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1 Introduction
Epidemic forecasting has garnered increasing interest in the last decade, nurtured and scaffolded by various forecasting
challenges organized by groups within the U.S. federal government, including the CDC [1–3], OSTP [4], DARPA [5],
and elsewhere [6, 7]. In 2017, after several years of experimentation with flu forecasting in academic groups, the CDC
decided to incorporate influenza forecasting into its normal operations, including weekly public communications [8]
and briefing to higher-ups. To provide more reliable infrastructure and support for its forecasting needs, the CDC in
2019 designated two national Centers of Excellence for Influenza Forecasting, one at the University of Massachusetts at
Amherst1 and one at Carnegie Mellon University2.

Not unrelatedly, the last decade or so also seen a rise in the importance of digital surveillance in public health, with
improving epidemic tracking and forecasting models being a key application of these data. Digital streams, such as
search and social media trends, have constituted a large part of the focus [9–14]; however, even more broadly, auxiliary
surveillance streams, which operate outside of traditional public health reporting, such as online surveys, medical
devices, or electronic medical records, have received considerable attention as well [15–25].

The Carnegie Mellon Delphi group, which the two of us co-lead, has worked in both of these emerging disciplines—
epidemic forecasting, and building relevant auxiliary signals to aid such forecasting models—since 2012. In 2020, as
the pandemic broke out, we struggled like many other groups to find ways to contribute to the national efforts to respond
to the pandemic. We ended up shifting our focus to lie nearly entirely on the data end of the spectrum, pursuing several
different directions in order to build and make available to the public a variety of new indicators that reflect real-time
COVID-19 activity in the U.S. Three papers in this collection describe this work from three different perspectives. A
fourth describes international work by some of our collaborators that parallels our group’s work on surveys in the U.S.

2 Papers in This Collection
Here is a very brief summary of the papers in this collection.

1. Reinhart et al. [26] describes our group’s (ongoing) effort in building and maintaining COVIDcast: an open
repository of real-time, geographically detailed COVID-19 indicators in the U.S. These indicators (a term we use
interchangeably with signals) are derived from a diverse set of data sources: medical testing devices, medical
insurance claims, internet search trends, app-based mobility data, and online surveys, among others. Many
indicators are demonstrated to have meaningful statistical relationships with what have become the pandemic’s
“topline” numbers (reported cases, hospitalizations, deaths), whereas others uniquely reflect certain activity (not
available in other publicly-available data sources) that may drive or affect the spread of COVID-19. The paper
demonstrates through a number of examples that the indicators in the COVIDcast repository can improve on the
timeliness, robustness, and scope of traditional public health reporting streams.

2. McDonald et al. [27] provides a detailed analysis of whether a core set of the indicators in the COVIDcast
repository can be used to improve the accuracy of COVID-19 short-term forecasting and hotspot detection models.

1https://reichlab.io/people
2https://delphi.cmu.edu/about/center-of-excellence/
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This speaks to the quantitative utility of the indicators in a way that is directly tied to the benefits observed
in relevant downstream modeling tasks. The paper finds that time series models (that are already competitive
with top forecasters from the COVID-19 Forecast Hub [28]) improve in predictive accuracy when they are
supplemented with any of the five indicators under consideration, based on COVID-related medical insurance
claims, self-reported symptoms from surveys (in fact, from CTIS, described next), and COVID-related Google
searches.

3. Salomon et al. [29] focuses on the U.S. COVID-19 Trends and Impact Survey (CTIS), an (ongoing) online survey
operated by our group, in partnership with Facebook. This is a very rich source of data about the pandemic
and its effect on people, only partially reflected by the indicators (derived from the survey) in the COVIDcast
repository; the full data set of individual, anonymized survey responses is available to researchers under a data
use agreement. The paper presents descriptive analyses that reflect the unique value of CTIS as an important
supplement to public health reporting, in particular, as an instrument to measure key information about behaviors,
attitudes, economic impacts, and other topics not covered in traditional public health streams.

4. Astley et al. [30] focuses on the international version of CTIS, which is an (ongoing) online survey operated
by the University of Maryland, again in partnership with Facebook. This international survey covers over 100
countries and territories, and is run in coordination with the U.S. one, so that the two bear similar structures
and undergo similar updates; the full data set of individual, anonymized international survey responses is again
available to individual researchers under a data use agreement. The paper presents analyses that reflect some
basic and important characteristics of the international survey, reflecting its value abroad, where public health
reporting efforts may be more limited than those in the U.S.

3 Lessons Learned
We now take the opportunity to reflect on some “lessons learned” from our work over the past year and a half. Some of
the observations below are described in more depth in the papers in the collection, and others extend beyond the papers
in the collection (but we give references to relevant articles with more details in the discussion below).

Deceptively simple data labels often belie the data’s true meaning and complexity. Labels such as “COVID-19
cases” or “COVID-19 hospitalizations” hide an enormous amount of complexity and potential ambiguity, especially
when applied to data at fine geographic and temporal resolutions. We elaborate on this and several other examples in
what follows.

• Cases may be lab-confirmed only or also suspected (with the definition of “suspected” varying across jurisdictions
and time); they may be listed by date reported on the jurisdiction’s website, by date reported to the public health
authority, by date tested, by specimen collection date, or occasionally by symptom onset date (most informative
but often unavailable or inapplicable). A casual review of many websites of local and state health departments
suggests there is great heterogeneity in what is being reported [31].

• The term “hospitalizations” is used ambiguously, sometimes referring to incidence (hospital admissions) and
sometimes to prevalence (hospital bed occupancy). These two quantities cannot easily be mapped to one another,
because COVID-19 hospital discharges are rarely if ever reported. Furthermore, people admitted without a
COVID-19 diagnosis may acquire the infection and/or the diagnosis at any time during their hospital stay.

• Hospitalizations may be reported by the location (typically county) of the patient’s residence, but are more often
reported by the county of the reporting hospital. This is an important distinction, as many rural COVID-19
patients in need of advanced care travel to the nearest secondary or tertiary hospital, often at a nearby urban county.
For example, the hospitals in Pittsburgh, located in Allegheny County, Pennsylvania (population 1.2 million),
treat patients from throughout a 13 county region in Southwestern Pennsylvania (population over 4 million). For
tracking and forecasting hospitalization burden then, the geographic units of hospital referral regions (HRRs,
[32]) may be most appropriate. Alas, these units do not conform to county boundaries, which complicates the
projection of cases to hospitalizations.

• Deaths are usually reported by county where they occurred, which for hospitalized patients may differ from their
county of residence [33].
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• Hospitalization or deaths with COVID-19 are significantly different from hospitalization or deaths due to
COVID-19 (as captured by e.g., a COVID-related chief complaint or primary ICD-10 code). The proportion of
the two varies significantly by age groups and across time [34].

• Test positivity rates are most often reported by lumping together all tests performed regardless of the reason
for performing them. Tests taken following positive diagnosis, due to symptoms, or due to being a contact of a
confirmed case, are all likely to have a much higher positivity rate than that of the general population. Screening
tests are most likely to reflect the true prevalence in the screened population. Sadly, very few jurisdictions report
or even retain the breakdown of the test results by reason for testing, thereby losing forever valuable information.

• Medical insurance claims offer rich, detailed information about COVID-19 and other health conditions, but are
not without their weaknesses. Claims are often not filed until weeks and months after the medical encounter. As
such, signals derived from claims are usually subject to regular and considerable revisions up to 60 days after a
given date of service, because signals must be updated each time new claims for that day of service are received
(specific statistics on how this affects signal values are given below). This tends to make projections challenging,
especially at finer geographic units such as counties, since there tends to be a high degree of heterogeneity across
locations.

• Medical claims contain information about lab tests taken, but not their results. More generally, for understandable
HIPAA reasons, medical claims contain only information necessary for adjudicating and auditing claims.

Data definitions must be disambiguated, clarified, and made consistent to the greatest extent possible, and remaining
inconsistencies must be documented and saliently communicated.

Understanding the data generation process is critical for downstream applications. Both traditional public health
surveillance data streams and newer digital surveillance streams are the result of often complex processes, some
having to do with the underlying health status or activities being monitored, others with the reporting process itself.
Understanding the entire “data generation process” for each data source can be challenging, but is absolutely essential
for proper modeling and effective use of the data. Some examples are as follows.

• In medical claims, relevant diagnoses and comorbidities may not be reflected if they are not directly relevant to
the charges incurred. On the other hand, because medical claim coding determines reimbursement levels, some
codes may be over-represented relative to their medical significance.

• Some populations and some healthcare settings are not reflected in the commercial claims stream. These include
the healthcare systems of the Department of Defense, Indian Health Services, Veterans Affairs, prison systems,
and other systems that do not reimburse by procedure or service, as well as Medicare fee-for-service and Medicaid.
This can cause significant bias in the signals relative to the prevalence in the general population.

• Public health reporting data are often subject to backlogs and reporting delays, and estimates for any particular
date can be revised over time as errors are found or additional data becomes available. During the pandemic,
audits, corrections, and the clearing of backlogs has frequently resulted in huge artificial spikes and drops [35].
Data aggregators like Johns Hopkins CSSE [36] have worked tirelessly to correct such anomalies after first
publication (they attempt to back-distribute a spike or dip, by working with a local authority to figure out how this
should best be done).

• Data revisioning (also known as “backfill”) is pervasive not only in traditional public health reporting, but also in
many (though not all) digital surveillance sources. As already alluded to above, signals based on medical claims
typically undergo regular revisions because many claims (on which these signals are based) get submitted and
processed late; for many COVID-related claims-based signals, the median relative error between initial reports
and final values is over 10%, and only after 30 days or so do estimates typically match finalized values within
5% [26]. However, the systematic nature of these revisions suggests that, with suitable historical data, statistical
models could be fit to estimate the final values from preliminary reports. By comparison, revisions to public
health reports during the pandemic (the spikes and dips just described) have been much less systematic and much
less predictable.
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• Traditionally, public health agencies do not publish provisional data until it meets a level of stability. For example,
NCHS data on the percentage of deaths due to pneumonia, influenza and COVID-19 is not released until at least
20% of the expected deaths in a jurisdiction have been reported [37], a process that may take several weeks.
However, for modeling and forecasting purposes, even highly provisional data can be very informative, as long as
sufficient historical provisional data is collected so that the statistical relationships between provisional values and
finalized values can be modeled.

• Calendar effects permeate not only the reporting process but also health-seeking behavior and the epidemic process
itself, with the effects on these three processes not easy to disentangle. Major holidays and other national or
regional events are associated with significant travel, social mixing, and other distinct behaviors affecting disease
transmission. However, holidays and weekends also affect health-seeking behavior via reduced non-emergency
healthcare capacity (doctors’ offices and labs being partially or fully closed). Perhaps the strongest calendar effects
are on reporting, including claim filing and hospital reporting. Using 1- or 2-week trailing averages eliminates
weekend effects, but at a cost of reduced temporal resolution, and it leaves unsolved the effects of holidays. A
better approach might be to explicitly model and correct for calendar effects.

Mandated reporting in a time of emergency can be burdensome and inflexible. COVID-19 reporting by hospitals,
as mandated by HHS during the pandemic, consisted of many dozens of data elements and imposed a significant burden
on the nation’s 6,000 or so hospitals at a time that they were already stretched to their limits. It also took a huge effort to
formulate, communicate, disambiguate, and monitor for quality assurance and uniformity of interpretation. In light of
this, it is not surprising that it took a long time, and pressure, for most hospitals to comply (near universal compliance
was not achieved until December 2020). When changes needed to be made to the collected statistics, an arduous and
time consuming process of approvals, re-formulation, re-communication, re-implementation, and re-assessment had to
be followed.

While some aspects of mandated reporting are likely to remain irreplaceable, effective alternative surveillance
sources can be of great use: they can improve on the timeliness, scope, robustness, and utility of mandated reporting
data, while being less burdensome to collect. This is a common theme that runs through all four papers in the collection,
but is perhaps most directly addressed in [26] (which focuses on the ecosystem of signals broadly). That said, we have
far from saturated the utility of auxiliary surveillance. Much more needs to be developed in this area in order to usher
epidemic tracking into its next phase of reliability, accuracy, and transparency. To us, electronic medical records hold a
great promise for surveillance streams, and we elaborate on this in the next section.

Human behavior and its impact on the progression of epidemics is hard to measure and hard to model. In the
nearly 10 years of government-organized epidemic forecasting exercises in the U.S., efforts were focused on modeling
the natural history and likely evolution of the pathogen, with adaptation of human behavior playing a secondary role (if
any role at all). The pandemic demonstrated that our forecasting models must pay closer attention to reactive human
behavior, even more so if we are to consider interventions. Unfortunately, many highly relevant aspects of human
behavior, like compliance with policies and recommendations, are not measured by publicly available data streams (with
perhaps surveys and mobility reports providing our best glimpse into these hard-to-observe aspects of behavior [38]).
Furthermore, even if we had these data in hand, incorporating their effects will require significant and new cognitive and
behavioral modeling, with uncertain success. The tragic breakdown and fragmentation of trust in governments, public
health officials, and healthcare professionals are perhaps the hardest factors to measure and model, yet they played an
undeniable role in the progression of the current pandemic in the U.S. and other countries.

4 The Road Ahead
The focus of the Delphi group during the initial, critical period of the pandemic (February 2020 – March 2021) was
on short-term goals: trying to provide signals, analysis, and decision support to federal, state and local public health
officials, as well as to fellow researchers, data journalists, and the general public. In spring of 2021, equipped with
the hard lessons learned during this tumultuous year, we turned our attention back to the original vision of the Delphi
group, and asked ourselves: given where we are and what we know now, what is needed to be able to take a major step
forward in epidemic tracking and forecasting? In this section, we list some ideas which we hope will elicit further public
discussion and, most importantly, experimentation. Because our expertise lies in modeling and forecasting, not in public
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health surveillance, our perspective and recommendations are necessarily limited to those aspects of surveillance that
are needed to realize our vision.

EMR as a key missing component for epidemic tracking and forecasting. The success of nowcasting, analytics
and forecasting depends crucially on the availability of rich, real-time data sources. In light of the limitations of mandated
reporting discussed above, we must consider the complementary value of other data sources. Chief among these are
electronic medical records (EMR), as are being created and used daily by inpatient and outpatient healthcare providers,
medical laboratories, and pharmacies. The advantage of these data resources: they are rich, real-time, and already being
generated (found “in the wild”). The challenges: they are highly fragmented in the U.S., with its approximately 6,000
hospitals and 100,000 outpatient care facilities. One promising avenue for countering this fragmentation are Health
Information Exchanges (HIEs), which were set up in the early 2000s with the support of the federal government to
coordinate the sharing of healthcare information among healthcare providers in a given region, and eventually nationally.
The primary goal of the HIEs has been patient continuity of care, but public health surveillance is recognized as an
additional worthy goal. In the context of health surveillance, HIEs hold the promise of reducing fragmentation from a
hundred thousand partners to only a few hundred.

Other formidable challenges to using EMR are legal, ethical, commercial, and operational. Who owns the data, who
has access to it, and who has use rights are all complex and often open questions. An overriding concern is of course
patient privacy. We must find a way to use this highly promising data for the common good without compromising the
privacy of individuals. Fortunately, a technological solution appears feasible, in the form of federated surveillance. An
outline is as follows.

• A common API is developed for querying all participating EMR custodians.

• EMR databases are queried daily with an agreed upon set of queries, and return aggregated counts.

• These counts are further aggregated across multiple providers and localities, and then fused with all other available
data sources to provide alerts, nowcasts, and forecasts.

• These model outputs are then shared back to the contributing EMR custodians, as well as to CDC and other
federal and state agencies.

• Done in this way, no personal health information (PHI) ever leaves the custodians’ premises, while aggregated
statistics can be combined to increase statistical power, thereby shortening alert latency and improving detection
and prediction capabilities.

A successful example of federated querying (albeit designed for research rather than real-time tracking and
forecasting) has been recently demonstrated in the UK [39].

One advantage of this approach to health surveillance is that when a new emerging health crisis is identified, or
when specific syndromic signatures are discovered (e.g., ageusia and anosmia for COVID-19), a new query can be
developed, approved, and deployed literally overnight, allowing us to “shine a light” on it on very short notice. This
can be contrasted with traditional, legally-mandated public health reporting, which could take weeks and months to
develop, approve, negotiate, disseminate, implement, monitor, and assure quality of, as has happened during the current
pandemic. In the slightly longer term, demonstrating the effectiveness and superiority of federated surveillance could
obviate the need for crisis-time mandated reporting, alleviating the reporting burden on hospitals and other healthcare
providers during these difficult times.

In an interpandemic period, an important use case for federated surveillance is detection of trends and anomalies.
A set of queries can be designed to continuously test for unusual recent spikes or trends in any number of diagnoses,
symptoms, lab tests, or prescriptions. The aggregation of evidence across many systems, localities, and data streams
will make detection both more sensitive and more robust. Such a system would likely have detected the opioid epidemic
years before it was actually noticed.

One open technical challenge with the federated surveillance approach is semantic heterogeneity: the use of emerging
Health IT standards like HL7’s FHIR [40] can enable a unified view of EMR data elements, but different healthcare
systems often have different operational definitions for supposedly universal concepts like “high blood pressure” or “low
blood oxygenation”. Combining counts of such events across different healthcare systems may be a bit like adding
apples to oranges. It will take some work to harmonize semantics across so many diverse data custodians, but this is
both doable and well worth doing. Note that this problem is less severe for the many surveillance and anomaly detection
tasks where the focus is on changes in a signal (in a given location) over time, rather than on its absolute meaning.
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Different phases of epidemic surveillance call for different analytic tools. It is important to discuss analytic needs
separately for each of three different phases of epidemic surveillance and tracking, since each poses different technical
challenges and requires different analytical tools.

In the interpandemic phase, the main activity is scanning for threats, namely monitoring data streams and events
throughout the world for disconcerting developments. Relevant statistical tools include anomaly detection and scan
statistics to help decide when an epidemiological investigation is warranted. While it may be possible to rank the risks
of different outbreak triggering events (like species jumping or point mutations) in different locations, which could in
turn be used to inform surveillance resource allocation, conventional forecasting has a limited role to play in this phase,
as such events have large inherent uncertainty.

In the containment phase, a discovered threat must be intensely monitored, continuously assessed, and ultimately
contained. The analytical, data-driven tools required in this phase include real-time estimation of critical epidemiological
parameters such as R0, infection fatality rates, the incubation period, the serial interval, and so on. These real-time
estimates are necessarily based on provisional data, highlighting the value of modeling the data generation process
discussed above. In this phase, forecasting still has a limited role, since the outbreak is still local, its fundamental
dynamics unclear, and point events can have large consequences down the road.

If containment fails, during the mitigation phase the goals of analytics expand significantly to include informing
mitigation policies and planning. Real-time tracking (nowcasting) and short term-forecasting (a few weeks ahead) can
play critical roles in these activities, and indeed have been the focus of our group’s work since its inception. While there
is still important work to be done and advances to be made in this area, we believe that these advances are likely to be
incremental until we see major progress in either (1) supporting data streams (e.g., better standardization and cleaning
of public health reporting data, identification of leading indicators from, say, EMR); or (2) our collective scientific
understanding of the real-world geotemporal dynamics of epidemics (discussed next).

Useful, reliable longer-term forecasting remains an aspiration. Influenza forecasting exercises in the last several
years demonstrated that it is often possible to usefully quantify uncertainty over the remainder of an ongoing flu season
[3]. But this success was based mostly on observing the behavior of seasonable epidemics over several decades. To
reliably forecast the progression of pandemics, where relevant historical data is almost nonexistent, we must have a
detailed quantitative understanding of how different, diverse factors affect disease transmissibility. Such an understanding
is currently grossly lacking, as evidenced by our collective failure to predict [41] (or even understand, post-hoc [42]) the
high-level temporal and geographic contours of the main pandemic waves in the U.S. Yet this very pandemic, the most
instrumented in human history, is also a rare opportunity to attempt this vital scientific and technological goal.
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