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Abstract. We propose, implement, and evaluate a method to estimate the daily
number of new symptomatic COVID-19 infections, at the level of individual
U.S. counties, by deconvolving daily reported COVID-19 case counts using an
estimated symptom-onset-to-case-report delay distribution. Importantly, we
focus on estimating infections in real-time (rather than retrospectively), which
poses numerous challenges. To address these, we develop new methodology
for both the distribution estimation and deconvolution steps, and we employ
a sensor fusion layer (which fuses together predictions from models that are
trained to track infections based on auxiliary surveillance streams) in order to
improve accuracy and stability.
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1. INTRODUCTION

Accurate, real-time estimates of incident infections play
a critical role in informing the public health response to the
spread of a disease through a population. However, official
metrics on disease activity published by traditional public
health surveillance systems in the United States do not in
fact reflect activity in real-time, as they suffer from some
degree of latency due to the way their reporting pipelines
are set up and implemented.

With addressing the latency in traditional public health
reporting a part of the motivation, the last decade has seen
a rise in the development of digital surveillance streams
in public health. Search and social media trends have con-
stituted much of the focus (e.g., Brownstein, Freifeld and
Madoff, 2009; Ginsberg et al., 2009; Salathé et al., 2012;
Kass-Hout and Alhinnawi, 2013; Paul and Dredze, 2017).
More broadly, auxiliary surveillance streams that operate
outside of traditional public health surveillance, like online
surveys, medical device logs, or electronic medical records,
have also received significant attention (e.g., Kass-Hout
and Zhang, 2011; Carlson et al., 2013; Viboud et al., 2014;
Smolinski et al., 2015; Santillana et al., 2016; Charu et al.,

Maria Jahja is Ph.D. Candidate, Department of Statistics &
Data Science, Machine Learning Department, Carnegie Mellon
University, Pittsburgh, PA (e-mail: maria@stat.cmu.edu).
Andrew Chin is Statistical Developer, Machine Learning
Department, Carnegie Mellon University, Pittsburgh, PA
(e-mail: achin23@jhu.edu). Ryan J. Tibshirani is Professor,
Department of Statistics & Data Science, Machine Learning
Department, Carnegie Mellon University, Pittsburgh, PA
(e-mail: ryantibs@cmu.edu).

2017; Yang et al., 2019; Ackley et al., 2020; Leuba et al.,
2020; Radin et al., 2020).

Auxiliary surveillance can improve not only on the time-
liness but also on the accuracy and robustness of traditional
public health reporting. Auxiliary data streams have there-
fore become an integral part of modern systems for disease
nowcasting (e.g., McIver and Brownstein, 2014; Santil-
lana et al., 2015; Yang, Santillana and Kou, 2015; Farrow,
2016; Jahja et al., 2019; Brooks, 2020), which, put broadly,
are used to estimate the contemporaneous value of a signal
that will only be fully observed at a later date, using partial
or noisy data.

1.1 Surveillance During the Pandemic

During the COVID-19 pandemic, public health surveil-
lance has produced, on one hand, some of the most detailed
public health data that the U.S. has ever seen, such as daily,
county-level data on reported COVID-19 cases and deaths.
It has also, on the other hand, painted an imperfect picture
of situational awareness, which created a number of down-
stream challenges for the public health response. See, e.g.,
Rosenfeld and Tibshirani (2021) and references therein for
an overview of the issues. In this paper, we identify a few
issues surrounding COVID-19 case reporting in particular,
propose methodology to address them, and implement and
evaluate this proposal over eight months of pandemic data.

To give some background, in the early days of the pan-
demic, a handful of non-gonvermental groups such as JHU
CSSE (Dong, Du and Gardner, 2020) (and also the COVID
Tracking Project, the New York Times, and USAFacts) be-
came known as the most trustworthy sources for aggregate
public health reporting data on COVID-19 in the U.S. They
were founded around the idea of scraping COVID-19 data
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published daily on dashboards that are run by local public
health authorities (such as state and county departments of
public health), which, at the time, provided more accurate
and timely data than federal health authorities (probably
due to unrecoverable failures at one or more points along
the reporting pipeline). In fact, not only in the early days of
the pandemic, but throughout, the data published by these
groups has been invaluable for decision-makers, modelers,
journalists, and the general public; for example, data from
JHU CSSE remains the gold standard for COVID-19 case
and death forecast evaluation in the COVID-19 Forecast
Hub (Reich Lab, 2020), a community-driven repository of
forecasts that serves as the official source for forecasting
communications by the U.S. CDC.

Turning our focus now to case reporting, JHU scrapes
cumulative case numbers that are published daily on local
health authority dashboards, and subsequently derives a
notion of case incidence based on day-to-day differences
in cumulative counts. Note that, by construction, this defi-
nition of incidence reflects the number of new COVID-19
cases that are reported (to the public) on any given day. Of
course, this is not the same as the number of new cases by
date tested, specimen collection date, or symptom onset
date. Any of the latter options would be more informative
(increasingly so) as a definition of incidence; revamping
our surveillance systems so that they can directly provide
these and other aggregates of interest to the public health
response is a critical task for future public health crises.

The reality of the current pandemic: alignment by report
date is the only option available, given the data published
broadly on local health authority dashboards, hence col-
lected and aggregated by data scrapers. JHU publishes the
number of new COVID-19 case reports per U.S. county,
daily, at a 1-day lag. However, since report dates can lag
behind symptom onset dates by many days (a typical lag
is around 5-10, but lags can be up to 30 days or more; see
Figure 3), this is actually giving us a glimpse into COVID
activity in the recent past, rather than the present.

Importantly, the CDC publishes a de-identified patient-
level data set (“line list”) on COVID-19 infections (Centers
for Disease Control and Prevention, COVID-19 Response,
2020a), which provides a symptom onset date column. In
principle, this should allow us to construct a notion of case
incidence that is aligned by symptom onset date, but this is
not possible in practice, due to two barriers. First, the CDC
only publishes updates to the line list monthly (due to the
complexity of managing this data set). Second, and more
problematically, this line list is fraught with missingness,
extending well beyond missingness in the symptom onset
column: the total number of COVID-19 cases according to
this line list (whether the symptom onset date is observed
or not) is far less than the total number of cases from JHU
(e.g., in early September 2021, the CDC line list reports
about 30 million total versus about 40 million from JHU),
and some states (such as Texas) appear to missing nearly
all of their cases in the line list altogether (see Figure 2).

1.2 Nowcasting by Deconvolution

In what follows in this paper, we use the CDC line list
to estimate a delay distribution between symptom onset
and report dates, and then use this delay distribution to de-
convolve daily numbers of new case reports published by
JHU CSSE to estimate daily numbers of new symptomatic
infections. Moreover, we train models that track histori-
cal trends between past infection estimates and auxiliary
signals of COVID-19 activity from Delphi’s COVIDcast
project (Reinhart et al., 2021), and we fuse together predic-
tions from these models in order to improve the accuracy
and robustness of our estimates of new infections for the
most recent 10 days (where deconvolution is particularly
challenging). An illustration is given in Figure 1.

We focus on estimating new infections in real-time, lay-
ing out a framework for an operational nowcasting system
that is forced to cope with all of the challenges of disease
tracking using provisional data. At any given nowcast date
t, to estimate the number of symptomatic infections at day
t−k (for small values of k, such as k = 1,2, . . .), we make
sure to use data that would have actually been available at
t. This not only affects the way we carry out all of our ex-
periments (model training and evaluation), it also leads us
to develop some new interesting methodology to deal with
the issue of right truncation (highlighted in Figure 1 by the
blue region). For example, in order to estimate the delay
distribution in real-time, we develop a Kaplan-Meier-like
procedure to deal with a kind of right censoring that occurs
in the line list. We also develop specialized regularization
techniques to control the volatility of estimates around the
nowcast date in an optimization problem that we solve for
real-time deconvolution.

An outline for this paper is as follows. In Section 2, we
cover various preliminary details about the problem setup.
Retrospective construction of the delay distribution and de-
convolution are described in Section 3, whereas real-time
estimation is the focus in Section 4. Sensor fusion is cov-
ered in Section 5, and extensive evaluations—comparing
nowcasts made in real-time to those made retrospectively
(using “finalized” data that would have only been available
much later), are performed in Section 6. In Section 7, we
conclude with a discussion and describe a few directions
for future work.

R and Python code for reproducing all figures and results
in this paper can be found at https://github.com/
cmu-delphi/stat-sci-nowcast.

1.3 Related Work

In the computational epidemiology literature, the term
“nowcasting” has been applied to a variety of related but
distinct estimation problems. Broadly speaking, what these
problems have in common is that they are about real-time
estimation of some quantity, based on partial or noisy data.
They differ in what is being estimated, and whether this
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Estimating COVID−19 infections in New York

FIG 1. Illustration of estimating latent infections from reported cases. The dashed red line displays infection rates estimated “naively” in real-time,
by directly deconvolving case data up through early February 2021, while the solid black line display infection rates estimated using finalized data
from roughly four months afterwards. The blue region on the right-hand side highlights a period in which the real-time estimate deviates substantially
from the finalized one, due to the fact that we are lacking sufficient (future) case observations needed to perform a “full” deconvolution. The green
triangles represent real-time nowcasts made by sensor fusion, which reduces the volatility of the real-time estimate and tracks the finalized estimate
nicely. Lastly, the (scaled) reporting delay distribution estimated at the midpoint of November 2020 is drawn in purple, with the median reporting
delay (8 days) marked as a dotted gray line.

quantity will eventually be fully observed (after enough
time has passed) or whether it is latent. Examples in the
former non-latent setting, which span applications in in-
fluenza, dengue, and COVID-19, include Yang, Santillana
and Kou (2015); Farrow (2016); Jahja et al. (2019); Brooks
(2020); McGough et al. (2020); Hawryluk et al. (2021).

The latent setting exhibits another degree of diversity
within itself. In our work, we target symptomatic COVID-
19 infections, which, to be perfectly clear, is a latent time
series. Another example along similar lines is Goldstein
et al. (2009), who estimate influenza infection incidence
via Bayesian deconvolution of mortality data. Meanwhile,
other authors might view inferring latent infections as just
a stepping stone toward ultimately estimating the instanta-
neous reproductive number Rt, a key epidemic parameter.
Important contributions to the methodology on real-time
estimation of Rt include: Bettencourt and Ribeiro (2008),
who use a local approximation to the SIR model, and Cori
et al. (2013); Thompson et al. (2019), who use a discretiza-
tion of the renewal equation within a Bayesian framework.
For a thorough review and comparison of these methods,
see Gostic et al. (2020). The latter paper also discusses in
some detail the importance of properly modeling the delay
between infection onset and case report, and the issue of
right truncation, which, as we will see, are central issues
in our paper as well.

The aforementioned methods have been applied and ex-
tended to build systems for real-timeRt nowcasting during

the COVID-19 pandemic by Abbott et al. (2020); Systrom,
Vladek and Krieger (2020); Chitwood et al. (2021). A key
difference between these approaches and ours is that they
infer infections through forward-filling: loosely speaking,
they convolve forward a candidate estimate of infections,
obtain feedback by comparing the result to measured cases,
and iterate to refine estimates. This can be effective given
accurate prior knowledge, but of course it can be hard to
judge the accuracy of prior knowledge in practice. We take
a more flexible approach and estimate infections via direct
deconvolution. Our approach is nonparametric, but is still
fairly simple and computationally efficient. We also focus
on fusing in auxiliary sources of information in order to im-
prove real-time accuracy and robustness. We remark that,
if estimates of Rt were desired, then these could certainly
be inferred as a by-product of our infection nowcasts.

Finally, deconvolution has been extensively studied for
many years in many fields, notably signal and image pro-
cessing, where deconvolution is sometimes called deblur-
ring. As an inverse problem, deconvolution is ill-posed in
settings in which the convolution operator is not known
exactly or observations are made with noise (Oppenheim
and Verghese, 2017). Approaches to overcome this tradi-
tionally involve regularization, as in the classical Wiener
deconvolution (Wiener, 1964), which stabilizes the inver-
sion using an estimated signal-to-noise ratio. Alternative
approaches employ familiar regularization techniques such
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as `1 and `2 penalities (Taylor, Banks and McCoy, 1979;
Debeye and Van Riel, 1990). Most related to our paper
is deconvolution using total variation regularization, first
proposed by Rudin and Osher (1994), and now a central
tool in signal and image processing.

2. PRELIMINARIES

In the remainder of this paper, we develop a framework
for estimating the daily symptomatic COVID-19 infection
rate (where by “rate” we mean a count per 100,000 people,
the standard units in epidemiology), concentrating on in-
fections that will eventually result in a reported COVID-19
case. To be clear on nomenclature: for convenience, we
will often abbreviate “symptomatic infection” by “infec-
tion” (and so, terms like “infection onset” and “infection
rate” should be implicitly interpreted as symptomatic). To
estimate infection rates, we deconvolve reported case rates
with an estimated symptom-onset-to-case-report delay dis-
tribution. To reiterate, we use case data from JHU CSSE
(Dong, Du and Gardner, 2020), and to infer the delay dis-
tribution, we use a de-identified line list on patient-level
infections from the CDC (Centers for Disease Control and
Prevention, COVID-19 Response, 2020a).

Auxiliary Indicators. After deconvolution, we improve
our infection rate estimates by incorporating a number of
contemporaneous signals that track COVID activity—we
will also refer to these as indicators—which are publicly
available through Delphi’s COVIDcast API (Reinhart et al.,
2021). The five indicators that we consider, described be-
low, provide auxiliary information on COVID-19 outside
of traditional public heath reporting. Here and throughout,
we abbreviate COVID-like illness by CLI.

1. Change Healthcare COVID (CHNG-COVID): The
percentage of outpatient visits that have confirmed
COVID-19 diagnostic codes, based on de-identified
Change Healthcare medical claims data.

2. Change Healthcare CLI (CHNG-CLI): The percent-
age of outpatient visits that have COVID-like diag-
nostic codes, based on the same data.

3. Doctor Visits CLI (DV-CLI): The same definition
as CHNG-CLI, but applied to de-identified medical
claims data from other health systems partners.

4. COVID Trends and Impact Survey CLI in the com-
munity (CTIS-CLIIC): The estimated percentage
of people reporting illness in their household or lo-
cal community, based on Delphi’s COVID Trends
and Impact Survey (CTIS), in partnership with Face-
book.

5. Google searches for anosmia and ageusia (Google-
AA): A measure of volume for Google queries re-
lated to anosmia or ageusia (loss of smell or taste),
from Google’s COVID-19 Search Trends data set.

Roughly speaking, we study these particular indicators
(ordered roughly from “late” to “early”) because conceptu-
ally they reflect data measurements that would be made at
some period of time in between infection onset and case
report to a public health authority, and therefore would be
relevant in inferring latent infection rates. More informa-
tion on these indicators and their underlying data sources
is given in Reinhart et al. (2021). For more information
on CTIS in particular, see Salomon et al. (2021); and for
a study of how these and similar indicators can improve
COVID-19 forecasting, see McDonald et al. (2021).

Sensor Fusion. For each of the auxiliary indicators de-
scribed above, we train a model to estimate latent infection
rates from indicator values, using historical data (described
in Section 5.1). At each nowcast date, we then use such
a model to estimate the latent infection rate from the cur-
rent indicator value, which gives a total of five estimates
(one from each of the five models), along with a sixth es-
timate coming from an autoregressive model trained on
historical estimated infection rates. We will refer these six
contemporaneous estimates as sensors.

In this paper, we consider (as described in Section 5.3)
various methods for combining these estimates into a sin-
gle estimate of the infection rate, which we will call sensor
fusion methods. Broadly speaking, sensor fusion is a form
of ensembling, which is ubiquitous in in predictive model-
ing in statistics and machine learning, as it can often help
improve both accuracy and robustness. In our particular
application, the sensors themselves are constructed from
data streams operating outside of traditional public health
reporting, which itself contributes an additional important
angle in terms of robustness.

2.1 Problem Setup

Estimation Period. For every day t in between October
1, 2020 and June 1, 2021 inclusive (243 days in total), we
estimate the symptomatic infection rate at day t− k, using
only data that would have been as of time t, which in this
context we call the nowcast date. Estimation of the latent
infection rate at time t− k (for positive k) is technically a
backcast, though we will not be careful to distinguish this
notationally from nowcasting, and will generally refer to
this as nowcasting at lag k. We produce estimates for each
k = 1, . . . ,10, a total of 10 targets per nowcast date t.

When we say above that nowcasts are made using data
that would have been available as of a given nowcast date
t, we mean that we adhere not to only the real-time avail-
ability (latency) of signals at t, but also the version of the
data published at t—simply put, imagine that we “rewind”
the clock to time t and query the API to receive the data
that would have been returned then. This is possible be-
causse the COVIDcast API records and provides access
to all historical versions of data, as described in Reinhart
et al. (2021). As epidemic data is often subject to revision,
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if we train and evaluate models on “finalized” data (that
would have been available only at a much later time point)
then this can lead to inaccurate conclusions about real-time
model performance; see, e.g., McDonald et al. (2021).

Further, it is worth noting that reported case data from
JHU is available at a 1-day lag, and we assume that there is
at least another 1-day lag between symptom onset and case
report (explained in Section 3.2). Hence through real-time
deconvolution alone we would be able to make nowcasts
at a 2-day lag at the earliest. Making nowcasts at a 1-day
lag is possible with sensor fusion, using auxiliary signals
with 1-day latency (explained in Section 5). In this sense,
sensor fusion is able to improve not only accuracy, but also
latency, and buys us 1 extra day.

Geographic Scope. We produce nowcasts at the county
resolution, but for computational purposes, we restrict our
attention to the 200 U.S. counties with the highest popula-
tion. We additionally produce estimates for each of the 50
U.S. states. (Some of the methodology that we use for sen-
sor fusion requires a geographical hierarchy, thus using the
remaining≈ 3000 U.S. counties we aggregate these within
each state to create “rest-of-state” jurisdictions, and make
estimates for these as well, for the purposes or maintaining
such a hierachy.)

Evaluation. We evaluate all nowcasts made in between
October 1, 2020 and June 1, 2021 inclusive (243 days in
total) and at each of the 250 locations in consideration (50
states and the 200 largest counties) against latent infection
rate estimates obtained by deconvolving the case rate data
available as of August 30, 2021. We will refer to the latter
as finalized infection rate estimates (as opposed to real-
time ones); details are given in Section 3.3.

2.2 Confounding

Estimates of COVID infections obtained by deconvolv-
ing reported cases will generally underestimate the true
number of infections, because many infections are unde-
tected or untested, and as such, do not appear later on in
case reports. If we wanted to estimate the true number of
symptomatic infections from case reports, then we would
need to have some sense of the fraction of symptomatic
infections that go untested. Of course, this only gets more
complicated if we extend our consideration to both symp-
tomatic and asymptomatic infections.

Other authors, e.g., Chitwood et al. (2021), have taken
the ambitious step of proposing and implementing frame-
works with parameters that account for such confounding.
However, adjustments for case ascertainment and asymp-
tomatic infections generally rely, at least to some nontrivial
extent, on model assumptions (typically, mechanistic ones)
that are difficult to substantiate.

We take a different perspective and pose the problem as
one of real-time deconvolution only. We seek to answer
the question:

Can we estimate—in real-time—the number of
new symptomatic COVID-19 infections that will
eventually appear in case reports?

Hence, by construction, confounding is not a problem that
we even attempt to reconcile (because the target we track,
infections that eventually show up in case reports, simply
inherits any confounding that would be present in the case
reporting stream in the first place).

Our approach can be seen as one that runs in parallel
(rather than in contradiction) to an approach that explicitly
models and removes the effects of confounding in case
reporting. We focus on addressing the deconvolution prob-
lem as carefully as possible, with a concern for real-time
estimation, and an eye toward using auxiliary signals to
improve accuracy and robustness. Estimates of parameters
that account for confounding (that comes from other work
focused on these aspects) could certainly be applied to our
deconvolution estimates post hoc in order to adjust them
appropriately; we revisit this idea in the discussion.

Lastly, under an assumption that the confounding acts
as a multiplicative bias that changes slowly over time, our
real-time infection rate estimates—themselves subject to
confounding, as explained above—can be post-processed
to derive real-time approximately unconfounded estimates
of Rt. This is also described in the discussion.

3. RETROSPECTIVE DECONVOLUTION

In this section, we study and fit a convolutional model
between infections and reported cases. We adopt a retro-
spective angle here and do not concern ourselves with data
availability or versioning issues; this is covered in the next
section.

3.1 Convolutional Model

For simplicity, we introduce the convolutional model in
just a single location. We denote by yt the number of new
cases that are reported at time t, and by xt the number of
new infections that have onset at time t. Our jumping-off
point is the following model:

(1) E[yt |xs, s≤ t] =

t∑
s=1

πt(s)xs,

where for each s≤ t,

(2) πt(s) = P
(
case report at t | infection onset at s

)
.

We refer to the probabilities above as delay probabilities at
time t, and the entire sequence (πt(s) : s≤ t), as the delay
distribution at time t.

The justification for (1), (2) is elementary: to count yt,
we enumerate all infections that ever occurred in the past:

yt =

t∑
s=1

xs∑
i=1

1{the ith infection at s gets reported at t}.
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Taking a conditional expectation on both sides above, and
using linearity, delivers (1), (2).

In the next subsections, we will describe how to estimate
the probabilities πt(s) in (2), and how to use this alongside
the observed case reports yt in order to estimate the latent
infections in (1).

3.2 Estimating the Delay Distribution

At the outset, we place the following assumptions on the
delay distribution in order to make its estimation (using the
CDC line list data, to be described shortly) more tractable.

ASSUMPTION 1. Infections are always reported within
d= 45 days; that is, πt(s) = 0 whenever s < t− d.

ASSUMPTION 2. The probability of zero delay is zero;
that is, πt(t) = 0.

ASSUMPTION 3. The delay distribution is geographi-
cally invariant (it is the same for any location).

Assumption 1 is innocuous. The vast majority of pairs of
recorded infection dates and report dates in the CDC line
list data fall within d= 45 days of one another. Assump-
tion 2 is perhaps less innocuous but still fairly minor, and it
is a consequence of the fact that a delay of zero (infection
date equal to report date) has been used inconsistently in
the CDC line list: this could mean a true delay of zero, or
it could be a code for missingness.

Assumption 3 is the most noteworthy and troublesome.
We do not believe it to be true that different locations ac-
tually have identical patterns of delay between infections
and case reports; conversely, we expect there to be a con-
siderable amount of variability between locations in this
regard. While we do allow the delay distribution to change
over time (see Figure 3 for evidence for the importance of
this), we consider Assumption 3 to be a weakness of our
work. However, the data is simply not there in the CDC
line list to warrant location-specific estimation of the delay
distribution (see Figure 2), thus we resort to estimating a
nation-wide delay distribution.

Meanwhile, it is worth pointing out that better (location-
specific) estimates of the delay distribution could be simply
plugged into our deconvolution methodology (detailed in
Section 3.3) to yield better estimates of latent infections.
This would carry over to all of the real-time methodology
for deconvolution and sensor fusion (in Section 4) as well.
In other words, a strength of our methodology is that it can
treat the delay distribution as an input, and a user (say, a
local health official) can replace the default nation-wide
delay distribution with a more-informed local one in order
to get more-informed local estimates.

In light of Assumptions 1 and 2, we change our notation
henceforth, and rewrite (1), (2) as:

(3) E[yt |xs, s≤ t] =

d∑
k=1

pt(k)xt−k,

where for k = 1, . . . , d,

(4) pt(k) = P
(
case report at t |onset at t− k

)
.

CDC Line List. The CDC provides de-identified patient-
level surveillance data on COVID-19 in both public and
restricted forms (Centers for Disease Control and Preven-
tion, COVID-19 Response, 2020a,b). The restricted one
is made available under a data use agreement. The public
line list contains the same patient-level records as the re-
stricted one, but it has geographic details withheld. (There
is another publicly available that contains geographic de-
tails, but withholds temporal details). We use the public
data set1 in this paper for estimating the delay distribution,
since missingness compels us to make nation-wide (rather
than location-specific) estimates.

It is worth noting that the line list is itself provisional and
subject to revision. Furthermore, the CDC only publishes
updates to the line list monthly. In this paper, for simplicity,
we use a single version of the CDC line list—released on
September 9, 2021—to construct all delay distributions.
Nonetheless, in our real-time nowcasting experiments, we
restrict our access to data in this line list that would have
been available at each nowcast date t (rows whose report
date to the CDC is at most t) to construct delay distribution
estimates at t. This is highly nontrivial, due to bias induced
by truncation of data after t (see Section 4.2).

Missing Values. The CDC line list (both public and re-
stricted data sets) is subject to a high degree of missingness.
Such missingness manifests itself in a variety of ways. For
the public line list published on September 9, 2021:

• it has 29,851,450 rows, compared to 39,365,080 cu-
mulative cases reported by JHU CSSE on September
9, 2021;

• 8.64% of rows are missing the case report date (the
cdc_report_dt column);

• 53.6% of rows are missing the symptom onset date
(the onset_dt column);

• of all rows in which symptom onset date is present,
the case report date is also present, but when a report
date is missing in practice it sometimes gets filled
in with the onset date, clouding the interpretation of
a zero delay.2

Due to the last point, we exclude zero in the construction
of all delay distribution estimates, in what follows.

1The CDC does not take responsibility for the scientific validity or
accuracy of methodology, results, statistical analyses, or conclusions
presented.

2Confirmed by personal communication with the CDC.
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FIG 2. Top: cumulative case count per state on June 1, 2021, as reported by JHU CSSE, compared to the complete case count (where both onset date
and report date are observed) per state up through the same date, in the CDC restricted line list. Most states have less than 50% of the cases appear
in complete form in the line list, and some (e.g., Texas) have almost none at all. Bottom: proportion of complete cases with zero delay per state in the
same line list data. There is very wide variation between these proportions.

The restricted line list is no better with respect to such
missingness, exhibiting nearly exactly the same patterns
as those described above. It does additionally provide ge-
ographic details, which allows us to examine how miss-
ingness is dispersed across different locations. Figure 2
displays results to this end, using the restricted line list re-
leased on October 12, 2021. The top panel shows that there
is a high degree of missingness in complete case counts
(those with both onset date and report date observed) in
most states, often well over 50%, and moreover, missing-
ness is far from uniform at random: e.g., Texas has barely
any of its cases present in the line list. The latter obser-
vation is why we resort to estimating nation-wide delay
distributions, in what follows.

The bottom panel in the figure shows that there is also a
high degree of heterogeneity in the fraction of complete
cases with zero delay (between onset date and report date)
across states. Some states (e.g., California) have zero de-
lays for nearly all of their complete cases, while others
(e.g., Delaware) have zero delays for none of their com-
plete cases, suggesting that the practice of setting a missing
report date equal to the associated onset date is highly in-

consistent between states. This only further corroborates
the decision to exclude zero delays from the data set when
estimating the delay distribution.

Delay Distribution Estimation. From the public line list,
we estimate the delay distribution at each time t, namely
the probabilities in (4) for k = 1, . . . , d, using the empiri-
cal distribution of all lags, excluding zero, between com-
plete onset and report dates, for all onset dates falling in
[t− 2d+ 1, t]. Then, we fit a gamma density to the empiri-
cal distribution by the method of moments, and discretize
the resulting density over the support {1, . . . , d}. For con-
creteness, this procedure is described in Algorithm 1.

We use only “recent” pairs of onset and report dates at
time t (whose onset date lies in [t− 2d+ 1, t]) in order to
adapt to the nonstationarity in reporting delays over time.
The top panel in Figure 3 plots quantiles of the estimated
delay distribution from Algorithm 1, as t ranges from June
1, 2020 to June 1, 2021. We see sharp drops in all quantiles
during the first half of this period, and then a more gradual
decline over time. The bottom panel in the figure gives a
qualitative sense of how the delay distribution estimates
change in shape over time.
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Algorithm 1: Delay distribution estimation, retro-
spective

Input: Time t, support size d, window size w = 2d, line list D
with onset dates ai and report dates bi.

Output: Estimated delay probabilities p̂t(1), . . . , p̂t(d).
1 Find all pairs in D with onset dates within a recent time window:

It = {i : ai ∈ (t−w, t]}.
2 Compute the empirical distribution of lags 1, . . . , d among these

pairs:

p̄t(k) =
|{i ∈ It : bi − ai = k}|∑d
`=1 |{i ∈ It : bi − ai = `}|

, k = 1, . . . , d.

3 Fit a gamma density to p̄t(1), . . . , p̄t(d) using the method of
moments (matching the mean and variance).

4 Discretize this gamma density to the support set {1, . . . , d}, call
the result p̂t(1), . . . , p̂t(d), and return these probabilities.

3.3 Defining Ground Truth

Given the estimated delay distributions over time from
the previous subsection, we now describe how to estimate
latent infections in the model (3). In short, we will solve
one large optimization problem to perform deconvolution.
To define the best possible retrospective estimates of latent
infections over the period October 1, 2020 to June 1, 2021,
which we will treat as ground truth in what follows (in the
sense that they will be the point of comparison for all of
our real-time estimates), we will perform deconvolution
over a wider time period than the previously specified one
in order to avoid any bias issues at the boundaries (where
there is insufficient data for accurate deconvolution; more
details are provided in the next section): our retrospective
deconvolution runs from May 1, 2020 to August 28, 2021,
a period we denote by T , and uses case data published on
August 30, 2021.

For location `, denote by y`,t and x`,t the number of new
cases reported and number of new infections that onset at
time t, respectively, per 100,000 people. Note that y`,t, x`,t
obey (3), (4), because we have just rescaled the underlying
counts here by a constant (in order to put them on the scale
of rates), and recall, we assume that all locations have the
same delay distribution (Assumption 3).

Given the delay distribution estimates from Algorithm 1,
p̂t = (p̂t(1), . . . , p̂t(d)) for t ∈ T , we estimate the full vec-
tor x` = (x`,t)t∈T of latent infection rates across time, sep-
arately for each location `, by solving the problem:

(5) minimize
x`

∑
t∈T

(
y`,t −

d∑
k=1

p̂t(k)x`,t−k

)2

+

λ‖D(4)x`‖1,

where D(4) is a matrix such that D(4)v gives all 4th-order
differences of a vector v, and ‖ · ‖1 is the `1 norm. Prob-
lem (5) could be called a trend-filtering-regularized least
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FIG 3. Top: quantiles of the estimated delay distribution returned by
Algorithm 1 at the levels 50%, 75%, and 95%, as t varies from June 1,
2020 to June 1, 2021. Bottom: estimated delay distributions overlaid
for three nowcast dates within the same time interval.

squares deconvolution problem. We solve it (as well as all
related optimization problems in this paper) numerically
with an adaption of the ADMM algorithm of Ramdas and
Tibshirani (2016), detailed in Appendix A.

The solution x̂` in problem (5) takes the form of a cu-
bic piecewise polynomial (discrete spline) with adaptively
chosen knots (Tibshirani, 2014, 2020). The tuning parame-
ter λ≥ 0 controls its complexity, and we choose it using
3-fold cross-validation: we hold out every third value from
training, and impute it by the average of the neighboring
trained estimates; to compute the validation error, we re-
convolve the full vector of imputed infections and measure
against observed cases.
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FIG 4. Illustration of right truncation with a delay distribution of length
3 (which is taken to be stationary for simplicity). At the nowcast time t,
some “part” of the latent signal xt will appear in yt+1, yt+2; likewise,
some “part” of xt−1 will appear in yt+1.

4. REAL-TIME DECONVOLUTION

Real-time deconvolution refers to the the task of decon-
volving case reports observed up until time t to estimate
latent infections up until t, repeatedly, as t marches over
the period of interest. We are particularly focused on es-
timating recent latent infections—nowcasting at a k-day
lag, which means estimating at t the latent infection rate
at time t− k.

Compared to retrospective deconvolution, real-time de-
convolution differs in two important ways. The first is that
we are forced to work with provisional case data, subject
to revision at times in the future, as discussed earlier in
Section 2.1. All of our experiments in what follows use
properly-versioned data that would have been available
as of the nowcast date. We use the notation y(t)`,s to reflect
the reported case rate in location ` at time s as of time t.
Reported case data from JHU is available at a 1-day lag
and therefore, as of time t, we only observe y(t)`,s up through
s = t− 1 (we use analogous superscript notation for all
auxiliary signals and estimates). This means we can only
produce deconvolution estimates x̂(t)`,s up through s= t− 2
(recall we exclude zero delays, in Assumption 2).

The second issue of note, in real-time deconvolution, is
right truncation: in nowcasting at lag k, where k is small
(compared to d), we are only able to carry out a “partial”
deconvolution, as much of the needed information would
come from case reports occurring in the future, past time
the nowcast date t. Figure 4 gives an illustration. Thus, if
we simply performed real-time deconvolution by solving
the problem analogous to (5), using data that would have
been available at time t,

(6) minimize
x
(t)
`

∑
s<t

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+

λ
∥∥D(4)x

(t)
`

∥∥
1
,

then we would find that the solution x̂(t)` = (x̂
(t)
`,s : s < t)

has highly volatile components for s close to t.

The problem does not stop there; the truncation of data
after the nowcast time t also affects estimation of the delay
distribution itself. Most rows in the line list with an onset
date of s= t− k, for small k, will only have a report date
(and thus not appear in the line list) until after time t. This
means that the estimate p̂(t)s of ps given by the empirical
distribution of all available line list data, with report date
less than t, will be biased toward smaller lag values (i.e.,
it will place too little weight on larger lag values).

In the next two subsections, we work through each of
these truncation issues in turn, by incorporating extra reg-
ularization around the right boundary into the criterion in
(6), and estimating the delay distribution from truncated
data using a Kaplan-Meier-like approach.

4.1 Incorporating Extra Regularization

We consider two forms of extra regularization to dampen
the variability of trend filtering estimates toward the right
boundary.

Natural Trend Filtering. A natural cubic spline places
additional regularity on top of the cubic spline, by main-
taining that the function be linear beyond the left and right
boundary points of the underlying domain. Natural trend
filtering proceeds in a similar vein, but operating in the
space of discrete splines; see Tibshirani (2020). Transport-
ing this idea over to our real-time deconvolution problem
(6), and applying it to the right boundary only, gives:

(7)

minimize
x
(t)
`

∑
s<t

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+

λ
∥∥D(4)x

(t)
`

∥∥
1

subject to x
(`)
t − 2x

(`)
t−1 + x

(`)
t−2 = 0.

The left and middle panels of Figure 5 demonstrate the
improvement that the additional constraints in (7) can have
on the boundary estimates, particularly during periods of
dynamic change in the underlying case trajectories.

Tapered Smoothing. The right truncation phenomenon
is not a binary one and there is increasingly less and less in-
formation available for deconvolution as we move the time
index s up toward the nowcast date t. Therefore, we design
a second penalty to add to the criterion in (7) to gradually
increase the amount of regularization accordingly:
(8)

minimize
x
(t)
`

∑
s<t

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+

λ
∥∥D(4)x

(t)
`

∥∥
1

+ γ
∥∥W (t)D(1)x

(t)
`

∥∥2
2

subject to x
(`)
t − 2x

(`)
t−1 + x

(`)
t−2 = 0,

where D(1)v gives the first-order differences of a vector v,
and W (t) is a diagonal matrix that is supported on the last
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FIG 5. Comparison of boundary behavior for real-time deconvolution in New York, displayed for a sample of different nowcast dates (where each
colored curve traces out the deconvolution estimates for a different nowcast date). The black dashed line indicates finalized infections, estimated
roughly three months after June 1, 2021.

d diagonal entries, these being (in reverse order, starting
with the last entry):

1√
F̂

(t)
t−1(k)

, k = 1, . . . , d,

where F̂ (t)
t−1 is the cumulative distribution function (CDF)

corresponding to the estimated delay distribution p̂(t)t−1 at
the most recent time t− 1. The parameter γ ≥ 0 controls
the strength of the additional “tapered” penalty in (8), and
we tune λ,γ with a two-stage cross-validation procedure:

1. fix γ = 0, and tune λ using 3-fold cross-validation,
as before;

2. fix λ at the value in Step 1, and tune γ using 7-fold
forward-validation: for s= t−2, . . . , t−8, we solve
the deconvolution problem with a working nowcast
date of s, linearly extrapolate to impute an estimate
at s+ 1, and then we reconvolve the solution vector
along with this imputed point and measure error
against observed cases at time s+ 1; the validation
error is obtained by averaging these errors over the
iterations s= t− 2, . . . , t− 8.

Figure 6 displays the effect of varying γ on the solution
in (8), for a particular deconvolution example, to give a
qualitative sense of the role of the tapered penalty. Further-
more, the right panel in Figure 5 demonstrates the benefit
this penalty can provide in nowcasting.

Lastly, and importantly, Figure 7 quantifies the improve-
ment offered by the additional regularization mechanisms,
in terms of mean absolute error (MAE) measured against
finalized infections in nowcasting at a k-day lag, for each
k = 2, . . . ,10. This is averaged over all locations and ev-
ery 10th nowcast date in the evaluation set. We see a con-
siderable improvement in both the natural trend filtering
and tapered smoothing modifications, with the biggest im-
provement occurring when the two are combined as in (8),
and hence we stick with this framework in what follows.

4.2 Adjusting the Delay Distribution for Truncation

Now we propose an iterative adjustment to the empirical
distribution of truncated line list data in order to overcome
the truncation bias. To develop intuition, we first describe
the problem using a simple abstraction, formulate a gen-
eral solution, and then we translate this back over to our
particular setting.

KM-Adjustment Under Truncation. Suppose p is a dis-
tribution that is supported on {1, . . . , d}, and we observe
independent random draws that we can partition into two
sets: D1 and D2, where D2 contains draws from p and D1

contains draws from p conditional on the random variable
lying in [1, z1], for a fixed z1 ∈ {1, . . . , d}. Denote by p̂D
the empirical distribution based on a data set D. Clearly
p̂D2

is unbiased for p, but p̂D1
is generally biased (it always

places zero mass above z1), and thus the pooled estimate
p̂D1∪D2

would be biased as well.
To build a more informed estimate based on the pooled

sample, the intuition is as follows. First, observe that the
only way we can estimate p(k) for k > z1 is by using D2.
Then, this gives an estimate of S(z1) =

∑
k>z1

p(k), the
survival function of p at z1, and we can estimate p(k) for
k ≤ z1, denoting Z ∼ p, by observing that

p(k) = P(Z = k |Z ≤ z1)(1− S(z1)).

where we estimate P(Z = k|Z ≤ z1) using the empirical
distribution over the set D1 ∪D2 ∩ [1, z1]. In other words,
we construct our distribution estimate p̄ using two steps:

1. define p̄(k) = p̂D2
(k) for k > z1, and also S̄(z1) =∑

k>z1
p̄(k);

2. define p̄(k) = p̂D0
(k)(1− S̄(z1)) for k ≤ z1, where

we let D0 =D1 ∪D2 ∩ [1, z1].

We can readily generalize the above to a setting in which
we observe N data sets, with varying levels of truncation:

(9) Di contains draws Z ∼ p |Z ≤ zi, i= 1, . . . ,N,
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FIG 7. Comparing regularization approaches by MAE for nowcasting
(the shaded bands here and henceforth, in all MAE figures, correspond
to 95% bootstrap confidence intervals.) Both approaches for additional
regularization give a huge improvement on trend filtering. The biggest
improvement comes from combining the two approaches.

where 1≤ z1 < · · ·< zN = d, and we set z0 = 0 for nota-
tional simplicity. To construct an estimate of p based on
all the samples, we proceed iteratively as before: first we
estimate p(k) for k > zN−1 based on the data in DN , then
we estimate p(k) for k ∈ (zN−2, zN−1] based on data in
DN−1 ∪D2 ∩ [1, zN−1], and so on. Algorithm 2 spells out
the procedure in full.

The algorithm just derived may be seen as Kaplan-Meier-
like, in the sense that it is motivated by the decomposition

p(k) = P(Z = k |Z ≤ zi)(1− S(zi)), k ∈ (zi−1, zi].

Algorithm 2: Distribution estimation under sequen-
tial truncation

Input: Data sets and truncation limits Di and zi, for 1, . . . ,N ,
as in (9).

Output: Estimated probabilities p̄(1), . . . , p̄(d).
1 Initialize S̄(d) = 0.
2 for i=N, . . . ,1 do
3 Set D0 =

⋃N
j=iDj ∩ [1, zi].

4 Compute p̄(k), for k ∈ (zi−1, zi] based on the empirical
distribution of data in D0 and an estimate of the survival
function at zi:

p̄(k) = p̂D0
(k)(1− S̄(zi)), k ∈ (zi−1, zi].

5 Compute an estimate of the survival function at zi−1:

S̄(zi−1) = S̄(zi) +
∑

k∈(zi−1,zi]

p̄(k).

6 end
7 Return p̄(1), . . . , p̄(d).

We use an unbiased plug-in estimate for each term in the
product above based on the appropriate data. The Kaplan-
Meier estimator has a similar plug-in foundation (Kaplan
and Meier, 1958), so we refer to our approach as the KM-
adjusted estimator of the distribution under truncation.

Application to CDC Line List. Porting the last idea over
to the CDC line list, we can use it to estimate the delay
distribution at time s using the line list as of time t. Note
that if s < t− d then we can still use Algorithm 1, as there
is no truncation issue whatsoever. However, if s≥ t− d,
then we would need to apply the KM-adjusted estimator,
because we would be using the rows in the line list whose
onset date is at or shortly before s, but are only able to see
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Algorithm 3: Delay distribution estimation in real-
time

Input: Nowcast time t, working onset time s, support size d,
window size w = 2d, truncated line list D(t) with onset
dates ai and report dates bi such that bi < t.

Output: Estimated delay probabilities p̂(t)s (1), . . . , p̂
(t)
s (d).

1 if s < t− d then
2 Return probability estimates from Algorithm 1 (setting

t= s and D =D(t) in the notation of that algorithm).
3 end
4 Set N = d− (t− s) + 2.
5 for i= 1, . . . ,N − 1 do
6 Define

Di = {bi − ai : ai = s− i+ 1}

zi = t− s+ i− 2.

7 end
8 Define DN = {bi − ai : ai ∈ (s−w, t− d)} and zN = d.
9 Use Algorithm 2 (applied to Di, zi, i= 1, . . . ,N ) to compute

probability estimates p̄t(1), . . . , p̄t(d).
10 Fit a gamma density to p̄t(1), . . . , p̄t(d) using the method of

moments (matching the mean and variance).
11 Discretize this gamma density to the support set {1, . . . , d}, call

the result p̂t(1), . . . , p̂t(d), and return these probabilities.

those whose report date is at most t− 1 (thus would have
been available at time t). After making this adjustment to
the empirical distribution, we apply gamma smoothing as
before. This is detailed in Algorithm 3.

Figure 8 compares the KM-adjusted and naive estimates
of the delay distribution, Algorithm 3 versus Algorithm 1
applied directly to D(t), the line list available at each now-
cast date t. In terms of `1 distance, measured to the final-
ized delay distribution estimate computed retrospectively
(based on the full untruncated line list), and averaged over
all nowcast dates in the evaluation period, we see that the
KM-adjustment greatly improves the accuracy at all lags
k = 2, . . . ,10 (where k = t− s, the difference between the
nowcast and working onset dates).

4.3 Shortening the Deconvolution Window

Lastly, we investigate shortening the window used in the
regularized deconvolution problem (8) so that we use only
a window length of w days before t:
(10)

minimize
x
(t)
`

∑
s∈[t−w,t)

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+

λ
∥∥D(4)x

(t)
`

∥∥
1

+ γ
∥∥W (t)D(1)x

(t)
`

∥∥2
2

subject to x
(`)
t − 2x

(`)
t−1 + x

(`)
t−2 = 0,

As we are mainly interested in the components of the solu-
tion x̂(t)s for s close to t, shortening the training window is
computationally advantageous and should not change the
behavior of the solution very much for s close to t.
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FIG 8. Top: estimated delay distributions overlaid for all nowcast dates
in the month of November 2020, when s= t− 1 (working onset date
one day before the nowcast date). Bottom: mean `1 distance to finalized
estimate of the delay distribution, as a function of the lag k = t− s.

Figure 9 compares (10) with w = 2d, w = 4d, and “all-
past”, which is the original problem (8), in terms of mean
absolute error (MAE) measured against finalized infections
in nowcasting at a k-day lag, for each k = 2, . . . ,10. This
is averaged over all locations and every 10th nowcasting
date in the evaluation set. The performance is basically
identical for window lengths 2d and 4d, and though all-
past may appear to have the slightest advantage, this does
not warrant the extra computation, hence in what follows
we stick to (10) with a window length w = 2d as our real-
time deconvolution estimator.

5. LEVERAGING AUXILIARY SIGNALS

The indicators enumerated in Section 2 have displayed
impressive correlations to reported COVID-19 cases (Rein-
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FIG 9. Comparing window lengths used in regularized deconvolution
by MAE for nowcasting. The performance is very similar throughout.

hart et al., 2021), and moreover, demonstrated an ability
to improve the accuracy of case forecasting and hotspot
prediction models (McDonald et al., 2021). In this section,
we describe how to use each indicator to build a real-time
sensor that estimates the latent infection rate, and how to
fuse such estimates together into a single nowcast.

5.1 Sensor Models

At each prediction time t, for each location `, and for
each of the five indicators (abbreviated CHNG-COVID,
CHNG-CLI, DV-CLI, CTIS-CLIIC, and Google-AA), we
will train a model to predict in real-time latent infections
from indicator values. Let x̂(t)`,s denote the solution at time
s in problem (10), which represents our best estimate of
the latent infection rate at time s as of time t from decon-
volution of case rates alone.

We use zi,(t)`,s to denote the value of indicator i at time s
and location `, as of time t. We fit a simple linear model to
predict latent infections from indicator values by solving

(11) minimize
β0,β1

t−k̃i∑
s=t−d

w(t)
s

(
x̂
(t)
`,s − β0 − β1z

i,(t)
`,s

)2
,

which is a weighted linear regression over the time period
[t− d, t− k̃i], where k̃i = max{ki,2} and ki denotes the
lag at which indicator i is available. This is:

• ki = 1 for CTIS-CLIIC and Google-AA3; and

3Our treatment of Google-AA is different from the rest. Google’s
team did not start publishing this signal until September 2020, and the
historical latency of this signal was sporadic, but was often longer than
1 week. However, unlike (say) the claims-based signals, revisions are
never made after initial publication, and the latency of the signal is not
an unavoidable property of the data type, and therefore we use finalized
signal values, with a 1-day lag, in our analysis.

• ki = 4 for the claims-based indicators, due to heavy
revision or “backfill” over the first several days in
the underlying claims data after an outpatient visit
date (Reinhart et al., 2021).

Notice that, as defined, k̃i is the lag at which both the de-
convolution estimate of infection rate and auxiliary signal
i are available, which is the data we need to fit the linear
sensor model (response and covariate data, respectively).

The observation weights in (11) are given by

w
(t)
t−k = Ŝ

(t)
t−1(k− 1), k = 1, . . . , d.

Here Ŝ(t)
t−1 is the survival function of p̂(t)t−1, the estimated

delay distribution from the most recent time point t− 1.
We define Ŝ(t)

t−1(1) = 1, corresponding to the exclusion of
0-day delays. This scheme upweights the more recent esti-
mates (responses in the regression) of latent infections as
they contain more timely information for nowcasting (as-
suming that the right-truncation bias has been effectively
mitigated in the deconvolution step).

Given the solution β̂i,(t)`,0 , β̂
i,(t)
`,1 in (11), we then define

a sensor—which is just a prediction from the fitted linear
model—based on indicator i, for time s and location `, as
of time t, as:

(12) x̄
i,(t)
`,s = β̂

i,(t)
`,0 + β̂

i,(t)
`,1 z

i,(t)
`,s .

This sensor is available up until s= t− ki. For the CTIS-
CLIIC and Google-AA sensors, the lag is ki = 1, smaller
than the inherent lag of 2 in the deconvolution estimate.

In brief, each sensor model takes a certain indicator and
transforms it—using a location-specific and time-varying
mapping—to the scale of local infection rates. While this
mapping is simple (based on linear regression), it is also
highly nontrivial, as it inherently accounts for geographic
biases and nonstationarity.

Finally, in addition to defining sensors based on (11),
(12) for each of the five auxiliary sensors, we also define
a sixth sensor based on a 3rd order autoregressive model
trained on x̂(t)` = (x̂

(t)
`,s : s < t). It is constructed exactly as

in (11), (12) (same weights and same training window).
Henceforth we abbreviate it AR(3).

5.2 Sensor Missingness

To be clear (11), (12) are to be implicitly understood as
performed over observed (non-missing) indicator values.
If an indicator value is missing at a particular location and
time, then we drop it from the training set in (11), and do
not produce a corresponding sensor value in (12). For a
summary of missingness in the sensors, see Figure 10.

In general, an indicator will be missing when there is
insufficient underlying data (from surveys, medical claims,
etc.) to form a reliable signal value at a given location and
time. However, the situation is different for the Google-AA
indicator: here missingness occurs because the COVID-19
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FIG 10. Proportion of observed (non-missing) values over the evaluation period from October 1, 2020 to June 1, 2021, and over all locations, as
a function of lag k = 1, . . . ,10. (NTF refers to the real-time deconvolution estimator, and simple average refers to the sensor fusion method that
averages all available sensors.) The bottom two rows reflect the intersection of location-time pairs for which all data—deconvolution estimates
and sensors—are available for that given lag, with and without including the Google-AA sensor, since this sensor has a large amount of individual
missingness. Each intersection at each given lag k is restricted to data whose latency is not greater than k. For example, the bottom leftmost cell
computes the porportions of locations and dates at which AR(3), CTIS-CLIIC, and the simple average are concurrently available.

search trends data set is released after using a differential
privacy layer (Bavadekar et al., 2020), and a missing value
means that the level of noise added for privacy protection
is high compared to the search count. Therefore we impute
missing Google-AA signal values by zeros in our analysis;
we do this unless the Google-AA signal was missing for a
particular location and all times in the evaluation period, in
which case we leave it as missing for this location entirely.

5.3 Sensor Fusion

Sensor fusion (SF), broadly speaking, refers to the pro-
cess of assimilating data sources, each of which ideally
contains complementary information, in order to produce
more accurate estimates or predictions. SF falls into the
general class of ensemble methods, and the sensors con-
structed in the previous section can be thought of as base
learners, to be subsequently combined.

We consider the following five ensemble methods. In
each case, we describe how to form the estimate at time s
and location ` as of time t. Though not explicitly stated, it
is to be implicitly understood that all sensor values are as
of time t as well.

1. Simple average: the average of available sensors at
time s and location `.

2. Simple regression: the prediction from a linear re-
gression model at time s and location `, fit to avail-
able sensors over the training period at location `.

3. Ridge: the prediction from a ridge regression model
at time s and location `, fit to available sensors over
the training period and over locations j such that j, `
lie in the same U.S. state (including the state sensor
itself).

4. Lasso: same as in the last item, but using the lasso
instead of ridge regression.

5. KF-SF: the Kalman-Filter-inspired method for sen-
sor fusion from Farrow (2016); Jahja et al. (2019),
with covariance shrinkage, and operating on the ge-
ographical hierarchy within each U.S. state.

Methods 2–5 are trained on the most recent 2d time points,
and 3–5 are tuned using 7-fold forward validation, where
we allow them to choose a lag-specific tuning parameter.
Methods 1–2 are “simple” in the sense that for nowcasting
at a location ` they use sensors from ` only. Methods 3–5
are more sophisticated in that they pool information across
locations within the same state.

The KF-SF method requires a proper geographical hi-
erarchy and thus we create “rest-of-state” jurisdictions by
aggregating the remaining counties (outside of the top 200
counties nationally) within each state, and to run KF-SF,
we create an AR(3) sensor at these rest-of-state locations
(since one sensor at each location is sufficient). It is worth
noting that, as shown in Jahja et al. (2019), KF-SF bears a
close connection to ridge in Model 4: it is in fact equiva-
lent to a modified ridge optimization problem that imposes
additional linear constraints.

6. EVALUATION

We now evaluate nowcasting performance over all loca-
tions and all but every 10th nowcasting date in our evalua-
tion period from October 1, 2020 to June 1, 2021. (We do
this because it gives us a “pure” test set, since every 10th
nowcasting date was already used to choose the real-time
deconvolution methodology in Section 4.) As before, we
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compare to finalized estimates of infection rates computed
via retrospective deconvolution, as in Section 3.

For the purposes of making fair comparisons, in every
analysis (figure) that we present, we only aggregate over
the intersection of nowcasts dates and locations at which
the particular estimates under consideration—coming from
real-time deconvolution, individual sensor models, or sen-
sor fusion—are all available. Abiding by this rule leads us
to examine several different ways of stratifying results, as
the full intersection is fairly sparse (see the second-to-last
row in Figure 10). In particular, we consider the following
two dimensions used to define strata:4

• inclusion of Google-AA or not;
• inclusion of all claims-based sensors (CHNG-CLI,

CHNG-COVID, and DV-CLI) or not.

In what follows, we first examine the performance of indi-
vidual sensor models and a certain sensor fusion method
(the simple average) compared to real-time deconvolution,
and then examine the relative performance of the different
sensor fusion methods.

6.1 Performance of Sensors and Sensor Fusion

We begin by comparing the MAE of nowcasts from nat-
ural trend filtering (NTF) using tapered smoothing, as in
(10) (the real-time deconvolution estimator chosen based
on the analysis in Section 4) to those from individual sen-
sor models and the simple average sensor fusion method.
Despite its simplicity, the simple average appears to be the
best-performing sensor fusion method overall (details in
the next subsection), and so we stick with it as the de facto
sensor fusion method in this subsection. The results here
do not include Google-AA; results including Google-AA
are shown in Appendix B.

Figure 11 displays the MAE from various methods as a
function of lag k. The top and bottom panels do not and
do include the claims-based sensors, respectively. In either
case, we see that up until lag 6, all sensors outperform
the real-time deconvolution estimate from NTF. The sim-
ple average of all sensors improves accuracy even further,
and achieves the best MAE for all lags up through lag
6. We recall that NTF (with tapered smoothing) itself al-
ready provides a huge increase in accuracy over the more
naive method for real-time deconvolution given by apply-
ing trend filtering without extra boundary regularization
(Figure 7). At lag 7, the NTF estimate catches up to about
equal accuracy, and then surpasses sensor fusion and all
sensors in accuracy at lag 8 and onward. An interpretation
for this: right truncation ceases to be a significant problem

4To be explicit, when we say we do not “include” certain sensors, it
means both that we ignore results from their individual sensor models
(in computing the common intersection of available nowcast dates and
locations), and also that we exclude them in running the sensor fusion
methods.
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FIG 11. Comparing NTF to individual sensor models and the simple
average sensor fusion method by MAE for nowcasting. The top panel
excludes the claims-based sensors, whereas the bottom includes them.
For lags smaller than 7, all methods improve upon NTF (with tapered
smoothing), with simple average being the best among them.

past lag 7, and thus we are better off performing deconvo-
lution directly in order to estimate infections more than a
week into the past.

Figure 12 displays the empirical distributions of ranks of
nowcast errors coming from each method, computed with
respect to each other, over common nowcast tasks (defined
by a location-date-lag triplet). For example, in a particular
nowcast task, we assign a rank of 1 to the method with
the smallest absolute error for that nowcast task. The top
panel again excludes claims-based signals, and the bottom
panel includes them. The striking feature in either panel,
particularly the bottom panel, is that the simple average
has a highly distinctive distribution of ranks—it is rarely
the best method, but never the worst. While this is not
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FIG 12. Comparing NTF to individual sensor models and the simple
average sensor fusion method by relative ranks over common nowcast
tasks. The top panel excludes all claims-based sensors and considers
lags 1–5, whereas the bottom panel includes them and considers lags
4–9 (the first 5 lags at which all methods are available, in either case).
The simple average exhibits striking consistency: it is rarely the best,
but also never the worst.

particularly surprising (averaging random variables tends
to be variance-reducing, as long as the variables are not
too correlated), it also points to a key property of sensor
fusion—a certain kind of robustness, beyond accuracy.

6.2 Relative Performance of Sensor Fusion Methods

We now compare the various sensor fusion methods to
each other. The results here do not include claims-based
signals; results including claims-based signals are shown
in Appendix B. Figure 13 displays the MAE of the various
sensor fusion estimates, but divided up into three panels,
defined by averaging over small, medium, and large states
(the figure caption provides more details). Recall that for
the lasso, ridge, and KF-SF approaches, a model in a par-
ticular county is fit using the sensors from other counties
in the same state. Larger states have more pooling of infor-
mation across locations and present a greater potential for
gains in accuracy. We see that the simple average method

is typically the best sensor fusion method at each lag, but
for medium and large states, KF-SF catches up with it and
is just about as accurate.

Figure 14 displays the relative ranking of sensor fusion
methods. The simple average and KF-SF methods appear
the most favorable (often the best, and less so the worst),
followed by lasso, then ridge, and lastly simple regression
(most often the worst).

7. DISCUSSION

In this work, we proposed, implemented, and evaluated
a framework for real-time estimation of new symptomatic
COVID-19 infections from case reports. At time t, in order
to nowcast the infection rate at time t−k (for small values
of k, such as k = 1,2, . . .), the main steps are to:

1. estimate a symptom-onset-to-case-report delay dis-
tribution using the most recent data available in a
line list provided by the CDC;

2. perform regularized deconvolution on the most re-
cent case data available from JHU CSSE;

3. update models to track recent infection rates from
various auxiliary signals (based on COVID-related
data from medical insurance claims, online surveys,
and Google searches), and fuse together the predic-
tions from these models in order to stabilize recent
estimates of infection rates.

In each step, we proposed methodological advances that
improved the accuracy of our nowcasts, when measured
against finalized infection rate estimates obtained by retro-
spective deconvolution (using data that would have only
been available months later). While using auxiliary signals
(step 3) did help in terms of accuracy and robustness, the
additional regularization devices that we incorporated into
real-time deconvolution (step 2) ended up providing the
biggest benefit to accuracy.

To reiterate, we purposely defined our target of estima-
tion to be symptomatic infections that would eventually
show up in public health reports, allowing us to focus on
developing and testing tools for real-time deconvolution
and sensor fusion, with minimal assumptions (e.g., with-
out a mechanistic model for disease spread). Estimating
the number of true symptomatic infections at any point in
time—whether or not they will appear in case reports—is
of course a much harder problem. However, our method-
ology may be seen as a contribution toward solving this
larger problem in real-time; moreover, some simple post
hoc corrections could be applied to our real-time estimates
in order to adjust for confounding. For example, if a`,t is
the fraction of untested symptomatic infections in location
` at at time t, which (say) is estimated from external data
sources, then we could just multiply each element p̂(t)`,s of
the delay distribution used in (10) by b`,t = 1/(1− a`,t)
in order to estimate all symptomatic infections from case
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FIG 13. Comparing sensor fusion methods by boxenplots of nowcasting errors (each box conveys the level 25%, 50%, and 75% quantiles of the
absolute error distribution.) The three panels average over small (containing less than 5 locations), medium (between 5 and 14 locations), and large
(more than 15 locations) states. Simple average performs generally the best throughout, but KF-SF catches up for medium and large states.
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FIG 14. Comparing sensor fusion methods by relative ranks over com-
mon nowcast tasks, and considering only lags 1–5. The simple average
and KF-SF methods consistently perform in the top half, while simple
regression is most often the worst.

reports. Due to the way we have set up the deconvolution
problem (cross-validating over optimal choices of tuning
parameters), this would be essentially equivalent to post-
mulitplying the nowcast x̂(t)`,s we already produce by b`,t.

We finish by describing a few directions for future work.

Post Hoc Smoothing. As we saw in Section 6, sensor
fusion provides a real-time improvement on pure deconvo-
lution up until about a 10-day lag, and past that point, the
deconvolution estimates appear stable enough that sensor
fusion becomes unnecessary. While the quantative benefit
of sensor fusion for small lags is clear, sensor fusion is also
lacking in the following qualitative aspect: its estimates
do not always appear visually smooth across time (this is
because the sensors themselves need not be smooth over
time, and furthermore, sensor fusion may end up using a
different subset of sensors at each lag, creating additional

jaggedness). Post smoothing techniques would be worth
investigating here, to aid visual consumption.

Rt Estimation. The instantaneous reproductive number
Rt, the average number of secondary infections at time t
generated from a primary infection in the past, is a useful
and interpretable parameter that reflects the dynamics of
epidemic growth in a population. In the SIR model, the
instantaneous reproductive number Rt and growth rate rt
at time t obey the following relationship:

Rt ≈ 1 +
rt
γ
,

where γ denotes the recovery rate in the SIR model. While
this is well-known in the literature on mathematical mod-
eling of epidemics (and is exact under local exponential
growth; see, e.g., Wallinga and Lipsitch (2007)), its use in
the presence of confounding seems to be underexplored
and potentially undervalued. If It denotes the number of
new infections at t, then using a simple discrete difference
approximation to rt leads to:

Rt ≈ 1 +
1

γ

(
It+1

It
− 1

)
.

A similar though not identical approximation is given in
Bettencourt and Ribeiro (2008), where It+1/It − 1 is re-
placed by log(It+1/It). Critically, incident infections only
enter right-hand side above as a ratio of values adjacent in
time, and thus if we are only able to estimate this up to an
unknown multiplicative factor (due to confounding), then
this factor approximately cancels in the ratio as long as it
is slowly varying in time. In slightly more detail (and for
simplicity, considering just a single location), suppose as
before that a fraction at of infections go untested at time t.
Then It = btxt where xt is the number of new infections
at time t that show up in case reports (i.e., the focus of this
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paper) and bt = 1/(1− at). From the previous display,

Rt ≈ 1 +
1

γ

(
bt+1xt+1

btxt
− 1

)
≈ 1 +

1

γ

(
xt+1

xt
− 1

)
,

where the last approximation is motivated by an additional
assumption the untested fraction varies slowly over time
(so bt+1/bt ≈ 1). This shows that estimates of xt can pro-
duce approximately unconfounded estimates of Rt, even
though xt is itself confounded due to a lack of universal
testing. This is true both in the retrospective and real-time
sense, and will be the topic of future study.

Evaluation via Reconvolution. An important avenue for
evaluating our methodology (beyond evaluating against
finalized infection rate estimates, as we do in this paper),
would be to reconvolve our real-time nowcasts of infection
rates forward in time in order to predict future case rates,
and evaluate these predictions against finalized case report-
ing data. Making and evaluating point predictions would
be relatively straightforward, however, distributional fore-
casts are currently the standard in epidemiological fore-
casting (and also in COVID-19 forecasting), and adding a
distributional layer to our nowcasts (and propagating this
through the convolution operator) requires substantial new
developments, and we leave it to future work.
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APPENDIX A: ADMM FOR SOLVING
DECONVOLUTION PROBLEMS

Here we give details on the ADMM approach used to
solve the regularized least squares deconvolution problems
in Sections 3 and 4. We first focus on problem (5), and then
we discuss the modifications needed when incorporating
extra regularization for real-time deconvolution as in (10).
To simplify notation, we will henceforth drop the subscript
dependnece of all quantities on the location `, as well as
the superscript dependence on the nowcast date t for the
real-time problems.

We also use P̂ to denote the (Toeplitz) convolution ma-
trix with rows determined by p̂s, s < t, i.e., such that for
any vector x (of appropriate dimension)

(P̂ x)s =

d∑
k=1

p̂kxs−k.

(We leave the dimensions of P̂ and x here purposely am-
biguous, which should always be clear from the context

anyway; this allows us to borrow similar notation across
problems with different underlying dimensions.) Thus we
can rewrite (5) as

minimize
x

‖y− P̂ x‖22 + λ‖D(4)x‖1.

To apply ADMM, we must introduce auxiliary variables,
and as in Ramdas and Tibshirani (2016), we use the fol-
lowing “specialized” decomposition (which improves the
convergence speed):

minimize
x

‖y− P̂ x‖22 + λ‖D(1)α‖1

subject to α=D(3)x,

where we used the recursive nature of the difference op-
erators, writing the 4th-order operator as a product of the
1st- and 3rd-order operators: D(4) =D(1)D(3). The above
problem gives rise to the augmented Lagrangian:

L(x,α,u) = ‖y− P̂ x‖22 + λ‖D(1)α‖1 +

ρ‖α−D(3)x+ u‖22 − ρ‖u‖22,
which corresponds to following ADMM updates, writing
D =D(3) for brevity:

x← (P̂ T P̂ + ρDTD)−1
(
P̂ T y+ ρDT (α+ u)

)
α← argmin

z
‖Dx− u− z‖22 +

λ

ρ
‖D(1)α‖1

u← u+ α−Dx.
The α-update here requires solving a 1-dimensional fused
lasso problem, which can be done in linear-time with the
dynamic programming approach of Johnson (2013). The x-
update is more expensive than in pure trend filtering (with
no convolution operator) but owing to the bandedness of
P̂ (and D, though the bandwidth d of P̂ dominates), it can
still be solved in O(nd) operations. Further, in this and all
applications of ADMM, we follow the recommendation
of Ramdas and Tibshirani (2016) and set the Lagrangian
parameter equal to the tuning parameter, ρ= λ.

As for the two extensions presented in (10), the natural
trend filtering constraints can be be enfored by introducing
a linear interpolant matrix as described in Section 11.2 of
Tibshirani (2020). This effectively replaces the convolution
matrix P̂ and the 3rd difference operator D, in the ADMM
steps above, by P̃ and D̃, respectively, which are given by
right multiplying P and D by the interpolant matrix.

Moreover, the additional tapered smoothing term can be
pushed into the augmented Lagrangian, and only alters the
x-update, now becoming:

x← (P̃ T P̃ + γMTM + ρD̃)−1 ·(
P̃ T y+ ρD̃T (α+ u)

)
,

where M is the matrix W (t)D(1) in the tapered penalty in
(10) times the linear interpolant matrix.
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FIG 15. As in Figure 11, but including Google-AA.

APPENDIX B: ADDITIONAL EVALUATION RESULTS

Figures 15 and 16 are analogous to Figures 11 and 12,
but with the inclusion of the Google-AA sensor. Similarly,
Figures 17 and 18 are the counterparts to Figures 13 and
14, but with the inclusion of claims-based sensors.

REFERENCES

ABBOTT, S., HELLEWELL, J., THOMPSON, R. N., SHERRATT, K.,
GIBBS, H. P., BOSSE, N. I., MUNDAY, J. D., MEAKIN, S.,
DOUGHTY, E. L., CHUN, J. Y., CHAN, Y.-W. D., FINGER, F.,
CAMPBELL, P., ENDO, A., PEARSON, C. A. B., GIMMA, A., RUS-
SELL, T., CMMID COVID MODELLING GROUP, FLASCHE, S.,
KUCHARSKI, A. J., EGGO, R. M. and FUNK, S. (2020). Estimat-
ing the time-varying reproduction number of SARS-CoV-2 using
national and subnational case counts. Wellcome Open Research 5.

ACKLEY, A. F., PILEWSKI, S., PETROVIC, V. S., WORDEN, L., MUR-
RAY, E. and PORCO, T. C. (2020). assessing the utility of a smart
thermometer and mobile application as a surveillance tool for in-

1 2 3 4 5 6 7 8
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

NTF (tapered)
AR(3)
CTIS-CLIIC
CHNG-CLI
CHNG-COVID
DV-CLI
Google-AA
Simple average

1 2 3 4 5
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

NTF (tapered)
AR(3)
CTIS-CLIIC
Google-AA
Simple average

FIG 16. As in Figure 12, but including Google-AA.

fluenza and influenza-like illness. Health Informatics Journal 26
2148–2158.

BAVADEKAR, S., DAI, A., DAVIS, J., DESFONTAINES, D.,
ECKSTEIN, I., EVERETT, K., FABRIKANT, A., FLORES, G.,
GABRILOVICH, E., GADEPALLI, K., GLASS, S., HUANG, R., KA-
MATH, C., KRAFT, D., KUMOK, A., MARFATIA, H., MAYER, Y.,
MILLER, B., PEARCE, A., PERERA, I. M., RAMACHANDRAN, V.,
RAMAN, K., ROESSLER, T., SHAFRAN, I., SHEKEL, T., STAN-
TON, C., STIMES, J., SUN, M., WELLENIUS, G., and ZOGHI, M.
(2020). Google COVID-19 search trends symptoms dataset:
Anonymization process description. arXiv: 2009.01265.

BETTENCOURT, L. M. A. and RIBEIRO, R. M. (2008). Real time
Bayesian estimation of the epidemic potential of emerging infectious
diseases. PLOS ONE 3 e2185.

BROOKS, L. C. (2020). Pancasting: Forecasting epidemics from provi-
sional data, PhD thesis, Carnegie Mellon University.

BROWNSTEIN, J. S., FREIFELD, C. C. and MADOFF, L. C. (2009).
Digital disease detection — harnessing the web for public health
surveillance. New England Journal of Medicine 360 2153–2157.

CARLSON, S. J., DALTON, C. B., BUTLER, M. T., FEJSA, J.,
ELVIDGE, E. and DURRHEIM, D. N. (2013). Flutracking weekly
online community survey of influenza-like illness annual report 2011
and 2012. Communicable diseases intelligence quarterly report 37
E398–406.

CHARU, V., ZEGER, S., GOG, J., BJØRNSTAD, O. N., KISSLER, S.,
SIMONSEN, L., GRENFELL, B. T. and VIBOUD, C. (2017). Human



20

4 5 6 7 8 9 10
Days back from nowcast time

4

6

8

10

12

14
M

ea
n 

ab
so

lu
te

 e
rro

r
Small states

4 5 6 7 8 9 10
Days back from nowcast time

Medium states

4 5 6 7 8 9 10
Days back from nowcast time

Large states

Simple average
Simple regression
Lasso
Ridge
KF-SF

FIG 17. As in Figure 13, but including claims-based signals.

1 2 3 4 5
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Simple average
Simple regression
Ridge
Lasso
KF-SF

FIG 18. As in Figure 14, but including claims-based signals.

mobility and the spatial transmission of influenza in the United
States. PLOS Computational Biology 13 1–23.

CHITWOOD, M. H., RUSSI, M., GUNASEKERA, K., HAVUMAKI, J.,
PITZER, V. E., SALOMON, J. A., SWARTWOOD, N., WAR-
REN, J. L., WEINBERGER, D. M. and COHEN, T. (2021). Re-
constructing the course of the COVID-19 epidemic over 2020 for
US states and counties: results of a Bayesian evidence synthesis
model.

CORI, A., FERGUSON, N. M., FRASER, C. and CAUCHEMEZ, S.
(2013). A new framework and software to estimate time-varying
reproduction numbers during epidemics. American Journal of Epi-
demiology 178 1505–1512.

DEBEYE, H. W. J. and VAN RIEL, P. (1990). Lp-norm deconvolution.
Geophysical Prospecting 38 381–403.

DONG, E., DU, H. and GARDNER, L. (2020). An interactive web-based
dashboard to track COVID-19 in real time. The Lancet Infectious
Diseases 20 533–544.

FARROW, D. C. (2016). Modeling the past, present, and future of
influenza, PhD thesis, Carnegie Mellon University.

CENTERS FOR DISEASE CONTROL AND PREVENTION, COVID-19
RESPONSE (2020a). COVID-19 Case Surveillance Public Use
Data. https://data.cdc.gov/Case-Surveillance/
COVID-19-Case-Surveillance-Public-Use-Data/
vbim-akqf. Data accessed on November 3, 2021.

CENTERS FOR DISEASE CONTROL AND PREVEN-
TION, COVID-19 RESPONSE (2020b). COVID-19
Case Surveillance Restricted Access Detailed Data.
https://data.cdc.gov/Case-Surveillance/
COVID-19-Case-Surveillance-Restricted-Access-Detai/
mbd7-r32t. Data accessed on November 3, 2021.

GINSBERG, J., MOHEBBI, M. H., PATEL, R. S., BRAMMER, L.,
SMOLINSKI, M. S. and BRILLIANT, L. (2009). Detecting influenza
epidemics using search engine query data. Nature 457 1012–1014.

GOLDSTEIN, E., DUSHOFF, J., MA, J., PLOTKIN, J. B., EARN, D. J.
and LIPSITCH, M. (2009). Reconstructing influenza incidence by
deconvolution of daily mortality time series. Proceedings of the
National Academy of Sciences 106 21825–21829.

GOSTIC, K. M., MCGOUGH, L., BASKERVILLE, E. B., ABBOTT, S.,
JOSHI, K., TEDIJANTO, C., KAHN, R., NIEHUS, R., HAY, J. A.,
DE SALAZAR, P. M., HELLEWELL, J., MEAKIN, S., MUN-
DAY, J. D., BOSSE, N. I., SHERRAT, K., THOMPSON, R. N.,
WHITE, L. F., HUISMAN, J. S., SCIRE, J., BONHOEFFER, S.,
STADLER, T., WALLINGA, J., FUNK, S., LIPSITCH, M. and
COBEY, S. (2020). Practical considerations for measuring the ef-
fective reproductive number, Rt. PLOS Computational Biology 16
1–21.

HAWRYLUK, I., HOELTGEBAUM, H., MISHRA, S., MIS-
COURIDOU, X., SCHNEKENBERG, R. P., WHITTAKER, C.,
VOLLMER, M., FLAXMAN, S., BHATT, S. and MELLAN, T. A.
(2021). Gaussian process nowcasting: Application to COVID-19
mortality reporting. In Conference on Uncertainty in Artificial
Intelligence.

JAHJA, M., FARROW, D., ROSENFELD, R. and TIBSHIRANI, R. J.
(2019). Kalman Filter, sensor fusion, and constrained regression:
equivalences and insights. In Advances in Neural Information Pro-
cessing Systems.

JOHNSON, N. (2013). A dynamic programming algorithm for the fused
lasso and L0-segmentation. Journal of Computational and Graphi-
cal Statistics 22 246–260.

KAPLAN, E. L. and MEIER, P. (1958). Nonparametric Estimation
from Incomplete Observations. Journal of the American Statistical
Association 53 457–481.

KASS-HOUT, T. A. and ALHINNAWI, H. (2013). Social media in
public health. British Medical Bulletin 108 5–24.

KASS-HOUT, T. A. and ZHANG, X. (2011). Biosurveillance: Methods
and Case Studies. CRC Press.

REICH LAB (2020). The COVID-19 Forecast Hub. https://
covid19forecasthub.org.

https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://covid19forecasthub.org
https://covid19forecasthub.org


REAL-TIME ESTIMATION OF COVID-19 INFECTIONS 21

LEUBA, S. I., YAESOUBI, R., ANTILLON, M., COHEN, T. and ZIM-
MER, C. (2020). Tracking and predicting U.S. influenza activity with
a real-time surveillance network. PLOS Computational Biology 16
1–14.

MCDONALD, D. J., BIEN, J., GREEN, A., HU, A. J., DEFRIES, N.,
HYUN, S., OLIVEIRA, N. L., SHARPNACK, J., TANG, J., TIBSHI-
RANI, R., VENTURA, V., WASSERMAN, L. and TIBSHIRANI, R. J.
(2021). Can auxiliary indicators improve COVID-19 forecasting and
hotspot prediction? e2111453118. To appear, PNAS.

MCGOUGH, S. F., JOHANSSON, M. A., LIPSITCH, M. and MEN-
ZIES, N. A. (2020). Nowcasting by Bayesian smoothing: A flexible,
generalizable model for real-time epidemic tracking. PLOS Compu-
tational Biology 16 e1007735.

MCIVER, D. J. and BROWNSTEIN, J. S. (2014). Wikipedia usage
estimates prevalence of influenza-like illness in the United States in
near real-time. PLOS Computational Biology 10 e1003581.

OPPENHEIM, A. V. and VERGHESE, G. C. (2017). Signals, Systems
and Inference. Pearson.

PAUL, M. J. and DREDZE, M. (2017). Social monitoring for public
health. Synthesis Lectures on Information Concepts, Retrieval, and
Services 9 1–183.

RADIN, J. M., WINEINGER, N. E., TOPOL, E. J. and STEIN-
HUBL, S. R. (2020). Harnessing wearable device data to improve
state-level real-time surveillance of influenza-like illness in the USA:
A population-based study. The Lancet Digital Health 2 e85–e93.

RAMDAS, A. and TIBSHIRANI, R. J. (2016). Fast and Flexible ADMM
Algorithms for Trend Filtering. Journal of Computational and
Graphical Statistics 25 839–858.

REINHART, A., BROOKS, L., JAHJA, M., RUMACK, A., TANG, J.,
AGRAWAL, S., SAEED, W. A., ARNOLD, T., BASU, A., BIEN, J.,
CABRERA, Á. A., CHIN, A., CHUA, E. J., CLARK, B.,
COLQUHOUN, S., DEFRIES, N., FARROW, D. C., FORLIZZI, J.,
GRABMAN, J., GRATZL, S., GREEN, A., HAFF, G., HAN, R.,
HARWOOD, K., HU, A. J., HYDE, R., HYUN, S., JOSHI, A.,
KIM, J., KUZNETSOV, A., MOTTE-KERR, W. L., LEE, Y. J.,
LEE, K., LIPTON, Z. C., LIU, M. X., MACKEY, L., MAZAITIS, K.,
MCDONALD, D. J., MCGUINNESS, P., NARASIMHAN, B.,
O’BRIEN, M. P., OLIVEIRA, N. L., PATIL, P., PERER, A.,
POLITSCH, C. A., RAJANALA, S., RUCKER, D., SCOTT, C.,
SHAH, N. H., SHANKAR, V., SHARPNACK, J., SHEMETOV, D.,
SIMON, N., SMITH, B. Y., SRIVASTAVA, V., TAN, S., TIBSHI-
RANI, R., TUZHILINA, E., NORTWICK, A. K. V., VENTURA, V.,
WASSERMAN, L., WEAVER, B., WEISS, J. C., WHITMAN, S.,
WILLIAMS, K., ROSENFELD, R. and TIBSHIRANI, R. J. (2021).
An open repository of real-time COVID-19 indicators. Proceedings
of the National Academy of Sciences 51 e2111452118.

ROSENFELD, R. and TIBSHIRANI, R. J. (2021). Epidemic tracking and
forecasting: Lessons learned from a tumultuous year. Proceedings
of the National Academy of Sciences 51 e2111456118.

RUDIN, L. I. and OSHER, S. (1994). Total variation based image
restoration with free local constraints. In International Conference
on Image Processing 1 31–35.

SALATHÉ, M., BENGTSSON, L., BODNAR, T. J., BREWER, D. D.,
BROWNSTEIN, J. S., BUCKEE, C., CAMPBELL, E. M., CAT-
TUTO, C., KHANDELWAL, S., MABRY, P. L. and VESPIGNANI, A.
(2012). Digital epidemiology. PLOS Computational Biology 8 1–3.

SALOMON, J. A., REINHART, A., BILINSKI, A., CHUA, E. J.,
LA MOTTE-KERR, W., RÖNN, M. M., REITSMA, M., MOR-
RIS, K. A., LAROCCA, S., FARAG, T., KREUTER, F., ROSEN-
FELD, R. and TIBSHIRANI, R. J. (2021). The COVID-19 trends
and impact survey: Continuous real-time measurement of COVID-
19 symptoms, risks, protective behaviors, testing and vaccination.
Proceedings of the National Academy of Sciences 51 e2111454118.

SANTILLANA, M., NGUYEN, A. T., DREDZE, M., PAUL, M. J., NSOE-
SIE, E. O. and BROWNSTEIN, J. S. (2015). Combining search, so-
cial media, and traditional data sources to improve influenza surveil-
lance. PLOS Computational Biology 11 e1004513.

SANTILLANA, M., NGUYEN, A. T., LOUIE, T., ZINK, A., GRAY, J.,
SUNG, I. and BROWNSTEIN, J. S. (2016). Cloud-based electronic
health records for real-time, region-specific influenza surveillance.
Scientific Reports 6 1–8.

SMOLINSKI, M. S., CRAWLEY, A. W., BALTRUSAITIS, K., CHU-
NARA, R., OLSEN, J. M., WÓJCIK, O., SANTILLANA, M.,
NGUYEN, A. and BROWNSTEIN, J. S. (2015). Flu Near You: Crowd-
sourced symptom reporting spanning 2 influenza seasons. American
Journal of Public Health 105 2124–2130.

SYSTROM, K., VLADEK, T. and KRIEGER, M. (2020). Rt.live.
https://github.com/rtcovidlive/covid-model.

TAYLOR, H. L., BANKS, S. C. and MCCOY, J. F. (1979). Deconvolu-
tion with the `1 norm. Geophysics 44 39–52.

THOMPSON, R. N., STOCKWIN, J. E., VAN GAALEN, R. D., POLON-
SKY, J. A., KAMVAR, Z. N., DEMARSH, P. A., DAHLQWIST, E.,
LI, S., MIGUEL, E., JOMBART, T., LESSLER, J., CAUCHEMEZ, S.
and CORI, A. (2019). Improved inference of time-varying repro-
duction numbers during infectious disease outbreaks. Epidemics 29
100356.

TIBSHIRANI, R. J. (2014). Adaptive piecewise polynomial estimation
via trend filtering. Annals of Statistics 42 285–323.

TIBSHIRANI, R. J. (2020). Divided differences, falling factorials, and
discrete splines: Another look at trend filtering and related problems.
arXiv: 2003.03886.

VIBOUD, C., CHARU, V., OLSON, D., BALLESTEROS, S., GOG, J.,
KHAN, F., GRENFELL, B. and SIMONSEN, L. (2014). Demonstrat-
ing the use of high-volume electronic medical claims data to monitor
local and regional influenza activity in the US. PLOS ONE 9 1–12.

WALLINGA, J. and LIPSITCH, M. (2007). How generation intervals
shape the relationship between growth rates and reproductive num-
bers. Proceedings of the Royal Society B: Biological Sciences 274
599–604.

WIENER, N. (1964). Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. The MIT Press.

YANG, S., SANTILLANA, M. and KOU, S. C. (2015). Accurate esti-
mation of influenza epidemics using Google search data via ARGO.
Proceedings of the National Academy of Sciences 112 14473–14478.

YANG, C.-Y., CHEN, R.-J., CHOU, W.-L., LEE, Y.-J. and LO, Y.-S.
(2019). An integrated influenza surveillance framework based on
national influenza-like illness incidence and multiple hospital elec-
tronic medical records for early prediction of influenza epidemics:
Design and evaluation. Journal of Medical Internet Research 21
e12341.

https://github.com/rtcovidlive/covid-model

	Introduction
	Surveillance During the Pandemic
	Nowcasting by Deconvolution
	Related Work

	Preliminaries
	Problem Setup
	Confounding

	Retrospective Deconvolution
	Convolutional Model
	Estimating the Delay Distribution
	Defining Ground Truth

	Real-Time Deconvolution
	Incorporating Extra Regularization
	Adjusting the Delay Distribution for Truncation
	Shortening the Deconvolution Window

	Leveraging Auxiliary Signals
	Sensor Models
	Sensor Missingness
	Sensor Fusion

	Evaluation
	Performance of Sensors and Sensor Fusion
	Relative Performance of Sensor Fusion Methods

	Discussion
	Acknowledgments
	ADMM for Solving Deconvolution Problems
	Additional Evaluation Results
	References

