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This supplement contains additional details, proofs, and numerical experiments for the paper “Estimating
Functionals of the Out-of-Sample Error Distribution in High-Dimensional Ridge Regression.” All section, equation,
and figure numbers in this document begin with the letter “S” to differentiate them from those appearing in the
main paper that do not have such prefix.

The content of the supplement is organized as follows. In Sections S.1 to S.3, we first provide proofs related to
Theorems 3 to 5, respectively, along with supporting lemmas used in the process, as they constitute building
blocks for other theoretical results. Then Section S.4 contains proof of Theorem 1, while Section S.5 contains
proofs related to Theorem 6, along with further theoretical results related to quantile estimation. Additional
numerical results and experimental details are provided in Section S.6. Finally, Section S.7 collects statements of
supplementary results from the literature that are used in various proofs throughout the supplement.

A note about constants throughout the supplement: we use the letter C (either standalone or with a subscript
such as C1) to denote a generic constant whose value can change from line to line. Additionally, some of the
inequalities only hold almost surely for sufficiently large n. We will sometimes use the term eventually almost
surely to indicate such statements.
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S.1 PROOFS RELATED TO Theorem 3

As suggested in the proof overview in Section 4 of the paper, we will first show the second part of the theorem
statement: T̂ loo

λ −Tλ
a.s.−−→ 0, and use it to show the first part: T̂ gcv

λ −Tλ
a.s.−−→ 0, as n, p→∞ with p/n→ γ ∈ (0,∞).

• To prove T̂ loo
λ − Tλ

a.s.−−→ 0, we introduce an intermediate quantity T̃λ as in (19) and break the difference

Tλ − T̂ loo
λ = (Tλ − T̃λ) + (T̃λ − T̂ loo

λ ). (S.1)

We will show that both terms in the decomposition (S.1) almost surely vanish. Section S.1.1 shows the
convergence for the first term, while Section S.1.2 shows the convergence for the second term.

• To prove T̂ gcv
λ − Tλ

a.s.−−→ 0, we similarly break the difference

Tλ − T̂ gcv
λ = (Tλ − T̂ loo

λ ) + (T̂ loo
λ − T̂ gcv

λ ). (S.2)

We have already dealt with the first term in the decomposition (S.2) in (S.1). We show the second term
almost surely goes to zero in Section S.1.3.

We will show the three aforementioned converges first under a slight stronger assumption that the error function t
is uniformly continuous. Using a truncation argument, we will then relax them to continuous error functions t in
Section S.1.4. Let ωt : [0,∞]→ [0,∞] denote a modulus of continuity of t. Without of loss of generality, we can
assume ωt to be non-decreasing and continuous. Since the error function is assumed to be uniformly continuous,
such a modulus exits (see, e.g., Chapter 2 of DeVore and Lorentz, 1993). In addition, let ωt denote the least
concave majorant of ωt. From DeVore and Lorentz (1993, Lemma 6.1), ωt is also a modulus of continuity and
satisfies ωt(r) ≤ 2ωt(r) for r ≥ 0. We will make use of these properties below.

S.1.1 Functional to LOO Functional

Towards showing Tλ − T̃λ
a.s.−−→ 0, we begin by manipulating the desired difference using properties of conditional

expectation as follows:

Tλ − T̃λ = E
[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ) | X−i, y−i

]
= E

[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂−i,λ) | X−i, y−i

]
= E

[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂−i,λ) | X−i, y−i, xi, yi

]
= E

[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂−i,λ) | X, y

]
= 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y

]
.

The second equality above uses independence of (y0, x0) and (X−i, y−i), while the third equality uses independence
of (y0, x0), β̂−i,λ, and (xi, yi). We will next show below that under proportional asymptotics absolute value of
the right-hand side of the last display almost surely goes to zero; in other words, we will show∣∣∣∣∣ 1n

n∑
i=1

E
[
t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y

]∣∣∣∣∣ a.s.−−→ 0. (S.3)

Using the modulus of continuity of t and its least concave majorant, we first bound the summands in (S.3) for
i = 1, . . . , n as ∣∣t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ)

∣∣ ≤ ωt(∣∣x>0 (β̂λ − β̂−i,λ)
∣∣)

≤ ωt
(∣∣x>0 (β̂λ − β̂−i,λ)

∣∣).
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We can then bound the summation in (S.3) as

∣∣∣∣∣ 1n
n∑
i=1

E
[
t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y

]∣∣∣∣∣ ≤ 1
n

n∑
i=1

∣∣∣E[t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y
]∣∣∣

≤ 1
n

n∑
i=1

E
[∣∣t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ)

∣∣ ∣∣ X, y]
≤ 1
n

n∑
i=1

E
[
ωt
(∣∣x>0 (β̂λ − β̂−i,λ)

∣∣) ∣∣ X, y]
≤ 1
n

n∑
i=1

ωt

(
E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y])
≤ ωt

(
1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y])

≤ 2ωt

(
1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y]) .
In the above chain of inequalities, the second, forth, and fifth inequalities follow from repeated use of Jensen’s
inequality (on the absolute value function and the concave majorant function). To finish the proof, we will finally
show below that

1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y] a.s.−−→ 0, (S.4)

which along with the continuity of the modulus that vanishes at 0 shows (S.3), leading to the desired conclusion
that Tλ − T̃λ

a.s.−−→ 0.

Towards showing (S.4), first note that under Assumption 1, we can bound the summands for each i = 1, . . . , n as

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y] ≤ (E[∣∣x>0 (β̂λ − β̂−i,λ)
∣∣2 ∣∣ X, y])1/2

=
(
E
[∣∣z>0 Σ1/2(β̂λ − β̂−i,λ)

∣∣2 ∣∣ X, y])1/2

=
(
E
[
(β̂λ − β̂−i,λ)>Σ1/2z0z

>
0 Σ1/2(β̂λ − β̂−i,λ)

∣∣ X, y])1/2

=
(

(β̂λ − β̂−i,λ)Σ(β̂λ − β̂−i,λ)
)1/2

≤
(
rmax(β̂λ − β̂−i,λ)>(β̂λ − β̂−i,λ)

)1/2

= √rmax
∥∥(β̂λ − β̂−i,λ)

∥∥
2.

The inequality in the first line uses Jensen’s inequality (on the square root function), and the inequality in the
forth line follows since the maximum eigenvalue of Σ is upper bounded by rmax. Hence, overall we can bound the
left-hand side of (S.4) by

1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y] ≤ √rmax

(
1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ∥∥2

)
. (S.5)

We show in Lemma S.2 that the term in the parenthesis on the right-hand side of (S.5) almost surely goes to zero
under Assumptions 1 and 2, proving (S.4) and completing the proof.
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S.1.2 LOO Functional to LOOCV Estimator

To show T̃λ − T̂ loo
λ

a.s.−−→ 0, we start by breaking the difference into two pieces:

∣∣T̃λ − T̂ loo
λ

∣∣ =
∣∣∣∣∣T̃λ − 1

n

n∑
i=1

t(yi − x>i β̂−i,λ) + 1
n

n∑
i=1

t(yi − x>i β̂−i,λ)− T̂ loo
λ

∣∣∣∣∣
≤

∣∣∣∣∣T̃λ − 1
n

n∑
i=1

t(yi − x>i β̂−i,λ)
∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

t(yi − x>i β̂−i,λ)− T̂ loo
λ

∣∣∣∣∣ . (S.6)

In the sequel, we will show that each of two pieces in (S.6) vanishes almost surely under proportional asymptotics.

For the second piece in (S.6), using the modulus of t and its concave majorant, we can bound the difference as

∣∣∣∣∣ 1n
n∑
i=1

t(yi − x>i β̂−i,λ)− T̃ loo
λ

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

t(yi − x→i β̂−i,λ)− 1
n

n∑
i=1

t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

∣∣∣∣∣t(yi − x>i β̂−i,λ)− t
(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣yi − x>i β̂−i,λ − yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ ωt

(
1
n

n∑
i=1

∣∣∣∣∣yi − x>i β̂−i,λ − yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 2ω
(

1
n

n∑
i=1

∣∣∣∣∣yi − x>i β̂−i,λ − yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)
, (S.7)

where line four uses Jensen’s inequality (on the concave majorant). Note that the above is valid when 1− [Lλ]ii 6= 0
for any of i = 1, . . . , n. For the case of min-norm estimator where [L0]ii = 0, we similarly bound

∣∣∣∣∣ 1n
n∑
i=1

t(yi − x>i β̂−i,0)− T̃ loo
λ

∣∣∣∣∣ ≤ 2ω
(

1
n

n∑
i=1

∣∣∣∣yi − x>i β̂−i,0 − [(XX>/n)†]i
[(XX>/n)†]ii

∣∣∣∣
)
. (S.8)

The argument of ω in either cases of (S.7) and (S.8) goes to 0 almost surely, and thus the continuity of ω provides
the desired convergence of the second piece in (S.6) It is worth mentioning that the only reason we need to
worry about (S.7) and (S.8) is the way we have defined ridge estimator in (1) where the leave-one-out estimator
β̂−i,λ gets a dividing factor of (n − 1) instead of n, otherwise these terms would be exactly 0. It is a short
straightforward calculation to show however that this does not make a difference as n→∞.

We now focus on the first piece in the decomposition (S.6). Note that we can express

1
n

n∑
i=1

t(yi − x>i β̂−i,λ)− T̃λ = 1
n

n∑
i=1

t(yi − x>i β̂−i,λ)− 1
n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]
= 1
n

n∑
i=1

{
t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]} . (S.9)

For i = 1, . . . , n, let Fi denote the increasing σ-field generated by (x1, y1), . . . , (xi, yi). Observe that

{
t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]}n
i=1



Pratik Patil, Alessandro Rinaldo, Ryan J. Tibshirani

forms a martingale difference array with respect to the filtration {Fi}ni=1. To see this, note that

E
[
t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i] ∣∣∣ Fi−1

]
= E

[
t(yi − x>i β̂−i,λ)

∣∣∣ Fi−1

]
− E

[
E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i] ∣∣∣ Fi−1

]
= E

[
t(yi − x>i β̂−i,λ)

∣∣∣ Fi−1

]
− E

[
t(yi − x>i β̂−i,λ)

∣∣∣ Fi−1

]
= 0,

where for the second equality we used the tower property of conditional expectation as Fi−1 is a subset of the
σ-field generated by (X−i, y−i). This observation allows us to use the Burkholder inequality (see Lemma S.8 for
an exact statement) to bound q-th moment of the difference for q ≥ 2.

Applying the Burkholder inequality to our martingale sequence, we can bound

E

[∣∣∣∣ n∑
i=1

t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣q
]

≤ CE

{ n∑
i=1

E

[∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ Fi−1

]}q/2
+ CE

[
n∑
i=1

∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣q] (S.10)

for some constant C > 0. We next bound each of the terms in turn. Denote by Xn
i+i and yni+i dataset consisting

of observations (xi+1, yi+1), · · · , (xn, yn).

For the first term, from the law of total expectation observe that

E

[∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ Fi−1

]

= E

[
E

{∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ Fi−1, X
n
i+1, y

n
i+1

}]

= E

[
E

{∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ X−i, y−i
}]

≤ 4E
[
E
[∣∣t(yi − x>i β̂−i,λ)

∣∣2 ∣∣∣ X−i, y−i]] ,
where in the last step we used the inequality E[|a+ b|2] ≤ 2

(
E[|a|2] + E[|b|2]

)
.

For the second term, similarly note that

E
[∣∣∣∣t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣q]
≤ E

[
E
[∣∣∣t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣q] ∣∣∣∣ X−i, y−i]
≤ 2qE

[
E
[∣∣∣t(yi − x>i β̂−i,λ)

∣∣∣q ∣∣∣ X−i, y−i]] ,
where the last step follows from using the inequality E[|a+ b|q] ≤ 2q−1(E[|a|q] + E[|b|q]

)
for q > 1.

In addition, from Jensen’s inequality, we have for q ≥ 2

E
[∣∣t(yi − x>i β̂−i,λ)

∣∣2 ∣∣ X−i, y−i] ≤ E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣ X−i, y−i].
Hence, to bound both the terms, it is sufficient to control q-th moment of the functional. From Lemma S.1, for
q ≤ 2 + min{µ/2, ν/2},

E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣ X−i, y−i] ≤ (C1 + C2
∥∥β̂−i,λ∥∥2

)2q
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for some positive constants C1 and C2. Combined Lemma S.3 that implies ‖β̂−i,λ‖2 ≤ C almost surely for n large
enough under Assumptions 1 and 2, we have

E
[
E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣ X−i, y−i]] ≤ C
for some constant C > 0 and 2 ≤ q ≤ 2 + min{µ/2, ν/2}.

Therefore, from (S.10) we can bound q-th moment of normalized sum (S.9) to get

E

[∣∣∣∣ 1n
n∑
i=1

t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣q
]

≤ (nC)q/2 + nC

nq

≤ C 1
nq/2

+ C
1

nq−1 .

Finally, choosing 2 < q ≤ 2 + min{µ/2, ν/2} and applying Lemma S.14 provides the desired convergence for the
first piece in (S.6). This concludes the proof.

S.1.3 LOOCV Estimator to GCV Estimator

To prove T̂ gcv
λ − T̂ loo

λ
a.s.−−→ 0, we start by bounding the absolute difference of interest by the average of absolute

differences for i = 1, . . . , n:

∣∣T̂ gcv
λ − T̂ loo

λ

∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

t

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
− 1
n

n∑
i=1

t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n

)
− t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣ . (S.11)

We will show below that the right-hand side of the expression (S.11) almost surely goes to zero. As with the
proof of T̃λ − T̂λ

a.s.−−→ 0, we will first assume Lii 6= 0 so (S.11) is well defined. We will indicate the changes that
we need to make when Lii = 0 towards the end of the proof.

Using the modulus of continuity of t and it least concave majorant, we have

1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n

)
− t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣ ≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ ωt

(
1
n

n∑
i=1

∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 2ωt

(
1
n

n∑
i=1

∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 2ωt

(
1
n

n∑
i=1

∣∣∣yi − x>i β̂λ∣∣∣ ∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣
)
.

In the above chain on inequalities, we used Jensen’s inequality on the concave majorant ωt for the third line, and
monotonicity of ωt on the fifth line.

Thus, from continuity of ωt at 0, we will be done by showing

1
n

n∑
i=1

∣∣∣yi − x>i β̂λ∣∣∣ ∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣ a.s.−−→ 0. (S.12)
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To build towards proving (S.12), let us denote by r ∈ Rn the vector of residuals yi − x>i β̂λ and by d ∈ Rn the
vector of differences (1− tr[Lλ]/n)−1 − (1− [Lλ]ii)−1. Observe that

1
n

n∑
i=1

∣∣∣yi − x>i β̂λ∣∣∣ ∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣ = 1
n
r>d

≤ 1
n
‖r‖1‖d‖∞

≤ 1√
n
‖r‖2‖d‖∞,

where we used Hölder’s inequality in the second line and the the bound ‖a‖1 ≤
√
n‖a‖2 for any a ∈ Rn in the

last line. Since r = (I − Lλ)y, and the operator norm of I − Lλ is bounded for λ ∈ (λmin, 0) and ‖y‖2/
√
n is

almost surely bounded for sufficiently large n from the strong law of large numbers under Assumption 2, we have
that ‖r‖2/

√
n is eventually almost surely bounded. We now show in the sequel that ‖d‖∞

a.s.−−→ 0 leading to the
desired conclusion.

First for each i = 1, . . . , n, by adding and subtracting 1+tr
[
(X>X/n+λI)†Σ

]
/n, and tr

[
(X>−iX−i/n+λI)†Σ

]
/n,

we decompose the difference∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣
=
∣∣∣∣ 1
1− tr[Lλ]/n −

(
1 + tr

[
(X>X/n+ λI)†Σ

]
/n
)

+ tr
[
(X>X/n+ λI)†Σ

]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n

+
(
1 + tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
)
− 1

1− [Lλ]ii

∣∣∣∣
≤
∣∣∣∣ 1
1− tr[Lλ]/n −

(
1− tr

[
(X>X/n+ λI)†Σ

]
/n
)∣∣∣∣

+
∣∣tr [(X>X/n+ λI)†Σ

]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
∣∣

+
∣∣∣∣(1− tr

[
(X>X/n+ λI)†Σ

]
/n
)
− 1

1− [Lλ]ii

∣∣∣∣ .
This lets us decompose

‖d‖∞ = max
1≤i≤n

∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣
≤
∣∣∣∣ 1
1− tr[Lλ]/n −

(
1− tr

[
(X>X/n+ λI)†Σ

]
/n
)∣∣∣∣

+ max
1≤i≤n

∣∣tr[(X>X/n+ λI)†Σ
]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
∣∣

+ max
1≤i≤n

∣∣∣∣(1− tr
[
(X>−iX−i/n+ λI)†Σ

]
/n
)
− 1

1− [Lλ]ii

∣∣∣∣ .
Finally, we verify that each of the term in the decomposition almost surely vanishes. Using the λ 6= 0 case of
Lemma S.11, we have for the first term∣∣∣∣ 1

1− tr[Lλ]/n −
(
1− tr

[
(X>X/n+ λI)†Σ

]
/n
)∣∣∣∣ a.s.−−→ 0.

For the second term, following the proof of Lemma S.11, for i = 1, . . . , n we can bound∣∣ tr[(X>X/n+ λI)†Σ
]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
∣∣ ≤ C/n,

almost surely for sufficiently large n. This uses the Sherman-Morrison-Woodbury formula with Moore-Penrose
inverse to express the difference

(X>X/n+ λI)† − (X>−iX−i/n+ λI)† = −
(X>−iX−i/n+ λI)†xix>i /n(X>−iX−i/n+ λI)†

1 + x>i (X>−iX−i/n+ λI)†xi
. (S.13)
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The second term thus almost surely goes to zero. For the third term, note that from using the Sherman-Morrison-
Woodbury formula again, we can simplify

1− [Lλ]ii = 1− x>i (X>X/n+ λI)†xi/n
= 1− x>i (X>−iX−i/n+ λI + xix

>
i /n)†xi/n

= 1
1 + x>i (X>−iX−i/n+ λI)†xi/n

.

Therefore, for q ≥ 2, we can now proceed to bound the q-th moment of the second term as

E
[{

max
1≤i≤n

∣∣∣∣1 + tr
[
(X>−iX−i/n+ λI)†Σ

]
/n− 1

1− [Lλ]ii

∣∣∣∣}q]
= E

[{
max

1≤i≤n

∣∣1 + tr
[
(X>−iX−i/n+ λI)†Σ

]
/n−

(
1 + x>i (X>−iX−i/n+ λI)†/n

)∣∣}q]
= E

[{
max

1≤i≤n

∣∣tr[(X>−iX−i/n+ λI)†Σ
]
/n− x>i (X>−iX−i/n+ λI)†/n

∣∣}q]
≤ max

1≤i≤n
E
[{∣∣tr [(X>−iX−i/n+ λI)†Σ

]
/n− x>i (X>−iX−i/n+ λI)†/n

∣∣}q]
≤ nE

[{
tr
[
(X>−jX−j/n+ λI)†Σ

]
/n− x>j (X>−jX−j/n+ λI)†xj/n

}q]
for any j = 1, . . . , n. Note that the last line follows from noting that tr

[
(X>−jX−j/n + λI)†Σ

]
/n, and

x>i
(
X>−iX−i/n+ λI

)†
xi are identically distributed for i = 1, . . . , n. Since

tr
[
(X>−jX−j/n+ λI)†

]
/n ≤ C/n

almost surely for sufficiently large n, using Lemma S.10, the above quantity is of order O(n/nq). Choosing q > 2
and applying Lemma S.14 thus provides the desired almost sure convergence.

The above argument assumed that Lii 6= 0. For the case of min-norm interpolator when Lii = 0, we follow exactly
similar steps as above using the modified errors defined in (13) and (14). (For more details on the λ cancellation
for modified errors, see the proof of T̂ gcv

λ − Ŵ gcv
λ

a.s.−−→ 0 in Section S.1.4.) This reduces to showing

1
n

n∑
i=1

∣∣[(XX>/n)†y]i
∣∣ ∣∣∣∣ 1

tr[(XX>/n)†]/n −
1

[(XX>/n)†]ii

∣∣∣∣ a.s.−−→ 0. (S.14)

The same way we argued the almost sure boundedness of ‖r‖2, we can bound the norm of modified error vector
(XX>/n)†y as shown in Section S.1.4. Finally, analogous to the argument used to bound d, we can now use the
case of λ = 0 equivalence in Lemma S.11 for the difference vector in the modified errors of (S.14). This takes care
of both the cases and concludes the proof.

S.1.4 Truncation Arguments

We established the converges in Sections S.1.1 to S.1.3 under the the assumption that the error function t is
uniformly continuous. In this section, we relax this assumption to t being only continuous by a truncation
argument. Let I{A} denote the indicator function for set A.

Let t be a continuous error function. Define w : R→ R to be the truncation of t on the compact interval [−n, n],
in other words, w(r) = t(r)I{|r| ≤ n}. Let Wλ denote the linear functional (5) corresponding to the error function
w, and let W̃λ be the intermediate averaged LOO functional defined analogously to (19) using w. Let Ŵ gcv

λ and
Ŵ loo
λ denote the plug-in GCV and LOOCV estimators associated with w. The arguments in Sections S.1.1 to S.1.3

establish Wλ − W̃λ
a.s.−−→ 0, W̃λ − Ŵ loo

λ
a.s.−−→ 0, and Ŵ loo

λ − Ŵ gcv
λ

a.s.−−→ 0. We will now show that Tλ −Wλ
a.s.−−→ 0,

T̃λ − W̃λ
a.s.−−→ 0, T̂ gcv

λ − Ŵ gcv
λ

a.s.−−→ 0, T̂ loo
λ − Ŵ loo

λ
a.s.−−→ 0 to finish the proof of Theorem 3. Since the proof of

LOOCV mirrors that for GCV, we will only show the argument for GCV to avoid repetition.
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Showing Tλ −Wλ
a.s.−−→ 0.

We can bound the absolute difference as follows:

|Tλ −Wλ| =
∣∣∣E[t(y0 − x>0 β̂λ) | X, y

]
− E

[
w(y0 − x>0 β̂λ) | X, y

]∣∣∣
=
∣∣∣E[t(y0 − x>0 β̂λ)− w(y0 − x>0 β̂λ) | X, y

]∣∣∣
=
∣∣∣E[t(y0 − x>0 β̂λ)I{|y0 − x>0 β̂| > n} | X, y

]∣∣∣
≤
√
E
[
|t(y0 − x>0 β̂λ)|2 | X, y

]√
P
[
|y0 − x>0 β̂λ| > n | X, y

]
≤ C

√
P
[
|y0 − x>0 β̂λ| > n | X, y

]
≤ C

√
E
[
|y0 − x>0 β̂λ|2 | X, y

]
n2

≤ C

n
→ 0,

where the third line uses the Cauchy-Schwarz inequality, the fourth line uses Lemmas S.1 and S.3 with q = 2, the
fifth line uses Chebychev’s inequality, and the last line again uses Lemmas S.1 and S.3 with t as the identity
function and q = 2.

Showing T̃λ − W̃λ
a.s.−−→ 0.

We can bound the absolute difference as follows:

∣∣∣T̃λ − W̃λ

∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ) | X−i, y−i

]
− 1
n

n∑
i=1

E
[
w(yi − x>i β̂−i,λ) | X−i, y−i

]∣∣∣∣∣
=
∣∣∣∣∣ 1n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ)− w(yi − x>i β̂−i,λ) | X−i, y−i

]∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

E
[
t(yi − x>i β̂−i,λ)I

{
|yi − x>i β̂−i,λ| > n

} ∣∣ X−i, y−i]
∣∣∣∣∣

≤ 1
n

n∑
i=1

√
E
[
|t(yi − x>i β̂−i,λ)|2

∣∣ X−i, y−i]√P
{
|yi − x>i β̂−i,λ| > n

∣∣ X−i, y−i}

≤ 1
n

n∑
i=i

√
E
[
|t(yi − x>i β̂−i,λ)|2 | X−i, y−i

]√
P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

∣∣∣ X, y}

≤

∣∣∣∣∣ 1n
n∑
i=i

√
E
[
|t(yi − x>i β̂−i,λ)|2 | X−i, y−i

]∣∣∣∣∣
√
P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

}

≤ C

√
P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

}
.

Above, line four uses the Cauchy-Schwarz inequality, line five uses the fact that the event |yi − x>i β̂−i,λ| > n for
any i = 1, . . . , n is contained inside the event maxnj=1 |yj − x>j β̂−j,λ| > n, and the last line follows from the q-th
moment control as done in Section S.1.2 with q = 2. It therefore suffices to bound the probability of the event
maxnj=1 |yi − x>i β̂−i,λ| > n which we do below.
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Starting with union bound, we have that

P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

}
≤

n∑
i=1

P
{
|yi − x>i β̂−i,λ| > n

}
≤

n∑
i=1

E
[
|yi − x>i β̂−i,λ|2

]
n2

≤
n∑
i=1

C

n2

≤ C

n
→ 0.

Showing T̂ gcv
λ − Ŵ gcv

λ
a.s.−−→ 0.

By following similar argument used to bound
∣∣T̃λ − W̃λ

∣∣, it suffices to show that

P

{
nmax
j=1

yi − x>i β̂λ
1− tr[Lλ]/n > n

}
→ 0.

Using the union bound, it is thus enough to show that almost surely

1
n

n∑
i=1

(
yi − x>i β̂λ

1− tr[Lλ]/n

)2

≤ C.

Note that this is valid when λ 6= 0. To cover the case of min-norm interpolator, we start by rewriting the residuals
in an alternate form as follows:

yi − x>i β̂λ = yi − x>i (X>X/n+ λI)†X>y/n
= yi − [X>(X>X/n+ λI)†X>y/n]i
= [y −X>(X>X/n+ λI)†X>y/n]i
= [(I −X>(X>X/n+ λI)†X/n)y]i
= λ[(XX>/n+ λI)†y]i (S.15)

Similarly, we rewrite the denominator of GCV using

1− tr[Lλ]/n = 1− tr[X(XX>/n+ λI)†X>]/n
= tr[I −X(XX>/n+ λI)†X>]/n
= λ tr[(XX>/n+ λI)†]/n. (S.16)

This lets us rewrite the invidual GCV reweighted errors as

yi − x>i β̂λ
1− tr[Lλ]/n = λ[(XX>/n+ λI)†y]i

λ tr[(XX>/n+ λI)†]/n = [(XX>/n+ λI)†y]i
tr[(XX>/n+ λI)†]/n.

Thus, we can now bound

1
n

n∑
i=1

(
yi − x>i β̂λ

1− tr[Lλ]/n

)2

=
∥∥(XX>/n+ λI)†y

∥∥2
2/n(

tr[(XX>/n+ λI)†]/n
)2

≤

∥∥(XX>/n+ λI)†
∥∥2

op

∥∥y∥∥2
2/n(

tr[(XX>/n+ λI)†]/n
)2 .

Each term in the above ratio is almost surely bounded for sufficiently large n under Assumption 1 and Assumption 2
as explained in the proof of Lemma S.3. This finishes the argument.
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S.1.5 Auxiliary Lemmas

In this section, we gather supporting lemmas used in the proofs in Sections S.1.1 to S.1.3, along with their proofs.
Lemma S.1 (Bounding conditional q-th moment of the i-th LOO residual). Suppose Assumptions 1 and 2 hold,
and the error function t satisfies Assumption 3. Then, for q ≤ min{µ/2, ν/2} and λ ∈ (λmin,∞),

E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣X−i, y−i ] ≤ (C1 + C2 ‖β̂−i,λ‖2
)2q

for some positive constants C1 and C2.

Proof. Note that under Assumption 3,
∣∣t(yi − x>i β̂−i,λ)

∣∣q ≤ a
∣∣yi − x>i β̂−i,λ∣∣2q + b

∣∣yi − x>i β̂−i,λ∣∣q + c for some
positive constants a, b, c. Because E

[
Zql
]
≤ E

[
Zqh

]ql/qh for ql ≤ qh from Jensen’s inequality, it suffices to bound
E
[∣∣yi − x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i], which we do below.

From the triangle inequality for the conditional Lq norm, observe that

E
[∣∣yi − x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q ≤ E

[∣∣yi∣∣2q ∣∣ X−i, y−i]1/2q + E
[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q

≤ E
[∣∣yi∣∣2q]1/2q + E

[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q.
The first term is bounded for q ≤ 2 + µ/2 under Assumption 2. For the second term, start by writing

E
[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i] = E

[∣∣z>i Σ1/2β̂−i,λ
∣∣2q ∣∣ X−i, y−i].

Note that conditional on X−i and y−i, Σ1/2β̂−i,λ is a fixed vector in Rp. For q ≤ 2 + ν/2, Lemma S.9 then
provides

E
[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q ≤ C‖Σ1/2β̂−i,λ‖2 ≤ C

√
rmax‖β̂−i,λ‖2,

where the last inequality follows since the maximum eigenvalue of Σ is bounded by rmax. Therefore, for
q ≤ 2 + min{µ/2, ν/2}, we get

E
[∣∣yi − x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i] ≤ (C1 + C2‖β̂−i,λ‖2

)2q
for some positive constants C1 and C2 as desired. This completes the proof.

Lemma S.2 (Bounding norm of the difference of leave-one-out ridge estimators). Suppose Assumptions 1 and 2
hold. Then, for λ ∈ (λmin,∞),

1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ∥∥2
a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞).

Proof. For each i = 1, . . . , n, we start by breaking the difference

β̂λ − β̂−i,λ = (X>X/n+ λI)†X>y/n− (X>−iX−i/n+ λI)†X>i y−i/(n− 1)
= (X>X/n+ λI)†X>y/n− (X>−iX−i/n+ λI)†X>y/n

+ (X>−iX−i/n+ λI)†X>y/n− (X>−iX−i/n+ λI)†X>−iy−i/(n− 1)
=
{

(X>X/n+ λI)† − (X>−iX−i/n+ λI)†
}
X>y/n

+ (X>−iX−i/n+ λI)†
{
X>y/n−X>−iy−i/(n− 1)

}
.

Applying the triangle inequality, for each i = 1, . . . , n, we can then bound∥∥β̂λ − β̂−i,λ∥∥2 ≤
∥∥{(X>X/n+ λI)† − (X>−iX−i/n+ λI)†

}
X>y/n

∥∥
2

+
∥∥(X>−iX−i/n+ λI)†

{
X>y/n−X>−iy−i/(n− 1)

}∥∥
2.
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Averaging the bounds above thus provides

1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ∥∥2 ≤
1
n

n∑
i=1

∥∥(X>−iX−i/n+ λI)†
{
X>y/n−X>−iy−i/(n− 1)

}∥∥
+ 1
n

n∑
i=1

∥∥{(X>X/n+ λI)† − (X>−iX−i/n+ λI)†
}
X>y/n

∥∥. (S.17)

We will see below that each of the two terms on the right-hand side of (S.17) almost surely goes to zero providing
the desired convergence. Note that for each i = 1, . . . , n, we can bound∥∥(X>−iX−i/n+ λI)†

{
X>y/n−X>−iy−i/(n− 1)

}∥∥
2 ≤

∥∥(X>−iX−i/n+ λI)†
∥∥

op

∥∥X>y/n−X>−iy−i/(n− 1)
∥∥

2

≤ C
∥∥X>y/n−X>−iy−i/(n− 1)

∥∥
2

= C

∥∥∥∥∥∥xiyin −
∑
j 6=i

xjyj
(n− 1)n

∥∥∥∥∥∥
2

≤ C√
n

‖xiyi‖2√
n

+ C

(n− 1)
√
n

∑
j 6=i

‖xjyj‖2√
n

,

where the second line follows from the fact that
∥∥(X>−iX−i/n + λI)†

∥∥
op is almost surely bounded for n large

enough (as explained in the proof of Lemma S.3), and last line uses triangle inequality. Now writing xi = Σ1/2zi,
note that for each i = 1, . . . , n,∥∥xiyi∥∥2/

√
n =

∥∥Σ1/2ziyi
∥∥

2/
√
n ≤

∥∥Σ1/2∥∥
opyi

∥∥zi∥∥2/
√
n ≤ yi

∥∥zi∥∥2/
√
n ≤ Cyi

almost surely for sufficiently large n since ‖zi‖2/
√
n is eventually almost surely bounded from the strong law of

large numbers. Hence, we have

1
n

n∑
i=1

∥∥(X>−iX−i + λI)†
{
X>y/n−X>−iy−i/(n− 1)

}∥∥ ≤ C√
n

1
n

n∑
i=1
|yi|+

C

(n− 1)
√
n

1
n

n∑
i=i

∑
j 6=i
|yj |

≤ C√
n

(2n− 1)
(n− 1)n

n∑
i=1
|yi|

≤ C√
n
→ 0. (S.18)

Here the second inequality follows by adding |yi| to the second term, and the last inequality follows because∑n
i=1 |yi|/n is eventually almost surely bounded from the strong law of large numbers under Assumption 2. Using

the leave-one-out sample covariance difference (S.13), we can similarly show that the second term goes to zero
almost surely. Hence, we have that (S.17) almost surely goes to zero. This completes the proof.

Lemma S.3 (Bounding norm of the ridge estimator). Suppose Assumption 1 and Assumption 2 hold. Then, for
λ ∈ (λmin,∞), ‖β̂λ‖2 ≤ C for some positive constant C eventually almost surely.

Proof. We can bound the norm of ridge estimator as∥∥β̂λ∥∥2 =
∥∥(X>X/n+ λI)†X>y/n

∥∥
2

≤
∥∥(X>X/n+ λI)†X>/

√
n
∥∥

op‖y‖2/
√
n

≤
∥∥(X>X/n+ λI)†

∥∥
op

∥∥X>/√n∥∥op‖y‖2/
√
n. (S.19)

Now for λ ∈ (λmin,∞), the first two terms in the product (S.19) are almost surely bounded for n large enough.
This is because the maximum eigenvalue of X>X/n is upper bounded by C(1 +√γ)2rmax for some C > 1 and
the minimum non-zero eigenvalue is lower bounded by c(1−√γ)2rmin for some c < 1 almost surely for sufficiently
large n under Assumption 1 (Bai and Silverstein, 1998). From the strong law of large numbers, the final term is
eventually almost surely bounded as the second moment of the response is bouned under Assumption 2. Hence,
the product is eventually almost surely bounded, finishing the proof.
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S.2 PROOFS RELATED TO Theorem 4

To show almost sure uniform convergence (in λ), we will appeal to Lemma S.12. A sufficient condition to establish
strong stochastic equicontinuity in the current differentiable case is uniform boundness of the associated functions
and their derivatives (with respect to λ) (e.g., Chpater 21 of Davidson, 1994). We will show that both Tλ and
T̂ gcv
λ and their derivates are bounded over Λ, implying strong stochastic equicontinuity of the family of functions
{Tλ − T̂ gcv

λ }λ∈Λ. Analogous analysis holds for {Tλ − T̂ loo
λ }λ∈Λ, which we omit due to its similarity with the GCV

analysis. Recall that Λ is a compact set in (λmin,∞). In the following, let Λ ⊂ [λ, λ] where λmin < λ ≤ λ <∞.

Bounding Tλ. We start with Tλ. Using Lemma S.1 with q = 1, under Assumptions 1 and 2, for error function
t satisfying Assumption 3, we can bound Tλ in terms of the norm of the ridge estimator β̂λ as

Tλ = E
[
t(y0 − x>0 β̂λ) | X, y

]
≤
(
C1 + C2‖β̂λ‖2

)2
, (S.20)

for some positive constants C1 and C2. Now following Lemma S.3, over Λ, we have that ‖β̂λ‖2 is eventually
almost surely bounded by C√rmax(λmin + λ)−1 for some positive constant C (independent of λ). This shows
that Tλ is eventually almost surely bounded over λ ∈ Λ.

Bounding T̂ gcv
λ . We next consider T̂ gcv

λ . Using the alternate representation (S.15), for error function t satisfying
Assumption 3, for some positive constants C,C1, C2, we can bound

T̂ gcv
λ = 1

n

n∑
i=1

t

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)

≤ C2

n

n∑
i=1

{
[(XX>/n+ λI)†y]i

}2{
tr[(XX>/n+ λI)†]/n

}2 + C1

n

n∑
i=1

∣∣[(XX>/n+ λI)†y]i
∣∣∣∣ tr[(XX>/n+ λI)†]/n
∣∣ + C

≤ C2

n

n∑
i=1

{
[(XX>/n+ λI)†y]i

}2 + C1

n

n∑
i=1

∣∣[(XX>/n+ λI)†y]i
∣∣+ C. (S.21)

The last inequality above follows by noting that the map λ 7→ tr[(XX>/n + λI)†]/n is non-increasing over
[λ, λ], so tr[(XX>/n+ λI)†]/n is lower bounded by tr[(XX>/n+ λI)†/n]. Since λmin < λ, we then have that
{tr[(XX>/n+ λI)†]/n}−1 is upper bounded by (λmin + λ)−1. Now, observe that for the first term in (S.21):

1
n

n∑
i=i

{
[(XX>/n+ λI)†y]i

}2 = 1
n

∥∥(XX>/n+ λI)†y
∥∥2

2 ≤
1
n

∥∥(XX>/n+ λI)†
∥∥2

op

∥∥y∥∥2
2.

Similarly, note that for the second term in (S.21):

1
n

n∑
i=1

∣∣[(XX>/n+λI)†y]i
∣∣ = 1

n

∥∥(XX>/n+λI)†y
∥∥

1 ≤
1√
n

∥∥(XX>/n+λI)†y
∥∥

2 ≤
1√
n

∥∥(XX>/n+λI)†
∥∥

op

∥∥y∥∥2.

Since ‖(XX>/n+ λI)†‖op is uniformly bounded over λ ∈ Λ under Assumption 1 as argued above, and ‖y‖22/n is
almost surely bouned for n large enough from the law of large numbers under Assumption 2, it follows that T̂ gcv

λ

is almost surely bounded over λ ∈ Λ.

Bounding derivative of Tλ. We now turn to bounding the derivaties of the map λ 7→ Tλ. First note that
since E

[
|y0 − x>0 β̂λ| | X, y

]
≤ E

[
|y0 − x>0 β̂λ|2 | X, y

]1/2, and since the latter is almost surely bounded as shown
above, we can switch the order of differentiation and integration. The derivative of Tλ with respect to λ can then
be bounded above by

T ′λ = E
[
t′(y0 − x>0 β̂λ) x>0 β̂′λ | X, y

]
≤ E

[
{t′(y0 − x>0 β̂λ)}2 | X, y

]1/2 · E[(β̂′λ)>x0x
>
0 β̂
′
λ | X, y

]
≤ C
√
rmax‖β̂′λ‖2.

(S.22)
In the above chain, the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows
from the bounding of Tλ per (S.20) above (because under Assumption 3, t′ is bounded above by a linear function),
and the fact that ‖Σ‖op ≤ rmax. Applying Lemma S.4 on the last term of (S.22), we thus conclude that the
derivative of Tλ is almost surely uniformly bounded over λ ∈ Λ, as desired.
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Bounding derivative of T̂ gcv
λ . Finally, we bound the derivative of the map λ 7→ T̂ gcv

λ . From the chain rule,
the derivative of T̂ gcv

λ with respect to λ can be expressed as

1
n

n∑
i=1

t′
(

[(XX>/n+ λI)†y]i
tr[(XX>/n+ λI)†]/n

)
d

dλ

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)

≤

√√√√ 1
n

n∑
i=1

{
t′
(

[(XX>/n+ λI)†y]i
tr[(XX>/n+ λI)†]/n

)}2
√√√√ 1
n

n∑
i=1

{
d

dλ

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)}2
(S.23)

≤ C

√√√√ n∑
i=1

{
d

dλ

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)}2
(S.24)

The first inequality above again follows from the Cauchy-Schwarz inequalty. The second inequality follows since,
from Assumption 3, t′ is bouned above by a linear function, and the bounding of T̂ gcv

λ per (S.21) above shows
that the first term of (S.23) is almost surely bounded. Applying Lemma S.5, we can now upper bound the final
term of (S.24). This leads the derivative of T̂ gcv

λ to be almost surely bounded over λ ∈ Λ and concludes the proof.
Lemma S.4 (Bounding norm of the derivative of ridge estimator). Suppose Assumptions 1 and 2 hold. Then,
for λ ∈ (λmin,∞), ‖β̂′λ‖2 ≤ C eventually almost surely for some positive constant C.

Proof. The proof follows from a straightforward calculation. Expressing the ridge estimation in the gram form,
observe that

dβ̂λ
dλ

= dX>(XX>/n+ λI)†y/n
dλ

= X>(XX>/n+ I)†(XX>/n+ λI)†y/n.

In the above, we use the fact that for λ ∈ (λmin,∞), the map λ 7→ (XX>/n+ λI)† is almost surely differentiable
for n large enough, with the derivative given by (XX>/n + λI)†(XX>/n + λI)†. The result then follows by
noting that the opeator norms of X/

√
n and (XX>/n+ λI)† are uniformly bounded over Λ as argued above,

and ‖y‖2/
√
n is almost surely bounded for n large enough, as explained in the proof of Lemma S.3.

Lemma S.5 (Bounding norm of the derivative of modified GCV residuals). Suppose Assumptions 1 and 2 hold.
Then, for λ ∈ (λmin,∞), we have that

1√
n

∥∥∥∥ ddλ
(

(XX>/n+ λI)†y
tr[(XX>/n+ λI)†]/n

)∥∥∥∥
2
≤ C

eventually almost surely for some positive contant C.

Proof. The proof uses straightforward matrix calculus (Petersen et al., 2008). Using the chain rule, we can write

d

dλ

(
(XX>/n+ λI)†y

tr[(XX>/n+ λI)†]/n

)
= − tr[(XX>/n+ λI)†(XX>/n+ λI)†]/n

{tr[(XX>/n+ λI)†]/n}2 (XX>/n+ λI)†y

+ 1
tr[(XX>/n+ λI)†]/n

d

dλ

(
(XX>/n+ λy)†y

)
.

Note that {tr[(XX>/n + λI)†]/n}−1 is almost surely bounded for n sufficiently large as argued above. In
addition, since the operator norm of (XX>/n+ λI)† is uniformly upper bounded for λ ∈ Λ, we also have that
tr[(XX>/n+ λI)†(XX>/n+ λI)†]/n is uniformly upper bounded over Λ. Next, observe that

d

dλ

(
(XX>/n+ λI)†y

)
= (XX>/n+ λI)†(XX>/n+ λI)†y.

As above, since the opeator norm of (XX>/n+ λI)† is uniformly bounded for λ ∈ Λ, and ‖y‖2/
√
n is almost

surely bounded for n large enough, the result then follows from simple application of the triangle inequality (with
respect to the `2 norm). This finishes the proof.
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S.3 PROOFS RELATED TO Theorem 5

The proof is similar to that of proof of Theorem 4. We will again use Lemma S.12. In the current the nonsmooth
case, it is sufficient to show that the family of random functions under consideration is almost surely Lipschitz
continuous, along with the almost sure uniform bounds as shown in the proof of Theorem 4 (see, e.g., Chpater 21
of Davidson, 1994). We will show in the two helper lemmas below that this holds for {Tλ}λ∈Λ and {T̂ gcv

λ }λ∈Λ,
assuming that the loss function t is Lipschitz continuous. This will show that {Tλ − T̂ gcv

λ }λ∈Λ is almost surely
Lipschitz continuous from which the theorem follows. A similar analysis holds for {Tλ − T̂ loo

λ }λ∈Λ.
Lemma S.6 (Lipschitz continuity of the out-of-sample functional). Suppose Assumption 1 and Assumption 2
hold, and the error function t is Lipschitz continuous. Let Λ be a compact set in (λmin,∞). Then, over Λ, the
random map λ 7→ Tλ is almost surely Lipschitz continuous.

Proof. Since Λ is compact, let Λ ⊆ [λ, λ] where λmin < λ ≤ λ <∞. For any λ1, λ2 ∈ [λ, λ], using the Lipschitz
continuity of the error function, we have∣∣t(y0 − x>0 β̂λ1)− t(y0 − x>0 β̂λ2)

∣∣ ≤ L∣∣x>0 (β̂λ1 − β̂λ2)
∣∣

for some L ≥ 0. Now consider∣∣Tλ1 − Tλ2

∣∣ =
∣∣∣E[t(y0 − x>0 β̂λ1)− t(y0 − x>0 β̂λ2)

∣∣ X, y]∣∣∣
≤ E

[∣∣t(y0 − x>0 β̂λ1)− t(y0 − x>0 β̂λ2)
∣∣ ∣∣ X, y]

≤ LE
[∣∣x>0 (β̂λ1 − β̂λ2)

∣∣ ∣∣ X, y]
= LE

[√∣∣x>0 (β̂λ1 − β̂λ2)
∣∣2 ∣∣ X, y]

≤ L
√
E
[∣∣x>0 (β̂λ1 − β̂λ2)

∣∣2 ∣∣ X, y]
≤ L

√
E
[∣∣(β̂λ1 − β̂λ2)>x0x>0 (β̂λ1 − β̂λ2)

∣∣2 ∣∣ X, y]
≤ L

√
(β̂λ1 − β̂λ2)>Σ(β̂λ1 − β̂λ2)

≤ L
√
rmax

∥∥β̂λ1 − β̂λ2

∥∥
2.

Above, the second and fourth lines follow from using Jensen’s inequality (on the absolute and square root functions,
respectively), the third line follows from the Lipschitz bound on the error function, and the last inequality follow
since the operator norm of Σ is bounded above by rmax.

To complete the proof, we show below that over [λ, λ], ‖β̂λ1 − β̂λ2‖ ≤ C|λ1 − λ2| for some constant C that
is eventually almost surely bounded. To see this, we start by writing the difference using equivalent gram
representation for ridge estimator:∥∥β̂λ1 − β̂λ2

∥∥
2 =

∥∥X(XX>/n+ λ1)†y/n−X(XX>/n+ λ2)†y/n
∥∥

2

≤
∥∥X/√n∥∥op

∥∥(XX>/n+ λ1)− (XX>/n+ λ2)
∥∥

op

∥∥y∥∥2/
√
n. (S.25)

As argued before, both the first and the last term in the product (S.25) are eventually almost surely bounded under
Assumptions 1 and 2. For the middle term, note that on [λ, λ], since λmin < λ, the map λ 7→ (XX>/n+ λI)†
is differentiable on [λ, λ] with the derivative with respect to λ equal to (XX>/n+ λI)†(XX>/n+ λI)†. Thus,
using the mean value theorem, for some λ ∈ (λ, λ), we can bound∣∣(XX>/n+ λ1I)† − (XX>/n+ λ2I)†

∣∣ ≤ ∣∣(XX>/n+ λI)†(XX>/n+ λI)†
∣∣ |λ1 − λ2| .

Hence, we can bound the second term as∥∥(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
∥∥

op ≤
∥∥(XX>/n+ λI)†(XX>/n+ λI)†

∥∥
op |λ1 − λ2|

≤
∥∥(XX>/n+ λI)†

∥∥
op

∥∥(XX>/n+ λI)†
∥∥

op |λ1 − λ2|

≤ C |λ1 − λ2| , (S.26)
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where the last inequality follows because λ ≥ λ > λmin as explained in the proof of Lemma S.3. This concludes
the proof.

Lemma S.7 (Lipschitz continuity of the GCV functional). Suppose Assumption 1 and Assumption 2 hold, and
the error function t is Lipschitz continuous. Let Λ be a compact set in (λmin,∞). Then, over Λ, the random map
λ 7→ T̂ gcv

λ is almost surely Lipschitz continuous.

Proof. Let Λ ⊆ [λ, λ], where λmin < λ ≤ λ <∞. Using the alternate representation (S.15) for the numerator and
(S.16) for the denominator of GCV reweighted errors, we can rewrite the plug-in functional T̂ gcv

λ as

T̂ gcv
λ = 1

n

n∑
i=1

t

( [
(XX>/n+ λI)†y

]
i

tr
[
(XX>/n+ λI)†

]
/n

)
.

For λ1, λ2 ∈ Λ using the Lipschitz continuity of the error function, note that

T̂ gcv
λ1
− T̂ gcv

λ2
(S.27)

= 1
n

n∑
i=1

t

( [
(XX>/n+ λ1I)†y

]
i

tr
[
(XX>/n+ λ1I)†

]
/n

)
− t

( [
(XX>/n+ λ2I)†y

]
i

tr
[
(XX>/n+ λ2I)

]
/n

)

≤ 1
n

n∑
i=1

L

∣∣∣∣∣
[
(XX>/n+ λ1I)†y

]
i

tr
[
(XX>/n+ λ1I)†

]
/n
−

[
(XX>/n+ λ2I)†y

]
i

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

n∑
i=1

∣∣∣[(XX>/n+ λ1I)†y
]
i
−
[
(XX>/n+ λ2I)†y

]
i

∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

n∑
i=1

∣∣∣[{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
}
y
]
i

∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

∥∥{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
}
y
∥∥

1

(S.28)

Since the map λ 7→ tr
[
(XX> + λI)†

]
/n is non-increasing over [λ, λ], we can bound the first term of (S.28) using∣∣∣∣∣ 1

tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ ≤ 2
∣∣∣∣∣ 1
tr
[
(XX>/n+ λI)†

]
/n

∣∣∣∣∣ . (S.29)

For bounding the second term of (S.28), note that∥∥{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
}
y
∥∥

1 /n ≤
∥∥{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†

}
y
∥∥

2 /
√
n

≤
∥∥(XX>/n+ λ1I)† − (XX>/n+ λ2I)†

∥∥
op ‖y‖2/

√
n

≤ C |λ1 − λ2| , (S.30)

where we used the bound from (S.26), along with the fact that ‖y‖2/
√
n is almost surely bounded for n large

enough from the strong law of large numbers under Assumption 2. Plugging (S.29) and (S.30) into (S.28) then
finishes the proof.

S.4 PROOF OF Theorem 1

Let F̂ gcv
λ and F̂ loo

λ denote the CDFs associated with the plug-in distributions P̂ gcv
λ and P̂ loo

λ of the GCV and
LOOCV reweighted errors, respectively. Recall that Fλ denotes the CDF of the out-of-sample error distribution
Pλ. To prove Theorem 1, for all z ∈ R that are continuity points of Fλ for n sufficiently large, we will sandwich
Fλ(z) such that, almost surely, lim supn→∞ F̂ gcv

λ (z) ≤ Fλ(z) along with Fλ(z) ≤ lim infn→∞ F̂ gcv
λ (z). This then

yields the desired result that F̂ gcv
λ (z)− Fλ(z) a.s.−−→ 0. Similar argument shows F̂ loo

λ (z)− Fλ(z) a.s.−−→ 0. The idea of
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the proof is similar to that used in the proof of the Portmanteau theorem, with the main difference being that
the target distribution in our case is also a random distribution. We will make use of Theorem 3 to deduce the
desired inequalities in each direction using suitably chosen error functions.

Fix ε > 0 and z ∈ R. For the first direction, let tz,ε be an error function defined as

tz,ε(r) =


1 r ≤ z
1 + (z − r)/ε z ≤ r ≤ z + ε

0 r ≥ z + ε.

Observe that I{r ≤ z} ≤ tz,ε(r) for all r ∈ R. Here I denotes the indicator function. This allow us to write

F̂ gcv
λ (z) = 1

n

n∑
i=1

I

{
yi − x>i β̂λ

1− tr[Lλ]/n ≤ z
}
≤ 1
n

n∑
i=1

tz,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
. (S.31)

Furthermore, tr,ε is Lipschitz continuous and satisfies Assumption 3. Hence, invoking Theorem 3, we have that

1
n

n∑
i=1

tz,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
− E

[
tz,ε(y0 − x>0 β̂λ) | X, y

] a.s.−−→ 0. (S.32)

In addition, observe that tz,ε(r) ≤ I{r ≤ z + ε} for all r ∈ R. This gives us

E
[
tz,ε(y0 − x>0 β̂λ) | X, y

]
≤ E

[
I{y0 − x>0 β̂λ ≤ z + ε} | X, y

]
= P

[
y0 − x>0 β̂λ ≤ z + ε | X, y

]
. (S.33)

Thus, combining (S.31) to (S.33), we get that almost surely

lim sup
n→∞

F̂ gcv
λ (z) ≤ lim sup

n→∞
P
[
y0 − x>0 β̂λ ≤ z + ε | X, y

]
= lim sup

n→∞
Fλ(z + ε). (S.34)

Now sending ε→ 0, we obtain the desired inequality lim supn→∞ F̂ gcv
λ (z) ≤ Fλ(z) almost surely.

We proceed analogously on the other side. Again fix ε > 0 and let z ∈ R be a continuity point of Fλ for n
sufficiently large. We will now use the function tz−ε,ε. Explicitly, the evaluation map of tz−ε,ε is given by

tz−ε,ε(r) =


1 r ≤ z − ε
(z − r)/ε z − ε ≤ r ≤ z
0 r ≥ z.

Noting that tz−ε,ε(r) ≤ I{r ≤ z} for all r ∈ R, we obtain

F̂ gcv
λ (z) = 1

n

n∑
i=1

I

{
yi − x>i β̂λ

1− tr[Lλ]/n ≤ z
}
≥ 1
n

n∑
i=1

tz−ε,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
. (S.35)

Again, since tz−ε,ε is Lipschitz continuous and satisfies Assumption 3, application of Theorem 3 yields

1
n

n∑
i=1

tz−ε,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
− E

[
tz−ε,ε(y0 − x>0 β̂λ) | X, y

] a.s.−−→ 0. (S.36)

Finally, because tz−ε,ε(r) ≥ I{r ≤ z − ε} for r ∈ R, we have that

E
[
tz−ε,ε(y0 − x>0 β̂λ) | X, y

]
≥ E

[
I{y0 − x>0 β̂λ ≤ z − ε} | X, y

]
= P

[
y0 − x>0 β̂λ ≤ z − ε

]
. (S.37)

Combining (S.35) to (S.37), we have almost surely,

lim inf
n→∞

F̂ gcv
λ (z) ≥ lim inf

n→∞
P
[
y0 − x>0 β̂λ ≤ z − ε

]
= lim inf

n→∞
Fλ(z − ε). (S.38)

Since z is a continuity point of Fλ, sending ε → 0, we get the desired inequality lim infn→∞ F̂ gcv
λ (z) ≥ Fλ(z)

almost surely.

Combining (S.34) and (S.38), we conclude that almost surely lim supn→∞ F̂ gcv
λ (z)− lim infn→∞ F̂ gcv

λ (z)→ 0, and
F̂ gcv
λ (z)− F (z)→ 0, completing the proof.
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S.5 PROOFS RELATED TO Theorem 6

S.5.1 Proof of Theorem 6

As hinted in the paper, the proof of Theorem 6 mainly builds on the result of Theorem 3. We will use Theorem 3
to certify pointwise convergence (in v) of T̂ gcv

λ (v) and T̂ loo
λ (v) to Tλ(v). Then using the equicontinuity of TV and

appealing to Lemma S.13, we will prove the convergence of the minimizers V̂ gcv
λ and V loo

λ to Vλ.

First observe that each t(·, v) : R→ R is a continuos function since TV is an equicontinous family of functions. In
addition, each t(·, v) satisfies Assumption 3. Thus, for each v ∈ V, Theorem 3 implies

T̂ gcv
λ (v)− Tλ(v) a.s.−−→ 0.

Next note that for any δ > 0,

sup
|v1−v2|≤δ, v1,v2∈V

∣∣Tλ(v1)− Tλ(v2)
∣∣

= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣E[t(y0 − x>0 β̂λ, v1) | X, y
]
− E

[
t(y0 − x>0 β̂λ, v2) | X, y

]∣∣∣
= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣E[t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2) | X, y
]∣∣∣

≤ sup
|v1−v2|≤δ, v1,v2∈V

E
[∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)

∣∣ ∣∣ X, y]
≤ E

[
sup

|v1−v2|≤δ, v1,v2∈V

∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)
∣∣ ∣∣∣ X, y] , (S.39)

where the third line follows from Jensen’s inequality, the last inequality follows because for any v1, v2 ∈ V such
that |v1 − v2| ≤ δ, we have that∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)

∣∣ ≤ sup
|v1−v2|≤δ, v1,v2∈V

∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)
∣∣,

which after taking expectation and taking sup gives the desired inequality. Similarly, for any δ > 0,

sup
|v1−v2|≤δ, v1,v2∈V

∣∣T̂ gcv
λ (v1)− T̂ gcv

λ (v2)
∣∣

= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣∣∣ 1n
n∑
i=1

t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v1

)
− 1
n

n∑
i=1

t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v2

)∣∣∣∣∣
≤ sup
|v1−v2|≤δ, v1,v2∈V

1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n, v1

)
− t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v2

)∣∣∣∣∣
≤ 1
n

n∑
i=1

sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n, v1

)
− t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v2

)∣∣∣∣∣ . (S.40)

Note that the exact argument holds for the case of λ = 0 by replacing replacing the first argument of t with
the modified GCV errors. Since the family {t(·, v) : v ∈ V} is pointwise equicontinous, (S.39) and (S.40) imply
equicontinuity of {Tλ(v) : v ∈ V} and {T̂ gcv

λ (v) : v ∈ V}. Moreover, as V is compact and Vλ is assumed to be
unique, Lemma S.13 yields

V̂ gcv
λ − Vλ

a.s.−−→ 0.

Analogous argument shows the convergence for V̂ loo
λ by using the LOOCV part of Theorem 3.

S.5.2 Proof of Corollary 7

We verify that the conditions of Theorem 6 are satisfied. For τ ∈ (0, 1) and compact set U ⊆ R, the family of
error functions under consideration is TU = {tτ (·, u) : u ∈ U}, where each function tτ (·, u) is such that for r ∈ R

tτ (r, u) = (r − u)(τ − I{r − u < 0}.
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In other words, the evaluation map is given by

tτ (r, u) =
{

(r − u)τ if r ≥ u
(u− r)(1− τ) if u > r.

A sufficient condition to establish equicontinuity of TU is to show that the functions in the family are Lipschitz
continuous with uniformly bounded Lipschitz constant (see, e.g., Section 1.8 of Tao, 2010). It is easy to check
that each function in the family TU is Lipschitz continuous with uniformly bounded constant L = max{τ, 1− τ}.
Thus, the family TU is equicontinous over compact set U . Furthermore, since U is assumed to contain the true
quantile, Qλ(τ) is unique. Therefore, invoking Theorem 6 we obtain the desired conclusion.

S.6 ADDITIONAL NUMERICAL RESULTS

In this section, we provide additional numerical illustrations to complement those included in the main paper.
The details of feature and response models used throughout different experiments are described next.

Feature model. The feature xi ∈ Rp is generated according to

xi = Σ1/2zi, (S.41)

where zi ∈ Rp contains independently sampled entires from a common distribution, and Σ ∈ Rp×p is a positive
semidefinite feature covariance matrix. The different distributions that we use for the components of zi include:
(1) Gaussian distribution, (2) Student’s t-distribution, and (3) Bernoulli distribution. These represent a mix of
both continuous and discrete, and light- and heavy-tailed distributions. We standardize the distributions so that
the mean is zero and the variance is one. The different feature covariance matrix structures that we use include:
(1) Identity (Σij = 1 when i = j and Σij = 0 when i 6= j) and (2) Autoregressive with parameter ρ (Σij = ρ|i−j|

for all i, j).

Response model. Given xi, the response yi ∈ R is generated according to

yi = β>0 xi +
(
x>i Axi − tr[AΣ]

)
/p+ εi, (S.42)

where β0 ∈ Rp is a fixed signal vector, A ∈ Rp×p is a fixed matrix, and εi ∈ R is a random noise variable. Note
that we have subtracted the mean from the squared nonlinear component and scaled it to keep the variance of the
nonlinear component at the same order as the noise variance (see Mei and Montanari (2019) for more details, for
example). We again use either Gaussian, Student’s t, or Bernoulli distribution for the random noise component,
which is again standardized so that the mean is zero and the variance is one. We refer to the value of β>0 Σβ0 as
the effective signal energy.

Train and test set sizes. In all of our experiments, the sample size for the train set is fixed at n = 2500. To
compute various out-of-sample quantities, we use a test set of 100000 indepedent observations. We use three
feature sizes of p = 100, p = 2000, and p = 5000 that represent low, moderate, and high-dimensional settings
(with aspect ratios p/n of 0.04, 0.8, and 2), respectively.

S.6.1 Distribution Estimation

As promised in the paper, we first present illustrations with LOOCV reweighted errors for Figures 1 and 2 in
Figures S.1 and S.2, respectively.

Note that both in Figures 1 and 2 in the paper, as well as Figures S.1 and S.2, the out-of-sample error distributions
and the associated GCV and LOOCV reweighted error distributions are all symmetric distributions. This need
not be the case. In Figure S.3, we consider a case in which the out-of-sample error distribution and the estimated
distributions based on GCV and LOOCV reweighted errors are negatively skewed.
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(b) Moderate dimension (p/n = 0.8)
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Figure S.1: A simulation with n = 2500 and p ∈ {100, 2000, 5000} features with a different p per panel above. In
each setting, the feature vectors xi are generated as in (S.41) with identity covariance with components of zi
sampled from a t-distribution with 5 degrees of freedom, and the responses yi are generated as in (S.42). We fit
the min-norm least squares solution, as in (1) with λ = 0. The blue curve in each panel is a histogram of the
true prediction error distribution, computed from 105 independent test samples. The red curve is a histogram of
the training errors; when p > n, this is just a point mass at zero. The purple curve is a histogram of LOOCV
reweighted training errors, as in (12) (when p < n in the first two panels) and (14) (when p > n in the last panel).
This tracks the blue curve very well in all three settings again. Empirical results for GCV are provided in Figure 1
of the paper.

S.6.2 Quantile Estimation

We first provide further details on the setup used in Figure 3 of the main paper. We use a special “latent” space
data model, in which the true signal component lies in a small eigenspace of the feature covariance matrix. Such
setup was investigated in the context of ridge regression by Kobak et al. (2020); Wu and Xu (2020); Richards
et al. (2020); Hastie et al. (2019), who study the optimality of zero (or even negative) ridge regularization for
expected squared out-of-sample error under special cases. We verify empirically that such behavior continues to
hold even for general functionals of the out-of-sample error distribution and their plug-in estimators based on
GCV and LOOCV such as the length of prediction intervals, and even under nonlinear model.

For numerical illustration, we consider an extreme case where the signal vector is aligned with the eigenvector
of the covariance matrix corresponding to the largest eigenvalue. More precisely, let Σ = WRW> denote the
eigenvalue decomposition of the covariance matrix Σ, where W ∈ Rp×p is a orthogonal matrix whose columns
w1, . . . , wp are eigenvectors of Σ and R ∈ Rp×p is a diagonal matrix whose entries r1 ≥ · · · ≥ rp are eigenvalues
of Σ in descending order. We then let β0 = ζw1, where ζ controls the effective signal energy. Figure S.4 illustrate
the coverage and length of prediction intervals (30) computed using the LOOCV reweighted error distribution.

Finally, as a contrast we consider a “regular” setting in Figure S.5 where the signal does not have any special
structure, and the signal covariance is identity, where we see that regularization does in fact help indicating the
subtle interplay between the signal vector and feature covariance that causes the near optimality of ridgeless
estimator for various functionals of the out-of-sample error distribution.

S.7 SUPPLEMENTARY RESULTS

In this section, we record statements of various results adapted from other sources that are used in the proofs
throughout the supplement.

The following inequality bounding q-th moment of sum of random variables is by Burkholder (1973). See also Bai
and Silverstein (2010, Lemma 2.13).
Lemma S.8 (Burkholder’s inequality). Let {Zk} be a martingale difference sequence with respect to the increasing
σ-field {Fk}. Then, for q ≥ 2,

E
[∣∣∣∑

k

Zk

∣∣∣q] ≤ Cq {E[(∑
k

E
[∣∣Zk∣∣2 ∣∣ Fk−1

])q/2]
+ E

[∑
k

∣∣Zk∣∣q]}
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Figure S.2: An example with n = 2500, p = 5000. We generated each xi according to (S.41) with identity
covariance with the components of zi sampled from a symmetric Bernoulli distribution, and each response yi
is generated according to (S.42). The ridge parameter was fixed at λ = 1. Each panel above examines weak
convergence per (17) for a different function h of the error variable (identity, absolute value, and square, from
left to right). In each case, the LOOCV estimate (purple) tracks the true distribution (blue) closely. Empirical
results for GCV are in Figure 2 of the paper.
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Figure S.3: An example with n = 2500, p = 5000. We generated each xi according to (S.41) with identity
covariance and components of zi sampled from a Gaussian distribution, and each response yi according to (S.42)
with noise variable εi distributed according to a Bernoulli random variable with success probability 0.8. The ridge
parameter was fixed at λ = 1. Each panel above examines weak convergence per (17) for a different function h
of the error variable (identity, absolute value, and square, from left to right). In each case, the GCV estimate
(yellow) and LOOCV estimate (purple) track the true distribution (blue) closely.

for a constant Cq that only depends on q.

The following inequality bounding Lp norm of an inner product is from Erdos and Yau (2017, Lemma 7.8).
Lemma S.9 (Lq norm of an inner product). Let u ∈ Rp be a random vector consisting of independent entries ui
with E[ui] = 0, E[u2

i ] = 1, and ‖ui‖Lq
≤ Kq for i = 1, . . . , p. Let a ∈ Rp be a deterministic vector. Then,

‖a>u‖Lq ≤ CqKq‖a‖2

for a constant Cq depending only on q.

The following lemma bounding q-th moment of a quadratic form is from Bai and Silverstein (2010, Lemma B.26).
See also Dobriban and Wager (2018, Lemma 7.10).
Lemma S.10 (Centered moment a quadratic form). Let W ∈ Rp×p be a deterministic matrix. Let v ∈ Rp be a
random vector of independent entries vi for i = 1, . . . , p with each E[vi] = 0, E[v2

i ] = 1, and E[|vi|r] ≤Mr. Then,
for any q ≥ 1,

E
[∣∣v>Wv − tr[W ]

∣∣q] ≤ Cq {(M4 tr[WW>]
)q/2 +M2q tr

[
(WW>)q/2

]}
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Figure S.4: Illustration of empirical coverage and length of LOOCV prediction intervals constructed using
(30) against nominal coverage, where n = 2500, p = 5000. We generated features xi according to (S.41) with
autoregressive covariance structure (with ρ = 0.25) and t-distributed components of zi with 5 degrees of freedom.
The responses yi are generated according to (S.42) where the signal β0 is aligned with the top eigenvector of the
covariance matrix and the effective signal energy is 50. We see that intervals for any λ have excellent finite-sample
coverage (left), and the case of λ = 0 provides the smallest interval lengths (right). Empirical results for GCV
prediction intervals are in Figure S.4 of the paper.

for a constant Cq that only depends on q.

The following equivalence lemma for the denominator arising from GCV is adapted from Patil et al. (2021, Lemma
S.3.1).
Lemma S.11 (GCV denominator lemma). Suppose Assumption 1 holds. Then, for λ ∈ (λmin,∞) \ {0}

1 + tr
[
(X>X/n+ λI)†Σ

]
/n− 1

1− tr
[
(X>X/n+ λI)†X>X/n

]
/n

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞), and for the case of λ = 0,

tr
[(
I − (X>X/n)†X>X/n

)
Σ
]
/n− 1

tr
[
(X>X/n)†

]
/n

a.s.−−→ 0,

as n, p→∞ with p/n→ γ ∈ (0,∞).

The following results are standard results on stochastic uniform convergence. See, e.g., Chapter 21 of Davidson
(1994).
Lemma S.12 (Stochastic uniform convergence). Let fn(θ), θ ∈ Θ be a family of stochastic functions. Suppose
Θ is a compact, and for every θ ∈ Θ, fn(θ) a.s.−−→ f(θ). Further, assume that {fn(θ)} is strongly stochastic
equicontinous. Then, as n→∞,

sup
θ∈Θ
|fn(θ)− f(θ)| a.s.−−→ 0.

A corollary of Lemma S.12 is the following statement.
Lemma S.13 (Convergence of minimizers). Assume the setting of Lemma S.12. Let ξ̂n and ξ be minimizers of
fn and f over θ ∈ Θ, respectively. Moreover, assume that f has a unique minimizer over Θ. Then, as n→∞,

ξ̂
a.s.−−→ ξ.

The following lemma is a simple application of Markov’s inequality along with the Borel-Cantelli lemma.
Lemma S.14 (Moment version of the Borel-Cantelli lemma). Let {Sn} be a sequence of random variables.
Suppose

{
E[|Sn|p]

}
forms a summable sequence for some p > 0. Then, as n→∞, Sn

a.s.−−→ 0.
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Figure S.5: Illustration of empirical coverage and length of LOOCV prediction intervals (30) against nominal
coverage, where n = 2500, p = 5000. The features xi are generated according to (S.41) with identity covariance
and components of zi having Gaussian distribution. The responses yi are generated according to (S.42) with the
nonlinearity component set to 0 (thus a well-specified linear model) and a random signal vector. We see again
that the intervals for any λ have excellent finite-sample coverage (left) and now the case of λ = 1 provides the
smallest interval lengths (right). Similar trend holds for GCV prediction intervals, and hence we do not present
the corresponding figure for GCV.
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