Supplement to: A Statistician Plays Darts

Rearranging the Dartboard

Ryan J. Tibshirani* Andrew Price † Jonathan Taylor ${ }^{\ddagger}$

Recall that we considered the simple model for dart throws

$$
Z=\mu+\epsilon, \epsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

and computed $\mathrm{E}_{\mu, \sigma^{2}}[s(Z)]$ for a given σ and all μ over a fine grid. We were concerned mainly with the optimal location

$$
\underset{\mu}{\operatorname{argmax}} \mathrm{E}_{\mu, \sigma^{2}}[s(Z)],
$$

and we noted that this varies considerably with σ. Now we turn our attention to optimal expected score

$$
f(\sigma)=\max _{\mu} \mathrm{E}_{\mu, \sigma^{2}}[s(Z)] .
$$

Not surprisingly, this drops significantly with increasing σ, shown in Figure 1 . For $0 \leq \sigma \leq 20$, this curve behaves like $2^{-\sigma}$, and then it decreases linearly for $20<\sigma \leq 100$. Thus for a skilled player $(\sigma \leq 20)$ every increase in accuracy reaps large rewards. On the other hand, it appears than an unskilled player ($\sigma \geq 60$) can't do much better than the uniform model!

The sharp decline over $0 \leq \sigma \leq 20$ can be regarded as a testament to the difficulty of the current dartboard. This raises the question: can we rearrange the numbers $1, \ldots 20$ to produce an even harder dartboard (sharper decline)? We measure the difficulty of a dartboard arrangement by

$$
\int_{15}^{60} f_{d}(\sigma) d \sigma
$$

where

$$
f_{d}(\sigma)=\max _{\mu} \mathrm{E}_{\mu, \sigma^{2}}\left[s_{d}(Z)\right],
$$

with s_{d} the score function for dartboard arrangement $d=(d(1), \ldots d(20))$. Figure
We first consider two alternate arrangements. The first is

$$
d_{\text {Curtis }}=(20,1,19,3,17,5,15,7,13,9,11,10,12,8,14,6,16,4,18,2),
$$

taken from Cur04. This arrangement maximizes the sum of the absolute adjacent differences $P_{1}(d)=\sum_{i=1}^{20}|d(i+1)-d(i)|$, where we let $d(21)=d(1)$. The second is

$$
d_{\text {linear }}=(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) \text {, }
$$

a simple linear arrangement. Intuitively, we expect that the arrangement $d_{\text {Curtis }}$ will be quite hard, but $d_{\text {linear }}$ should be pretty easy. Figure 2 visualizes the different dartboard arrangements.

[^0]

Figure 1: Plot of the maximum expected score $f(\sigma)=\max _{\mu} \mathrm{E}_{\mu, \sigma^{2}}[s(Z)]$ over the range $0 \leq \sigma \leq 100$. The red dashed line corresponds to the average score when the dart throw is distributed uniformly at random over the board.

We also consider a search over all possible dartboard arrangements based on the MetropolisHastings algorithm (c.f Liu08] for a complete description of Metropolis-Hastings and other Markov Chain Monte Carlo techniques) to sample a random dartboard D according to

$$
\begin{equation*}
\mathrm{P}_{\theta}(D=d) \propto \exp \left(-\theta \int_{15}^{60} f_{d}(\sigma) d \sigma\right) \tag{1}
\end{equation*}
$$

The interval $[15,60]$ was chosen as nearly all dartboard arrangements seem to agree for $\sigma<15$, and the challenging ones agree for $\sigma>60$.

Our algorithm can be described in two simple steps, following the general Metropolis-Hastings steps:

Proposal: Given a current arrangement $D_{t}=d$ at time t, generate a new arrangement $d_{\{i, j\}}$ by swapping the position of two elements of the arrangement, chosen uniformly at random.

Acceptance: Simulate $U \sim \operatorname{Uniform}(0,1)$, if $U \leq \mathrm{P}_{\theta}\left(d_{\{i, j\}}\right) / \mathrm{P}_{\theta}(d)$ then accept the proposal (i.e. set $D_{t+1}=d_{\{i, j\}}$), else remain at d (i.e. set $D_{t+1}=d$).
This algorithm constructs a random walk over dartboard arrangements whose stationary distribution (11) gives higher probability to boards with consistently small values of f_{d}. In order to find the most difficult arrangement, the simplest approach is to run the algorithm for T time steps, yielding a sequence of arrangements $\left(D_{1}, \ldots, D_{T}\right)$, returning

$$
D^{*}=\underset{d \in\left\{D_{1}, \ldots, D_{T}\right\}}{\operatorname{argmin}} \int_{15}^{60} f_{d}(\sigma) d \sigma .
$$

We chose this naive method for finding the arrangement with lowest score over more sophisticated techniques such as stochastic annealing [GG84].

Figure 2:

See Figure 3 for a plot of f_{d} for the various arrangements d. Over the interval [15, 60], it turns out that $f_{d_{\text {Curtis }}}<f_{d_{\text {standard }}}$, while $f_{d_{\text {linear }}} \gg f_{d_{\text {standard }}}$. Starting at the Curtis arrangement, we ran the Metropolis-Hastings algorithm for many time steps. Interestingly, the best arrangement that we encountered, D^{*}, is actually just a reflection of the Curtis board about the y-axis. We note that D^{*} has the same absolute adjacent differences as the Curtis arrangement, so it is also maximal with respect to P_{1}. The curves $f_{D^{*}}$ and $f_{d_{\text {Curtis }}}$ are equal (up to small numerical errors) for every value of σ, as it should be, given the symmetry of our Gaussian distribution.

Figure 3: Plot of the maximum expected score f_{d} for the various dartboard arrangements d.
Furthermore, for every t, the visited chain D_{t} achieved

$$
f_{D_{t}}(\sigma) \geq f_{d_{\text {Curtis }}}(\sigma), \quad 15 \leq \sigma \leq 60
$$

This leads us to the following conjecture (which we will not attempt to prove)

$$
d_{\text {Curtis }}=\underset{d}{\operatorname{argmin}} f_{d}(\sigma), \quad 15 \leq \sigma \leq 60 .
$$

References

[Cur04] S. A. Curtis. Darts and hoopla board design. Information Processing Letters, 92(1):53-56, 2004.
[GG84] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE transactions on pattern analysis and machine intelligence, 6(6):721-741, 1984.
[Liu08] J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer, New York, 2008.

[^0]: *Dept. of Statistics, Stanford University, ryantibs@stanford.edu
 ${ }^{\dagger}$ Dept. of Electrical Engineering, Stanford University, adprice@stanford.edu
 ${ }^{\ddagger}$ Dept. of Statistics, Stanford University, jtaylo@stanford.edu

