
Efficient Implementations of the Generalized Lasso Dual Path

Algorithm

Taylor B. Arnold
AT&T Labs Research

Ryan J. Tibshirani
Carnegie Mellon University

Abstract

We consider efficient implementations of the generalized lasso dual path algorithm of Tib-
shirani & Taylor (2011). We first describe a generic approach that covers any penalty matrix D
and any (full column rank) matrix X of predictor variables. We then describe fast implemen-
tations for the special cases of trend filtering problems, fused lasso problems, and sparse fused
lasso problems, both with X = I and a general matrix X. These specialized implementations
offer a considerable improvement over the generic implementation, both in terms of numerical
stability and efficiency of the solution path computation. These algorithms are all available for
use in the genlasso R package, which can be found in the CRAN repository.

Keywords: generalized lasso, trend filtering, fused lasso, path algorithm, QR decomposition,
Laplacian linear systems

1 Introduction

In this article, we study computation in the generalized lasso problem (Tibshirani & Taylor 2011)

β̂ = arg min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1, (1)

where y ∈ Rn is an outcome vector, X ∈ Rn×p is a predictor matrix, D ∈ Rm×p is a penalty matrix,
and λ ≥ 0 is a regularization parameter. The term “generalized” refers to the fact that problem (1)
reduces to the standard lasso problem (Tibshirani 1996, Chen et al. 1998) when D = I, but yields
different problems with different choices of the penalty matrix D. We will assume that X has full
column rank (i.e., rank(X) = p), so as to ensure a unique solution in (1) for all values of λ.

Our main contribution is to derive efficient implementations of the generalized lasso dual path
algorithm of Tibshirani & Taylor (2011). This algorithm computes the solution β̂(λ) in (1) over the
full range of regularization parameter values λ ∈ [0,∞). We present an efficient implementation for
a general penalty matrix D, as well as specialized, extra-efficient implementations for two special
classes of generalized lasso problems: fused lasso and trend filtering problems. The algorithms that
we describe in this work are all implemented in the genlasso R package, freely available on the
CRAN repository (R Development Core Team 2008).

We note that the fused lasso and trend filtering problems are known, well-established problems
(early references for fused lasso are Land & Friedman (1996), Tibshirani et al. (2005), and early
works on trend filtering are Steidl et al. (2006), Kim et al. (2009)). These problems are not original
to the generalized lasso framework, but the latter framework simply provides a useful, unifying
perspective from which we can study them. We give a brief overview here; see the aforementioned
references for more discussion, or Section 2 of Tibshirani & Taylor (2011), and also Section 6 of this
paper, for examples and figures.

In the first problem class, the fused lasso setting, we think of the components of β ∈ Rp as
corresponding to the nodes of a given undirected graph G, with edge set E ⊆ {1, . . . p}2. If E has

1

m edges, enumerated e1, . . . em, then the fused lasso penalty matrix D is m × p, with one row for
each edge in E. In particular, if e` = (i, j), then the `th row of D is

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0) ∈ Rp,

i.e., D` contains all zeros except for a −1 and 1 in the ith and jth components (equivalent to this
would be a 1 and −1 in the ith and jth components). The fused lasso penalty term is hence

‖Dβ‖1 =
∑

e`=(i,j)∈E

|βi − βj |.

The effect of this penalty in (1) is that many of the terms |β̂i − β̂j | will be zero at the solution β̂;
in other words, the solution exhibits a piecewise constant structure over connected subgraphs of G.
To relate the fused lasso penalty matrix to concepts from graph theory, note that D as described
above is the oriented incidence matrix of the undirected graph G. This means that L = DTD is the
Laplacian matrix of G—a realization that will be useful for our work in Section 4.

An important special case to mention is the 1-dimensional fused lasso, in which the components
of β correspond to successive positions on a 1-dimensional grid, so G is the chain graph (with edges
(i, i+ 1), i = 1, . . . p− 1), and the penalty matrix is

D =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 . (2)

The solution β̂ is therefore piecewise constant across the underlying positions. (A clarifying note: the
original work of Land & Friedman (1996), Tibshirani et al. (2005) considered only this 1-dimensional
setup, and the generalization to a graph setting came in later works. Also, Tibshirani et al. (2005)
defined the fused lasso criterion with an additional `1 penalty on coefficients β themselves; we now
refer to this as the sparse fused lasso problem. It is not fundamentally different from the version we
consider here, with pure fusion, and can be handled by the described path algorithm; see Section
4.3.)

The second problem class, trend filtering, also starts with the assumption that the components
of β correspond to positions on an underlying 1d grid, like the 1d fused lasso; but trend filtering
more generally produces a solution β̂ that bears the structure of a piecewise kth degree polynomial
function over the underlying positions, where k ≥ 0 is a given integer. To accomplish this, the trend
filtering penalty matrix is taken to be D = D(k+1), the (p− k − 1)× p discrete difference operator
of order k+ 1. These discrete derivative operators can be defined recursively, by letting D(1) be the
(p− 1)× p first difference matrix in (2), and

D(k+1) = D(1)D(k) for k = 1, 2, 3,

(In the above, D(1) is the (p− k − 1)× (p− k) version of the first difference matrix.) Note that the
1d fused lasso is exactly a special case of trend filtering with k = 0. For a general order k ≥ 0, the
matrix D(k+1) is banded with bandwidth k + 2, and a straightforward calculation shows that the
penalty term in (1) can be written explicitly as

‖D(k+1)β‖1 =

p−k−1∑
i=1

∣∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
βj

∣∣∣∣∣∣ .
We refer the reader to Tibshirani (2014) for a study of trend filtering as a signal estimation method
(i.e., for X = I), where it is shown to have desirable statistical properties in a nonparametric
regression context.

2

In what follows, we describe the dual path algorithm of Tibshirani & Taylor (2011), and then be-
gin discussing strategies for its implementation. First, though, we briefly review other computational
approaches for the generalized lasso problem (1).

1.1 Related work

There are many algorithms, aside from the dual path algorithm central to this paper, for solving the
convex problem (1) and its various special cases. It will be helpful to distinguish between algorithms
that solve (1) at fixed values of the tuning parameter λ, and algorithms that sweep out the entire
path of solutions as a continuous function of λ.

In the former case, when the solution is desired a fixed value of λ, a number of more or less
standard convex optimization techniques can be applied. For arbitrary matrices X,D, problem
(1) can be recast as a quadratic program, so that, e.g., we may use the standard interior point
methods common to quadratic and conic programming problems. We can also use the alternating
direction method of multipliers (ADMM) for general X,D. For certain instantiations of X,D, there
are faster, more specialized techniques. For example, when X = I and D is the 1d fused lasso
matrix, problem (1) can be solved in linear time via a taut string method (Davies & Kovac 2001), or
dynamic programming (Johnson 2013). When X = I and D is the fused lasso matrix over a graph,
a clever parametric max flow approach (Chambolle & Darbon 2009) applies. When X = I and D is
the trend filtering matrix, highly efficient and specialized interior point methods (Kim et al. 2009)
or ADMM algorithms (Ramdas & Tibshirani 2014) are available. Finally, when X is an arbitrary
matrix and D falls into any one of the above categories, one can implement a proximal gradient
algorithm, with each proximal evaluation utilizing one of the specialized techniques just described.

In terms of path algorithms, the literature is more sparse. For the lasso problem, the well-known
least angle regression algorithm of Efron et al. (2004) computes the full solution path (see also
Osborne et al. (2000a,b)). For fused lasso problems, Hoefling (2010) describes a path algorithm
based on max flow subroutines, which efficiently tracks the path in the direction opposite to the one
we consider (i.e., starts with λ = 0 and ends at λ =∞). For the generalized lasso problem, Zhou &
Lange (2013) propose a path algorithm from the primal perspective; however, their work assumes D
to have full row rank, which does not hold in many cases of interest (such as the fused lasso over a
graph with more edges than nodes). The dual path algorithm of Tibshirani & Taylor (2011) has the
advantage that it operates in a single, unified framework that allows D to be completely general, but
is also flexible enough to permit efficient specialized versions when D takes specific forms. Given the
magnitude of related work, we do not give detailed comparisons to alternative methods, but instead
focus on fast, stable implementations of the generalized lasso dual path algorithm.

1.2 The dual path algorithm

We recall the details of the dual path algorithm for the generalized lasso problem. We do not place
any assumptions on D ∈ Rm×n, but we do assume that X has full column rank, which implies a
unique solution in (1) for all λ. As its name suggests, the dual path algorithm actually computes a
solution path of the equivalent dual problem of (1), instead of solving (1) directly.

1.2.1 The signal approximator case, X = I

It helps to first consider the “signal approximator” case, X = I. In this case, for any fixed value of
λ, the dual of problem (1) is:

û ∈ arg min
u∈Rm

1

2
‖y −DTu‖22 subject to ‖u‖∞ ≤ λ, (3)

3

and the primal and dual solutions, β̂ and û, are related by:

β̂ = y −DT û. (4)

We note that, though the primal solution is unique, the dual solution need not be unique (this is
reflected by the element notation in (3)).

The path algorithm proposed Tibshirani & Taylor (2011) computes a solution path û(λ) of the
dual problem, beginning at λ =∞ and progressing down to λ = 0; this gives the primal solution path
β̂(λ) using the transformation in (4). At a high level, the algorithm keeps track of the coordinates of
the computed dual solution û(λ) that are equal to ±λ, i.e., that lie on the boundary of the constraint
region [−λ, λ]m, and it determines critical values of the regularization parameter, λ1 ≥ λ2 ≥ . . .,
at which coordinates of this solution hit or leave the boundary. We outline the algorithm below;
in terms of notation, we write DS to extract the rows of D in S ⊆ {1, . . .m}, and we use D−S as
shorthand for D{1,...m}\S .

Algorithm 1 (Dual path algorithm for the generalized lasso, X = I).

Given y ∈ Rn and D ∈ Rm×n.

1. Compute û, the minimum `2 norm solution of

min
u∈Rm

‖y −DTu‖22.

2. Compute the first hitting time λ1, and the hitting coordinate i1. Record the solution û(λ) = û
for λ ∈ [λ1,∞). Initialize B = {i1}, s = sign(ûi1), and k = 1.

3. While λk > 0:

(a) Compute â and b̂, the minimum `2 norm solutions of

min
a∈Rm−|B|

‖y −DT
−Ba‖22 and min

b∈Rm−|B|
‖DT
Bs−DT

−Bb‖22,

respectively.

(b) Compute the next hitting time and the next leaving time. Let λk+1 denote the larger of
the two; if the hitting time is larger, then add the hitting coordinate to B and its sign to s,
otherwise remove the leaving coordinate from B and its sign from s. Record the solution
û(λ) = â− λb̂ for λ ∈ [λk+1, λk], and update k = k + 1.

The main computational effort lies in Steps 1 and 3(a). In words: starting with the set B = ∅,
we repeatedly solve least squares problems of the form minx ‖c − DT

−Bx‖22—which is the same as
solving linear systems D−BD

T
−Bx = D−Bc—as elements are added to or deleted from B, that is,

D−B either loses or gains one row. A caveat is that we always require the minimum `2 norm solution
(but this is only an important distinction when the solution is not unique). Steps 2 and 3(b) are
computationally straightforward, as they utilize the results of Steps 1 or 3(a) in a simple way; see
Section 5 of Tibshirani & Taylor (2011) for specific details.

1.2.2 The general X case

For a general X, with rank(X) = p, the dual problem of (1) can be written as:

û ∈ arg min
u∈Rm

1

2
‖XX+y − (X+)TDTu‖22 subject to ‖u‖∞ ≤ λ, (5)

4

where X+ ∈ Rp×n denotes the Moore-Penrose pseudoinverse of X ∈ Rn×p (recall that for rectangular
X, we take X+ = (XTX)+XT), and the primal and dual solutions are related by:

Xβ̂ = XX+y − (X+)TDT û. (6)

Though it may initially look more complicated, the dual problem (5) is of the exact same form as
(3), the dual in the signal approximator case, but with a different outcome ỹ = XX+y and penalty
matrix D̃ = DX+. Hence, modulo a transformation of inputs, the same algorithm can be applied.

Algorithm 2 (Dual path algorithm for the generalized lasso, general X).

Given y ∈ Rn, D ∈ Rm×p, and X ∈ Rn×p with rank(X) = p.

1. Compute ỹ = XX+y ∈ Rn and D̃ = DX+ ∈ Rm×n.

2. Run Algorithm 1 on ỹ and D̃.

If X does not have full column rank (note that this is necessarily the case when p > n), then
a path following approach is still possible, but is substantially more complicated—see Tibshirani &
Taylor (2011) for a discussion. An easier fix (than deriving a new path algorithm) is to simply add
a term ε‖β‖22 to the criterion in (1), where ε is a small constant. This new criterion can be written
in standard generalized lasso form, with an augmented and full column rank predictor matrix, and
therefore we can apply Algorithm 2 to compute the solution path.

1.3 Implementation overview

We give a summary of the various implementations of Algorithm 1 (and Algorithm 2) presented in
this article.

1.3.1 The signal approximator case, X = I

As before, we first address the case X = I. For an arbitrary penalty matrix D, a somewhat naive
implementation of Algorithm 1 would just solve the sequence of least squares problems in Step 3(a)
independently, as the algorithm moves from one iteration to the next. Denoting r = m−|B|, so that
D−B is an r × n matrix, each iteration here would require O(r2n) operations if r ≤ n, or O(rn2)
operations if r > n. A smarter approach would be to compute a QR decomposition of DT or D
(depending on the dimensions of D) to solve the initial least squares problem in Step 1, and then
update this decomposition as D−B changes to solve the subsequent problems in Step 3(a). In this
new strategy, each iteration takes O(rn) or O(max{r2, n2}) operations (when maintaining a QR
decomposition of DT

−B or D−B, respectively), which improves upon the cost of the naive strategy by
essentially an order of magnitude. In Section 2 we give the details of this more efficient QR-based
implementation.

While the QR-based aproach is effective as a general tool, for certain classes of problems it can
be much better to take advantage of the special structure of D. In Sections 3 and 4 we describe two
such specialized implementations, for the trend filtering and fused lasso problem classes. Here the
least squares problems in Algorithm 1 reduce to solving banded linear systems (trend filtering) or
Laplacian linear systems (the fused lasso). Since these computations are much faster than those for
generic dense linear systems (i.e., the least squares problems given an arbitrary D), the specialized
implementations offer a considerable boost in efficiency. Table 1 provides a summary of the various
computational complexities (given per iteration).

5

X = I General X
General D, rank(D) = m O(rn) O(rn)
General D, rank(D) < m O(max{r2, n2}) O(max{r2, n2})

Trend filtering O(r) O(r + nq2)
Fused lasso* O(max{r, n}) O(max{r, n}+ nq2)

Table 1: Complexities of different implementations of the dual path algorithm, designed to solve different
problems. All complexities refer to a single iteration of the algorithm. Recall that we denote r = m − |B|,
and the complexity of an iteration is proportional to solving a linear system in the r × r matrix D−BD

T
−B.

At the first iteration, B = ∅, and so r = m; across iterations, B typically decreases in size by one (but not
always—it can also increase in size by one), until at some point B = {1, . . .m}, and so r = 0. For the
complexities in the general X case, we write q = nullity(D−B) for the dimension of the null space of D−B,
which is an unbiased estimate for the degrees of freedom of the generalized lasso fit at the current iteration.
Finally, in the last row, the “*” marks the fact that the reported complexities are based on not an empirical
(rather than a formal) understanding of the relevant linear system solver. Solutions here are computed using
a sparse Cholesky factorization of a Laplacian matrix, whose runtime is not known to have a tight bound,
but empirically behaves linearly in the number of edges in the underlying graph.

1.3.2 The general X case

Now we discuss the case of a general X (having full column rank). For a general penalty matrix D,
the first step of Algorithm 2 requires O(np2) operations to compute X+, and then the QR-based
implementation outlined above can simply be applied to D̃ ∈ Rm×n. Note that, aside from the
initial overhead of computing X+, the complexity per iteration remains the same (as in the signal
approximator case).

However, for the specialized implementations for trend filtering and fused lasso problems, the
adjustment for a general X is not so straightforward. Generally speaking, performing the trans-
formation D̃ = DX+ destroys any special structure present in the penalty matrix, and hence the
least squares problems in Algorithm 1, with D̃ in place of D, no longer directly reduce to banded
or Laplacian linear systems for trend filtering or fused lasso problems, respectively. Fortunately,
efficient, specialized implementations for trend filtering and fused lasso problems are still possible in
the case of a general X, as we show in Section 5. It is important to note that the implementations
here do not need to compute an initial pseudoinverse of X, and only ever require solving a full linear
system in XTX at the very end of the path; this makes a big difference if early termination of the
path algorithm was of interest. Again, see Table 1 for a list of per-iteration complexities of the dual
path algorithm for a general X, across various special cases.

It is worth noting a few more high-level points about our analysis and implementation choices
before we concentrate on the details in Sections 2 through 5. First, in general, the total number of
steps T taken by the dual path algorithm is not precisely understood. The path algorithm tracks
m dual coordinates as they enter the boundary set, but a coordinate can leave and re-enter the
boundary set multiple times, which means that the total number of steps T can greatly exceed m.
The main exception is the 1d fused lasso problem in the signal approximator case, X = I, where it is
known that a dual coordinate will never leave the boundary set once entered, and so the algorithm
always takes exactly T = m steps (Tibshirani & Taylor 2011). Beyond this special case, a general
upper bound is T ≤ 3m (as no pair of boundary set and signs B, s can be revisited throughout
iterations of the path algorithm), but this bound is very far what is observed in practice. Further,
solutions of interest can often be obtained by a partial run of the path algorithm (i.e., terminating
the algorithm early) since the algorithm starts at the fully regularized end (λ = ∞) and produces
less and less regularized solutions as it proceeds (as λ decreases). For these reasons, we choose to
focus on the complexity of each iteration of the path algorithm, and not its total complexity, in our
analysis.

6

A second point concerns the choice of solvers for the linear systems encountered across steps of
the path algorithm. Broadly speaking, there are two types of solvers for linear systems: direct and
indirect solvers. Direct solvers (typically based on matrix factorizations) return an exact solution of
a linear system (exact up to computer rounding errors—i.e., on a perfect computational platform, a
direct method would return an exact solution). Indirect solvers (usually based on iteration) produce
an approximate solution to within a user-specified tolerance level ε (and their runtime depends on
ε, e.g., via a multiplicative factor like log(1/ε)). Indirect solvers will generally scale to much larger
problem sizes than direct ones, and hence they may be preferable if one can tolerate approximate
solutions. In the context of the dual path algorithm, however, the quality of solutions of the linear
systems at each step can strongly influence the accuracy of the algorithm in future steps, as the
boundary set B is grown incrementally across iterations. In other words, relying on approximate
solutions can be risky because approximation errors can accumulate along the path, in the sense
that the algorithm can make false additions to the boundary set B that cannot really be undone in
future steps. We therefore stick to direct solvers in all proposed implementations of the dual path
algorithm, across the various special problem cases.

After describing the implementation strategies for a general penalty matrix D, trend filtering
problems, and fused lasso problems in Sections 2 through 5, the rest of this paper is dedicated to
example applications the path algorithm, in Section 6, and an empirical evaluation of the various
implementations, in Section 7.

2 QR-based implementation for a general D

This section considers a general penalty matrix D ∈ Rm×n. We assume without a loss of generality
that X = I; recall that a general (full column rank) matrix X contributes an additional O(np2)
operations for the computation of X+, but changes nothing else—see Algorithm 2. Hence we focus
on Algorithm 1, and our strategy is to use a QR decomposition to solve the least squares problems
at each iteration, and update it efficiently as rows are removed from or added to D−B. Appendix
A reviews the QR decomposition and how it can be used to compute minimum `2 norm solutions
of least squares problems. Appendices C and D describe techniques for efficiently updating the QR
decomposition, after rows or columns have been added or removed. These techniques save essentially
an order of magnitude in computational work when compared to computing the QR decomposition
anew. All of the computational complexities cited in the following sections are verified in these
appendices (a word of warning to the reader: the roles of m and n are not the same in the appendices
as they are here).

We present two strategies: one that computes and maintains a QR decomposition of DT , and
another that does the same for D. The second strategy can handle all penalty matrices D ∈ Rm×n,
regardless of the dimensions and rank. On the other hand, the first strategy only applies to matrices
D for which m ≤ n and rank(D) = m, but is more efficient (than the second strategy) in this case.
We call the first strategy the “wide strategy”, and the second the “tall strategy”. After describing
these two strategies, we make comparisons in terms of computational order.

2.1 The wide strategy

If m ≤ n, then we first compute the QR decomposition DT = QR, where Q ∈ Rn×n is orthogonal
and R ∈ Rm×n is of the form

R =

[
R1

0

]
,

where the top block R1 ∈ Rm×m has all zeros below its diagonal. Computing this decomposition
takes O(m2n) operations. If one or more of the diagonal elements of R1 is zero, then rank(D) < m;
in this case, we skip ahead to the tall strategy (covered in the next section). Otherwise, R1 has

7

proper upper triangular form (all nonzero diagonal elements), which means that rank(D) = m, and
we proceed with the wide strategy, outlined below.

• Step 1. We first compute the minimizer û of ‖y −DTu‖22 (note that since rank(D) = m, this
minimizer is unique). Using the QR decomposition DT = QR, this can be done in O(mn)
operations (Appendix A.1).

• Step 3(a). Now we compute the minimizers â and b̂ of the two least squares criterions ‖y −
DT
−Ba‖22 and ‖DT

Bs −DT
−Bb‖22, respectively. The set B has changed by one element from the

previous iteration (thinking of the boundary set as being empty in the initial least squares
problem of Step 1). By construction, we have a decomposition of DT

−B′ for the old boundary
set B′ (this is initially a decomposition of DT), and as B and B′ differ by one element, DT

−B
and DT

−B′ differ by one column. Hence we can update the QR decomposition of DT
−B′ to obtain

one of DT
−B, in O(rn) operations, where r = m−|B| (Appendix C.2), and use this to solve the

two least squares problems, in another O(rn) operations.

2.2 The tall strategy

The tall strategy is used when either m > n, or m ≤ n but D is row rank deficient (which would have
been detected at the beginning of the wide strategy). We begin by computing a QR decomposition
of D of the special form DPG = QR, where P ∈ Rn×n is a permutation matrix, G ∈ Rn×n is an
orthogonal matrix of Givens rotations, Q ∈ Rm×m is orthogonal, and R ∈ Rm×n decomposes as

R =

[
0 R1

0 0

]
.

Here R1 ∈ Rk×k, and k = rank(D). This special QR decomposition, which we refer to as the rotated
QR decomposition, can be computed in O(mnk) operations (Appendix A.4). The steps taken by the
tall strategy are as follows.

• Step 1. We compute the minimum `2 norm minimizer û of ‖y−DTu‖22, exploiting the special
form of rotated QR decomposition DPG = QR (more precisely, the special form of the R
factor). This requires O(n ·max{m,n}) operations (Appendix A.4).

• Step 3(a). Now we seek the minimum `2 norm minimizers â and b̂ of ‖y−DT
−Ba‖22, respectively

‖DT
Bs − DT

−Bb‖22. We have a rotated QR decomposition of D−B′ , where B′ is the boundary
set in the previous iteration (thought of as B′ = ∅ in Step 1, so initially this decomposition is
simply DPG = QR). As the current boundary set B and the old boundary set B′ differ by one
element, D−B and D−B′ differ by one row, and we can update the rotated QR decomposition
of D−B to form a rotated QR decomposition of D−B, in O(max{r2, n2}) operations, for r =
m − |B| (Appendix D.2). Computing the appropriate minimum `2 norm solutions then takes
O(n ·max{r, n}) operations.

2.3 Computational complexity comparisons

In the wide strategy, the initial work requires O(m2n) operations, and each subsequent iteration
O(rn) operations. Meanwhile, for the same problems, the naive strategy (which, recall, simply solves
all least squares problems encountered in Algorithm 1 separately) performs O(r2n) operations per
iteration, which is an order of magnitude larger.

The comparison for the tall strategy is similar, but strictly speaking not quite as favorable. The
initial work for the tall strategy requires O(mn ·min{m,n}) operations, and subsequent iterations
require O(max{r2, n2}) operations. The naive strategy uses O(rn ·min{r, n}) operations per itera-
tion, which is an order of magnitude larger if r = Θ(n), but not if r and n are of drastically different

8

sizes. E.g., near the end of the path (where r = m − |B| is quite small compared to n), iterations
of the tall strategy can actually be less efficient than the naive implementation. A simple fix is to
switch over to the naive strategy when r becomes small enough. In practice, the start of the path is
usually of primary interest, and the tall strategy is much more efficient than the naive one.

In summary, if T denotes the total number of iterations taken by the algorithm, then the total
complexity of the QR-based implementation described in this section is

O(m2n+ Tmn) if m ≤ n and rank(D) = m,

O(m2n+ Tn2) if m ≤ n and rank(D) < m,

O(mn2 + Tm2) if m > n.

We remark that work of Tibshirani & Taylor (2011) alluded to the implementation described in this
section, but did not give any details. This latter work also reported a computational complexity for
such an implementation, but contained a typo, in that it essentially mixes up the complexities for
the cases m ≤ n and m > n.

3 Specialized implementation for trend filtering, X = I

We describe a specialized implementation for trend filtering. Recall that for such a class of problems,
we have D = D(k+1), the (p− k − 1)× p discrete derivative operator of order k + 1, for some fixed
integer k ≥ 0. These operators are defined as

D(1) =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 , (7)

D(k+1) = D(1) ·D(k) for k = 1, 2, 3, (8)

In the signal approximator case, X = I, trend filtering can be viewed as a nonparametric regression
estimator, producing piecewise polynomial fits of a prespecified order k ≥ 0, and having favorable
adaptivity properties (Tibshirani 2014). We focus on the X = I case here, and argue that trend
filtering estimates can be computed quickly via the dual path algorithm. The case of a general X
requires a more sophisticated implementation and is handled in Section 5.

The analysis for trend filtering is actually quite straightforward: the key point is that discrete
difference operators as defined in (7), (8) are banded matrices with full row rank. In particular,
D(k+1) has bandwidth k+ 2, and this makes D(k+1)(D(k+1))T an invertible (n− k− 1)× (n− k− 1)
banded matrix of bandwidth 2k + 3, so we can solve the initial least squares problem in Step 1 of
Algorithm 1, i.e., solve the banded linear system

D(k+1)(D(k+1))Tu = D(k+1)y,

in O(nk2) operations, using a banded Cholesky decomposition of D(k+1)(D(k+1))T (see Section 4.3
of Golub & Van Loan (1996)). Further, for an arbitrary boundary set B ⊆ {1, . . . n − k − 1}, the
matrix D

(k+1)
−B (D

(k+1)
−B)T is an r×r invertible matrix with bandwidth 2k+3, where r = n−k−1−|B|,

and hence the two least squares problems in Step 3(a) of Algorithm 1, i.e., the two linear systems

D
(k+1)
−B (D

(k+1)
−B)Ta = D

(k+1)
−B y and D

(k+1)
−B (D

(k+1)
−B)T b = D

(k+1)
−B (D

(k+1)
B)T s,

can be solved in O(rk2) operations. Since k is a constant (it is given by the order of the desired
piecewise polynomial to be fit), we see that each iteration in this implementation of the dual path

9

algorithm requires O(r) operations, i.e., linear time in the number of interior (non-boundary) coor-
dinates, as listed in Table 1.

The banded Cholesky decomposition of D
(k+1)
−B (D

(k+1)
−B)T provides a very fast way of solving the

above linear systems, both in terms of its theoretical complexity and practical performance. Yet,
we have found that solving the linear systems (i.e., the corresponding least squares problems) with
a sparse QR decomposition of (D

(k+1)
−B)T is essentially just as fast in practice, even though this

approach does not yield a competitive worst-case complexity (since D
(k+1)
−B itself is not necessarily

banded). Importantly, the QR approach delivers solutions with better numerical accuracy, due to
the fact that it operates on D

(k+1)
−B directly, rather than D

(k+1)
−B (D

(k+1)
−B)T , whose condition number

is the square of that of D
(k+1)
−B (see Section 5.3.8 of Golub & Van Loan (1996)). For this reason,

it can be preferable to use the sparse QR decomposition in practical implementations; this is the
strategy taken by R package genlasso, which uses a particular sparse QR algorithm of Davis (2011).

We remark that neither of the banded Cholesky nor sparse QR approaches proposed here utilize
information between the linear systems across iterations, i.e., we do not maintain a single matrix
decomposition and update it at every iteration. A successful updating scheme of this sort would
only add to the efficiency of the (already highly efficient) proposals above. But it is important to
mention that, in general, updating a sparse matrix decomposition demands great care; standard
updating rules intended for dense matrix decompositions (e.g., as described in Appendix C for the
QR decomposition) do not work well in combination with sparse matrix decompositions, since they
are typically based on operations (e.g., Givens rotations) that can create “fill-in”—the unwanted
transformation of zero elements to nonzero elements in factors of the decomposition. Investigating
sparsity-maintaining update schemes is a topic for future work.

4 Specialized implementation for the fused lasso, X = I

This section derives a specialized implementation for fused lasso problems, where the components of
β ∈ Rp correspond to nodes on some underlying graph G, with undirected edge set E ⊆ {1, . . . p}2.
If E has m edges, written as E = {e1, . . . em}, then the fused lasso penalty matrix D has dimension
m× p. Specifically, if the `th edge is e` = (i, j), then recall that the `th row of D is given by

D`k =


−1 k = i

1 k = j

0 otherwise

, k = 1, . . . p.

(In the above, the signs are arbitrary; we could have just as well written D`i = 1 and D`j = −1.)
In graph theory, the matrix D is known as the oriented incidence matrix of the undirected graph G.
For simplification in what follows, we will assume that X = I; Section 5 relaxes this assumption,
but uses a more complex implementation plan.

As we have seen, Steps 1 and 3(a) of Algorithm 1 reduce to solving to linear systems of the
form DDTx = Dc and D−BD

T
−Bx = D−Bc, respectively. With D the oriented incidence matrix of

a graph, the matrices DDT and D−BD
T
−B are highly sparse, so one might guess that it is easy to

execute such steps efficiently. A substantial complication, however, is that we require the minimum
`2 norm solutions of these generically underdetermined linear systems (note, e.g., that DDT is rank
deficient when the number of edges m in the underlying graph exceeds the number of nodes n, and
an analogous story holds for D−BD

T
−B). For a sparse underdetermined linear system, it is typically

possible to find an arbitrary solution—Golub & Van Loan (1996) call this a basic solution—in an
efficient manner, but computing the solution with the minimum `2 norm is generally much more
difficult.

The main insight that we contribute in this section is a strategy for obtaining the minimum `2
norm solution of

DDTx = Dc (9)

10

from a basic solution of
DTDz = d, (10)

for some d. The same strategy applies to the linear problems in future iterations with D−B taking
the place of D. In fact, our proposed strategy does not place any assumptions on D; its only real
constraint is that right-hand side vector d in (10) is defined by a projection onto null(D), the null
space of D, so this projection operator must be readily computable in order for the overall strategy
to be effective. Fortunately, this is the case for fused lasso problems, as the projections onto null(D)
and null(D−B) can be done in closed-form, via a simple averaging calculation.

Next, we precisely describe the relationship between the minimum `2 norm solution of (9) and
solutions of (10). This leads to alternate expressions for the quantities û and â, b̂ in Steps 1 and 3(a)
of the dual path algorithm, for a general matrix D. By following such alternate representations, we
then derive a specialized implementation for fused lasso problems.

4.1 Alternative form for Steps 1 and 3(a) in Algorithm 1

We present a simple lemma, relating the solutions of (9) and (10).

Lemma 1. For any matrix D, the minimum `2 norm solution x∗ of the linear system (9) is given
by x∗ = Dz, where z is any solution of the linear system (10), and d = Prow(D)c = (I − Pnull(D))c.

Proof. We can express the minimum `2 norm solution of (9) as

x∗ = (DT)+c = (D+)T c = D(DTD)+c,

using the fact that pseudoinverse and transpose operations commute. Now z∗ = (DTD)+c is the
minimum `2 norm solution of the linear system (10), provided that d = Prow(D)c. Hence x∗ = Dz∗.
But any solution z of (10) has the form z = z∗ + η, where η ∈ null(D), and therefore also Dz =
Dz∗ +Dη = x∗.

As a result, we can now reexpress the computation of û and â, b̂ in Steps 1 and 3(a), respectively,
of Algorithm 1 as follows.

• Step 1. Compute v = (I − Pnull(D))y, solve the linear system DTDz = v, and set û = Dz.

• Step 3(a). Compute v = (I − Pnull(D−B))y and w = (I − Pnull(D−B))D
T
Bs, solve the linear sys-

tems DT
−BD−Bz = v and DT

−BD−Bx = w, and then set â = D−Bz and b̂ = D−Bx.

For an arbitrary D, using these alternate forms of the steps does not necessarily provide a computa-
tional advantage over our existing approach in Section 2.2. For one, at each step we must compute
a projection onto null(D) or null(D−B), which is generically just as difficult as maintaining a (ro-
tated) QR decomposition to compute the minimum `2 norm solution of a linear system in DDT or
D−BD

T
−B (as covered in Section 2.2). A second point is that D must be sparse in order for there to

be a genuine difference between computing basic solutions and minimum `2 norm solutions of linear
systems involving D. However, in special cases, e.g., the fused lasso case, working from the alternate
forms of Steps 1 and 3(a) given above can make a big difference in terms of efficiency.

4.2 Laplacian-based implementation for fused lasso problems

The alternate forms of Steps 1 and 3(a) given in the previous section have particularly nice trans-
lations for fused lasso problems, with D ⊆ Rm×n being the oriented incidence matrix of a graph G.
In this case, projections onto null(D) and null(D−B), as well as basic solutions of linear systems in
DTD and DT

−BD−B, can both be computed efficiently.

11

4.2.1 Null space of the oriented incidence matrix

We address the null space computations first. It is not hard to see that here the null space of D is
spanned by the indicators of connected components C1, . . . Cr of the graph G, i.e.,

null(D) = span{1C1
, . . . 1Cr

},

where each 1Cj ∈ Rn, and has components

(1Cj
)i =

{
1 i ∈ Cj
0 otherwise

, i = 1, . . . n.

Hence, projection onto null(D) is simple and efficient, and is given by componentwise averaging,

(Pnull(D)x)i =
1

|Cj |
∑
`∈Cj

x` where Cj 3 i, for each i = 1, . . . n.

For an arbitrary subset B of {1, . . .m}, note that D−B is the oriented incidence matrix of the graph
G−B, which denotes the graph G after we delete the edges corresponding to B (in other words,
G−B is the graph with nodes {1, . . . n} and edges {e`, ` /∈ B}). Therefore the same logic as above
applies to projection onto null(D−B): it is given by componentwise averaging within the connected
components of G−B,

(Pnull(D−B)x)i =
1

|Cj |
∑
`∈Cj

x` where Cj 3 i, for each i = 1, . . . n,

and Cj now denotes the jth connected component of G−B.

4.2.2 Solving Laplacian linear systems

Now we discuss computing basic solutions of linear systems in DTD or DT
−BD−B. As D is the

oriented incidence matrix of G, this makes DTD the Laplacian matrix of G; similarly DT
−BD−B

is the Laplacian matrix of the graph G−B. The Laplacian linear system is a well-studied topic in
computer science; see, e.g., Vishnoi (2013) for a nice review paper. In principle, any fast solver can
be used for the Laplacian linear systems in Steps 1 and 3(a) of the path algorithm, as presented
in Section 4.1. However, in practice, using indirect or iterative solvers (which return approximate
solutions, according to a user-specified tolerance level for approximation) for the linear systems at
each step can cause practical issues with the path algorithm, as explained in the introduction. For
the current setting, this precludes the use of the extremely fast indirect algorithms for Laplacian
linear systems that have been recently developed by the theoretical computer science community
(again see Vishnoi (2013), and references therein). We focus instead on a simple direct solver.

Let L denote the Laplacian matrix of an arbitrary graph. If the graph has r connected compo-
nents, then (modulo a reordering of its rows and columns) L can be expressed as

L =


L1 0 . . . 0
0 L2 . . . 0
...
0 0 . . . Lr

 , (11)

i.e., a block diagonal matrix with r blocks. Therefore, the Laplacian linear system Lx = b reduces
to solving r separate systems Ljxj = bj (here we have decomposed b = (b1, . . . br) according to the
same block structure), and then concatenating x = (x1, . . . xr) to recover the original solution.

Note that each matrix Lj , j = 1, . . . r is the Laplacian matrix of a fully connected subgraph; this
means that the null space of Lj is exactly 1-dimensional (it is spanned by the vector of all 1s), and
that the linear system Ljxj = bj is underdetermined. The following lemma provides a remedy.

12

Lemma 2. Let L be the Laplacian matrix of a connected graph with n nodes. Write L as

L =

[
A c
cT d

]
,

where A ∈ R(n−1)×(n−1), c ∈ Rn−1, and d ∈ R. Then for any b ∈ col(L) ⊆ Rn, the Laplacian linear
equation

Lx = b (12)

is solved by x = (x−n, 0), where x−n ∈ Rn−1 is the unique solution of

Ax−n = b−n, (13)

with b−n ∈ Rn−1 containing the first n− 1 components of b, or in other words, x−n = A−1b−n.

Remark. The ordering of the n nodes in the graph does not matter. Therefore, to solve Lx = b, we
can actually consider the submatrix A ∈ R(n−1)×(n−1) formed by excluding the ith row and column
from L, and solve the subsystem Ax−i = b−i, for any i ∈ {1, . . . n}.

Proof. Since the graph is connected, the null space of L is 1-dimensional, and spanned by (1, . . . 1) ∈
Rn. Hence rank(L) = n− 1, and the rank of the first n− 1 columns of L is at most n− 1,

rank

([
A
cT

])
≤ n− 1.

Assume that

rank

([
A
cT

])
= n− 1. (14)

Then L and its first n − 1 columns have the same image, so given any b in this image, there must
exist a solution x−n ∈ Rn−1 in [

A
cT

]
x−n = b, (15)

which yields a solution of Lx = b with x = (x−n, 0). Moreover, the solution x−n of (15) is unique
(by (14)), and to find it we can restrict our attention to the first n− 1 equalities, Ax−n = b−n.

Therefore it suffices to prove the rank assumption (14). For this, we can equivalently prove that
the first n − 1 columns of the oriented incidence matrix D of the graph have rank n − 1. Let D′

denote these first n − 1 columns, and let E denote the edge set of the graph. Note that, for each
(i, n) ∈ E, there is a corresponding row of D′ with a single 1 or −1 in the ith component. Suppose
that D′v = 0; then immediately we have vi = 0 for any i such that (i, n) ∈ E. But this implies
that vj = 0 for all j such that (j, i) ∈ E and (i, n) ∈ E, and repeating this argument, we eventually
conclude that vi = 0 for all i = 1, . . . n − 1, because the graph is connected. We have shown that
null(D′) = {0}, and so rank(D′) = n− 1, as desired.

The message of Lemma 2 is that, for a fully connected graph and the Laplacian linear system
(12), we can solve this system by instead solving a smaller system (13), formed by removing (say)
the last row and column of the Laplacian matrix. The latter system (13) can be solved efficiently
because it is sparse and nonsingular (e.g., using a sparse Cholesky decomposition). Of course, for
the linear system Lx = b with L a generic graph Laplacian, we apply Lemma 2 to each subsystem
Ljxj = bj , j = 1, . . . r, after decomposing L according to its r connected components, as in (11).

13

4.2.3 Tracking graph connectivity across iterations

We finish describing the specialized implementation for fused lasso problems. As explained earlier,
the dual path algorithm repeatedly computes projections onto null(D) or null(D−B), and solves
linear systems in the Laplacian L = DTD or L = DT

−BD−B, across the Steps 1 and 3(a) described
in Section 4.1. To utilize the approaches outlined above, each step requires finding the connected
components of the graph G or G−B. Across successive iterations, these graphs are highly related—
from one iteration to the next, G−B only changes by the addition or deletion of one edge (since
D−B only changes by the addition or deletion of one row). Therefore we can easily check whether
adding or deleting such an edge e has changed the connectivity of the graph, by running a breadth-
first search (or depth-first search) from one of the nodes incident to e. Incorporating this idea into
the path following strategy finalizes our specialized implementation for the fused lasso, which we
summarize below.

• Step 1. Compute the connected components of the graph G (corresponding to the oriented
incidence matrix D). Compute v = (I − Pnull(D))y by centering y over each connected com-
ponent. Solve the Laplacian linear system DTDz = v by decomposing into linear subsystems
over each connected component, and applying Lemma 2 to each subsystem. Set û = Dz.

• Step 3(a). Find the connected components of G−B by running breadth-first (or depth-first)
search, starting at a node that is incident to the edge added or deleted at the last iteration.
Compute the projections v = (I − Pnull(D−B))y and w = (I − Pnull(D−B))D

T
Bs by centering y

and DT
Bs over each connected component. Solve the Laplacian linear systems DT

−BD−Bz = v
and DT

−BD−Bx = w by decomposing into smaller subsystems over each connected component,
and then applying Lemma 2. Set â = D−Bz and b̂ = D−Bx.

For each Laplacian linear subsystem encountered (given by decomposing the Laplacian linear
systems at each step across connected components), the genlasso R package uses a sparse Cholesky
decomposition on the reduced system (13), as prescribed by Lemma 2. In particular, it employs a
sparse Cholesky algorithm of Davis & Hager (2009) (see also the references therein). Unfortunately,
this sparse Cholesky approach does admit a tight bound on the compexity of solving (13), but
empirically it is quite efficient, and the number of operations scales linearly in the number of edges
in the subgraph (provided that this exceeds the number of nodes). This means that the complexity
of solving a full Laplacian linear system is approximately linear in the number of edges in the graph,
and so, each iteration of the dual path algorithm requires approximately O(max{r, n}) operations,
where r = m− |B| is the number of edges in G−B, and n is the number of nodes.

4.3 Extension to sparse fused lasso problems

The specialized fused lasso implementation of the last section can be extended to cover the sparse
fused lasso problem, where the penalty matrix D is now the oriented incidence matrix of a graph
D(G) with a constant multiple of the identity appended to its rows, i.e.,

D =

[
D(G)

αI

]
,

so that
‖Dβ‖1 =

∑
(i,j)∈E

|βi − βj |+ α‖β‖1,

for some edge set E and fixed constant α > 0. For brevity, we state without proof here results on
the appropriate null space projections and linear systems. First, projecting onto null(D) is trivial,
because null(D) = {0} (due to the fact that α > 0). Consider projection onto null(D−B). If there
are m edges in the underlying graph G, then D is (m+ n)× n, with its first m rows corresponding

14

to the edges, and its last n rows corresponding to the nodes. As in Tibshirani & Taylor (2011), we
can partition the boundary set B accordingly, writing B = B1 ∪ (m + B2), where B1 ⊆ {1, . . .m}
and B2 ⊆ {1, . . . n}. Furthermore, we can think of D−B as corresponding to a subgraph G−B of G,
defined by restricting both of its edge and node sets, as follows:

• we first delete all edges of G that correspond to B1, yielding G−B1 ;

• we then delete all nodes of G−B1
that are in {1, . . . n} \ B2, and all of their connected nodes,

yielding G−B.

The projection operator onto null(D−B) assigns a zero to each coordinate that does not correspond
to a node in G−B, and otherwise performs averaging within each of the connected components. More
formally, (Pnull(D−B)x)i = 0 if i is not a node of G−B, and otherwise

(Pnull(D)x)i =
1

|Cj |
∑
`∈Cj

x` where Cj 3 i,

and Cj is the jth connected component of G−B.
As for solving linear systems in DTD or DT

−BD−B, we note that

DTD = (D(G))TD(G) + α2I and DT
−BD−B = (D

(G)
−B1

)TD
(G)
−B1

+ α2IT−B2
I−B2

.

In either case, the first term is a graph Laplacian, and the second term is a multiple of the identity
matrix with some of its diagonal entries set to zero. This means that DTD and DT

−BD−B still
decompose, as before, into sub-blocks over the connected components of G and G−B1 , respectively;
i.e., we can decompose both DTD and DT

−BD−B as
L1 + I1 0 . . . 0

0 L2 + I2 . . . 0
...
0 0 . . . Lr + Ir

 ,
where L1, . . . Lr are Laplacian matrices corresponding to the subgraphs of connected components,
and I1, . . . Ir are identity matrices with some (possibly none, or all) diagonal elements set to zero.
Hence, linear systems in DTD or DT

−BD−B can be reduced to separate linear systems in Lj + Ij ,
for j = 1, . . . r; for the jth system, if all diagonal elements of Ij are zero, then we use the strategy
discussed in Section 4.2.2 to solve the linear system in Lj , otherwise Lj + Ij is nonsingular and can
be factored directly (using, e.g., again a sparse Cholesky decomposition).

For the sake of completeness, we recall a result from Friedman et al. (2007), which says that the
sparse fused lasso solution at any value of λ can be computed by solving the corresponding fused
lasso problem (i.e., corresponding to α = 0), and then soft-thresholding the output by the amount
αλ. That is, the solution path (over λ, for fixed α) of the sparse fused lasso problem is obtained by
just soft-thresholding the corresponding fused lasso solution path. Given this fact, there may seem
to be no reason to extend the implementation of Section 4.2 to the sparse fused lasso setting, as we
did above. However, for a general X matrix, the simple soft-thresholding fix is no longer applicable,
and the above perspective will prove quite useful, as we will see shortly.

5 Specialized implementations with a general X

Recall that in the presence of a (full column rank) predictor matrix X, we can view the dual of the
generalized lasso problem as having the same canonical form as the dual in the signal approximator
case, but with ỹ = XX+y and D̃ = DX+ in place of y and D. The usual dual path algorithm can

15

then be simply run on ỹ, D̃, as in Algorithm 2. This is a fine strategy when D is a generic penalty
matrix (Section 2). But when D is structured, and leads to fast solutions of the appropriate linear
system over iterations of the dual path algorithm with X = I (Sections 3 and 4), this structure is
not in general retained by D̃ = DX+, and so “blindly” applying the usual path algorithm to D̃ can
result in a large drop in relative efficiency.

In this section, we present an approach for carefully constructing solutions to the relevant least
squares problems, when running Algorithm 1 on ỹ, D̃ in place of y,D. At a high level, our approach
solves a linear system in D̃ ∈ Rm×n using three steps:

1. compute H ∈ Rp×q, whose columns are a basis for null(D);

2. solve a linear system in XH ∈ Rn×q;

3. solve a linear system in D ∈ Rm×p.

In future iterations, the same strategy applies to solving linear systems in D̃−B ∈ Rr×n: we repeat
the above three steps, but with D−B playing the role of D. An important feature of our approach
is that the matrix XH in the second step is n × q, where q is typically small at points of interest
along the path—we will give a more detailed explanation shortly, but the main idea is that, at such
points, linear systems in XH can be solved much more efficiently than a full linear system in X
(the computational equivalent of calculating X+). Altogether, if a basis for null(D) or null(D−B)
is known explicitly (or can be computed easily), and linear systems in D or D−B can be solved
quickly, then the procedure outlined above can be considerably more efficient than solving abitrary,
dense linear systems in D̃ or D̃−B directly. This is the case for both trend filtering and fused lasso
problems.

Below we describe the three step procedure in detail, proving its correctness in the context of a
general matrix D (and general X). After this, we discuss implementation specifics for trend filtering
and the fused lasso.

5.1 Alternate form of computations in Algorithm 2

For arbitrary matrices D,X (with X having full column rank), consider the problem of computing
the minimum `2 norm solution x∗ of the linear system

(DX+)(DX+)Tx = (DX+)T c. (16)

Our next lemma says that x∗ can also be characterized as the minimum `2 norm solution of

DDTx = DXT d, (17)

for a suitably chosen vector d.

Lemma 3. For any matrices D,X (with the same number of columns) such that X has full column
rank, the minimum `2 norm solution x∗ of (16) is given by the minimum `2 norm solution of (17),
where d = (I − PXnull(D))c.

Proof. Note that x∗ = ((DX+)T)+c. In general, the point x∗ = A+c can be characterized as the
unique solution of the linear system Ax = Pcol(X)b such that x ∈ row(A). (Taking Pcol(X)b, instead
of simply b, as the right-hand side in the linear system here is important—the system will not be
solvable if b /∈ col(A).) Applying this logic to A = (DX+)T , we see that x∗ is the unique solution of

(X+)TDTx = Pcol((DX+)T)c subject to x ∈ row((DX+)T).

We have row((DX+)T) = col(DX+) = col(D), the last equality following since X has full column
rank. Letting c′ = Pcol((DX+)T)c, the above can be rewritten as

(X+)TDTx = c′ subject to x ∈ col(D),

16

i.e., multiplying both sides by XT ,

DTx = XT c′ subject to x ∈ col(D),

where we again used the fact that X has full column rank. The solution of the constrained linear
system above is x? = (DT)+XT c′; in other words, we see that x? is the minimum `2 norm solution
of

DDTx = DXT c′.

Finally, we examine XT c′ = XTPcol((DX+)T)c = XTProw(DX+)c = XT (I − Pnull(DX+))c. The null
space of DX+ decomposes as

null(DX+) = null(XT) + {z ∈ col(X) : DX+z = 0}
= null(XT) +Xnull(D).

Furthermore, the two subspaces in this decomposition are orthogonal, so Pnull(DX+) = Pnull(XT) +

PXnull(D), and in particular, XT (I − Pnull(DX+))c = XT (I − PXnull(D))c, completing the proof.

If H is a matrix whose columns span null(D), then note that projection onto Xnull(D) is given
by solving a least squares problem in XH, namely, PXnull(D)c = XH(HTXTXH)−1HTXT c. Now,
using Lemma 3, we can rewrite the least squares computations in Steps 1 and 3(a) of Algorithm 1
applied to ỹ, D̃ (i.e., as would be done through Algorithm 2).

• Step 1. Compute a basis H for null(D), and compute

v = XT (I − PXnull(D))ỹ = XT y −XTXH(HTXTXH)−1HTXT y. (18)

(Here we used the simplification XT ỹ = XT y.) Then compute û by solving for the minimum
`2 norm solution of the linear system

DDTu = Dv. (19)

• Step 3(a). Compute a basis H for null(D−B), and compute

v = XT (I − PXnull(D−B))ỹ = XT y −XTXH(HTXTXH)−1HTXT y, (20)

w = XT (I − PXnull(D−B))D̃
T
Bs = DT

Bs−XTXH(HTXTXH)−1HTDT
Bs. (21)

(Again we used that XT ỹ = XT y, and also XT D̃T
Bs = DT

Bs.) Then compute â and b̂ by solving
for the minimum `2 norm solutions of the systems

D−BD
T
−Ba = D−Bv and D−BD

T
−Bb = D−Bw, (22)

respectively.

For a general penalty matrix D, the above formulation does not offer any advantage over applying
Algorithm 1 to ỹ, D̃ directly. But it does offer significant advantages if the matrix D is such that
a basis for null(D) and null(D−B) can be computed quickly, and also, minimum `2 norm solutions
of linear systems in DDT and D−BD

T
−B can be computed efficiently. In this case, we have reduced

the (generically) hard linear systems in D̃D̃T and D̃−BD̃
T
−B to easier ones in DDT and D−BD

T
−B,

as in (19) and (22). Additionally, as we remarked previously, the above steps do not require explicit
computations involving X+. Instead, the null projections in each step require solving linear systems
in (XH)TXH, as in (18) and (20), (21). The matrix H has columns that span null(D) in the first
iteration and span null(D−B) in future iterations, so (XH)TXH is q × q, where q = nullity(D) or
q = nullity(D−B). This means that q � p at the beginning of the path, with q either increasing by

17

one or decreasing by one at each iteration, and only ever reaching q = p when B = ∅ at the end of
the path. In fact, such a quantity q serves as an unbiased estimate of the degrees of freedom of the
generalized lasso estimate along the path (Tibshirani & Taylor 2011). Therefore, when regularized
estimates are of interest, our focus is on the early stages of path with q � p, in which case solving
a linear system in the q × q matrix (XH)TXH is far more efficient than solving a linear system in
the p× p matrix XTX (which is what is needed in order to apply X+).

5.2 Trend filtering, general X

Following the alternate form of Steps 1 and 3(a) in the last section, note that we really only need
to describe the construction of the basis matrix H used in (18) and (20), (21), as the linear systems
in (19) and (22) can then be solved by using the sparse QR strategy outlined in Section 3, for trend
filtering in the case X = I.

Let D = D(k+1) ∈ R(p−k−1)×p, the (k+1)st order discrete difference operator defined in (7), (8).
First we describe null(D). Define v0 = (1, . . . 1) ∈ Rp, and define vj ∈ Rp, j = 1, 2, 3, . . . by taking
repeated cumulative sums, as in

(vj)i =

i∑
`=1

(vj−1)`, i = 1, . . . p.

Therefore v1 = (1, 2, 3, . . .), v2 = (1, 3, 6, . . .), etc. From its recursive representation in (7), (8), it
is not hard to see that null(D) is k + 1 dimensional and spanned by v0, . . . vk, i.e., we can take the
basis matrix H to have columns v0, . . . vk.

Now consider null(D−B), for an arbitrary subset B = {i1, . . . id} ⊆ {1. . . . p − k − 1}. One can
check that the null(D−B) is k + 1 + d dimensional and spanned by v0, . . . vk+d, where v0, . . . vk are
defined as above, and we additionally define for j = 1, . . . d,

(vk+j)i =

{
0 if i < ij + k + 1

(vk)i−ij−k if i ≥ ij + k + 1
, i = 1, . . . p.

Hence we take the basis matrix H to have columns v0, . . . vk+d.

5.3 Fused lasso and sparse fused lasso, general X

For the fused lasso and sparse fused lasso setups, we have already described projection onto null(D)
and null(D−B) in Sections 4.2 and 4.3, respectively, from which we can readily construct a basis and
populate the columns of H, and then use the Laplacian-based solvers for least squares problems in
(19) and (22), as described again in Sections 4.2 and 4.3.

To reiterate: when D = D(G) ∈ Rm×p, the oriented incidence matrix of some graph G, the null
space of D−B for any set B ⊆ {1, . . .m} is spanned by 1C1

, . . . 1Cr
∈ Rp, the indicators of connected

components C1, . . . Cr of the graph G−B. Note G−B is the subgraph formed by removing edges of
G that correspond B (i.e., the graph with oriented incidence matrix D−B). Therefore, in this case,
the vectors 1C1

, . . . 1Cr
give the columns of H. Instead, suppose that

D =

[
D(G)

αI

]
,

where α > 0 and I is the p× p identity matrix. Given any set B ⊆ {1, . . .m+ p}, we can partition
this as B = B1 ∪ (m + B2), where B1 contains elements in {1, . . .m} and B2 elements in {1, . . . p}.
We can also form a subgraph G−B by removing both some of the edges and nodes of G: we first
remove the edges in B1, and then in what remains, we keep only the nodes that are not connected
to a node in B2. Writing C1, . . . Cr for the connected components of G−B, a basis for null(D−B) can

18

then be obtained by appropriately padding the indicators 1C1 , . . . 1Cr (of nodes on G−B) with zeros.
That is, for each j, define

(vj)i =

{
0 if i is not a node of G−B

(1Cj
)i otherwise

, i = 1, . . . p,

and accordingly v1, . . . vr give a basis for null(D−B), and hence the columns of H.

6 Chicago crime data example

In this section, we give an example of the dual path algorithm run on a fused lasso problem with a
reasonably large, geographically-defined underlying graph. The data comes from police reports made
publically available by the city of Chicago, from 2001 until the present (Chicago Police Department
2014). These reports contain the date, time, type, and reported latitude and longitude of crime
incidents in Chicago. We examined the burglaries occurring between 2005 and 2009, and spatially
aggregated them within the 2010 census block groups. Using the number of households in each block
group from the 2010 census, we then calculated the number of burglaries per household over the
considered time period. We may think of each resulting proportion as a noisy measurement of the
underlying probability of burglary occuring in a randomly chosen household within the given census
block, over the 2005 to 2009 time period. These proportions are displayed in Figure 1.

We consider the task of estimating burglarly probabilities across Chicago census blocks, and si-
multaneously grouping or clustering these estimates across adjacent census blocks. The fused lasso,
with an `1 penalty on the differences between neighboring blocks, provides a means of carrying out
this task. Using an `2 or Huber penalty on the block differences would be easier for optimization,
but would not be appropriate for the goal at hand because these smooth penalties are not capable
of producing exact fusions in the components of the estimate. The fused lasso setup for the Chicago
crime data used n = 2167 blocks in total (nodes in the underlying graph), and m = 14, 060 connec-
tions between neighboring blocks (edges in the graph). Setting X = I, we computed the first 2500
steps of the fused lasso path, using the specialized implementation of Section 4, which took a little
over a minute on a laptop computer. The largest degrees of freedom achieved by a solution in these
first 2500 steps was 34.

Figure 2 displays one particular fused lasso solution from this path, corresponding to 8 degrees of
freedom (Appendix E displays other solutions). Note that this solution divides the city into roughly
four regions, with the most risky region being the southern side of the city, and the least risky being
the northern side. In addition to the four main regions, we can also see that a small region of the
city with very low burglary risk scores is isolated in the lower left part of the city; since it is buffered
by a corridor of census blocks with no data, the region incurs only a small penalty for breaking off
from the main graph. This picture in Figure 2 offers a better qualitative understanding of large
scale spatial patterns than do the raw data in Figure 1. It also provides a high level clustering of
census blocks which could be useful for police dispatchers, city planners, politicians, and insurance
companies.

Lastly, we remark that one benefit of the fused lasso over many competing graph clustering
methods is its local adaptivity. Simply put, the algorithm will adaptively determine the size of
a cluster given the nodewise measurements, counter to the tendency of other methods in creating
roughly equal sized clusters.

7 Empirical timings

Table 1 presented the theoretical per-iteration complexities of the various specialized implementa-
tions of the generalized lasso path algorithm. Here we briefly explore the empirical scaling of our

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

Figure 1: Observed proportions of reported burglaries per household between 2005–2009 in Chicago, IL. Data
were aggregated within the 2010 census block groups.

20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

λ = 0.037
df = 8

Figure 2: A solution, corresponding to λ = 0.037, along the graph fused lasso path that was fit to the observed
proportions of burglaries.

21

implementations. For many classes of generalized lasso problems, as the problem size n grows, the
number of iterations taken by the path algorithm before termination can increase super-linearly in
n. (A notable exception is the 1d fused lasso problem with X = I, in which the number of iterations
before termination is always n− 1.) For large problems, therefore, solving the entire path becomes
computationally infeasible, and also often undesirable (typically, applications call for the more reg-
ularized solutions visited toward the start of the path). Hence, we investigate the time required
to compute the first 100 iterations of the path algorithm; continuing further down the path should
scale accordingly with the number of steps.

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ● ●

●

●

1e+04 2e+04 5e+04 1e+05 2e+05 5e+05

5
10

20
50

10
0

1d fused lasso

Sample size

R
un

tim
e

(s
ec

on
ds

)

order ≈ n0.94

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

1e+04 2e+04 5e+04 1e+05 2e+05 5e+05

5
10

20
50

10
0

20
0

Cubic trend filtering

Sample size

R
un

tim
e

(s
ec

on
ds

)

order ≈ n1.10

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

1e+04 2e+04 5e+04 1e+05 2e+05 5e+05

5
10

20
50

10
0

20
0

50
0

10
00

2d fused lasso

Sample size

R
un

tim
e

(s
ec

on
ds

)

order ≈ n1.28

Figure 3: Runtimes from computing the first 100 steps of the generalized lasso path for 30 problem sizes
ranging from n = 1000 to n = 50, 000. The left panel shows the results for 1d fused lasso problems, the
middle shows cubic trend filtering problems, and the right shows 2d fused lasso problems. Each plot is on a
log-log scale, and a least squares line (passing through 0) was fit to determine the empirical scaling of each
implementation with n.

The runtimes for the first 100 path steps, with the sample size n varying from 1000 to 50, 000,
are presented in Figure 3. These were timed on a laptop computer. We considered three problem
classes, all with X = I: the 1d fused lasso, cubic trend filtering, and the 2d fused lasso problem
classes. For the first two settings, we generated noisy observations around a mean following a two-
period sinusoidal function. For the 2d fused lasso setting, we generated noisy observations over an
approximately square grid, around a mean that was elevated in the bottom third quadrant of the
grid. Note that the empirical complexity of the first 100 steps, in both the 1d fused lasso and trend
filtering settings, is approximately linear, as predicted by the theoretical analysis. The steps in the
2d fused lasso computation scales slightly slower, but still not far from linear.

Across all three settings, our empirically derived scalings indicate that 100 path steps can be
computed for problem sizes into the millions within a relatively short (i.e., less than one hour)
time period. This bodes well for the 1d fused lasso and trend filtering problems, because in these
cases, hundreds or thousands of path steps can often deliver regularized solutions of interest, even
in very large problem sizes. However, for the 2d fused lasso problem, it is more often the case that
many, many steps are needed to deliver solutions of interest. This has to do the connectivity of
the graph corresponding to D−B, with B being the boundary set—see Section 4.2, or Tibshirani &
Taylor (2011). We have found that the number of steps needed for interesting solutions scales more
favorably when running the fused lasso on a graph determined by geographic regions (e.g., census
block groups, as in Sections 6), but the number of steps grows prohibitively large for grid graphs,
especially in a setting like image denoising, where the desired solutions often display a large number
of connected components and hence require many steps.

22

Finally, we note that these runtimes were calculated using a default version of R (specifically, R
version 3.1). As our specialized implementations all use built-in R matrix functions in one way or
another, compiling R against a commercial matrix library will likely improve these results drastically
on multicore machines.

8 Discussion

We have developed efficient implementations of the generalized lasso dual path algorithm of Tibshi-
rani & Taylor (2011). In particular, we derived an implementation for a general penalty matrix D,
one for trend filtering problems, in which D is the discrete difference operator of a given order, and
one for fused lasso problems, in which D is the oriented incidence matrix of some underlying graph.
Each implementation can handle the signal approximator case, X = I, as well as a general predictor
matrix X. These implementations are all put to use in the genlasso R package.

Acknowledgements

RT was supported by NSF Grant DMS-1309174.

A The QR decomposition and least squares problems

Here we give a brief review of the QR decomposition, and the application of this decomposition to
least squares problems. Chapter 5 of Golub & Van Loan (1996) is an excellent reference.

A.1 The QR decomposition of a full column rank matrix

Let A ∈ Rm×n with rank(A) = n (this implies that m ≥ n). Then there exists matrices Q ∈ Rm×m
and R ∈ Rm×n such that A = QR, where Q is orthogonal (its first n columns form a basis for the
column space of A), and R is of the form

R =

[
R1

0

]
,

R1 ∈ Rn×n being upper triangular. This is (not surprisingly) called the QR decomposition, and it
can be computed in O(mn2) operations (Golub & Van Loan 1996).

The decomposition A = QR is used primarily for solving least squares problems. For example,
given b ∈ Rm, suppose that are interested in finding x ∈ Rn to minimize

‖b−Ax‖22. (23)

Since rank(A) = n, the minimizer x—also referred to as the solution—is unique. Let Q1 ∈ Rm×n
denote the first n columns of Q, and let Q2 ∈ Rm×(m−n) denote the last m− n columns. Then

‖b−Ax‖22 = ‖QT (b−Ax)‖22 = ‖QT1 b−R1x‖22 + ‖QT2 b‖22,

and so minimizing the left-hand side is equivalent to minimizing ‖QT1 b − R1x‖22. This can be done
quickly, by solving the equation R1x = c where c = QT1 b. Recalling the triangular structure of R1,
this looks like: 

�����
����
���
��
�

 · x = c,

23

where the boxes denote nonzero entries, and blank spaces indicate zero entries. We first solve the
equation given by last row (an equation in one variable), then we substitute and solve the second
to last row, etc. This back-solve procedure takes O(n2) operations. Hence, finding the least squares
solution of (23) requires O(mn) + O(n2) = O(mn) operations in total (the first term counts the
multiplication by QT1 to form c = QT1 b). Note that this does not count the O(mn2) operations
required to compute the QR decomposition of A in the first place; and importantly, if we want
to minimize multiple criterions of the form (23) for different vectors b, then we only compute the
QR decomposition of A once, and use this decomposition to find each solution quickly in O(mn)
operations.

A.2 The QR decomposition of a column rank deficient matrix

Let A ∈ Rm×n with rank(A) = k ≤ n. Then there exists P ∈ Rn×n, Q ∈ Rm×m, and R ∈ Rm×n
such that AP = QR, where P is a permutation matrix, Q is orthogonal (its first k columns span
the column space of A), and R decomposes as

R =

[
R1 R2

0 0

]
,

where R1 ∈ Rk×k is upper triangular, and R2 ∈ Rk×(n−k) is dense. Visually, R looks like this (when
the order of rank deficiency is n− k = 2):

�����
����
���
��
�

 .
Note that AP just permutes the columns of A. This decomposition takes O(mnk) operations (Golub
& Van Loan 1996).

The least squares criterion in (23) can now admit many solutions x (in fact, infinitely many) if
rank(A) < n. If we simply want any solution x—Golub & Van Loan (1996) refer to this as a basic
solution—then we can use the QR decomposition AP = QR. We write

‖b−Ax‖22 = ‖b−APPTx‖22
= ‖QT (b−APPTx)‖22
= ‖QT1 b−

[
R1 R2

]
PTx‖22 + ‖QT2 b‖22,

where Q1 ∈ Rm×k contains the first k columns of Q, and Q2 ∈ Rm×(m−k) contains the last m − k
columns. We can now consider z = PTx as the optimization variable, and solve[

R1 R2

] [z1
z2

]
= QT1 b, (24)

where we have decomposed z = (z1, z2) with z1 ∈ Rk and z2 ∈ Rn−k. Note that to solve (24), we
can take z2 = 0, and then back-solve to compute z1 in O(k2) operations. Letting x = Pz, we have
hence computed a basic least squares solution in O(mk) +O(k2) +O(n) = O(mn) operations.

A.3 The minimum `2 norm least squares solution

Suppose again that A ∈ Rm×n and rank(A) = k ≤ n. If we want to compute the unique solution1 x∗

that has the minimum `2 norm across all least squares solutions x in (23), then the strategy given in

1Uniqueness follows from the fact that the set of least squares solutions forms a convex set. Note that this is given
by x∗ = A+b, where A+ is the Moore-Penrose pseudoinverse of A.

24

the last section does not necessarily work (in fact, it does not produce x∗ unless R2 = 0). However,
we can modify the QR decomposition AP = QR from Section A.2 in order to compute x∗. For this,
we need to apply Givens rotations to R. These are covered in the next section, but for now, the key
message is that there exists an orthogonal transformation G ∈ Rn×n such that

RG = R̃ =

[
0 R̃1

0 0

]
, (25)

where R̃1 ∈ Rk×k is upper triangular. Applying a single Givens rotation to (the columns of) R
takes O(k) operations, and G is composed of k(n− k) of them, so forming RG takes O(k2(n− k))
operations. Hence the decomposition APG = QR̃ requires the same order of complexity, O(mnk) +
O(k2(n− k)) = O(mnk) operations in total.

Now we write
‖b−Ax‖22 = ‖b−APGz‖22,

where z = GTPTx. Since P,G are orthogonal, we have ‖x‖2 = ‖z‖2, and therefore our problem is
equivalent to finding the minimum `2 norm minimizer z∗ of the right-hand side above. As before,
we now utilize the QR decomposition, writing

‖b−APGz‖22 = ‖QT (b−APGz)‖22 = ‖QT1 b−
[
0 R̃1

]
z‖22 + ‖QT2 b‖22,

where Q1 ∈ Rm×k and Q2 ∈ Rm×(m−k) give, respectively, the first k and the last m− k columns of
Q. Hence we seek the minimum `2 norm solution of[

0 R̃1

] [z1
z2

]
= QT1 b,

where z = (z1, z2) with z1 ∈ R(n−k) and z2 ∈ Rk. For z∗ to have minimum `2 norm, we must have
z∗1 = 0. Then z∗2 is given by back-solving, which takes O(k2) operations. Finally, we let x∗ = PGz∗,
and count O(mk) + O(k2) + O(n2) + O(n) = O(n ·max{m,n}) operations in total to compute the
minimum `2 norm least squares solution.

A.4 The minimum `2 norm least squares solution and the transposed QR

Given A ∈ Rm×n with rank(A) = k ≤ n, it can be advantageous in some problems to use a QR
decomposition of AT instead of A. (For example, this is the case when we want to update the QR
decomposition after A has changed by one column; see Section D.2.) By what we just showed, we
can compute a decomposition ATPG = QR̃, where P ∈ Rm×m is a permutation matrix, G ∈ Rm×m
is an orthogonal matrix of Givens rotations, Q ∈ Rn×n is orthogonal, and R̃ ∈ Rn×m is of the special
form (25) with R̃1 ∈ Rk×k upper triangular, in O(mnk) operations.

To find the minimum `2 norm minimizer x∗ of (23), we can employ a similar strategy to that of
Section A.3. Using the orthogonality of P,G, and the computed decomposition GTPTA = R̃TQT ,
we have

‖b−Ax‖22 = ‖GTPT (b−Ax)‖22 = ‖c1 −
[
R̃T1 0

]
z‖22 + ‖c2‖22,

where z = QTx, and c1, c2 denote the first k, respectively last m− k coordinates of c = GTPT b. As
Q is orthogonal, we have ‖x‖2 = ‖z‖2, and hence it suffices to find the minimum `2 norm minimizer
z∗ of the right-hand side above. This is the same as finding the minimum `2 norm solution of the
linear equation [

R̃T1 0
] [z1

z2

]
= c2,

where z = (z1, z2) with z1 ∈ Rk and z2 ∈ R(n−k). Therefore z∗2 = 0, and z∗1 can be computed
by foward-solving (the same concept as back-solving, except we start with the first row), requiring
O(k2) operations. We finally take x∗ = Qz∗. The total number of operations is O(n) + O(m2) +
O(k2) +O(nk) = O(m ·max{m,n}).

25

B Givens rotations

We describe Givens rotations, orthogonal transformations that help maintain (or create) maintain
upper triangular structure. Givens rotations provide a way to efficiently update the QR decompo-
sition of a given matrix after a row or column has been added or deleted. (They also provide a way
to compute the QR decomposition in the first place.) Our explanation and notation here are based
largely on Chapter 5 of Golub & Van Loan (1996).

B.1 Simple Givens rotations in two dimensions

The main idea behind a Givens rotation can be expressed by considering the 2× 2 rotation matrix

G =

[
c s
−s c

]
,

where c = cos θ and s = sin θ, for some θ ∈ [0, 2π]. Multiplication by GT amounts to a counterclock-
wise rotation through an angle θ; since it is a rotation matrix, G is clearly orthogonal. Furthermore,
given any vector (a, b) ∈ R2, we can choose c, s (choose θ) such that

GT
[
a
b

]
=

[
d
0

]
,

for some d ∈ R. This is simply rotating (a, b) onto the first coordinate axis, and by inspection we
see that we must take c = a/

√
a2 + b2 and s = −b/

√
a2 + b2. Note that, from the point of view

of computational efficiency, we never have to compute θ (which would require inverse trigonometric
functions).

B.2 Givens rotations in higher dimensions

The same idea extends naturally to higher dimensions. Consider the n× n Givens rotation matrix

G =



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
...
0 0 . . . c . . . s . . . 0
...
0 0 . . . −s . . . c . . . 0
...
0 0 . . . 0 . . . 0 . . . 1


;

in other words, G is the n× n identity matrix, except with four elements Gii, Gij , Gji, Gjj replaced
with the corresponding elements of the 2× 2 Givens rotation matrix. We will write G = G(i, j) to
emphasize the dependence on i, j. It is straightforward to check that G is orthogonal. Applying GT

to a vector x ∈ Rn only affects components xi and xj , and leaves all other components untouched:
with z = GTx, we have

zk =


cxi − sxj if k = i

sxi + cxj if k = j

xk otherwise

.

Because GT only acts on two components, we can compute z = GTx in O(1) operations. And as in
the 2× 2 case, we can make zj = 0 by taking

c = xi/
√
x2i + x2j and s = −xj/

√
x2i + x2j .

26

Now we consider Givens rotations applied to matrices. If A ∈ Rm×n and G = G(i, j) ∈ Rm×m,
then pre-multiplying A by GT (as in GTA) only affects rows i and j, and hence computing GTA
takes O(n) operations. Moreover, with the appropriate choice of c, s, we can selectively zero out an
element in the jth row of GTA. A common application of GT looks like the following:

GT ·


����
���
��
��
�

 =


����
���
��
�
�

 ,
where in this example G = G(3, 4), and c, s have been chosen so that the element in the 4th row
and 3rd column of the output is zero. Importantly, the first 2 columns of rows 3 and 4 were all zeros
to begin with, and zeros after pre-multiplication, so that this zero pattern has not been disturbed
(think of the 2× 2 case: rotating (0, 0) still gives (0, 0)). Applying a second Givens rotation to the
output gives an upper triangular structure:

GT2 ·


����
���
��
�
�

 =


����
���
��
�
�

 ,
where G2 = G2(4, 5) is another Givens rotation matrix.

On the other hand, post-multiplying A ∈ Rm×n by a Givens rotation matrix G = G(i, j) ∈ Rn×n
(as in AG) only affects columns i and j. Therefore computing AG requires O(m) operations. The
logic is very similar to the pre-multiplication case, and by choosing c, s appropriately, we can zero
out a particular element in the jth column of AG. A common application looks like:�����

����
���

�

 ·G =

�����
����

��
�

 ,
where G = G(3, 4) and c, s were chosen to zero out the element in the 3rd row and 3rd column. Now
applying two more Givens rotations yields an upper triangular structure:�����

����
��
�

 ·G2G3 =

�����
���
��
�

 .
C Updating the QR decomposition in the full rank case

In this section we cover techniques based on Givens rotations for updating the QR decomposition
of a matrix A ∈ Rm×n, after a row or column has been either added or removed to A. We assume
here that rank(A) = n; the next section covers the rank deficient case, which is more delicate. For
the full rank update problem, a good reference is Section 12.5 of Golub & Van Loan (1996). Hence
suppose that we have computed a decomposition A = QR, with Q ∈ Rm×m and R ∈ Rm×n, as
described in Section A.1, and we subsequently want to compute a QR decomposition of Ã, where
Ã differs from A by either one row or one column. As motivation, we may have already solved the
least squares problem

‖b−Ax‖22,
and now want to solve the new least squares problem

‖c− Ãx‖22.
As we will see, computing a QR decomposition of Ã by updating that of A saves an order of mag-
nitude in computational time when compared to the naive route (computing the QR decomposition
“from scratch”). We treat the row and column update problems separately.

27

C.1 Adding or removing a row

Suppose that Ã ∈ R(m+1)×n is formed by adding a row to A, following its ith row, so

A =

[
A1

A2

]
and Ã =

 A1

wT

A2

 ,
where A1 ∈ Ri×n, A2 ∈ R(m−i)×n, and w ∈ Rn is the row to be added. Let Q1 ∈ Ri×m denote the
first i rows of Q and Q2 ∈ R(m−i)×m denote its last m− i rows. By rearranging both the rows of A
the rows of Q in the same way, the product QTA remains the same:[

QT2 QT1
] [A2

A1

]
= QTA = R =

[
R1

0

]
,

where R1 ∈ Rn×n is upper triangular. Therefore[
1 0 0
0 QT2 QT1

] wT

A2

A1

 =

 wT

R1

0

 .
We can now apply Givens rotations G1, . . . Gn so that

R̃ = GTn . . . G
T
1

 wT

R1

0

 =

[
R̃1

0

]
,

where R̃1 ∈ Rn×n is upper triangular. Hence defining

Q̃ =

 0 Q1

1 0
0 Q2

G1 . . . Gn,

and noting that Q̃ ∈ R(m+1)×(m+1) is still orthogonal, we have Ã = Q̃R̃, the desired QR decompo-
sition. This update procedure uses n Givens rotations, and therefore it requires a total of O(mn)
operations. Compare this to the usual cost O(mn2) of computing a QR decomposition (without
updating).

On the other hand, suppose that Ã ∈ R(m−1)×n is formed by removing the ith row of A. Hence

A =

 A1

wT

A2

 and Ã =

[
A1

A2

]
,

where A1 ∈ R(i−1)×n, A2 ∈ R(m−i)×n, and w ∈ Rn is the row to be deleted. (We assume without
a loss of generality that m > n, so that removing a row does not change the rank; updates in the
rank deficient case are covered in the next section.) Let q ∈ Rm denote the ith row of Q, and note
that we can compute Givens rotations G1, . . . Gm−1 such that

GTm−1 . . . G
T
1 q = se1,

with e1 = (1, 0, . . . 0) ∈ Rm the first standard basis vector, and s = ±1. Let Q̃ = QG1 . . . Gm−1;
then, as Q̃ is still orthogonal, it has the form

Q̃ =

 0 Q̃1

s 0

0 Q̃2

 ,
28

where Q̃1 ∈ R(i−1)×(m−1) and Q̃2 ∈ R(m−i)×(m−1). Furthermore, defining R̃GTm−1 . . . G
T
1 R, we can

see that

R̃ =

 vT

R̃1

0

 ,
where R̃1 ∈ Rn×n is upper triangular and v ∈ Rn. By construction A = QR = Q̃R̃, and defining

Q̃0 =

[
Q̃1

Q̃2

]
and R̃0 =

[
R̃1

0

]
,

we have Ã = Q̃0R̃0, as desired. We performed m− 1 Givens rotations, and hence O(m2) operations.

C.2 Adding or removing a column

Suppose that Ã ∈ Rm×(n+1) is formed by adding a column to A, say, after its jth column. Then

QT Ã =

 R1

... R2

0 w R3

0
... 0

 ,
where R1 ∈ Rj×j and R3 ∈ R(n−j)×(n−j) are upper triangular, R2 ∈ Rj×(n−j) is dense, and w ∈ Rm.
(We are assuming here, without a loss of generality, that the added column does not lie in the span
of the existing ones; updates in the rank deficient case are covered in the next section.) We can
apply Givens rotations G1, . . . Gn−j to the rows of QT Ã so that

GTn−j . . . G
T
1Q

T Ã =

[
R̃1

0

]
= R̃,

where R̃1 ∈ R(n+1)×(n+1) is upper triangular. Therefore with Q̃ = QG1 . . . Gn−j , we have Ã = Q̃R̃.
We applied O(n) Givens rotations, so this update procedure requires O(mn) operations.

If instead Ã ∈ Rm×(n−1) is formed by removing the jth column of A, then

QT Ã =


R1 R2

0 wT

0 R3

0 0

 ,
where R1 ∈ R(j−1)×(j−1) and R3 ∈ R(n−j)×(n−j) are upper triangular, R2 ∈ R(j−1)×(n−j) is dense,
and w ∈ Rn−j . Note that we can apply Givens rotations G1, . . . Gn−j to the rows of QT Ã to produce

GTn−j . . . G
T
1Q

T Ã =

[
R̃1

0

]
= R̃,

where R̃1 ∈ R(n−1)×(n−1) is upper triangular. Hence with Q̃ = QG1 . . . Gn−j , we see that Ã = Q̃R̃.
Again we used O(n) Givens rotations, and O(mn) operations.

D Updating the QR decomposition in the rank deficient case

Here we again consider techniques for updating a QR decomposition, but study the more difficult
case in which A ∈ Rm×n with rank(A) = k ≤ n. In particular, we are interested in computing the
minimum `2 norm minimizer of

‖b−Ax‖22, (26)

29

and subsequently, computing the minimum `2 norm minimizer of

‖c− Ãx‖22. (27)

where Ã has either one more or one less row that A, or else one more of one less column than A.
Depending on whether whether our goal is to update the rows or columns, we actually need to use
a different QR decomposition for the the initial least squares problem (26).

D.1 Adding or removing a row

We compute the minimum `2 norm minimizer of the initial least squares criterion (26) using the
QR decomposition APG = QR described in Section A.3, where P ∈ Rn×n is a permutation matrix,
G ∈ Rn×n is a product of Givens rotations matrices, Q ∈ Rm×m and R ∈ Rm×n is of the special
form

R =

[
0 R1

0 0

]
,

with R1 ∈ Rk×k upper triangular (we note, in order to avoid confusion, that R,R1 were written as
R̃, R̃1 in Section A.3).

First suppose that Ã ∈ R(m+1)×n is formed by adding a row to A, after its ith row. Write

A =

[
A1

A2

]
and Ã =

 A1

wT

A2

 ,
where A1 ∈ Ri×n, A2 ∈ R(m−i)×n, and w ∈ Rn is the row to be added. Also let Q1 ∈ Ri×m and
Q2 ∈ R(m−i)×m denote the first i and last m − i rows of Q, respectively. The logic at this step is
similar to that in the full rank case: we can rearrange both the rows of A and the rows of Q so that
the product QTA will not change, hence

[
QT2 QT1

] [A2

A1

]
PG = QTAPG = R =

[
0 R1

0 0

]
.

Therefore [
1 0 0
0 QT2 QT1

] wT

A2

A1

PG =

[
wTPG
QTAPG

]
=

 dT1 dT2
0 R1

0 0

 , (28)

where d1 ∈ Rn−k and d2 ∈ Rk are the first n−k and last k components, respectively, of d = GTPTw.
Now we must consider two cases. First, assume that rank(Ã) = rank(A), so adding the new row to
A did not change its rank. This implies that d1 = 0, and we can apply Givens rotations G1, . . . Gk
to the right-hand side of (28) so that

R̃ = GTk . . . G
T
1

 0 dT2
0 R1

0 0

 =

[
0 R̃1

0 0

]
,

where R̃1 ∈ Rk×k is upper triangular. Letting

Q̃ =

 0 Q1

1 0
0 Q2

G1 . . . Gk,

we complete the desired decomposition ÃPG = Q̃R̃. Note that this QR decomposition is of the
appropriate form to compute the minimum `2 norm solution of the least squares problem (27).

30

The second case to consider is rank(Ã) > rank(A), which means that adding the new row to A
increased the rank. Then at least one component of d1 is nonzero, and we can apply Givens rotations
G1, . . . Gn−k to the right-hand side of (28) so that

R̃ =

 dT1 dT2
0 R1

0 0

G1 . . . Gn−k =

[
0 R̃1

0 0

]
,

where R̃1 ∈ R(k+1)×(k+1) is upper triangular. We let

Q̃ =

 0 Q1

1 0
0 Q2

 and G̃ = GG1 . . . Gn−k,

and observe that ÃP G̃ = Q̃R̃ is a QR decomposition of the desired form, so that we may compute
the minimum `2 norm minimizer of (27). Finally, in either case (an increase in rank or not), we
used O(n) Givens rotations, and so this update procedure requires O(n ·max{m,n}) operations.

Alternatively, suppose that Ã ∈ R(m−1)×n is formed by removing the ith row of A, so

A =

 A1

wT

A2

 and Ã =

[
A1

A2

]
,

where A1 ∈ R(i−1)×n, A2 ∈ R(m−i)×n, and w ∈ Rn is the row to be deleted. We follow the same
arguments as in the full rank case: we let q ∈ Rm denote the ith row of Q, and compute Givens
rotations G1, . . . Gm−1 such that

GTm−1 . . . G
T
1 q = se1,

with e1 = (1, 0, . . . 0) ∈ Rm and s = ±1. Defining Q̃ = QG1 . . . Gm−1, we see that

Q̃ =

 0 Q̃1

s 0

0 Q̃2

 ,
for Q̃1 ∈ R(i−1)×(m−1) and Q̃2 ∈ R(m−i)×(m−1), and defining R̃ = GTm−1 . . . G

T
1 R, we have

R̃ =

 vT1 vT2
0 R̃1

0 0

 ,
where R̃1 ∈ Rk×k has zeros below its diagonal, and v1 ∈ Rn−k, v2 ∈ Rk. As APG = QR = Q̃R̃, we
let

Q̃0 =

[
Q̃1

Q̃2

]
and R̃0 =

[
0 R̃1

0 0

]
,

and conclude that ÃPG = Q̃0R̃0, which is almost the desired QR decomposition. We say almost
because, if rank(Ã) < rank(A) (removing the ith row decreased the rank), then the diagonal of R̃1

will have a zero element and hence it will not be upper triangular. If the qth diagonal element is
zero, then we can perform Givens rotations J1, . . . Jq−1 and Jq+1, . . . Jk resulting in

R̄0 = JTq−1 . . . J
T
1 R̃0Jq+1 . . . Jk =

[
0 R̄1

0 0

]
,

31

where R̄1 ∈ R(k−1)×(k−1) is upper triangular. It helps to see a picture: with its 2nd diagonal element
zero, R̃0 may look like 

�����
��
��
�
�

 ,
so applying 2 Givens rotations to the rows,

JT2 J
T
1 ·


�����

��
��
�
�

 =


�����

��
�
�
�

 .
and a single Givens rotation to the columns,

�����
��
�
�
�

 · J4 =


�����

��
�
�
�

 ,
which has desired form. Letting Q̄0 = Q̃0J1 . . . Jq−1 and G̃ = GJq+1 . . . Jk, we have constructed the
proper QR decomposition ÃP G̃ = Q̄0R̄0. We used O(m) Givens rotations, and O(m ·max{m,n})
operations in total.

D.2 Adding or removing a column

If Ã has one more or less column than A, then one cannot obviously update the QR decomposition
APG = QR of A to obtain such a decomposition for Ã. Note that, if Ã differs from A by one row,
then ÃPG also differs from APG by one row; but if Ã differs from A by one column, then Ã does
not even have the appropriate dimensions for post-multiplication by PG.

However, because adding or a removing a column to A is the same as adding or removing a row
to AT , we can compute a QR decomposition ATPG = QR, where now P ∈ Rm×m, G ∈ Rm×m,
Q ∈ Rn×n, and R ∈ Rn×m, and update it using the strategies disussed in the previous section. The
update procedure for addition requires O(m ·max{m,n}) operations, and that for removal requires
O(n ·max{m,n}) operations. Hence, to be clear, we first compute the decomposition ATPG = QR
in order to solve the initial least squares problem (26), as described in Section A.4, and then update
it to form ÃT P̃ G̃ = Q̃R̃ (for some P̃ , G̃, Q̃, R̃), which we use to solve (27).

E More plots from the Chicago crime data example

The figures below display 5 more solutions along the fused lasso path fit to the Chicago crime data
example, corresponding to 2, 5, 10, 15, and 25 degrees of freedom.

References

Chambolle, A. & Darbon, J. (2009), ‘On total variation minimization and surface evolution using
parametric maximum flows’, International Journal of Computer Vision 84, 288–307.

Chen, S., Donoho, D. L. & Saunders, M. (1998), ‘Atomic decomposition for basis pursuit’, SIAM
Journal on Scientific Computing 20(1), 33–61.

32

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

λ = 0.101
df = 2

Figure 4: Fused lasso solution, from the Chicago crime data example, with λ = 0.101.

33

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

λ = 0.059
df = 5

Figure 5: Fused lasso solution, from the Chicago crime data example, with λ = 0.059.

34

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

λ = 0.025
df = 10

Figure 6: Fused lasso solution, from the Chicago crime data example, with λ = 0.025.

35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

λ = 0.019
df = 15

Figure 7: Fused lasso solution, from the Chicago crime data example, with λ = 0.019.

36

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

No data
0.002
0.004
0.007
0.009
0.011
0.013
0.015
0.016
0.018
0.021
0.023
0.026
0.029
0.032
0.035
0.04
0.046
0.054

λ = 0.016
df = 25

Figure 8: Fused lasso solution, from the Chicago crime data example, with λ = 0.016.

37

Chicago Police Department (2014), ‘City of chicago data portal, crimes – 2001 to present’.
URL: https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

Davies, P. L. & Kovac, A. (2001), ‘Local extremes, runs, strings and multiresolution’, Annals of
Statistics 29(1), 1–65.

Davis, T. (2011), ‘Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse
QR factorization’, ACM Transactions on Mathematical Software 38(1), 1–22.

Davis, T. & Hager, W. (2009), ‘Dynamic supernodes in sparse Cholesky update/downdate and
triangular solves’, ACM Transactions on Mathematical Software 35(4), 1–23.

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004), ‘Least angle regression’, Annals of
Statistics 32(2), 407–499.

Friedman, J., Hastie, T., Hoefling, H. & Tibshirani, R. (2007), ‘Pathwise coordinate optimization’,
Annals of Applied Statistics 1(2), 302–332.

Golub, G. H. & Van Loan, C. F. (1996), Matrix computations, The Johns Hopkins University Press,
Baltimore. Third edition.

Hoefling, H. (2010), ‘A path algorithm for the fused lasso signal approximator’, Journal of Compu-
tational and Graphical Statistics 19(4), 984–1006.

Johnson, N. (2013), ‘A dynamic programming algorithm for the fused lasso and l0-segmentation’,
Journal of Computational and Graphical Statistics 22(2), 246–260.

Kim, S.-J., Koh, K., Boyd, S. & Gorinevsky, D. (2009), ‘`1 trend filtering’, SIAM Review 51(2), 339–
360.

Land, S. & Friedman, J. (1996), Variable fusion: a new adaptive signal regression method. http:

//www.stat.cmu.edu/tr/tr656/tr656.ps.

Osborne, M., Presnell, B. & Turlach, B. (2000a), ‘A new approach to variable selection in least
squares problems’, IMA Journal of Numerical Analysis 20(3), 389–404.

Osborne, M., Presnell, B. & Turlach, B. (2000b), ‘On the lasso and its dual’, Journal of Computa-
tional and Graphical Statistics 9(2), 319–337.

R Development Core Team (2008), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
URL: http: // www. R-project. org

Ramdas, A. & Tibshirani, R. (2014), Fast and flexible ADMM algorithms for trend filtering. arXiv:
1406.2082.

Steidl, G., Didas, S. & Neumann, J. (2006), ‘Splines in higher order TV regularization’, International
Journal of Computer Vision 70(3), 214–255.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal Sta-
tistical Society: Series B 58(1), 267–288.

Tibshirani, R. J. (2014), ‘Adaptive piecewise polynomial estimation via trend filtering’, Annals of
Statistics 42(1), 285–323.

Tibshirani, R. J. & Taylor, J. (2011), ‘The solution path of the generalized lasso’, Annals of Statistics
39(3), 1335–1371.

38

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. & Knight, K. (2005), ‘Sparsity and smoothness via
the fused lasso’, Journal of the Royal Statistical Society: Series B 67(1), 91–108.

Vishnoi, N. (2013), ‘Lx = b – Laplacian solvers and their algorithmic applications’, Foundations and
Trends in Theoretical Computer Science 8(1), 1–141.

Zhou, H. & Lange, K. (2013), ‘A path algorithm for constrained estimation’, Journal of Computa-
tional and Graphical Statistics 22(2), 261–283.

39

