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Abstract

We study connections between Dykstra’s algorithm for projecting onto an intersec-
tion of convex sets, the augmented Lagrangian method of multipliers or ADMM,
and block coordinate descent. We prove that coordinate descent for a regularized
regression problem, in which the penalty is a separable sum of support functions,
is exactly equivalent to Dykstra’s algorithm applied to the dual problem. ADMM
on the dual problem is also seen to be equivalent, in the special case of two sets,
with one being a linear subspace. These connections, aside from being interesting
in their own right, suggest new ways of analyzing and extending coordinate de-
scent. For example, from existing convergence theory on Dykstra’s algorithm over
polyhedra, we discern that coordinate descent for the lasso problem converges at
an (asymptotically) linear rate. We also develop two parallel versions of coordinate
descent, based on the Dykstra and ADMM connections.

1 Introduction

In this paper, we study two seemingly unrelated but closely connected convex optimization problems,
and associated algorithms. The first is the best approximation problem: given closed, convex sets
Ci,...,Cq CR™and y € R™, we seek the point in C; N - - - N Cy (assumed nonempty) closest to ¥,
and solve

min

u€R™
The second problem is the regularized regression problem: given a response y € R™ and predictors
X € R™*P and a block decomposition X; € R"*Pi i =1,...,d of the columns of X (i.e., these
could be columns, or groups of columns), we build a working linear model by applying blockwise
regularization over the coefficients, and solve

ly —ul|? subject to w€CiN---NCy. (D

d
.1 9
min gllnywHﬁ;hi(wi), )
where h; : RPi — R, 7 =1,...,d are convex functions, and we write w; € RPi, 7 =1, ..., d for the

appropriate block decomposition of a coefficient vector w € RP (so that Xw = Zle Xiw;).

Two well-studied algorithms for problems (1), 2) are Dykstra’s algorithm (Dykstra, [1983];[Boyle and
Dykstral [1986) and (block) coordinate descent (Warga, |1963; |Bertsekas and Tsitsiklisl [ 1989; [Tseng,
1990), respectively. The jumping-off point for our work in this paper is the following fact: these two
algorithms are equivalent for solving (1) and ([@). That is, for a particular relationship between the
sets C1, ..., Cy and penalty functions hq, ..., hg, the problems (I)) and (2)) are duals of each other,
and Dykstra’s algorithm on the primal problem (TJ) is exactly the same as coordinate descent on the
dual problem (2). We provide details in Section 2]
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This equivalence between Dykstra’s algorithm and coordinate descent can be essentially found in
the optimization literature, dating back to the late 1980s, and possibly earlier. (We say “essentially”
here because, to our knowledge, this equivalence has not been stated for a general regression matrix
X, and only in the special case X = [; but, in truth, the extension to a general matrix X is fairly
straightforward.) Though this equivalence has been cited and discussed in various ways over the
years, we feel that it is not as well-known as it should be, especially in light of the recent resurgence
of interest in coordinate descent methods. We revisit the connection between Dykstra’s algorithm
and coordinate descent, and draw further connections to a third method—the augmented Lagrangian
method of multipliers or ADMM (Glowinski and Marrocol [1975;|Gabay and Mercier}|1976)—that
has also received a great deal of attention recently. While these basic connections are interesting in
their own right, they also have important implications for analyzing and extending coordinate descent.
Below we give a summary of our contributions.

1. We prove in Section (under a particular relationship between C,...,Cqand hy, ..., hg)
that Dykstra’s algorithm for (T]) is equivalent to block coordinate descent for (2)). (This is a
mild generalization of the previously known connection when X = I.)

2. We also show in Section [2|that ADMM is closely connected to Dykstra’s algorithm, in that
ADMM for (I, when d = 2 and C is a linear subspace, matches Dykstra’s algorithm.

3. Leveraging existing results on the convergence of Dykstra’s algorithm for an intersection of
halfspaces, we establish in Section [3]that coordinate descent for the lasso problem has an
(asymptotically) linear rate of convergence, regardless of the dimensions of X (i.e., without
assumptions about strong convexity of the problem). We derive two different explicit forms
for the error constant, which shed light onto how correlations among the predictor variables
affect the speed of convergence.

4. Appealing to parallel versions of Dykstra’s algorithm and ADMM, we present in Section 4]
two parallel versions of coordinate descent (each guaranteed to converge in full generality).

5. We extend in Section[5]the equivalence between coordinate descent and Dykstra’s algorithm
to the case of nonquadratic loss in (@), i.e., non-Euclidean projection in (TJ). This leads to a
Dykstra-based parallel version of coordinate descent for (separably regularized) problems
with nonquadratic loss, and we also derive an alternative ADMM-based parallel version of
coordinate descent for the same class of problems.

2 Preliminaries and connections

Dykstra’s algorithm. Dykstra’s algorithm was first proposed by Dykstral (1983), and was extended
to Hilbert spaces by |Boyle and Dykstra (1986). Since these seminal papers, a number of works have
analyzed and extended Dykstra’s algorithm in various interesting ways. We will reference many of
these works in the coming sections, when we discuss connections between Dykstra’s algorithm and
other methods; for other developments, see the comprehensive books Deutsch| (2001); Bauschke and
Combettes| (2011)) and review article Bauschke and Koch|(2013)).

D(ykstra’s algorithm for the best approximation problem (1)) can be described as follows. We initialize
w® = Y, 2(=d+1) — ... = 2(0) = (, and then repeat, fork =1,2,3,...:

u(k) = PC[k] (u(kil) + Z(kid))a
Lk — 4, (k=1) + Lk=d) _ u(k)’

3)
where Po(z) = argmin,c ¢ ||z — ¢||3 denotes the (Euclidean) projection of z onto a closed, convex
set C, and [-] denotes the modulo operator taking values in {1,. .., d}. What differentiates Dykstra’s
algorithm from the classical alternating projections method of von Neumann| (1950); |[Halperin/ (1962)
is the sequence of (what we may call) dual variables z(®), k = 1,2, 3, .. .. These track, in a cyclic
fashion, the residuals from projecting onto C', . .., Cy. The simpler alternating projections method
will always converge to a feasible point in C; N - - - N Cy, but will not necessarily converge to the
solution in (I) unless C1, ..., Cy are subspaces (in which case alternating projections and Dykstra’s
algorithm coincide). Meanwhile, Dykstra’s algorithm converges in general (for any closed, convex
sets C1, . . ., Cq with nonempty intersection, see, e.g.,/Boyle and Dykstra| (1986)); [Han| (1988)); (Gaffke
and Mathar| (1989)). We note that Dykstra’s algorithm (3)) can be rewritten in a different form, which



will be helpful for future comparisons. First, we initialize ufio) =, zi‘” =... = zc(lo) = 0, and then
repeat, for k = 1,2,3,...:

W) = ),
ugk) = Pc, (ugi)l + Zi(kil)% fori — 1 d “4)

ori=1,....d.
i

Coordinate descent. Coordinate descent methods have a long history in optimization, and have
been studied and discussed in early papers and books such as|Warga| (1963)); |Ortega and Rheinboldt
(1970); ILuenberger| (1973)); |/Auslender]| (1976); Bertsekas and Tsitsiklis| (1989), though coordinate
descent was still likely in use much earlier. (Of course, for solving linear systems, coordinate descent
reduces to Gauss-Seidel iterations, which dates back to the 1800s.) Some key papers analyzing the
convergence of coordinate descent methods are Tseng and Bertsekas| (1987)); Tseng|(1990); Luo and
Tseng| (1992, |1993)); [Tseng|(2001)). In the last 10 or 15 years, a considerable interest in coordinate
descent has developed across the optimization community. With the flurry of recent work, it would be
difficult to give a thorough account of the recent progress on the topic. To give just a few examples,
recent developments include finite-time (nonasymptotic) convergence rates for coordinate descent,
and exciting extensions such as accelerated, parallel, and distributed versions of coordinate descent.
We refer to Wright| (2015), an excellent survey that describes this recent progress.

In (block) coordinate descenﬂ for (2), we initialize say w(® = 0, and repeat, for k = 1,2,3, .. .:

1 _
o9 —anguin 3y~ 5 089 - 5 X < i

2
. +hi(w), i=1,...,d (5)
w; ERPi j<i >i 2

We assume here and throughout that X; € R"*P: ¢ =1,..., d each have full column rank so that
the updates in (3)) are uniquely defined (this is used for convenience, and is not a strong assumption;
note that there is no restriction on the dimensionality of the full problem in (2), i.e., we could still
have X € R™*P with p > n). The precise form of these updates, of course, depends on the penalty
functions. Suppose that each h; is the support function of a closed, convex set D; C RP¢, i.e.,

hi(v) = (I}é;g{_(d, vy, fori=1,...,d.

Suppose also that C; = (XI)~"1(D;) = {v € R" : X}'v € D,}, the inverse image of D, under the
linear map X7, fori = 1,...,d. Then, perhaps surprisingly, it turns out that the coordinate descent
iterations (3)) are exactly the same as the Dykstra iterations (@), via a duality argument. We extract
the key relationship as a lemma below, for future reference, and then state the formal equivalence.
Proofs of these results, as with all results in this paper, are given in the supplement.

Lemma 1. Assume that X; € R"*Pi has full column rank and h;(v) = maxge p, (d, v) for a closed,
convex set D; C RPi. Then for C; = (X1)~Y(D;) C R" and any b € R™,

1
W; = argmin 5Hb — Xsw;||3 + hi(w;) <= Xub; = (Id — Pg,)(b).
w; ERPi

where 1d(-) denotes the identity mapping.

Theorem 1. Assume the setup in Lemmall} for each i = 1, ..., d. Then problems (1), @) are dual to
each other, and their solutions, denoted i, W, respectively, satisfy 4 = y — Xw. Further, Dykstra’s
algorithm @) and coordinate descent (B) are equivalent, and satisfy at all iterations k = 1,2,3, .. .:

zi(k) = Xiwgk) and ugk) =y — Zijj(-k) — ZijJ(Akfl), fori=1,....d.

Jj<i Ji>i

The equivalence between coordinate descent and Dykstra’s algorithm dates back to (at least) Han
(1988)); \Gaftke and Mathar (1989)), under the special case X = I. In fact,[Han|(1988)), presumably
unaware of Dykstra’s algorithm, seems to have reinvented the method and established convergence

ITo be precise, this is cyclic coordinate descent, where exact minimization is performed along each block of
coordinates. Randomized versions of this algorithm have recently become popular, as have inexact or proximal
versions. While these variants are interesting, they are not the focus of our paper.



through its relationship to coordinate descent. This work then inspired Tseng| (1993) (who must have
also been unaware of Dykstra’s algorithm) to improve the existing analyses of coordinate descent,
which at the time all assumed smoothness of the objective function. (Tseng continued on to become
arguably the single most important contributor to the theory of coordinate descent of the 1990s and
2000s, and his seminal work Tseng|(2001)) is still one of the most comprehensive analyses to date.)

References to this equivalence can be found speckled throughout the literature on Dykstra’s method,
but given the importance of the regularized problem form (2)) for modern statistical and machine
learning estimation tasks, we feel that the connection between Dykstra’s algorithm and coordinate
descent and is not well-known enough and should be better explored. In what follows, we show that
some old work on Dykstra’s algorithm, fed through this equivalence, yields new convergence results
for coordinate descent for the lasso and a new parallel version of coordinate descent.

ADMM. The augmented Lagrangian method of multipliers or ADMM was invented by (Glowinski
and Marroco| (1975));|Gabay and Mercier|(1976). ADMM is a member of a class of methods generally
called operator splitting techniques, and is equivalent (via a duality argument) to Douglas-Rachford
splitting (Douglas and Rachford, [1956; [Lions and Mercier, |1979). Recently, there has been a strong
revival of interest in ADMM (and operator splitting techniques in general), arguably due (at least in
part) to the popular monograph of |Boyd et al.|(2011)), where it is argued that the ADMM framework
offers an appealing flexibility in algorithm design, which permits parallelization in many nontrivial
situations. As with coordinate descent, it would be difficult thoroughly describe recent developments
on ADMM, given the magnitude and pace of the literature on this topic. To give just a few examples,
recent progress includes finite-time linear convergence rates for ADMM (see Nishihara et al.[2015};
Hong and Luo|2017|and references therein), and accelerated extensions of ADMM (see|Goldstein
et al.[|2014; Kadkhodaie et al.[2015|and references therein).

To derive an ADMM algorithm for (I)), we introduce auxiliary variables and equality constraints to
put the problem in a suitable ADMM form. While different formulations for the auxiliary variables
and constraints give rise to different algorithms, loosely speaking, these algorithms generally take on
similar forms to Dykstra’s algorithm for (T)). The same is also true of ADMM for the set intersection
problem, a simpler task than the best approximation problem (I)), in which we only seek a point in
the intersection C; N - - - N Cy, and solve

d
min ZZ: Ic,(us), (6)
where I (+) denotes the indicator function of a set C' (equal to 0 on C, and oo otherwise). Consider
the case of d = 2 sets, in which case the translation of (1§]) into ADMM form is unambiguous. ADMM
for (6), properly initialized, appears highly similar to Dykstra’s algorithm for (I)); so similar, in fact,
thatBoyd et al.|(2011) mistook the two algorithms for being equivalent, which is not generally true,
and was shortly thereafter corrected by Bauschke and Koch|(2013).

Below we show that when d = 2, 'y is a linear subspace, and y € C, an ADMM algorithm for (II])
(and not the simpler set intersection problem (6)) is indeed equivalent to Dykstra’s algorithm for (T).
Introducing auxiliary variables, the problem (I)) becomes
mig}R ly —uill3 + Ic, (u1) + Ic, (uz)  subject to  up = us.
U ,U2 n
The augmented Lagrangian is L(u1,uz, 2) = [y — u1 13+ Ic, (u1) + I, (ug) + pllug — uz + z||2

—pl|z||3, where p > 0 is an augmented Lagrangian parameter. ADMM repeats, for k = 1,2,3,...:
(k—1) _ _(k—1)
u® = p (Y P 20)
! \1+p 1+p ’
- (N
uy” = Pe, (uf®? +27),
z(k) =21 4 ugk) - uék).

Suppose we initialize ugo) =y, 2(9 =0, and set p = 1. Using linearity of P, the fact that y € C1,

and a simple inductive argument, the above iterations can be rewritten as
k k—
uy” = Pe, (uy™ ),
W = Pey i)+ 2, ®

2B = Z(k=1) 4 ugk) — ugk),



which is precisely the same as Dykstra’s iterations (@), once we realize that, due again to linearity of
Pc,, the sequence z; ', k = 1,2, 3, ... in Dykstra’s iterations plays no role and can be ignored.

Though d = 2 sets in (I)) may seem like a rather special case, the strategy for parallelization in both
Dykstra’s algorithm and ADMM stems from rewriting a general d-set problem as a 2-set problem, so
the above connection between Dykstra’s algorithm and ADMM can be relevant even for problems
with d > 2, and will reappear in our later discussion of parallel coordinate descent. As a matter of
conceptual interest only, we note that for general d (and no constraints on the sets being subspaces),
Dykstra’s iterations (@) can be viewed as a limiting version of the ADMM iterations either for () or
for (6)), as we send the augmented Lagrangian parameters to oo or to 0 at particular scalings. See the
supplement for details.

3 Coordinate descent for the lasso

The lasso problem (Tibshirani, [1996; (Chen et al., |1998), defined for a tuning parameter A > 0 as

1
. - X 2 A 9
min oy — Xwlz + Alwl, ©)
is a special case of (2) where the coordinate blocks are of each size 1, so that X; € R™, i =1,...,p
are just the columns of X, and w; € R, 4 =1, ..., p are the components of w. This problem fits into

the framework of (2) with h;(w;) = A

Coordinate descent is widely-used for the lasso (9)), both because of the simplicity of the coordinate-
wise updates, which reduce to soft-thresholding, and because careful implementations can achieve
state-of-the-art performance, at the right problem sizes. The use of coordinate descent for the lasso
was popularized by [Friedman et al.| (2007, 2010), but was studied earlier or concurrently by several
others, e.g.,|Fu (1998)); Sardy et al.|(2000); /Wu and Lange| (2008)).

As we know from Theorem ] the dual of problem (9) is the best approximation problem (IJ), where
Ci = (XI)~Y(D;) = {v € R" : | XFv| < A} is an intersection of two halfspaces, fori = 1,...,p.
This makes C; N --- N Cy an intersection of 2p halfspaces, i.e., a (centrally symmetric) polyhedron.
For projecting onto a polyhedron, it is well-known that Dykstra’s algorithm reduces to Hildreth’s
algorithm (Hildreth} |1957), an older method for quadratic programming that itself has an interesting
history in optimization. Theorem [[|hence shows coordinate descent for the lasso (9) is equivalent not
only to Dykstra’s algorithm, but also to Hildreth’s algorithm, for (T).

w;| = maxgep, dw; for D; = [=A, A], foreachi =1,...,d.

This equivalence suggests a number of interesting directions to consider. For example, key practical
speedups have been developed for coordinate descent for the lasso that enable this method to attain
state-of-the-art performance at the right problem sizes, such as clever updating rules and screening
rules (e.g., |[Friedman et al.|[2010; El Ghaoui et al.|2012; [Tibshirani et al.|2012; Wang et al.|2015)).
These implementation tricks can now be used with Dykstra’s (Hildreth’s) algorithm. On the flip side,
as we show next, older results from [lusem and De Pierro| (1990); Deutsch and Hundal| (1994) on
Dykstra’s algorithm for polyhedra, lead to interesting new results on coordinate descent for the lasso.

Theorem 2 (Adaptation of Tusem and De Pierro|1990). Assume the columns of X € R™"*P are in
general position, and X > 0. Then coordinate descent for the lasso Q) has an asymprotically linear
convergence rate, in that for large enough k,

2

w1 — ]| < a )1/2
< b
lw® =z 7 \a? + Ain (X3 Xa)/ maxie a || X3
where 10 is the lasso solution in ©), ¥ = XX, and ||z||% = 27Xz for z € RP, A = supp(w) is

the active set of W, a = |A| is its size, X4 € R™"*® denotes the columns of X indexed by A, and
Amin (X4 X 4) denotes the smallest eigenvalue of X} X 4.

Theorem 3 (Adaptation of Deutsch and Hundal|1994). Assume the same conditions and notation
as in Theorem[2} Then for large enough k,

(10)

_ 1/2
Jw®+D s _ (| H PG iy X 13 an
GRS G S S e ’
where we enumerate A = {iq,..., i}, i1 < ... < i4, and we denote by P{J;Hl ia} the projection

onto the orthocomplement of the column span of X ;. i.}-



The results in Theorems [2] 3] both rely on the assumption of general position for the columns of X.
This is only used for convenience and can be removed at the expense of more complicated notation.
Loosely put, the general position condition simply rules out trivial linear dependencies between small
numbers of columns of X, but places no restriction on the dimensions of X (i.e., it still allows for
p > n). It implies that the lasso solution 0 is unique, and that X 4 (where A = supp(w)) has full
column rank. See |Tibshirani| (2013)) for a precise definition of general position and proofs of these
facts. We note that when X 4 has full column rank, the bounds in (I0), (TT)) are strictly less than 1.

Remark 1 (Comparing and (T1))). Clearly, both the bounds in (I0)), are adversely affected
by correlations among X, i € A (i.e., stronger correlations will bring each closer to 1). It seems to
us that is usually the smaller of the two bounds, based on simple mathematical and numerical
comparisons. More detailed comparisons would be interesting, but is beyond the scope of this paper.

Remark 2 (Linear convergence without strong convexity). One striking feature of the results in
Theorems [2] [3]is that they guarantee (asymptotically) linear convergence of the coordinate descent
iterates for the lasso, with no assumption about strong convexity of the objective. More precisely,
there are no restrictions on the dimensionality of X, so we enjoy linear convergence even without an
assumption on the smooth part of the objective. This is in line with classical results on coordinate
descent for smooth functions, see, e.g.,|Luo and Tseng|(1992). The modern finite-time convergence
analyses of coordinate descent do not, as far as we understand, replicate this remarkable property.
For example, Beck and Tetruashvili| (2013); |Li et al.| (2016) establish finite-time linear convergence
rates for coordinate descent, but require strong convexity of the entire objective.

Remark 3 (Active set identification). The asymptotics developed in|lusem and De Pierro|(1990);
Deutsch and Hundal| (1994) are based on a notion of (in)active set identification: the critical value of
k after which (10), (1)) hold is based on the (provably finite) iteration number at which Dykstra’s
algorithm identifies the inactive halfspaces, i.e., at which coordinate descent identifies the inactive
set of variables, A° = supp(w)¢. This might help explain why in practice coordinate descent for the
lasso performs exceptionally well with warm starts, over a decreasing sequence of tuning parameter
values A (e.g.,|[Friedman et al.|2007,|2010): here, each coordinate descent run is likely to identify the
(in)active set—and hence enter the linear convergence phase—at an early iteration number.

4 Parallel coordinate descent

Parallel-Dykstra-CD. An important consequence of the connection between Dykstra’s algorithm
and coordinate descent is a new parallel version of the latter, stemming from an old parallel version
of the former. A parallel version of Dykstra’s algorithm is usually credited to |[lusem and Pierro| (1987)
for polyhedra and |Gaftke and Mathar| (1989)) for general sets, but really the idea dates back to the
product space formalization of [Pierral (1984). We rewrite problem (I)) as

d
i i i bject t e CoN(Cy x---xCy), 12
8 s 2l subiect 0w e Gon (€ D02
where Cy = {(u1,...,uq) € R :uy = =ug},and 1, ...,vq > 0 are weights that sum to 1.
After rescaling appropriately to turn (['1;(2[)) into an unwelghted best approximation problem, we can
apply Dykstra’s algorithm, which sets u; c=uy =Y. 2 0= = =z, = 0, and repeats:

(k1)
= Yil; 3

B (13)
W R,
ori=1,...,d,
A0y 4 ) 0
for k =1,2,3,.... The steps enclosed in curly brace above can all be performed in parallel, so that

(13)is a parallel version of Dykstra’s algorithm (@) for (T). Applying Lemmal[l} and a straightforward
inductive argument, the above algorithm can be rewritten as follows. We set w(?) = 0, and repeat:

w(k)—argmm ny Xwk- 1)—1—ka 1)/% Xiw; /i +h( i/vi), i=1,....d, (14)

i
w; ERPi

fork =1,2,3,..., which we call parallel-Dykstra-CD (with CD being short for coordinate descent).
Again, note that the each of the d coordinate updates in can be performed in parallel, so that



(T4) is a parallel version of coordinate descent (B) for (Z). Also, as (I4) is just a reparametrization of
Dykstra’s algorithm (T3)) for the 2-set problem (12)), it is guaranteed to converge in full generality, as
per the standard results on Dykstra’s algorithm (Han| 1988} |Gaftke and Mathar, |1989).

Theorem 4. Assume that X; € R"*Pi has full column rank and h;(v) = maxgep, (d, v) for a closed,
convex set D; CRPi, fori =1,...,d. If ) has a unique solution, then the iterates in (14) converge
to this solution. More generally, if the interior of N, (XT)~Y(D;) is nonempty, then the sequence
w® k=1,23, ... from has at least one accumulation point, and any such point solves (2).
Further, Xw™®), k =1,2,3, ... converges to X, the optimal fitted value in ).

There have been many recent exciting contributions to the parallel coordinate descent literature; two
standouts are Jaggi et al.|(2014); Richtarik and Takac|(2016), and numerous others are described in
Wright| (2015)). What sets parallel-Dykstra-CD apart, perhaps, is its simplicity: convergence of the
iterations (14}, given in Theorem[4] just stems from the connection between coordinate descent and
Dykstra’s algorithm, and the fact that the parallel Dykstra iterations (I3)) are nothing more than the
usual Dykstra iterations after a product space reformulation. Moreover, parallel-Dykstra-CD for the
lasso enjoys an (asymptotic) linear convergence rate under essentially no assumptions, thanks once
again to an old result on the parallel Dykstra (Hildreth) algorithm from [usem and De Pierro| (1990).
The details can be found in the supplement.

Parallel-ADMM-CD. As an alternative to the parallel method derived using Dykstra’s algorithm,
ADMM can also offer a version of parallel coordinate descent. Since (T2) is a best approximation
problem with d = 2 sets, we can refer back to our earlier ADMM algorithm in (7)) for this problem.
By passing these ADMM iterations through the connection developed in Lemma[I] we arrive at what
we call parallel-ADMM-CD, which initializes uéo) =y, wY = w® =0, and repeats:
d k-1 - _ _
o _ (Simpduy )y Xt X (@ —w)
0o = d d d )
L+ 30 pi L+ 30 pi L+ pi (15)

2
+hl(u}l/pl)a ’iil,...,d,
2

1 , o
w® = argmin Z{|u + Xow D /p; — Xiwi/p:

7
w; ERPi

fork=1,2,3,. 0 where p1,...,pq > 0 are augmented Lagrangian parameters. In each iteration,
the updates to wg ,©=1,...,d above can be done in parallel. Just based on their form, it seems
that can be seen as a parallel version of coordinate descent (3) for problem (2). The next result

confirms this, leveraging standard theory for ADMM (Gabayl, (1983} |[Eckstein and Bertsekas|, |1992).
Theorem 5. Assume that X; € R"™*Pi has full column rank and h;(v) = maxgep, (d, v) for a closed,
convex set D; C RP:, fori=1,...,d. Then the sequence w'®), k =1,2,3,...in (T3) converges to
a solution in (2)).

The parallel-ADMM-CD iterations in and parallel-Dykstra-CD iterations in differ in that,
where the latter uses a residual y — Xw =1, the former uses an iterate uok that seems to have a
more complicated form, being a convex combination of uok_l and y — Xw* 1) plus a quantity
that acts like a momentum term. It turns out that when p1, ..., pg sum to 1, the two methods (T4),
(T3] are exactly the same. While this may seem like a surprising coincidence, it is in fact nothing
more than a reincarnation of the previously established equivalence between Dykstra’s algorithm (@)
and ADMM (B) for a 2-set best approximation problem, as here Cj is a linear subspace.

Of course, with ADMM we need not choose probability weights for py, ..., p4, and the convergence
in Theorem [3]is guaranteed for any fixed values of these parameters. Thus, even though they were
derived from different perspectives, parallel-ADMM-CD subsumes parallel-Dykstra-CD, and it is a
strictly more general approach. It is important to note that larger values of py, ..., pg can often lead
to faster convergence in practice, as we show in Figure[I] More detailed study and comparisons to
related parallel methods are worthwhile, but are beyond the scope of this work.

5 Discussion and extensions

We studied connections between Dykstra’s algorithm, ADMM, and coordinate descent. Leveraging
these connections, we established an (asymptotically) linear convergence rate for coordinate descent
for the lasso, as well as two parallel versions of coordinate descent (one based on Dykstra’s algorithm
and the other on ADMM). Some extensions and possibilities for future work are described below.
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Figure 1: Suboptimality curves for serial coordinate descent, parallel-Dykstra-CD, and three tunings
of parallel-ADMM-CD (i.e., three different values of p = > %_, p;), each run over the same 30 lasso
problems with n = 200 and p = 500. For details of the experimental setup, see the supplement.

Nonquadratic loss: Dykstra’s algorithm and coordinate descent. Given a convex function f, a
generalization of () is the regularized estimation problem

min f(Xw) +Zh w;). (16)

weRP

|y — Z||2, and e.g., regularized classification (under
1+e* ) In (block) coordinate descent for (T6), we
2,3,..

Regularized regression (2) is given by f(z) = %
the logistic loss) by f(z) = —yTz + > 1" i lo (
initialize say w(®) = 0, and repeat, for k = 1,2,

l(k)*argrnln f(ZX w(k)JrZX w(k 1)+le> + hi(w;), i=1,...,d. a7

Pq
w; ERP 1<t >t

On the other hand, given a differentiable and strictly convex function g, we can generalize (I)) to the
following best Bregman-approximation problem,

m%%n Dy(u,b) subjectto ueCin---NCqy. (18)
uEeR™
where Dy (u,b) = g(u) — g(b) — (Vg(b),u — b) is the Bregman divergence between u and b with

respect to g. When g(v) = 1 |[v||3 (and b = y), this recovers the best approximation problem (T). As
shown in|Censor and Reich (199,8%; Bauschke and Lewis|(2000), Dykstra’s algorithm can be extended

to apply to (I8). We initialize u,’ =b, 2z, ' =--- = z;lo) =0, and repeat for k = 1,2,3,.. .:
W) = ),
ut) = (P2, 0 Vg") (Vo) +207), | (19)
fori=1,...,d,

2P = gy + 257D — ),

where P2 (z) = argmin . Dy(c, z) denotes the Bregman (rather than Euclidean) projection of =
onto a set C', and ¢g* is the conjugate function of g. Though it may not be immediately obvious, when
g(v) = 3||v||3 the above iterations (T9) reduce to the standard (Euclidean) Dykstra iterations in ().
Furthermore, Dykstra’s algorithm and coordinate descent are equivalent in the more general setting.

Theorem 6. Let f be a strictly convex, differentiable function that has full domain. Assume that
X; € R™*Pi has full column rank and h;(v) = maxqep,(d, v) for a closed, convex set D; C RP:, for
i=1,...,d Also, let g(v) = f*(—v), b = =V f(0), and C; = (XI')"}(D;) CR", i =1,...,d.



Then (16), (I8) are dual to each other, and their solutions W, G satisfy & = —V f(X ). Moreover
Dykstra’s algorithm (19) and coordinate descent are equivalent, i.e., fork =1,2,3, ..
2P =X and " Vf(ZX w; —i—ZX w; (k= 1)>, fori=1,...,d.

<t >t

Nonquadratic loss: parallel coordinate descent methods. For a general regularized estimation
problem (16)), parallel coordinate descent methods can be derived by applying Dykstra’s algorithm
and ADMM to a product space reformulation of the dual. Interestingly, the subsequent coordinate
descent algorithms are no longer equivalent (for a unity augmented Lagrangian parameter), and they
feature quite different computational structures. Parallel-Dykstra-CD for (T6) initializes w(®) = 0,
and repeats:

wgk) = argmin f(Xw(k) — Xiwgk)/'y,; + X,;wi/%) + hi(wi/vi), t=1,...,d, (20)
w; ERPi

fork=1,2,3,. and welghts Y1, .-, > 0that sum to 1. In comparison, parallel-ADMM-CD
for (16 begms with u? =0, w1 = w® = 0, and repeats:

Find u(()k) such that: u(()k) = —Vf((Z pz> k 1)) X (w2 — 2w(k_1))> )
2D
wgk) = argmin *H (k) 4 Xiwﬁk_l)/pi — Xiw;/p; + hi(wi/pi), i=1,....,d,
) w; ERPi 2
for k =1,2,3,..., and parameters p1, ..., pq > 0. Derivation details are given in the supplement.

Notice the stark contrast between the parallel-Dykstra-CD iterations (20) and the parallel-ADMM-
CD iterations . In (20), we perform (in parallel) coordinatewise h;-regularized minimizations
involving f, for i=1,. d In (Z21)), we perform a single quadratically-regularized minimization
involving f for the uo—update, and then for the w-update, we perform (in parallel) coordinatewise
h;-regularized minimizations involving a quadratic loss, for ¢ = 1,. .., d (these are typically much
cheaper than the analogous minimizations for typical nonquadratic losses f of interest).

We note that the ug-update in the parallel-ADMM-CD iterations simplifies for many losses f
of interest; in particular, for separable loss functions of the form f(v) =Y. | fi(v;), for convex,
univariate functions f;, 7 = 1,..., n, the ug-update separates into n univariate minimizations. As an
example, consider the logistic lasso problem,

T - zTw
-y X log(1 i A 22
ur}rg}gj y w—t—ZJ:og( +e% ) 4+ Mwl1, (22)
where z; € RP, i = 1,...,n denote the rows of X. Abbreviating p = >_7_, p;, and denoting by
o(z) = 1/(1 + e~ ) the sigmoid function, and by S;(x) = sign(x)(|x| — t)4 the soft-thresholding
function at a level ¢ > 0, the parallel- ADMM-CD iterations (21) for (22) reduce to:

Find uélf) such that: ugl) =y — a(pugz) - cgk))7 1=1,...,n,
(k) _ piXT (ug” + Xw* ™V /py) o (23)
Wi = Sxpi /X413 X ;=1

where c(k) = pu( D4 xl (w®=2 — 2w*=1D) fori=1,...,n, k= 1,2,3,.... We see that both
the ug- update and w- update in (23) can be parallelized, and each coordinate update in the former can
be done with, say, a simple bisection search.

Asynchronous parallel algorithms, and coordinate descent in Hilbert spaces. We finish with
some directions for possible future work. Asynchronous variants of parallel coordinate descent are
currently of great interest, e.g., see the review in Wright| (2015). Given the link between ADMM and
coordinate descent developed in this paper, it would be interesting to investigate the implications of
the recent exciting progress on asynchronous ADMM, e.g., see Chang et al.[(2016alb)) and references
therein, for coordinate descent. In a separate direction, much of the literature on Dykstra’s algorithm
emphasizes that this method works seamlessly in Hilbert spaces. It would be interesting to consider
the connections to (parallel) coordinate descent in infinite-dimensional function spaces, which we
would encounter, e.g., in alternating conditional expectation algorithms or backfitting algorithms in
additive models.
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