Supplement to: A Statistician Plays Darts

Rearranging the Dartboard

Ryan J. Tibshirani^{*} Andrew Price[†] Jonathan Taylor[‡]

Recall that we considered the simple model for dart throws

$$Z = \mu + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2 I),$$

and computed $E_{\mu,\sigma^2}[s(Z)]$ for a given σ and all μ over a fine grid. We were concerned mainly with the optimal location

$$\underset{\mu}{\operatorname{argmax}} \operatorname{E}_{\mu,\sigma^2}[s(Z)],$$

and we noted that this varies considerably with σ . Now we turn our attention to optimal expected score

$$f(\sigma) = \max_{\mu} \operatorname{E}_{\mu,\sigma^2}[s(Z)].$$

Not surprisingly, this drops significantly with increasing σ , shown in Figure 1. For $0 \le \sigma \le 20$, this curve behaves like $2^{-\sigma}$, and then it decreases linearly for $20 < \sigma \le 100$. Thus for a skilled player ($\sigma \le 20$) every increase in accuracy reaps large rewards. On the other hand, it appears than an unskilled player ($\sigma \ge 60$) can't do much better than the uniform model!

The sharp decline over $0 \le \sigma \le 20$ can be regarded as a testament to the difficulty of the current dartboard. This raises the question: can we rearrange the numbers $1, \ldots 20$ to produce an even harder dartboard (sharper decline)? We measure the difficulty of a dartboard arrangement by

$$\int_{15}^{60} f_d(\sigma) \ d\sigma,$$

where

$$f_d(\sigma) = \max_{\mu} \operatorname{E}_{\mu,\sigma^2}[s_d(Z)],$$

with s_d the score function for dartboard arrangement $d = (d(1), \ldots d(20))$. Figure

We first consider two alternate arrangements. The first is

$$d_{\text{Curtis}} = (20, 1, 19, 3, 17, 5, 15, 7, 13, 9, 11, 10, 12, 8, 14, 6, 16, 4, 18, 2),$$

taken from [Cur04]. This arrangement maximizes the sum of the absolute adjacent differences $P_1(d) = \sum_{i=1}^{20} |d(i+1) - d(i)|$, where we let d(21) = d(1). The second is

$$d_{\text{linear}} = (20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)$$

a simple linear arrangement. Intuitively, we expect that the arrangement d_{Curtis} will be quite hard, but d_{linear} should be pretty easy. Figure 2 visualizes the different dartboard arrangements.

^{*}Dept. of Statistics, Stanford University, ryantibs@stanford.edu

[†]Dept. of Electrical Engineering, Stanford University, adprice@stanford.edu

[‡]Dept. of Statistics, Stanford University, jtaylo@stanford.edu

Figure 1: Plot of the maximum expected score $f(\sigma) = \max_{\mu} E_{\mu,\sigma^2}[s(Z)]$ over the range $0 \le \sigma \le 100$. The red dashed line corresponds to the average score when the dart throw is distributed uniformly at random over the board.

We also consider a search over all possible dartboard arrangements based on the Metropolis-Hastings algorithm (c.f [Liu08] for a complete description of Metropolis-Hastings and other Markov Chain Monte Carlo techniques) to sample a random dartboard D according to

$$P_{\theta}(D=d) \propto \exp\left(-\theta \int_{15}^{60} f_d(\sigma) \ d\sigma\right). \tag{1}$$

The interval [15,60] was chosen as nearly all dartboard arrangements seem to agree for $\sigma < 15$, and the challenging ones agree for $\sigma > 60$.

Our algorithm can be described in two simple steps, following the general Metropolis-Hastings steps:

- **Proposal:** Given a current arrangement $D_t = d$ at time t, generate a new arrangement $d_{\{i,j\}}$ by swapping the position of two elements of the arrangement, chosen uniformly at random.
- Acceptance: Simulate $U \sim \text{Uniform}(0,1)$, if $U \leq P_{\theta}(d_{\{i,j\}})/P_{\theta}(d)$ then accept the proposal (i.e. set $D_{t+1} = d_{\{i,j\}}$), else remain at d (i.e. set $D_{t+1} = d$).

This algorithm constructs a random walk over darboard arrangements whose stationary distribution (1) gives higher probability to boards with consistently small values of f_d . In order to find the most difficult arrangement, the simplest approach is to run the algorithm for T time steps, yielding a sequence of arrangements (D_1, \ldots, D_T) , returning

$$D^* = \operatorname*{argmin}_{d \in \{D_1, \dots, D_T\}} \int_{15}^{60} f_d(\sigma) \ d\sigma.$$

We chose this naive method for finding the arrangement with lowest score over more sophisticated techniques such as stochastic annealing [GG84].

Figure 2:

See Figure 3 for a plot of f_d for the various arrangements d. Over the interval [15, 60], it turns out that $f_{d_{\text{Curtis}}} < f_{d_{\text{standard}}}$, while $f_{d_{\text{linear}}} \gg f_{d_{\text{standard}}}$. Starting at the Curtis arrangement, we ran the Metropolis-Hastings algorithm for many time steps. Interestingly, the best arrangement that we encountered, D^* , is actually just a reflection of the Curtis board about the y-axis. We note that D^* has the same absolute adjacent differences as the Curtis arrangement, so it is also maximal with respect to P_1 . The curves f_{D^*} and $f_{d_{\text{Curtis}}}$ are equal (up to small numerical errors) for every value of σ , as it should be, given the symmetry of our Gaussian distribution.

Figure 3: Plot of the maximum expected score f_d for the various darboard arrangements d.

Furthermore, for every t, the visited chain D_t achieved

$$f_{D_t}(\sigma) \ge f_{d_{\text{Curtis}}}(\sigma), \quad 15 \le \sigma \le 60.$$

This leads us to the following conjecture (which we will not attempt to prove)

$$d_{\text{Curtis}} = \underset{d}{\operatorname{argmin}} f_d(\sigma), \quad 15 \le \sigma \le 60.$$

References

- [Cur04] S. A. Curtis. Darts and hoopla board design. Information Processing Letters, 92(1):53–56, 2004.
- [GG84] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE transactions on pattern analysis and machine intelligence*, 6(6):721–741, 1984.
- [Liu08] J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer, New York, 2008.