Such asymptotic regime has received considerable at-
tention recently in high-dimensional statistics and ma-
chine learning theory, which is commonly referred to as
proportional asymptotics. The range of regularization
parameter values λ over which our results will hold is a
function of γ and rmin. In preparation for the coming
theorem statements, we define λmin = −(1−√γ)2rmin.

We are now ready to state the result concerning weak
convergence of the empirical distributions (11)–(14) to
the true out-of-sample error distribution (3).
Theorem 1 (Distribution estimation). Suppose As-
sumptions 1 and 2 hold. Then, for λ > λmin,

P̂ gcv
λ

d−→ Pλ and P̂ loo
λ

d−→ Pλ, (16)

almost surely (which means, here and henceforth, al-
most surely with respect to the distribution of X, y), as
n, p→∞ and p/n→ γ ∈ (0,∞).

In (16), note the left- and right-hand sides both depend
on n, p. To explain what we mean by convergence in
distribution here: if P̂n and Pn are univariate distribu-
tions depending on n (where we make the notational
dependence explicit for concreteness), and their CDFs
are F̂n and Fn respectively, then we write P̂n

d−→ Pn as
n→∞ to mean that |F̂n(z)− Fn(z)| → 0 for every z
that is a continuity point of Fn for all n large enough.

We remark that if we make the stronger assumption
that Pλ converges weakly to a continuous distribution,
then Theorem 1 can be strengthened from pointwise
to uniform convergence in the following sense: in place
of (16), we have supz∈R |F̂

gcv
λ (z)− Fλ(z)| → 0, where

Fλ and F̂ gcv
λ are the distribution functions associated

with Pλ and P̂ gcv
λ , respectively. The analogous result

holds for LOOCV as well. This follows from standard
arguments (e.g., Chapter 3 of Durrett, 2019), and we
omit the details.

An extension (resembling the continuous mapping the-
orem) of Theorem 1 is given next.
Corollary 2. Let h : R→ R be a continuous function,
and Hλ denote the distribution of the transformed error
h(eλ) conditional on the training data. Let Ĥgcv

λ and
Ĥ loo
λ denote the empirical distributions as in (11)–(14),

but where the point mass in each summand is evaluated
at h of its argument. Then, under Assumptions 1 and 2,
for λ > λmin,

Ĥgcv
λ

d−→ Hλ and Ĥ loo
λ

d−→ Hλ, (17)

almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).

Some remarks on the above results are in order. The
assumptions required on the distributions of response
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Figure 2: An example with n = 2500, p = 5000. We generated each xi according to a Bernoulli distribution, and
yi by adding Bernoulli noise to a nonlinear (quadratic) function of xi. The ridge tuning parameter was fixed
at λ = 1. Each panel above examines weak convergence per (17) for a different function h of the error variable
(identity, absolute value, and square, from left to right). In each case, the GCV estimate (yellow) tracks the true
distribution (blue) closely. Empirical results for LOOCV are given in the supplement.

and features are very weak. Notably, we do not require
that the response comes from a well-specified model.
Further, the distributions of the response and feature
components could be arbitrary so long as they satisfy
the moment bounds. As an illustration, we consider
examples with binary features and noise in Figure 2.
Finally, since λmin < 0, the results cover the case of
the min-norm interpolator (except when γ = 1).

We next provide some intuition as to why the above
results are true. Consider the special case of an un-
derlying linear model y0 = x>0 β0 + ε0, where β0 ∈ Rp
is deterministic unknown parameter vector and ε0 is
independent of x0. In this case, the out-of-sample pre-
diction error simplifies to eλ = x>0 (β0 − β̂λ) + ε0, and

Pλ = L
(
x>0 (β0 − β̂λ)

)
? L(ε0),

where ? denotes convolution. Further assuming that
the features x0 are Gaussian, as is the noise ε0, with
mean zero and variance σ2, this law will be Gaussian
with mean zero and variance ‖β0 − β̂λ‖2Σ + σ2, where
‖a‖2Σ = a>Σa. The variance here is the same as the
mean squared prediction error of β̂λ. As LOOCV and
GCV (in their usual forms (8) and (9)) track this vari-
ance term, Theorem 1 can be viewed as establishing
asymptotic normality of the empirical distributions of
LOOCV and GCV errors, in this special case.

However, Theorem 1 is considerably more general and
applies even when L(x>0 (β0 − β̂λ)) does not have an
analytically known asymptotic limit (and to reiterate,
applies even when E[y0 | x0] is not linear in x0). In fact,
Theorem 1 is itself a consequence of a more general
result on the convergence of certain functionals of the
error distribution, which is covered next.

4 FUNCTIONAL ESTIMATION

Now we derive convergence theory on the estimation of
linear functionals (5) of the out-of-sample prediction
error distribution. In addition to serving as the main
ingredient for proving Theorem 1, it forms a building
block for establishing convergence results that apply to
certain nonlinear functionals of the error distribution,
discussed in the next section.

4.1 Pointwise Convergence

We impose the following assumption on the error func-
tion t in (5).
Assumption 3 (Growth rate for the error function).
There are constants a, b, c > 0 such that |t(z)| ≤ az2 +
b|z|+ c for any z ∈ R.

The quadratic growth condition on the error function
t in Assumption 3 is tied to the moment conditions in
Assumptions 1 and 2. In particular, both assumptions
together let us bound E[|t(eλ)|2+ξ], where ξ > 0. One
can thus relax the requirement on the growth rate by
assuming higher moments in Assumptions 1 and 2.

Henceforth, let Tλ denote the linear functional in (5)
corresponding to an error function t, and let T̂ gcv

λ , T̂ loo
λ

denote the associated plug-in estimators in (15). Next
we give the first functional convergence result.
Theorem 3 (Linear functional estimation). Suppose
Assumptions 1 and 2 hold, and the function t is contin-
uous and satisfies Assumption 3. Then, for λ > λmin,

T̂ gcv
λ − Tλ → 0 and T̂ loo

λ − Tλ → 0, (18)

almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).
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Several remarks on the above result follow. As before,
the allowed range of tuning parameter values includes
the min-norm estimator, since λmin < 0 (except when
γ = 1). Moreover, the convergence result in (18) holds
almost surely (with respect to the training data X, y).
This is stronger than many previous results for CV
that hold either in probability or expectation over the
training data. Lastly, the error function t can be any
arbitrary continuous, subquadratic function. In partic-
ular, it does not need to be bounded (which, by the
Portmanteau theorem, would be equivalent to the weak
convergence result in Theorem 1).

A special case of the last result was recently given in
Patil et al. (2021) for squared error, t(e) = e2, who as-
sume a much more restricted setting of a well-specified
linear model. The current result greatly extends this
last one, by allowing for general error functions as well
as nonlinear models. The proofs in Patil et al. (2021)
exploit the bias-variance decomposition that accompa-
nies squared error, analyze the asymptotic behavior of
GCV first, and then tie this to LOOCV. Our approach
in this paper is completely different (as it must be, due
to the general lack of bias-variance decompositions for
non-squared error functions). Below we highlight key
steps involved in the proof of Theorem 3.

Proof overview. Our strategy is to study LOOCV
first, and then connect it to GCV. It helps to introduce
an intermediate quantity:

T̃λ = 1
n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ) | X−i, y−i

]
, (19)

where we use X−i and y−i for the feature matrix and
response vector with the ith row and element removed,
respectively, and β̂−i,λ for the ridge estimator trained
on X−i and y−i. One can interpret (19) as the average
of the functionals of the leave-one-out estimators β̂−i,λ,
i = 1, . . . , n. The result then follows from establishing
that: (i) Tλ − T̃λ

a.s.−−→ 0, (ii) T̃λ − T̂ loo
λ

a.s.−−→ 0, and (iii)
T̂ loo
λ − T̂ gcv

λ
a.s.−−→ 0. In step (i), we use the modulus of

continuity of a suitably truncated error function and
the stability of the ridge regression estimator. Step (ii)
is based on identifying a martingale difference sequence
and applying the Burkholder concentration inequality.
In step (iii), we use a key lemma from Patil et al. (2021)
on the asymptotic equivalence of certain functionals of
sample covariance matrices. The full proof is deferred
to the supplement (as with all others in this paper).

4.2 Uniform Convergence

The result in Theorem 3, which is pointwise in λ, can
be made uniform in λ under a stronger assumption on
the error function t.

Assumption 4 (Growth rate for the derivative of the
error function). There are constants g, h > 0 such that
|t′(z)| ≤ g|z|+ h for any z ∈ R.
Theorem 4 (Linear functional estimation, uniform in
λ). Assume the conditions of Theorem 3, and that t
is differentiable and satisfies Assumption 4. Then, for
any compact Λ ⊆ (λmin,∞),

sup
λ∈Λ

∣∣T̂ gcv
λ − Tλ

∣∣→ 0 and sup
λ∈Λ

∣∣T̂ loo
λ − Tλ

∣∣→ 0,

(20)
almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).

We remark that it is not essential that the error func-
tion t be differentiable. We can prove a similar result
assuming that the error function t is Lipschitz continu-
ous. We assume a global Lipschitz error function t to
simplify the proof, but it should be possible to further
relax this to a locally Lipschitz assumption, where we
have control over the average Lipschitz constant. We
do not pursue this in the current paper.
Theorem 5 (Linear functional estimation, uniform in
λ, nonsmooth t). Assume the conditions of Theorem 3,
and that t is Lipschitz continuous. Then, for any com-
pact Λ ⊆ (λmin,∞), the same result as in (20) holds,
almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).

Such uniform convergence will come in handy in the
applications discussed next.

5 OTHER APPLICATIONS

The main application of Theorem 3 discussed thus far
is the weak convergence in Theorem 1. Several other
applications are possible, as detailed in this section.

5.1 Variational Functional Estimation

We consider estimation of certain nonlinear functionals
that can be represented in variational form as minimiz-
ers of parametrized linear functionals over a sufficiently
“nice” family of error functions. The main idea behind
such an approach is to exploit uniform convergence of
the plug-in estimators over the family.

Let TV = {t(·, v) : R→ R : v ∈ V} denote a family of
functions indexed by a set V ⊆ R. Corresponding to
each error function t(·, v) in TV , let Tλ(v) denote the
linear functional (5) associated with β̂λ. A variational
error functional, denoted by Vλ, is defined as

Vλ = arg min
v∈V

Tλ(v). (21)

This is assumed to be unique.2 Meanwhile, denoting
by T̂ gcv

λ (v) and T̂ loo
λ (v) the plug-in estimators (15) as-

sociated with the error function t(·, v), for v ∈ V, we
2This is done for simplicity, so we do not have to appeal
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can then define:

V̂ gcv
λ ∈ arg min

v∈V
T̂ gcv
λ (v), (22)

V̂ loo
λ ∈ arg min

v∈V
T̂ loo
λ (v). (23)

Note that we do not assume that these are unique (as
is reflected by the element notation above). Our main
result in the variational setting is as follows.
Theorem 6 (Variational functional estimation). Sup-
pose Assumptions 1 and 2 hold. Let TV be a pointwise
equicontinuous family of functions, where V is compact,
and each t(·, v) satisfies Assumption 3. For λ > λmin,

V̂ gcv
λ − Vλ → 0 and V̂ loo

λ − Vλ → 0, (24)

almost surely as n, p→∞ with p/n→ γ ∈ (0,∞).

The proof of Theorem 6 builds on the previous results.
We apply Theorem 3 on t(·, v) to establish the conver-
gence of T̂ gcv

λ (v) to Tλ(v) for each v ∈ V . The pointwise
equicontinuity of functions in TV leads to stochastic
equicontinuity of T̂ gcv

λ (v)− Tλ(v), which then provides
GCV part of (24). Similar arguments hold for LOOCV.

5.2 Quantile Estimation

To illustrate the use of Theorem 6, we consider esti-
mating quantiles of the out-of-sample prediction error
distribution. For τ ∈ (0, 1), letQλ(τ) denote the level-τ
conditional quantile (6), assumed unique for simplicity.
While this is a nonlinear functional of Pλ, we will ex-
ploit the fact that (6) can expressed in an equivalent
variational form (Koenker and Bassett Jr., 1978):

Qλ(τ) = arg min
u∈U

E
[
tτ
(
y0 − x>0 β̂λ − u

)
| X, y

]
, (25)

where tτ (u) = u(τ − I(u < 0)), sometimes called the
pinball or tilted `1 loss. If U is any set containing the
true quantile, we can recognize Qλ(τ) as being in the
form (21), for the family TU = {tτ (·, u) : u ∈ U}. We
can then define plug-in estimators Q̂gcv

λ (τ) and Q̂loo
λ (τ)

as in (22) and (23), or to be fully explicit:

Q̂gcv
λ (τ) ∈ arg min

u∈U

1
n

n∑
i=1

tτ

(
yi − x>i β̂λ
1− tr[Lλ]

n

− u
)
, (26)

Q̂loo
λ (τ) ∈ arg min

u∈U

1
n

n∑
i=1

tτ

(
yi − x>i β̂λ
1− [Lλ]ii

− u
)
, (27)

with suitable adaptations based on (13), (14) if λ = 0.
These are essentially just the sample quantiles of GCV
and LOOCV residuals, up to discretization issues (the
sample quantiles not being unique for integral τn).
to set-theoretic notation for convergence of minimizers in
the statements that follow. More general formulations that
do not assume uniqueness, via variational analysis, should
be possible.

Corollary 7 (Quantile estimation). Suppose Assump-
tions 1 and 2 hold. Given τ ∈ (0, 1), assume the level-τ
quantile Qλ(τ) of Pλ is unique, and assume U in (26),
(27) is any compact set that contains the true quantile.
For any λ > λmin,

Q̂gcv
λ (τ)−Qλ(τ)→ 0 and Q̂loo

λ (τ)−Qλ(τ)→ 0,
(28)

almost surely as n, p→∞ with p/n→ γ ∈ (0,∞).

Thanks to the general result in Theorem 6, the proof of
(28) reduces to verifying the pointwise equicontinuity
of the family of pinball loss functions.

Estimating quantiles gives us a way to construct pre-
diction intervals for the out-of-sample response y0, of
the form:

Igcv
λ =

[
x>0 β̂λ − Q̂

gcv
λ (τl), x>0 β̂λ + Q̂gcv

λ (τu)
]
, (29)

I loo
λ =

[
x>0 β̂λ − Q̂loo

λ (τl), x>0 β̂λ + Q̂loo
λ (τu)

]
, (30)

where τl < τu are appropriate lower and upper quantile
levels chosen to provide the desired coverage. These in-
tervals have asymptotically exact coverage conditional
on the training set, as a consequence of Corollary 7.
See Figure 3 for empirical results.

5.3 Regularization Tuning

One important application of convergence results that
are uniform in λ, for given functionals, is that we can
tune the amount of regularization according to those
functionals, and uniformity will imply that any mini-
mizer of the plug-in estimator converges to a minimizer
of the population functional. A typical strategy is to
tune by minimizing the mean squared GCV or LOOCV
error; but we can also tune via more robust measures
such as absolute error, Huber error, or the length of
the prediction intervals.

The next corollary certifies that the the level of regular-
ization tuned by using the plug-in GCV and LOOCV
estimators is almost surely optimal for a wide range of
error functions.
Corollary 8 (Convergence of tuned errors). Suppose
Assumptions 1 and 2 hold. Suppose the error function
t satisfies Assumption 3, and furthermore, it is either
differentiable and satisfies Assumption 4, or else it is
Lipschitz. Let Λ ⊆ (λmin,∞) be compact, and let λ? be
a minimizer of Tλ over Λ. Similarly, let λ̂gcv and λ̂loo

denote minimizers of T̂ gcv
λ and T̂ loo

λ over Λ, respectively.
Then,

T
λ̂gcv − Tλ? → 0 and T

λ̂loo − Tλ? → 0, (31)

almost surely as n, p→∞ with p/n→ γ ∈ (0,∞).
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Figure 3: Illustration of empirical coverage and length of GCV prediction intervals (29) against nominal coverage,
where n = 2500, p = 5000. The data model has a latent structure with autoregressive feature covariance and true
signal aligned with the principal eigenvector, similar to that in Kobak et al. (2020) (the supplement gives details),
who investigated the empirical optimality of the min-norm interpolator. Here we see that intervals for any λ have
excellent finite-sample coverage (left), and the case of λ = 0 provides the smallest interval lengths (right).

6 DISCUSSION

In this paper, we investigate the distribution of errors
arising from both generalized and leave-one-out cross-
validation in the context of ridge regression. We show
that these distributions converge to the out-of-sample
prediction error distribution, under generic conditions.
A core result in our work is on consistent estimation
of linear functionals of the error distribution, yielding
wide implications, including an extension to estimating
certain nonlinear functionals which has applications in
conditional predictive inference.

Amazingly (and surprisingly, even to us), these results
continue to hold in an high-dimensional setting when
p > n. LOOCV for ridge regression takes on a special
form, based on the beautiful “shortcut” relation:

yi − x>i β̂−i,λ = yi − x>i β̂λ
1− [Lλ]ii

≈ yi − x>i β̂λ
1− tr[Lλ]/n.

When p > n and λ = 0, the numerator and denomina-
tor in both fractions here are zero. However, as λ→ 0
the numerator and denominator (in each fraction) tend
to zero at exactly the same rate, allowing us to “cancel”
the dependence on λ infinitesimally, leading to:

yi − x>i β̂−i,0 = [(XX>)†y]i
[(XX>)†]ii

≈ [(XX>)†y]i
tr[(XX>)†]/n.

This fact was first derived in Hastie et al. (2019), and
it is key for our results.

The most immediate next direction is to study kernel
ridge regression, which yields a similar “shortcut” for-
mula (Hastie, 2020) where XX> gets replaced by the
kernel gram matrix. For other predictive models that

do not yield exact leave-one-out formulae (in terms
of training errors), examining to what degree similar
results hold true is an interesting direction for future
study. This is especially interesting for “benign” inter-
polators, now an active area of research, which decom-
pose into a “simple” component useful for prediction
and a “spiky” component that interpolates the training
data (Bartlett et al., 2021). As interpolators gain a
central role in modern machine learning, adapting CV
methods to work seamlessly with them is becoming of
foundational importance. This current paper serves as
a step in that direction.
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