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Rearranging the Dartboard

Ryan J. Tibshirani∗ Andrew Price† Jonathan Taylor‡

Recall that we considered the simple model for dart throws

Z = µ+ ǫ, ǫ ∼ N (0, σ2I),

and computed Eµ,σ2 [s(Z)] for a given σ and all µ over a fine grid. We were concerned mainly with
the optimal location

argmax
µ

Eµ,σ2 [s(Z)],

and we noted that this varies considerably with σ. Now we turn our attention to optimal expected
score

f(σ) = max
µ

Eµ,σ2 [s(Z)].

Not surprisingly, this drops significantly with increasing σ, shown in Figure 1. For 0 ≤ σ ≤ 20, this
curve behaves like 2−σ , and then it decreases linearly for 20 < σ ≤ 100. Thus for a skilled player
(σ ≤ 20) every increase in accuracy reaps large rewards. On the other hand, it appears than an
unskilled player (σ ≥ 60) can’t do much better than the uniform model!

The sharp decline over 0 ≤ σ ≤ 20 can be regarded as a testament to the difficulty of the
current dartboard. This raises the question: can we rearrange the numbers 1, . . . 20 to produce an
even harder dartboard (sharper decline)? We measure the difficulty of a dartboard arrangement
by

∫

60

15

fd(σ) dσ,

where
fd(σ) = max

µ
Eµ,σ2 [sd(Z)],

with sd the score function for dartboard arrangement d =
(

d(1), . . . d(20)
)

. Figure
We first consider two alternate arrangements. The first is

dCurtis = (20, 1, 19, 3, 17, 5, 15, 7, 13, 9, 11, 10, 12, 8, 14, 6, 16, 4, 18, 2),

taken from [Cur04]. This arrangement maximizes the sum of the absolute adjacent differences
P1(d) =

∑

20

i=1
|d(i + 1)− d(i)|, where we let d(21) = d(1). The second is

dlinear = (20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1),

a simple linear arrangement. Intuitively, we expect that the arrangement dCurtis will be quite hard,
but dlinear should be pretty easy. Figure 2 visualizes the different dartboard arrangements.
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Figure 1: Plot of the maximum expected score f(σ) = maxµ Eµ,σ2 [s(Z)] over the range 0 ≤ σ ≤ 100. The

red dashed line corresponds to the average score when the dart throw is distributed uniformly at random over

the board.

We also consider a search over all possible dartboard arrangements based on the Metropolis-
Hastings algorithm (c.f [Liu08] for a complete description of Metropolis-Hastings and other Markov
Chain Monte Carlo techniques) to sample a random dartboard D according to

Pθ(D = d) ∝ exp

(

−θ

∫

60

15

fd(σ) dσ

)

. (1)

The interval [15, 60] was chosen as nearly all dartboard arrangements seem to agree for σ < 15,
and the challenging ones agree for σ > 60.

Our algorithm can be described in two simple steps, following the general Metropolis-Hastings
steps:

Proposal: Given a current arrangement Dt = d at time t, generate a new arrangement d{i,j} by
swapping the position of two elements of the arrangement, chosen uniformly at random.

Acceptance: Simulate U ∼ Uniform(0, 1), if U ≤ Pθ(d{i,j})/Pθ(d) then accept the proposal (i.e.
set Dt+1 = d{i,j}), else remain at d (i.e. set Dt+1 = d).

This algorithm constructs a random walk over dartboard arrangements whose stationary distribu-
tion (1) gives higher probability to boards with consistently small values of fd. In order to find the
most difficult arrangement, the simplest approach is to run the algorithm for T time steps, yielding
a sequence of arrangements (D1, . . . ,DT ), returning

D∗ = argmin
d∈{D1,...,DT }

∫

60

15

fd(σ) dσ.

We chose this naive method for finding the arrangement with lowest score over more sophisticated
techniques such as stochastic annealing [GG84].

2



20 1

18

4

13

6

10

15

2

17319

7

16

8

11

14

9

12

5

Standard

20 1

19

3

17

5

15

7

13

91110

12

8

14

6

16

4

18

2

Curtis

20 19

18

17

16

15

14

13

12

11109

8

7

6

5

4

3

2

1

Linear

Figure 2:

See Figure 3 for a plot of fd for the various arrangements d. Over the interval [15, 60], it turns
out that fdCurtis

< fdstandard , while fdlinear ≫ fdstandard . Starting at the Curtis arrangement, we ran
the Metropolis-Hastings algorithm for many time steps. Interestingly, the best arrangement that
we encountered, D∗, is actually just a reflection of the Curtis board about the y-axis. We note
that D∗ has the same absolute adjacent differences as the Curtis arrangement, so it is also maximal
with respect to P1. The curves fD∗ and fdCurtis

are equal (up to small numerical errors) for every
value of σ, as it should be, given the symmetry of our Gaussian distribution.
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Figure 3: Plot of the maximum expected score fd for the various dartboard arrangements d.

Furthermore, for every t, the visited chain Dt achieved

fDt
(σ) ≥ fdCurtis

(σ), 15 ≤ σ ≤ 60.

3



This leads us to the following conjecture (which we will not attempt to prove)

dCurtis = argmin
d

fd(σ), 15 ≤ σ ≤ 60.
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