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Abstract

Accurate and reliable forecasts of seasonal epidemics of infectious disease can assist in the

design of countermeasures and increase public awareness and preparedness. This article

describes two main contributions we made recently toward this goal: a novel approach to

probabilistic modeling of surveillance time series based on “delta densities”, and an optimi-

zation scheme for combining output from multiple forecasting methods into an adaptively

weighted ensemble. Delta densities describe the probability distribution of the change

between one observation and the next, conditioned on available data; chaining together

nonparametric estimates of these distributions yields a model for an entire trajectory. Corre-

sponding distributional forecasts cover more observed events than alternatives that treat

the whole season as a unit, and improve upon multiple evaluation metrics when extracting

key targets of interest to public health officials. Adaptively weighted ensembles integrate the

results of multiple forecasting methods, such as delta density, using weights that can

change from situation to situation. We treat selection of optimal weightings across forecast-

ing methods as a separate estimation task, and describe an estimation procedure based on

optimizing cross-validation performance. We consider some details of the data generation

process, including data revisions and holiday effects, both in the construction of these fore-

casting methods and when performing retrospective evaluation. The delta density method

and an adaptively weighted ensemble of other forecasting methods each improve signifi-

cantly on the next best ensemble component when applied separately, and achieve even

better cross-validated performance when used in conjunction. We submitted real-time fore-

casts based on these contributions as part of CDC’s 2015/2016 FluSight Collaborative Com-

parison. Among the fourteen submissions that season, this system was ranked by CDC as

the most accurate.
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Author summary

Seasonal influenza is associated with 250 000 to 500 000 deaths worldwide each year

(WHO estimates). In the United States and other temperate regions, seasonal influenza

epidemics occur annually, but their timing and intensity varies significantly; accurate and

reliable forecasts that quantify their uncertainty can assist policymakers when planning

countermeasures such as vaccination campaigns, and increase awareness and prepared-

ness of hospitals and the general public. Starting with the 2013/2014 flu season, CDC has

solicited, collected, evaluated, and compared weekly forecasts from external research

groups. We developed a new method for forecasting flu surveillance data, which stitches

together models of changes that happen each week, and a way of combining its output

with other forecasts. The resulting forecasting system produced the most accurate fore-

casts in CDC’s 2015/2016 FluSight comparison of fourteen forecasting systems. We

describe our new forecasting methods, analyze their performance in the 2015/2016 com-

parison and on data from previous seasons, and describe idiosyncrasies of epidemiological

data that should be considered when constructing and evaluating forecasting systems.

Introduction

Seasonal influenza epidemics cause widespread illness which is associated each year with an esti-

mated 250 000 to 500 000 deaths worldwide [1] and 3000 to 56 000 deaths in the United States

alone [2–4]. In contrast to influenza “pandemics”, which are rare global outbreaks of especially

novel influenza A viruses [5, 6], seasonal epidemics (i.e., non-pandemics), while still having

worldwide reach, occur annually in the United States and other countries with (generally) tem-

perate climates. Time series of influenza prevalence in these areas are typically low and flat for

the majority of the season, but trace a single, sharp peak sometime during winter, with signifi-

cant variability in timing and intensity. Accurate and reliable forecasts of seasonal epidemics can

help policymakers plan countermeasures such as vaccination campaigns, and increase awareness

and preparedness of hospitals and the general public. The Centers for Disease Control and Pre-

vention (CDC) monitors influenza prevalence with several well-established surveillance systems

[7]; the recurring nature of seasonal epidemics and availability of historical data provide promis-

ing opportunities for the formation, evaluation, and application of statistical models. Starting

with the 2013/2014 “Predict the Influenza Season Challenge” [8] and continuing each season

thereafter as the Epidemic Prediction Initiative’s FluSight project [9], CDC has solicited and

compiled forecasts of influenza-like illness (ILI) prevalence from external research groups and

worked with them to develop standardized forecast formats and quantitative evaluation metrics.

Various approaches to influenza epidemic forecasting are summarized in literature reviews

[10–12] and descriptions of the CDC comparisons [8, 9]. Some common approaches are

described below, with references to work applicable to the current FluSight project and related

seasonal dengue forecasting tasks, emphasizing more recent work that may not be listed in the

above three literature reviews:

• Mechanistic models: describe the disease state and interaction between individuals with

causal models, as well as the surveillance data generation process.

• Compartmental models (e.g., [13–17]): break down the population into a number of dis-

crete “compartments” describing their characteristics (e.g., age, location) and state (e.g.,

susceptible to, infectious with, or recovered from a particular disease), and describe how

the occupancy of these compartments changes over time, either deterministically or

Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006134 June 15, 2018 2 / 29

Funding: LCB, DCF, and RR were supported by the

National Institute Of General Medical Sciences of

the National Institutes of Health under Award

Number U54 GM088491. The content is solely the

responsibility of the authors and does not

necessarily represent the official views of the

National Institutes of Health. This material is based

upon work supported by the National Science

Foundation Graduate Research Fellowship

Program under Grant Nos. 0946825, DGE-

1252522, and DGE-1745016. Any opinions,

findings, and conclusions or recommendations

expressed in this material are those of the authors

and do not necessarily reflect the views of the

National Science Foundation. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006134


probabilistically. In many of these models, this division describes solely the state with

respect to a single disease, ignoring details regarding age, spatial dynamics, and mixtures

of ILI diseases, but keeping the number of parameters to infer low.

• Agent-based models (e.g., [11, 18]): also known as individual-based models, these

approaches use more detailed descriptions of disease state and/or individual characteristics

and behavior, which are not easily simplified into a compartmental form, typically studied

using computation-heavy simulations. These approaches usually include many more

parameters than compartmental models, which may be set or inferred by heuristics, addi-

tional data sources and studies, or Monte Carlo procedures.

• Phenomenological models: also referred to as statistical models, these approaches describe

the surveillance data without directly incorporating the epidemiological underpinnings.

• Direct regression models (e.g., [19–22]): attempt to estimate future prevalence or targets

of interest using various types of regression, including nonparametric statistical

approaches and alternatives from machine learning literature.

• Time series models (e.g., [23–31]): represent the expected value of (transformations of)

observations and/or underlying latent state at a particular time as (typically linear) func-

tions of these quantities at previous times and additional covariates, paired with Gaussian,

Poisson, negative binomial, or other noise distributions. This category includes linear

dynamical systems and frameworks such as SARIMAX.

We present a novel phenomenological approach to epidemiological forecasting using “delta

densities”, which assumes an autoregressive dependency structure similar to those of some

time series models, but uses a kernel density estimation approach to model these dependencies

rather than the common choice of linear relationships plus Gaussian noise. This technique is

similar to the method of analogues [19] in that it uses an instance-based, nonparametric esti-

mation procedure, but provides distributional forecasts of entire trajectories rather than point

predictions of individual observations. The kernel conditional density estimation (KCDE)

forecasting method [22] attacks many of the same issues encountered when applying kernel

density estimation methods to seasonal epidemic data, but models the dependency structure

of future weeks with a copula, while delta density chains together 1-week-ahead simulations.

Compared to approaches that treat the entire season as a unit, such as deterministic, single-

strain, fully-mixed compartmental models [13] or our previous empirical Bayes approach

based on modifying past seasons’ data [21, 32], this method forms a larger library of possible

trajectories by piecing together local models, which appears to help forecast performance, even

though the trajectories considered may seem less reasonable on average.

Our second contribution is an adaptively weighted ensemble approach to combining the

output of different forecasting methods given their historical and/or cross-validation forecasts.

We first implemented this method in preparation for the 2014/2015 FluSight comparison,

mixing together our empirical Bayes forecasting method with two baselines (a uniform distri-

bution and an empirical distribution for each target), and later applied it while participating

in the Dengue Forecasting project [33] and following FluSight comparisons (adding up to 9

additional components including delta density based methods), and found it improved our

forecasts in all cases. Other epidemic forecasting teams have also reported success with concur-

rently or subsequently developed stacking generalization [34, 35] ensemble approaches to the

FluSight forecasting tasks using Bayesian model averaging [36], the fixed weighting scheme

that we examine below [37], and alternative adaptive weighting schemes based on gradient

tree boosting [37], as well as with earlier ensemble approaches to short-term point predictions
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[20]. Methodologically, our adaptively weighted ensemble framework differs from these alter-

natives in that it selects a weighting over components for a particular forecast using “plug-in”

statistical estimators for the optimal weights given the context of the forecast being prepared.

Like the adaptive approaches presented in [37], component weights for each forecast are

selected using regression, but the type of regression used and the manner of incorporating

additional information, such as the forecast week, are distinct.

Materials and methods

Surveillance data

Recording every case of influenza is not practicable; infections are often asymptomatic [38] or

symptomatic but not clinically attended [39], laboratory testing may not be performed for clin-

ically attended cases or give false negative results, and reporting of lab-confirmed cases is not

mandatory in most instances. Forecast comparisons are instead based on syndromic clinical

surveillance data from the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet)

[7, 40], a group of health care providers that voluntarily report statistics regarding ILI, where

ILI is defined as a 100˚F (37.8˚C) fever with a cough and/or sore throat without a known cause

other than influenza. CDC aggregates these reports and estimates the weekly percentage of

patients seen that have ILI, %ILI, across all health care providers using a measure called

weighted %ILI (wILI).

• Geographical resolution: CDC reports wILI for each of the 10 U.S. Department of Health &

Human Services (HHS) regions, as well as for the nation as a whole; the wILI for each of these

locations is a weighted average of the ILINet %ILI for state-level units based on population.

• Temporal resolution: wILI is available on a weekly basis; weeks begin on Sunday, end on

Saturday, and are numbered according to the epidemiological week (epi week) convention

in the United States.

• Timeliness: Initial wILI estimates for a given week are typically released on Friday of the fol-

lowing week; additional reports and revisions from participating health care providers are

incorporated in updates throughout the season and after it ends.

• Specificity: Influenza is just one of many potential causes of ILI. Laboratory testing data [7]

suggest that influenza is responsible for a significant portion of ILI cases during the flu sea-

son, especially for weeks when wILI is high, but only for a very small fraction of cases in the

typical flu off-season. Much of the variance and “peakiness” in wILI can be associated with

influenza epidemics, but wILI trajectories do not taper off to near-zero values as one might

expect in a direct measurement of influenza prevalence.

• Influence of non-ILI cases: Since wILI depends on records of both ILI cases and total cases,

patterns in non-ILI cases can impact wILI trajectories. We discuss one such pattern in the

Holiday effects section.

CDC hosts the latest ILINet report and other types of surveillance data through Fluview

Interactive, a collection of web modules [41]; we provide current and historical ILINet reports

and some other data sources through our delphi-epidataAPI [42] and epivis visual-

izer [43].

Forecasting targets

The FluSight project focuses on in-season distributional forecasts and point predictions of key

targets of interest to public health officials:
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• Short-term wILI: the four wILI values following the last available observation (incorporating

all data revisions through some week well after the season’s end)

• Season onset: the first week in the first run of at least three consecutive weeks with wILI val-

ues above a location- and season- specific baseline wILI level set by CDC [7], or “none” if no

such runs exist; describes whether and when an influenza epidemic started in a given season

• Season peak percentage: the maximum of all wILI values for a given season

• Season peak week: the week or weeks in which wILI takes on its maximum value, or “none”

if there was no onset in the 2015/2016 comparison

When making distributional forecasts, wILI values are discretized into CDC-specified bins

and a probability assigned to each bin, forming a histogram over possible observations. The

width of the bins was set at 0.5 %wILI for the 2015/2016 comparison and 0.1 %wILI for the

2016/2017 comparison; we use a width of 0.5 %wILI for analysis of the 2015/2016 comparison

prospective forecasts, and a width of 0.1 %wILI for retrospective evaluation. CDC typically

presents wILI values rounded to a resolution of 0.1 %wILI; some targets and evaluations are

based on these rounded values.

Evaluation metrics

We focus on three metrics for evaluating performance of a forecast for a given target:

• Unibin log score: log p̂i, where p̂i is the probability assigned to i, the bin containing the

observed value. We use this score for ensemble weight selection and most internal evaluation

as it has ties to maximum likelihood estimation, and is “proper score” [44]. A score for a

(reported) distributional prediction p̂ is called “proper” if its expected value according to any

(internal) distributional prediction q̂ is maximized when reporting p̂ ¼ q̂, i.e., forecasters can

maximize their expected scores by reporting their true beliefs. We refer to the “unibin log

score” simply as the “log score” except for when comparing it with the multibin log score,

which is defined next. The exponentiated mean log score is the (geometric) average probability

assigned to events that were actually observed. The exponentiated difference in the mean log

scores of method A and method B is an estimate of the (geometric) expected winnings of unit-

sized bets of the form “this bin will hold the true value” when bets are placed optimally accord-

ing to the forecasts of A, and (relative) prices are set optimally according to the forecasts of B.

• Multibin log score: log
P

i near observed value p̂i, where the i’s considered are typically bins within

0.5 %wILI of observed values for a wILI target, or within 1 week for a timing target. The mul-

tibin log score was designed by FluSight hosts in consultation with participants, and the judg-

ment “near observed value” was selected as a level of error that would not significantly impact

policymakers’ decisions. The exponentiated mean multibin log score is the (geometric) aver-

age amount of mass a forecaster placed within this margin for error of observed target values.

• Absolute error: jŷ � yj, where ŷ is the point prediction and y is an observed value. (In the

case of onset, we consider point predictions for the value of onset conditioned on the fact

that an onset actually occurs. We do not consider absolute error for onset in instances where

no onset occurred. Some methods considered would sometimes fail to produce such condi-

tional onset point predictions when they were confident that there was no onset, but these

methods are not included in any of the figures containing absolute errors.)

The FluSight 2015/2016 forecast comparison evaluations were based solely on the multibin

log score [45].
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Terminology and notation

The “flu season” is typically defined as epi week 40 of one year through 20 of the next; we also

include data from the rest of the year as part of the season for the purpose of fitting models. In

all mathematical notation, we will number the first week of the season as 1 rather than using

the corresponding epi week. Let

• Wt
1::t denote the t-th CDC report of the current season, containing wILI values for weeks 1

through t, inclusive, which is normally published on Friday of week t + 1;

• T be the number of weeks in the current season (either 52 or 53); we omit all details regard-

ing differing season lengths, presenting forecasting methods and labeling epi week plot axes

as if all seasons were of length T;

• Y1..T be the ground truth wILI for the current season: the wILI values used for forecast evalu-

ation, specifically the epi week 28 report for the FluSight comparison, or later revisions as

they are available for cross-validation analysis;

• Ys
1::T be the ground truth wILI for past season s; and

• Zt be a vector containing the forecasting targets of interest at the t-th wILI report of the cur-

rent season: Yt+1..t+4 and the seasonal onset, peak week, and peak percentage; for the FluSight

comparison, forecasts for these targets were typically due on Monday of week t + 2, and

allowed to use ILINet and any other data released before the deadline.

Our goal is to forecast Zt given Wt
1::t and previous reports. This can be broken down into

multiple steps, such as:

1. “Backcast” updates to the data through time t, producing a distribution over Y1..t based on

the value of Wt
1::t and previous reports.

2. Connect the backcast for Y1..t with corresponding forecasts for Yt+1..T, yielding a distribu-

tion for the entire trajectory Y1..t.

3. Calculate the distribution for Zt corresponding to this distribution over Y1..t.

We first introduce the delta density method, which forecasts Yt+1..T given Y1..t (step 2). We

then discuss a separate procedure for combining multiple forecasts into an adaptively weighted

ensemble, forecasting Zt given either Y1..t or Wt
1::t (steps 2–3 or 1–3). We also outline a method

for estimating the distribution of Y1..t given Wt
1::t (step 1), and analyze its performance when

used in conjunction with the delta density method.

Delta density method

Consider the task of estimating the density function fYtþ1::T jY1::t
using an instance-based

approach. Kernel density estimation and kernel regression use smoothing kernels to produce

flexible estimates of the density of a random variable (e.g., fYtþ1::T
) and the conditional expec-

tation of one random variable given the value of another (e.g., E½Ytþ1::T j Y
1::t�), respectively;

we can combine these two methods to obtain estimates of the conditional density of one ran-

dom variable given another. One possible approach would be to use the straightforward esti-

mate

f̂ Ytþ1::T jY1::t
ðytþ1::T j y

1::tÞ ¼

PS
s¼1

I1::tðy
1::t;Y

s
1::tÞO

tþ1::Tðytþ1::T ;Y
s
tþ1::TÞ

PS
s¼1

I1::tðy
1::t;Ys

1::tÞ
;
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where {1..S} is the set of fully observed historical training seasons, and I1..t and Ot+1..T are

smoothing kernels describing similarity between “input” trajectories and between “output”

trajectories, respectively. However, while basic kernel smoothing methods can excel in low-

dimensional settings, their performance scales very poorly with growing dimensionality. Dur-

ing most of the season, neither Y1..t nor Yt+1..T is low-dimensional, and the current season’s

observations are extremely unlikely to closely match any past Ys
1::t or Ys

tþ1::T . This, in turn, can

lead to kernel density estimates for Yt+1..T based almost entirely on the single season s with the

closest Ys
1::t when conditioning on Y1..t, and excessively narrow density estimates for Yt+1..T

even without conditioning on Y1..t. So, instead of applying kernel density estimation directly,

we first break the task down into a sequence of low-dimensional sub-tasks. We avoid the high-

dimensional output problem by chaining together estimates of fDYu jY1::u� 1
for each u from t + 1

to T, where ΔYu = Yu − Yu−1; estimating these single-dimensional densities requires relatively

little data. However, this reformulation exacerbates the high-dimensional input problem since

we are conditioning on Y1..u−1, which can be considerably longer than Y1..t. We address the

high-dimensional input problem by approximating fDYujY1::u� 1
with fDYu jRu , where Ru is some

low-dimensional vector of features derived from Y1..u−1. Smoothing kernel methods are used

to approximate the conditional density functions using data from past seasons.

We use two sets of choices for the approximate conditional density function and summary

features to form two versions of the method.

• Markovian delta density: approximates the conditional density of ΔYu given Y1..u−1 with its

conditional density given just the previous (real or simulated) observation, Yu:

f̂ Ytþ1::T jY1::t
ðytþ1::T j y

1::tÞ ¼
YT

u¼tþ1

f̂ DYujY1::u� 1
ðDyu j y

1::u� 1
Þ

¼
YT

u¼tþ1

f̂ DYujYu� 1
ðDyu j yu� 1

Þ

¼
YT

u¼tþ1

P
sI

uðyu� 1
;Ys

u� 1
Þ � OuðDyu;DYs

uÞP
sIuðyu� 1

;Ys
u� 1
Þ

;

where Iu and Ou are Gaussian smoothing kernels. The first equality corresponds to the chain

rule of probability on the actual (not estimated) densities; the second incorporates the Mar-

kov assumption (i.e., selects Ru = [Yu−1]); and the third gives our choice of estimators for the

conditional densities f̂ DYu jYu� 1
for each u. The bandwidth of each Iu and Ou is chosen sepa-

rately using bandwidth selection procedures for regular kernel density estimation of Yu−1

and ΔYu, respectively. (Specifically, we use the bw.SJ function from the R [46] built-in

stats package, with bw.nrd0 as a fallback in the case of errors. These functions do not

accept weights for the inputs; it may be possible to improve forecast performance by incor-

porating these weights or by using other approaches to select the bandwidths.) Note that

density estimates for ΔYu are based on data from past seasons on week u only, allowing the

method to incorporate seasonality and holiday effects (for holidays that consistently occur at

the same time of year).

Forecasts are based on Monte Carlo simulations of Yt+1..T j Y1..t. The following procedure

draws a single possibility for Yt+1..T:

1. Draw DY sim
tþ1

from its conditional density estimate given Y1..t.

2. Draw DY sim
tþ2

from its conditional density estimate given Y1..t and Ytþ1
¼ Yt þ DY sim

tþ1
.
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3. Continue in the same manner for all remaining weeks.

This process is illustrated in Fig 1. Repeating this procedure many times yields a sample

from the model for Yt+1..T j Y1..t; stopping at 2000 draws seems sufficient for use in our

ensemble forecasts, while at least 7000 are needed to smooth out noise when displaying

distributional target forecasts for the delta density method in isolation. Any negative sim-

ulated wILI values in these trajectories are clipped off and replaced with zeroes.

• Extended delta density: approximates the conditional density of ΔYu given Y1..u − 1 with its

conditional density given four features:

• the previous wILI value, Yu−1;

• the sum of the previous ku wILI values, roughly corresponding to the sum of wILI values

for the current season;

Fig 1. The delta density method conditions on real and simulated observations up to week u − 1 when building a probability

distribution over the observation at week u. This figure demonstrates the process for drawing a single trajectory from the Markovian

delta density estimate, ignoring the data revision process. The latest ILINet report, Wt
1::t , which incorporates observations through week

48, is shown in black. Kernel smoothing estimates for future values at times u from t + 1 to T are shown in blue, as are simulated

observations drawn from these estimates. Past seasons’ trajectories are shown in red, with alpha values proportional to the weight they

are assigned by the kernel Iu.

https://doi.org/10.1371/journal.pcbi.1006134.g001
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• an exponentially weighted sum of the previous ku wILI; values, where the weight assigned

to time v is 0.5t0−v; and

• the previous change in wILI value, ΔYu−1.

The approximate conditional density assigns each of these features a weight (0.5, 0.25,

0.25, and 0.5, respectively) in order to reduce overfitting and emphasize some relative to

the others, and incorporates data from other weeks close to u (specifically, withinlu weeks;

the choice of lu is discussed in a later section) with a truncated Laplacian kernel. We

selected these weights and other settings, such as kernel bandwidth selection rules, some-

what arbitrarily based on intuition and experimentation on out-of-sample data; a cross-

validation subroutine could be used to make the selection as well, but would multiply the

amount of computation required. In case the resulting product of Gaussian and Laplacian

kernels is too narrow, we mix its results with a wide boxcar kernel which evenly weights all

data from time u − lu to u + lu:

f̂ DYujY1::u� 1
ðDyu j y

1::u� 1
Þ
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v¼u� lu 1
:

Using data from v 6¼ u incorporates additional reasonable outcomes for ΔYu by incorpo-

rating past wILI patterns with different timing, but risks including some very unreasonable

possibilities produced by repeatedly drawing from the same v rather than following sea-

sonal trends with increasing v’s. For example, when a portion of a past season that is more

similar to itself with a slight time shift than to any other past season, it may be selected for

multiple consecutive u’s and produce an unreasonable trajectory. This could potentially

occur when drawing data from the relatively flat regions of wILI trajectories of many sea-

sons, or when incorporating observations around an unusually early, late, high, or low

peak. To prevent this possibility, we combine the natural estimate for Yu arising from the

density estimate for ΔYu with a random draw Yuncond
u from the unconditional density esti-

mate for Yu (using a Gaussian kernel and only data from week u):

Y sim
u ¼ 0:9 � ðYu� 1

þ DY sim
u Þ þ 0:1 � Yuncond

u :

Residual density method

This same approach can be applied to estimate the distribution of residuals of a wILI point pre-

dictor. Suppose that we have observed

• Y
1::t1

, the partial wILI trajectory up to time t1, and

• X
1::t2

, point estimates of the trajectory up to some later time t2;

our goal is to estimate the conditional distribution of

• ðY � XÞt1þ1::t2
, the unknown residuals,

given Y
1::t1

and X
1::t2

, using data from past seasons. This can be achieved by chaining together

draws from conditional density estimates of (Y − X)u j R
u for u from t1 + 1 to t2, where Ru is a
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function of Y1..u−1 and X
1::t2

. The delta density method can be seen as a special case where t1 =

t; t2 = T; X1..t = Y1..t, past values of Y which are treated as known and are simply duplicated in

the simulated trajectories; and Xt+1..T = Yt..T−1, values of Y which begin as unknown but are

filled in as needed by previous simulation steps, giving (Y − X)t+1..T = ΔYt+1..T. We use the

residual density method to backcast Y1..t from Wt
1::t and as the basis for another forecaster in

the ensemble.

Fig 2 shows sample forecasts over wILI trajectories generated by each of these approaches

and compares them to some alternatives described in S1 Appendix.

Fig 2. Delta and residual density methods generate wider distributions over trajectories than methods that treat entire seasons as

units. These plots show sample forecasts of wILI trajectories generated from models that treat seasons as units (BR, Empirical Bayes) and

from models incorporating delta and residual density methods. Yellow, the latest wILI report available for these forecasts; magenta, the

ground truth wILI available at the beginning of the following season; black, a sample of 100 trajectories drawn from each model; cyan, the

closest trajectory to the ground truth wILI from each sample of 100.

https://doi.org/10.1371/journal.pcbi.1006134.g002
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Combining multiple methods: Stacking approach to model averaging

Forecasting systems that select effective combinations of predictions from multiple models can

improve on the performance of the individual components, as demonstrated by their success-

ful application in many domains. For each probability distribution and point prediction in a

forecast, we treat the choice of an effective combination as a statistical estimation problem,

and base each decision on the models’ behavior in leave-one-out cross-validation forecasts.

Additional cross-validation analysis indicates that this approach achieves performance compa-

rable to or better than the best individual component.

Background, motivation for combining forecasts. Methods that combine the output of

different models, called “ensembles”, “multi-model ensembles”, “super-ensembles”, “model

averages”, or various other names based on the domain and type of approach, have been

applied successfully in many problem settings, improving upon the results of the best individ-

ual model. An ensemble approach is motivated in the context of seasonal epidemic forecasting

by factors such as:

• Model misspecification and overconfidence in distributional forecasts: Many methods

overlook the possibility of a significant proportion of observed outcomes, or assign otherwise

inappropriate probabilities. These omissions and other mistakes are not identical across

models; the gaps left by one component can be filled in by another.

• Leveraging partially correlated errors in point predictions: The point prediction errors of

individual methods can vary in magnitude and are often only partially correlated with each

other, allowing ensemble methods to improve performance, e.g., by highly weighting more

accurate predictors, or by reducing the variance when combining multiple unbiased

estimators.

• Strengths and weaknesses in different targets: Some methods may work well for certain

forecasting targets, but have poor performance or fail to produce predictions for others;

model averages can be smoothly adjusted to account for different behaviors for different

targets.

• Changes in performance within seasons: Making predictions at the beginning, middle, and

end of a season can be seen as different tasks, and the relative performance characteristics of

the components may change based on the time of season (or whether it is around a holiday).

Just as ensemble methods can account for distinct patterns based on forecasting target, they

can be tailored to account for changes in behavior within a season.

We developed an adaptively weighted model average that consistently outperforms the best

individual component. Other teams submitting forecasts to the FluSight comparison have con-

currently developed other ensemble systems and found similar success [36, 37]. Our approach

is distinguished from these other methods in that it very directly estimates the best model aver-

age weights for a given location, time, target, and evaluation metric.

A stacking approach to model averaging. For each location l, week t, target i, and evalua-

tion metric e, we choose a (weighted) model average as the final prediction: an ensemble fore-

cast of the form Xw, where

• X is the output of the m ensemble components—either (a) a row vector of point predictions

with m entries, or (b) a matrix of distributional predictions with m columns—and

• w 2 [0, 1]m is a (column) vector of weights, one per component, with
Pm

j¼1
wj ¼ 1.
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Variants of the same models, or methods based on related approaches or assumptions, may

at times produce similar forecasts that commit the same errors while producing a misleading

impression of consensus; a successful ensemble may need to consider not only the perfor-

mance of each individual component, but also the relationships between the raw output of the

components. To this end, we use a “stacking generalization” approach [34, 35], treating the

selection of weights w for the current season, S + 1, as the task of frequentist estimation of the

risk-optimal weight vector,

w� ¼ arg max
w2½0;1�mPm

j¼1
wj¼1

E½Scoreðw; Sþ 1; l; t; i; eÞ�;

based on leave-one-season-out cross-validation:

ŵ ¼ meuniform þ ð1 � mÞ arg max
w2½0;1�mPm

j¼1
wj¼1

X

s02f1::Sg;
l0;t0 ;i0 ;e0

RelevanceWeightðs0; l0; t0; i0; e0; Sþ 1; l; t; i; eÞ

�CrossValidationScoreðw; s0; l0; t0; i0; e0Þ;

where μ is an inflation factor that gives addition weight to the uniform component (euniform is

a vector containing a 1 in the position corresponding to the uniform distribution component,

and 0 in every other position). We changed the RelevanceWeight function used for real-time

forecasts throughout the 2015/2016 season, but study only the following RelevanceWeight

function in the cross-validation analysis of the adaptively weighted ensemble:

RelevanceWeightðs; l; t; i; e; s0; l0; t0; i0; e0Þ ¼
1; jt � t0j � 4; i ¼ i0; e ¼ e0

0; otherwise:

(

A larger collection of cross-validation data can be considered by assigning relevance

weights of 1 to additional training instances; relevance weights can also be gradually decreased

for less similar data rather than jumping down to zero.

When e is the unibin or multibin log score:

• Using the rule of three [47] to estimate the frequency of events that we haven’t seen before,

we chose m ¼ 3

S�L for most submissions. (Prior to the submission for 2015 EW43, we used a

constant μ = 0.01 to guarantee a certain minimum log score.)

• The optimization problem is equivalent to fitting a mixture of distributions, and we can use

the degenerate EM algorithm [48] to efficiently find the weights; convex optimization tech-

niques such as the logarithmic barrier method are also appropriate.

When e is mean absolute error:

• We choose μ = 0 (and further, exclude the uniform distribution method from the ensemble

entirely).

• This optimization problem is referred to as least absolute deviation regression or median

regression, with linear inequality and equality constraints on the coefficients; we reformulate

the problem as a linear program and use the lpSolve package [49] to find a solution.

We compare the “adaptive” weighting scheme above to two alternatives:
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• Fixed-weightset-based stacking: the same approach as above, with the same μ selections but

a different RelevanceWeight function:

RelevanceWeightðs; l; t; i; e; s0; l0; t0; i0; e0Þ ¼
1; e ¼ e0

0; otherwise;

(

and

• Uniform weights: does not use the above stacking scheme; instead, for every prediction,

assigns each component the same weight in the ensemble, 1

m (replacing ŵ with 1

m
~1).

The ensemble and each of its components forecast the targets Zt given a point or distribu-

tional estimate for Y1..T.

Considering details of the data generation process

Two important features of ILINet data to consider in models and forecast evaluation are 1.

timeliness and accuracy of initial wILI values for each week and subsequent updates to these

values, and 2. changes in behavior on and around major holidays. We examine these details of

the data generation process, describe how they are addressed in the delta density model, and

demonstrate the importance of considering the update procedure when performing retrospec-

tive evaluation and prospective forecasting.

Modeling backfill updates to past wILI. When a wILI value is reported for a given week,

it is not set in stone; as ILINet members provide “backfill” reports or revisions for past weeks

and data is cleaned, wILI observations are updated accordingly. When generating a retrospec-

tive forecast, it is important to use the version of the data that would have been available at the

time rather than the final revision in order to get a more appropriate estimate of the future per-

formance of a forecasting system. Furthermore, forecasting performance can be improved by

modeling and “backcasting” these backfill updates, accounting for the following sources of

error:

• Biased early reports: earlier wILI versions are generally biased downwards early in the in-

season, and upwards towards the end of the in-season, which may lead to forecasts of lower,

later peaks early in the season, and of longer epidemic duration later in the season;

• Overconfident short-term distributional forecasts: since updates in wILI can cause

“observed” data, e.g., of the wILI at the presumed peak week, to shift, ignoring backfill may

lead to “thin”, overconfident forecast distributions;

• Revisions of “observed” seasonal targets: wILI updates sometimes cause large changes in

the apparent onset week or peak week when there are bumps or multiple peaks in the trajec-

tory: wILI updates can cause a measurement to change from above the CDC baseline to

below (or vice versa), or for an earlier, lower peak to rise above a later peak (or vice versa);

ignoring backfill updates can cause models to completely miss some possibilities when these

targets appear to be determined. A similar type of error can arise from revisions to the peak

height value (regardless of whether the peak week changes); even small updates can result in

large unibin log score penalties.

We estimate the distribution of backfill updates using the residual density method with t1 =

0, t2 = t, X
1::t ¼Wt

1::t the latest version of wILI available, Y1..t the corresponding final revisions,

and Ru = [Yu−1]. The weight given to a historical nonfinal-to-final residual is based on three

factors:
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• Lag amount: later revisions of wILI values tend to be closer to the final revision than earlier

revisions are; thus, when estimating the distribution of n-week-old wILI to finalized wILI

residuals, only n-week-old wILI to finalized wILI data is considered; backfill data for other

lags is ignored (i.e., has zero weight);

• The current season’s nonfinal wILI value: historical backfill updates with nonfinal wILI val-

ues closer to the nonfinal wILI value from the current season are given greater weights

according to a Gaussian kernel (with bandwidth based on a rule for kernel density estima-

tion of the historical nonfinal wILI values);

• Epi week of observation: since the backfill pattern changes throughout a season, historical

backfill updates corresponding to nearby epi weeks are weighted more highly than those

from a different time of the season, using a Laplacian kernel (with an arbitrarily selected

bandwidth).

The bandwidth of the density estimate is based on a kernel density estimate of the nonfinal-

to-final residuals.

The backcasting method is modular and can combine with any forecaster expecting ground

truth wILI as input. The straightforward approach is to sample a few thousand trajectories

from the backfill simulator, feed each of these into the forecaster to obtain a trajectory or a dis-

tribution over targets, and aggregate the results. Some forecasting methods in the Delphi-Stat

ensemble do not have a simple way to quickly generate single-trajectory forecasts, so we also

use alternative approaches to reduce computation, such as randomly pairing backcasts and tra-

jectory forecasts, where the trajectory forecasts are efficiently generated in batch, based on the

pointwise mean of the backcasts.

Latency of initial wILI value and “nowcasting”. The initial ILINet wILI value for a given

“target” week (from Sunday to Saturday) is typically released on Friday of the following week.

Data sources with lower latency and higher temporal resolution can be used to prepare wILI

estimates (“nowcasts”) earlier in the following week or even during the target week itself. More

generally, auxiliary data for past and current weeks can improve not only models of disease

activity in these weeks but also forecasts of future disease activity. Given a backcaster than sim-

ulates finalized data for past weeks Y1..t given observed ILINet and auxiliary data, a nowcaster

that simulates Yt+1 given these observations and (a simulated) Y1..t, and a forecaster that simu-

lates Yt+2..T given these observations and (a simulated) Y1..t+1, we can sample from an enhanced

model of Y1..T (given the latest wILI observations Wt
1::t , previous versions of wILI, and auxiliary

data) using the following procedure:

1. Repeatedly draw a random value Y sim
1::t for Y1..T by:

1. drawing a random value Y sim
1::t for Y1..t conditioned on the observed data, using the back-

caster, then

2. drawing a random value Y sim
tþ1

for Yt+1 conditioned on the observed data and Y
1::t ¼ ysim

1::t ,

using the nowcaster, then

3. drawing a random value Y sim
tþ2::T for Yt+2..T conditioned on the observed data and

Y
1::tþ1
¼ Y sim

1::tþ1
, using the forecaster, then

4. combine Y sim
1::t , Y sim

tþ1
, and Y sim

tþ2::T into a single (random) trajectory Y sim
1::T , and

2. Collect these individual, randomly drawn trajectories into a list (i.e., a random sample).

As with the earlier method of combining backcasts and forecasts without a nowcaster, this

procedure may be too computationally expensive for some implementations of some
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forecasters; we use these steps exactly with the delta density methods, for example, but consider

modifications and approximations for some other forecasters.

This methodology can be applied in conjunction with one of many available nowcasters.

We focus on ILI-Nearby [50, 51], which produces nowcasts for wILI by fusing together several

“sensors” using another type of stacked generalization, where each sensor is also a nowcast of

wILI data; we reproduce a list of references from [50] on other methodologies for nowcasting

and incorporating auxiliary data here [15, 28, 31, 52–71] along with some more recent work

[27, 29, 30], with special note of other work using multiple auxiliary data sources [29] or now-

casters [71]. We consider four distributional nowcasters:

• Y sim
tþ1

produced by the forecaster, i.e., not using separate nowcasts at all—the basis for all per-

formance estimates unless otherwise noted, as no nowcasts were incorporated into the Del-

phi-Stat forecasts for the 2015/2016 season;

• Y sim
tþ1

following a normal distribution with mean and standard deviation given by the ILI-

Nearby nowcasting system (ignoring the backcaster’s output);

• Y sim
tþ1

following a Student’s t distribution with two degrees of freedom, centrality parameter

set to the ILI-Nearby point estimate, and scale parameter set to the ILI-Nearby standard

deviation estimate, intended to be a wide-tailed variant of the above (ignoring the backcas-

ter’s output);

• an ensemble of first and third approaches, with associated weights (probabilities) of 15% and

85% respectively. (The choice of weights was inherited from a similar approach that mixed

“1 wk ahead” delta density forecasts with nowcasts, rather than ensemble forecasts (includ-

ing a uniform component) based on these two approaches; a nowcast weight of 85% was

selected on a limited amount of out-of-sample (preseason) forecasts to maximize log score.)

Holiday effects. On average, wILI tends to be higher on holidays and during the winter

holiday season than would be expected based on interpolating observations from nearby

weeks [21, 50], as seen in Fig 3. Sharp rises and drops in wILI are common from early or mid-

December to early January (roughly coinciding with a four week period beginning with epi

week 50), with either the season’s peak or a lower, secondary peak commonly occurring on epi

week 52. This pattern appears to arise from two factors:

• spikes downward in the number of non-ILI visits during the holiday season (corresponding

to increases in wILI), perhaps caused by patients choosing not to visit the doctor for less seri-

ous issues on holidays, and

• decreases in the average number of ILI visits at the end of the holidays, perhaps due to

decreased transmission of ILI during holidays, which make the preceding increases in wILI

appear even sharper.

Similarly, there are spikes or minor blips downward in the average number of non-ILI visits

(which can result in small increases in wILI) associated with Thanksgiving Day; Labor Day;

Independence Day; Memorial Day; Birthday of Martin Luther King, Jr.; Washington’s Birth-

day; Columbus Day; and perhaps other holidays. The spike upward in wILI at Thanksgiving

can push wILI unexpectedly over the onset threshold, and holiday effects may help explain the

surprising frequency at which peaks occur on epi week 7 but not neighboring weeks. Addi-

tional age-specific patterns may be obscured by this analysis of aggregate ILI and non-ILI visit

counts.

Impact of holiday effects on choice of kernels. Each holiday above occurs at roughly the

same time of year every year, falling on one of two possible epi weeks. Thus, models that
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predict behavior at a given epi week by prioritizing or focusing solely on past behavior at that

given epi week will automatically perform a rough adjustment for holiday effects. This factor

informs our decision to use historical data only from corresponding weeks in the Markovian

delta density method, and a truncated Laplacian kernel with narrower width near winter holi-

days in the extended delta density method. Specifically, for the extended delta density method,

we choose the half-width of the kernel to be lu = min{10, max{0, |u − 22| − 1}}, which assigns

lu = 0 for u within one week of epi week 52, and larger lu’s the farther u is from this time period,

up to a maximum value of 10.

Results

2015/2016 FluSight comparison

During the 2015/2016 FluSight comparison, we submitted weekly, prospective forecasts from

three forecasting systems:

• Delphi-Stat: an adaptively weighted ensemble of instance-based statistical forecasting meth-

ods, and the topic of this paper;

Fig 3. On average, wILI is higher on holidays than expected based on neighboring weeks. Weekly trends in wILI values, as expressed

by the contribution of a each week to a sum of wILI values from seasons 2003/2004 to 2015/2016, excluding 2008/2009 and 2009/2010

(which include portions of the 2009 influenza pandemic), show spikes and bumps upward on and around major holidays. (U.S. federal

holidays are indicated with event lines.) The number of non-ILI visits to ILINet health care providers spikes downwards on holidays

(disproportionately with any drops in the number of ILI visits), contributing to higher wILI. The number of ILI visits generally declines

in the second half of the winter holiday season, causing winter holiday peaks to appear even higher relative to nearby weeks. In addition

to holiday effects, we see that average ILINet participation jumps upward on epi week 40, and gradually tapers off later in the season and

in the off-season.

https://doi.org/10.1371/journal.pcbi.1006134.g003
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• Delphi-Archefilter: forms an empirical (rather than mechanistic) process model describing

wILI trajectories, and incorporates both wILI and multiple forms of digital surveillance data

using statistical filtering techniques [50]; and

• Delphi-Epicast: wisdom-of-crowds approach based on combining predictions submitted by

several human participants [72].

Our past and ongoing forecasts, as well as Python [73] and R [46] code for components of

the systems used to generate them, are publicly available online [74–76]. Changes made to Del-

phi-Stat throughout the 2015/2016 season are described in S5 Appendix. These three forecast-

ing systems were ranked as the top three in the 2015/2016 comparison in terms of overall

multibin score, with Delphi-Stat at the top. Fig 4 shows the performance of the three Delphi

forecasting systems, broken down by evaluation metric and forecasting target. S1 and S2 Figs.

show the multibin scores broken down by location and by forecasting week. Delphi-Stat had

consistently strong aggregate multibin scores across different targets, locations, and forecasting

weeks, and the best overall multibin log score of all FluSight 2015/2016 submissions. Delphi-

Stat’s unibin log score evaluations relative to the other two Delphi systems seem similar to or

better than the corresponding multibin log score evaluations, as Delphi-Stat has the best uni-

bin score of the three for each target rather than just overall; this observation seems natural

since Delphi-Stat was developed to optimize unibin log score, and may suggest that optimizing

for multibin log score rather than unibin log score when selecting ensemble weights or as a

post-processing step could produce multibin log score improvements. However, the system’s

point predictions, while optimized for the mean absolute error metric, were less accurate than

(but still competitive with) the other two when averaged across all predictions.

Fig 4. The three Delphi systems had similar overall scores; Delphi-Stat gave the best distributional forecasts overall, while Delphi-Epicast gave

the best point predictions overall. These bar plots contain evaluations for the 2015/2016 season, averaged across 11 locations and 29 forecast weeks, for

each target and evaluation metrics. Shorter bars indicate better performance. Each entry for a specific target is an average of 319 evaluations, giving a

total of 2233 evaluations overall for each system. This figure’s data is shown in tabular form in S2 Appendix.

https://doi.org/10.1371/journal.pcbi.1006134.g004
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Cross-validation analysis

Prospective forecast evaluation ensures that performance estimates are truly out-of-sample,

not inflated by design decisions or model fits that are influenced by the evaluation data; how-

ever, such evaluation data is not readily generated, as it is expensive in terms of physical time:

new wILI observations arrive once per week, and performance can vary significantly from sea-

son to season and from week to week. The evaluations from the 2015/2016 comparison may be

noisy due to these season-to-season fluctuations. To address this issue, we use pseudo-out-of-

sample retrospective analysis to provide more stable estimates of performance. Specifically, we

use leave-one-season-out cross-validation: for each evaluation season s, we form and evaluate

retrospective forecasts for s at every evaluation week using all training seasons except for s as

inputs to the forecasting methods as if they were past seasons. (We exclude seasons prior to

2010/2011 from the evaluation set because records of HHS region ILINet data revisions are

only available beginning in late 2009. We exclude seasons prior to 2003/2004 from the training

set because year-round ILINet observations, which are required by some of the ensemble com-

ponents, started in 2003. The 2009/2010 season—containing the peak of the 2009 pandemic

according to our adjusted definition of “season”—is also removed from the training set.

Finally, we do not include the season currently underway (S + 1) in evaluation or training as it

has not been completely observed.) Using cross-validation prevents most direct model fitting

to evaluation data, and basing design decisions on motivations other than the effects on cross-

validation evaluation helps limit fitting through iterative design.

Fig 5 shows the distribution of log scores for several forecasting methods, described earlier

in the text and in S1 Appendix, and the three ensemble approaches specified earlier in the text.

Except for the uniform distribution and ensembles, all forecasting methods miss some possi-

bilities completely, reporting unreasonable probabilities less than exp(−10)� 0.0000454 for

events that actually occurred. In these situations, the log score has been increased to the cap of

−10 (as CDC does for multibin log scores). Delta and residual density forecasting methods

(Delta density, Markovian; Delta density, extended; and BR, residual density) are less likely to

commit these errors than other non-ensemble, non-uniform approaches, and have higher

average log scores. Ensemble approaches combine forecasts of multiple components, missing

fewer possibilities, and ensuring that a reasonable log score is obtained by incorporating the

uniform distribution as a component. For the full Delphi-Stat ensemble, the main advantage

of the ensemble over its best component appears to be successfully filling in possibilities missed

by the best component with other models to avoid -10 and other low log scores appears, while

for ensembles of subsets of the forecasting methods, there are other benefits; S3 Appendix

shows the impact of these missed possibilities and the log score cap.

Fig 5 also includes estimates of the mean log score for each method and rough error bars

for these estimates. We expect there to be strong statistical dependence across evaluations for

the same season and location, and weaker dependencies between different seasons and loca-

tions; thus, the most common approaches to calculating standard errors, confidence intervals,

and hypothesis test results will be inappropriate. Properly accounting for such dependencies

and calibrating intervals and tests is an important but difficult task and is left for future investi-

gation. We use “rough standard error bars” on estimates of mean evaluations: first, the relevant

data (e.g., all cross-validation evaluations for a particular method and evaluation metric) is

summarized into one value for each season-location pair by taking the mean of all evaluations

for that season-location pair; we then calculate the mean and standard error of the mean of

these season-location values using standard calculations as if these values were independent.

Under some additional assumptions which posit the existence of a single underlying true

mean log score for each method, these individual error bars—or rough error bars for the mean
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difference in log scores between pairs of ethods—suggest that the observed data is unlikely to

have been recorded if the true mean log score of the extended delta density method were

greater than that of the adaptively weighted ensemble, or if the true mean log score of the

“Empirical Bayes A” method were greater than the extended delta density method. The mean

and rough standard error estimates in Fig 5 also appear in tabular form in S4 Appendix.

Methods that model wILI trajectories and “pin” past wILI to its observed values have a large

number of log scores near 0 because they are often able to confidently “forecast” many onsets

and peaks that have already occurred; ensemble methods also have a large number of log

scores near 0. Note that these scores are closer to 0 for ensembles that optimize weighting of

different methods than for the ensemble with uniform weights. For this particular set of fore-

casting methods, targets, and evaluation seasons:

• the uniformly weighted ensemble has lower average log score than the best individual com-

ponent (extended delta density),

Fig 5. Delta and residual density methods cover more observed events and attain higher average log scores than alternatives operating on seasons as a unit;

ensemble approaches can eliminate missed possibilities while retaining high confidence when justified. This figure contains histograms of cross-validation log

scores for a variety of forecasting methods, averaged across seasons 2010/2011 to 2015/2016, all locations, forecast weeks 40 to 20, and all forecasting targets. A solid

black vertical line indicates the mean of the scores in each histogram, which we use as the primary figure of merit when comparing forecasting methods; a rough error

bar for each of these mean scores is shown as a colored horizontal bar in the last panel, and as a black horizontal line at the bottom of the corresponding histogram if

the error bar is wider than the thickness of the black vertical line.

https://doi.org/10.1371/journal.pcbi.1006134.g005
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• using the stacking approach to assign weights to ensemble components improves ensemble

performance significantly and gives higher average log score than the best individual

component,

• the adaptive weighting scheme does not provide a major benefit over a fixed-weight scheme

using a single set of weights for each evaluation metric.

When given subsets of these forecasting methods as input, with regard to average

performance:

• the uniformly weighted ensemble often outperforms the best individual, but is sometimes

slightly (� 0.1 log score) worse;

• the stacking approach improves upon the performance of the uniformly weighted ensemble;

and

• the adaptive weighting scheme’s performance is equal to or better than that of the fixed-

weight scheme, sometimes improving on the log score by� 0.1. The adaptive weighting

scheme’s relative performance appears to improve with more input seasons, fewer ensem-

ble components, and increased variety in underlying methodologies and component per-

formance. These trends suggest that using wider RelevanceWeight kernels, regularizing

the component weights, or considering additional data from 2003/2004 to 2009/2010, for

which ground truth wILI but not weekly ILINet reports are available, may improve the

performance of the adaptive weighting scheme. In addition to these avenues for possible

improvement in ensemble weights for the components presented in Fig 5, the adaptive

weighting scheme provides a natural way of incorporating forecasting methods that gener-

ate predictions for only a subset of all targets, forecast weeks, or forecast types (distribu-

tional forecast or point prediction). For example, in the 2015/2016 season, we incorporated

a generalized additive model that provided point predictions (and later, distributional fore-

casts) for peak week and peak height given at least three weeks of observations from the

current season.

Fig 6 shows a subset of the cross-validation data used to form the ensemble and evaluate the

effectiveness of the ensemble method, for two sets of components: one using all the compo-

nents of Delphi-Stat, and the other incorporating three of the lower-performance components

and a uniform distribution for distributional forecasts. The Delphi-Stat ensemble near-uni-

formly dominates the best component, extended delta density, in terms of log score, and has

comparable mean absolute error overall. The ensemble approach produces greater gains for

the smaller subset of methods, surpassing not only its best components, but all forecasting

methods in the wider Delphi-Stat ensemble except for the delta density approaches.

Fig 7 shows cross-validation performance estimates for the extended delta density method

based on three evaluation schemes:

• Ground truth, no nowcast: the ground truth wILI for the left-out season up to the forecast

week is provided as input, resulting in an optimistic performance estimate;

• Real-time data, no nowcast: the appropriate wILI report is used for data from the left-out

season, but no adjustment is made for possible updates; this performance estimate is valid,

but we can improve upon the underlying method;

• Backcast, no nowcast: the appropriate wILI report is used for data from the left-out season,

but we use a residual density method to “backcast” updates to this report; this performance

estimate is valid, and the backcasting procedure significantly improves the log score;
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Fig 6. The ensemble method matches or beats the best component overall, consistently improves log score across all times, and, for

some sets of components, can provide significant improvements in both log score and mean absolute error. These plots display cross-

validation performance for two ensembles and some components broken down by evaluation metric, target type, and forecast week; each

point is an average of cross-validation evaluations for all 11 locations, seasons 2010/2011 to 2015/2016, and all targets of the given target

type; data from the appropriate ILINet reports is used as input for the left-out seasons, while finalized wILI is used for the training seasons.

Top half: log score evaluations (higher is better); bottom half: mean absolute error, normalized by the standard deviation of each target

(lower is better). Left side: full Delphi-Stat ensemble, which includes additional methods not listed in thelegend; right side: ensemble of the

three methods listed in the legend, plus a uniform distribution component for distributional forecasts. Many components of the full

ensemble are not displayed. The “Targets, uniform” method is excluded from any mean absolute error plots as it was not incorporated into

the point prediction ensembles.

https://doi.org/10.1371/journal.pcbi.1006134.g006
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• Backcast, Gaussian nowcast: same as “Backcast, no nowcast” but with another week of sim-

ulated data added to the forecast, based on a Gaussian-distributed nowcast; and

• Backcast, Student t nowcast: same as “Backcast, Gaussian nowcast” but using a Student t-
distributed nowcast in place of the Gaussian nowcast.

• Backcast, ensemble nowcast: same as the previous two but using the ensemble nowcast

(which combines “no nowcast” with “Student t nowcast”).

For every combination of target and forecast week, using ground truth as input rather than

the appropriate version of these wILI observations produces either comparable or inflated per-

formance estimates.

Using the “backcasting” method to model the difference between the ground truth and the

available report helps close the gap between the update-ignorant method. The magnitude of

the performance differences depends on the target and forecast week. Differences in mean

scores for the short-term targets are small and may be reasonably explained by random chance

Fig 7. Using finalized data for evaluation leads to optimistic estimates of performance, particularly for seasonal targets, “backcasting” improves

predictions for seasonal targets, and nowcasting can improve predictions for short-term targets. Mean log score of the extended delta density method,

averaged across seasons 2010/2011 to 2015/2016, all locations, all targets, and forecast weeks 40 to 20, both broken down by target and averaged across all targets

(“Overall”). Rough standard error bars for the mean score for each target (or overall) appear on the right, in addition to the error bars at each epi week.

https://doi.org/10.1371/journal.pcbi.1006134.g007
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alone; the largest potential difference appears to be an improvement in the “1 wk ahead” target

by using backcasting. More significant differences appear in each of the seasonal targets fol-

lowing typical times for the corresponding onset or peak events; most of the improvement can

be attributed to preventing the method from assigning inappropriately high probabilities

(often 1) to events that look like they must or almost certainly will occur based on available

wILI observations for past weeks, but which are ultimately not observed due to revisions of

these observations. The magnitude of the mean log score improvement depends in part on the

resolution of the log score bins; for example, wider bins for “Season peak percentage” may

reduce the improvement in mean log score (but would also shrink the scale of all mean log

scores). Similarly, the differences in scores may be reduced but not eliminated by use of multi-

bin scores for evaluation or ensembles incorporating uniform components for forecasting.

Using the heavy-tailed Student t nowcasts or nowcast ensemble appears to improve on

short-term forecasts without damaging performance on seasonal targets. The performance of

the nowcast ensemble is further explored in S5, S6, S7, S8, S9, S10, S11 and S12 Figs. The

Gaussian nowcast has a similar effect as the other nowcasters except on the “1 wk ahead” target

that it directly predicts: its distribution is too thin-tailed, resulting in lower mean log scores

than using the forecaster by itself on this target.

Discussion

Delphi-Stat forecasts submitted to the 2015/2016 comparison were based solely on wILI

observations from the 2015/2016 “pre-season” (EW21–EW39) and season (EW40–EW20)

and nonmechanistic models (with a majority of the ensemble weight assigned to the delta

and residual density based methods). Additional data and mechanistic models dealing with

categories of ILI or type and subtype of influenza, climate, digital surveillance, season-to-sea-

son patterns, spatial interaction, etc. were not incorporated. We do think that these types of

data are useful, but analyzing their dynamics and effects on wILI is complicated by the fact

that the smallest geographical units for which real-time wILI data is readily available for the

entire US are HHS regions (on a weekly time scale). We expect that mechanistic components

incorporating climate data and separating diseases, types, and subtypes will be more useful

when we are able to model, forecast, and validate data at a finer geographical resolution, ide-

ally at the metro area level. Similarly, we believe that digital surveillance data is useful; in fact,

we currently use a sensor fusion framework to combine several such data sources and short-

term forecasters to produce “nowcasts” for the current week [50, 51], and improve the perfor-

mance of forecasting methods by incorporating these nowcasts in a manner similar to the

ILINet-based backcasts.

During development and throughout this manuscript, we have focused on (thresholded)

unibin log score as a (near-)proper, simple-to-implement metric for distributional forecasts.

CDC FluSight organizers, on the other hand, selected exponentiated mean thresholded multi-

bin log scores over the entire influenza season as the evaluation metric for forecast compari-

sons to 1. encourage high-quality distributional predictions rather than point predictions, for

better understanding of the risk of certain scenarios, 2. make the scoring metric more accessi-

ble to policymakers than unibin and non-exponentiated variants, and 3. avoid −1 scores due

to a single forecaster mistake or unmodeled data revisions. We believe that it is up to policy-

makers to decide whether these forecasts are ready for use in decision support at the current

level of accuracy. For other potential users and forecast comparisons, we provide absolute

error evaluations for all targets in 2015/2016 in Fig 4 and S2 Appendix, as well as absolute

error and percent absolute error for short-term targets from cross-validation in S5, S6, S7, S8,

S9, S10, S11 and S12 Figs.
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Conclusion

The delta density forecasting method, stacking-based adaptively weighted ensemble, distribu-

tional “backcasts” of wILI updates, and nowcasts from ILI-Nearby provide significant

improvements upon other individual forecasting approaches that we considered. Promising

avenues for further improvements include refining the methodology to rely less on arbitrary

and heuristic feature, kernel, bandwidth, and parameter selections, regularization of ensemble

weights, incorporating conditional density estimators from statistical literature, and using

additional data sources and finer-resolution data models.
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