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DISCUSSION: “A SIGNIFICANCE TEST FOR THE LASSO”

BY A. BUJA AND L. BROWN

University of Pennsylvania

It is rare in our field that we can speak of a true discovery, but this is one such
occasion. It is an unexpected result that the steps by which variables enter a lasso
path permit a basic statistical test with a simple null distribution that is asymptoti-
cally valid and has good finite-sample properties. This test may become standard,
and maybe it should simply be called “the lasso test” because it is difficult to con-
ceive of a form of inference more intimately tied to the lasso.1

The authors use forward stepwise variable selection as their straw man, and this
for good reason because the t-tests on which stepwise selection builds are essen-
tially a heuristic abuse of the testing framework that entirely ignores the effects of
selection. The lasso tests, by contrast, account for selection and shrinkage that is
implicit in the lasso. Insight into how this is possible is one of the many byproducts
of this innovative and thought provoking article.

One of the beauties of the authors’ article is Lemma 3 where it is shown that
the transformation of sorted test statistics |z(j)| using the formula |z(j)|(|z(j)| −
|z(j+1)|) generates quantities that have limiting null distributions Exp(1/j) as
p → ∞. By comparison, |z(j)| keeps growing under the null at the rate

√
2 logp.

It is a quite remarkable fact that for this particular series of transformed statistics
a limiting distribution can be obtained under competition by an unlimited number
of null predictors, that is, p → ∞.

From straw man to competitor: Forward stepwise. The authors’ Section 2.2
convincingly documents that naive t-tests are fatally flawed when used in the stan-
dard forward stepwise selection routine to test the conditional null hypothesis that
the current selection contains all nonzero coefficients. In the example of their Fig-
ure 1, the authors consider testing the first selected predictor among ten orthogonal
predictors. Assuming σ known, the t-statistic becomes a z-statistic, and the null
distribution of z2 for any of the predictors is χ2

1 . If, however, the tested predictor
has been chosen to maximize explanatory power, then its proper null distribution
is not χ2

1 but maxj=1,...,10 χ2
1(j), where χ2

1(j) are ten independent copies of χ2
1 . The

authors’ Figure 1(a) illustrates the obvious fact that this distribution is stochasti-
cally much larger than the naive null distribution χ2

1 .
Once this is recognized, however, there are various ways to account for the ef-

fects of selection in the forward stepwise procedure. In what follows, we briefly
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1Moreover, the term “covariance test” is misleading because it is not covariance that is being tested.
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outline how forward stepwise selection can be provided with inference that is con-
ditionally valid given the selection path taken thus far, just like the lasso test, but
unlike the lasso test, the inference is guaranteed to be strictly valid for finite sam-
ples and also for arbitrary collinearities. In detail, consider selection stage k where
the set A of selected predictors has size |A| = k − 1. The number of remaining
predictors is p − (k − 1), and we denote these by Xk, . . . ,Xp . In view of the fact
that the predictors in A have already been included, we need versions of the re-
maining predictors that are adjusted for the predictors in A, and we denote these
versions by Xj ·A (j = k, . . . , p). Unlike the authors, we will not assume that σ

is known but that it must be estimated by some σ̂ = σ̂ (y) with dferr degrees of
freedom (usually from the RSS of the full model) and which we can assume to
be stochastically independent of all 〈Xj ,y〉. Importantly, we use this single σ̂ for
all t- and F -statistics and never recompute it from any submodel. This is impor-
tant in order to enable simultaneous inference to solve the multiplicity problem
of selection [Berk et al. (2013), Section 4.1]. In order to test the strongest among
the remaining p − (k − 1) predictors under the null hypothesis that A contains all
predictors with true nonzero slopes, one can proceed in one of the following ways:

• Exact inference based on max-|t |: Assuming that the selected predictor at each
step is the one with the most significant t-statistic if added to the model A, the
appropriate test statistic is

tmax(y) := max
j=k,...,p

∣
∣t (j)(y)

∣
∣ where t (j)(y) := 〈Xj ·A,y〉

‖Xj ·A‖σ̂ (y)
.(1)

The null distribution of tmax(y) under the assumption that all remaining pre-
dictors have zero slopes can be approximated by simulating tmax(ε) for ε ∼
N (0, In), while for small numbers of remaining predictors there exists software
to perform numerical integration. The correct p-value is P[tmax(ε) > tmax(y)].
This is the brute-force approach that correctly accounts for any finite sample size
and arbitrary collinearities. It is only weakness is that it assumes homoskedastic
normal errors whose variance is properly estimated by σ̂ 2; first-order correct-
ness of the full model does not need to be assumed if such a σ̂ is available [Berk
et al. (2013), Sections 2.2 and 3].

• Bonferroni correction to naive inference: Use naively the tdferr -distribution for
tmax(y), but adjust the significance level by dividing it by p − (k − 1), or else
adjust the naive p-value by multiplying it by p − (k − 1). This approach is
conservative but provides excellent approximations for nearly orthogonal pre-
dictors.

• Scheffé simultaneous inference: The Scheffé method can be used to provide si-
multaneous inference for all linear combinations of the remaining coefficients,
which trivially includes all of the remaining coefficients. Scheffé-adjusted
p-values are obtained by treating t2

max(y)/(p − (k − 1)) as distributed accord-
ing to Fp−(k−1),dferr . This approach is obviously too conservative but it is easy
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to obtain as an alternative when the Bonferroni correction fails due to strong
collinearity.

• F -tests of remaining variation: This method is not strictly a test of selected pre-
dictors but it has a touch of the obvious in that a significant test result suggests
that more predictors should be included. The method consists of performing
an F -test of each submodel A within the full model. Note that for orthogonal
predictors the F -statistic at stage k is

∑
j=k,...,p(t(j))2/(p − (k − 1)), where

t (j) = t (j)(y) is defined in (1). The null distribution is again Fp−(k−1),dferr . One
can give the method an interpretation in the spirit of Scheffé simultaneous in-
ference: A significant F -test at a given stage means that there exists a linear
combination of the remaining coefficients that is statistically significant. This,
then, suggests continuing with inclusion of another term. One stops stepwise
inclusion when the F -test indicates that there does not exist a linear combi-
nation of the remaining predictors that accounts for significant variation in the
response.

• Lemma 2 tests for stepwise: Lemma 2 can be used for stepwise selection, but it,
too, is not strictly a test of selected predictors because it depends not only on the
strongest but the second strongest remaining predictor as well. The test statistic
is tmax · (tmax − tmax−1), where tmax−1 stands for the second largest in magnitude
among t-statistics of remaining predictors. According to Lemma 2, for orthogo-
nal predictors this test statistic has an approximate F2,dferr -distribution. As in the
case of the F -test method, a statistically significant outcome of the Lemma 2 test
indicates that more predictors are needed. The power implications of this choice
of test statistic are not clear at this point, although the authors provide some
tentative simulation results in their Figure 4, which in their example seems to
indicate no drastic differences in power between the Lemma 2 statistic and the
tmax statistic.

All types of p-values for the sequence of forward stepwise inclusions are shown
in Table 1 for the full wine quality data (the authors show their results for a half
sample, hence some disagreements with our results). The exact method is based
on 99,999 null replicates. Computation of the whole table took just eight seconds
in spite of the simulations at each step for the exact method.

In conclusion, forward stepwise selection can be richly endowed with valid sta-
tistical inference. It does not deserve to be seen as the poor “step child” of the
lasso.

Issues with the application of lasso tests. If the history of the t-test is a guide,
the lasso test will give us some quirks and curiosities to ponder. Part of the his-
toric learning curve in connection with t-tests was the experience that occasionally
two predictors can be both statistically insignificant when they appear jointly in a
model, but when one of them is removed the other is boosted to statistical signif-
icance (one of the joys of collinearity). As a consequence, it was understood that
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TABLE 1
Comparative results for the various conditional p-values in forward stepwise selection applied to

the full wine quality data

p-values

Step Predictor t-stats Naive Exact Bonfer Scheffe F -tests Lemma 2

1 Alcohol 23.7216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 Volatile_acidity 14.9676 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 Sulphates 6.8479 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 Total_sulfur_dioxide 4.4237 0.0000 0.0001 0.0001 0.0125 0.0000 0.4136
5 Chlorides 4.3749 0.0000 0.0001 0.0001 0.0080 0.0000 0.0011
6 pH 3.7544 0.0002 0.0011 0.0011 0.0291 0.0010 0.0062
7 Free_sulfur_dioxide 2.3878 0.0171 0.0726 0.0853 0.3369 0.1370 0.0915
8 Citric_acid 1.0633 0.2878 0.6540 1.0000 0.8893 0.6124 0.6309
9 Residual_sugar 0.7818 0.4344 0.7528 1.0000 0.8938 0.6705 0.8429

10 Fixed_acidity 0.5071 0.6122 0.7829 1.0000 0.8794 0.6250 0.8190
11 Density 0.8266 0.4086 0.4066 0.4086 0.4086 0.4086

it is not a good idea to simultaneously remove all insignificant predictors from a
model. This in turn led to the invention of stepwise selection procedures, then to
the lasso, and now to the article at hand.

As an example of an issue to ponder about the lasso test, there is the notion of a
random null hypothesis. In our own work on valid post-selection inference [Berk
et al. (2013)], we faced a similar issue and referee questions: what does it mean to
provide valid inference in a random model? This question is unavoidable when the
models in which tests are to be performed are the result of a random selection pro-
cess such as a stepwise, all-subsets or lasso variable selection procedure. The way
the issue was resolved in our work was by providing protection for all possible null
hypotheses that could have been selected, hence the selection procedure provides
only a lens to randomly focus on one of many null hypotheses whose validity of
inference has been insured beforehand. This is not so for lasso tests: they are truly
conditional starting with the second selection of a predictor.

An issue arising from sequential conditionality can be illustrated by scanning
some of the data examples provided by the authors: for the prostate cancer data
in Table 1, we will say that after (conditional on) including the first variable
(lcavol) we have evidence at a level just barely missing significance 0.05 that
the second variable (lweight) carries signal. In the subsequent four steps, the
added variables do not provide evidence that they carry signal given the inclusion
of the respective previous variables. But, conditional on including six predictors,
the seventh (lcp) gives evidence again just barely missing significance 0.05 that
it, too, carries signal. This could, of course, be a false rejection, but if Lemma 3
and Theorem 1 of the article are a guide, the sequence of null distributions be-
comes tighter [Exp(1), Exp(1/2), Exp(1/3), . . . , for orthogonal predictors] under
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repeated null inclusions. As a consequence, if we assume that the insignificant
p-values in steps 3 through 6 correspond to true nulls, then at step 7 the true null
distribution might be as tight as Exp(1/5), meaning that the value of the covariance
statistic [which is not shown but we figure to be about 3.134 if based on F(2,58)]
could be multiplied by a factor up to 5, resulting in a p-value as low a 0.0000036
as opposed to 0.051. The conclusion is that there is something wrong with the as-
sumption that steps 3 through 6 are null inclusions in spite of their insignificances.
This might be something to chew on.

The effect just described does not seem to be isolated as it appears again, in
milder form, in the authors’ training half-sample of the wine quality data (Ta-
ble 5): if we assume there that steps 4 and 5 are null inclusions, then step 6 with
a p-value of 0.076 could have an effective test statistic larger by a factor up to 3,
amounting to an effective p-value as low as 0.00044. Again, the conclusion is that
the assumption that steps 4 and 5 were null inclusions is wrong in spite of their
insignificances. In our replication with the full wine quality data, the Lemma 2
test features one erratic jump into insignificance at step 4 before resuming with
significance for two more steps thereafter.

The erratic and somewhat trend-less behavior of sequences of conditional
p-values down a lasso path is an issue with which practitioners will struggle. It
would be desirable to smooth the sequences so they show more a trend than erratic
jumps. One potential approach to this problem could be some form of bootstrap
smoothing or bagging. Here is an attempt: we adopted a crude criterion using the
0.05 threshold to chose as estimated model size the largest step number whose
lasso p-value sequence up to that point remains below 0.05. Shown in Table 2
are the cumulative counts of model sizes; for example, for model size 4, 991 out of
1000 bootstrap resamples generated a lasso test sequence whose first four p-values
remained below 0.05, hence the estimated model size is 991 out of 1000 times at
least 4.

While we are somewhat dubious regarding the meaning of these numbers, they
do seem to suggest that lasso p-values are erratic. For example, the large observed
p-value of 0.537 at step 5 (total_sulfur_dioxide) may have been a fluke because
936 bootstrap resamples produce a p-value below 0.05 up to and including step 5,
and the median p-value at step 5 is 0.057. Even at step 4, the observed p-value
of 0.173 seems excessive in view of the fact that the median p-value at that step

TABLE 2
p-values summaries for bootstrap based on 1000 resamples applied to the full wine quality data

Step 1 2 3 4 5 6 7 8

Cumul# p-values < 0.05 1000 1000 1000 991 936 818 576 350
Median p-value 0.000 0.000 0.000 0.008 0.057 0.048 0.169 0.370
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is 0.008. In summary, there is evidence that the observed p-values require some
kind of processing because they do seem to behave somewhat unpredictably. We
have not tried the methods proposed by Grazier G’Sell et al. (2013) which form
aggregates of the observed p-values to control FDR. Aggregation may help some-
what, but intuition suggests that aggregating the observed series of p-values may
not achieve sufficient smoothing; one may have to shake up the data repeatedly
and aggregate the results to achieve greater stability of inferential conclusions.

To be fair to the authors, they do not actually make recommendations how to
use the lasso p-values. Theirs is a technical article that lays out the theory and
concepts, but it does not propose a methodology. This, however, is done in a com-
panion article by Grazier G’Sell et al. (2013), a must-read for anyone who cares
about actually using lasso tests. While this is a wide-ranging article, its Section 5
discusses sequential selection rules for “FDR control for the lasso in nonidealized
settings” (emphasis added by us). Perusing this material shortened the present dis-
cussion considerably because the authors have already worked through many of
the issues that arise when lasso tests meet practice, some of which we were about
to raise on our own. For efficient dissemination of the news we allow ourselves to
quote some striking insights (spoiler alert) and add our own comments:

• “Breakdown of the Exp(1/l) behavior. . . . In finite samples, the Exp(1/l) be-
havior becomes unreliable for larger l, leading the corresponding statistics to be
larger than expected.” In response to this issue, the authors limit the look-ahead
in one of their rules to l ≤ 5 or 10. Our earlier observations on the prostate can-
cer and wine quality data involved l = 5 and l = 3, respectively, and are there-
fore within the authors’ limits. So here the solution is simple: do not expect the
Exp(1/l) behavior to hold for long stretches.

• “Intermingling of signal and noise variables. . . . The hypotheses made by Lock-
hart et al. (2014) prevent this from happening asymptotically, but the assump-
tions can still break down in practice.” Asymptotic theory assumes that the
signal variables end up in the active set before the noise variables, which with
sufficient data will be the case with high probability but will be doubtful in any
given data situation. There is apparently no good solution to this problem as the
authors report that this can render their rule to be anti-conservative. A general
qualm we have with present day’s excitement over sparseness is that in our ex-
perience data are rarely sparse in the sense that signal variables stick out from
a background of noise variables like a mesa (as in Lockhart et al.’s Theorem 1
where a σ

√
2 logp threshold is assumed). Signal tends to peter out gradually

and will be sparse only in the sense that for large p only a small fraction of
predictors have signal that is detectable. As a result, we find ourselves in need
of making trade-offs that will always be unsatisfactory to some when deciding
where to come down on the scale from conservative to liberal. The fact that, in
practice, signal tends to exist at all scales does not invalidate the use of tests for
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zero signal, but users of sequences of lasso tests (or stepwise tests) have to con-
tend with the fact that the sequence will ultimately hit a gray zone where signal
and noise variables start to mingle.

• “Correlation in X . . . . the null distributions of Lockhart et al. (2014) begin to
break down when X has high correlation.” The take-home message is that, in
practice, collinearity cannot be defined away. We may need some diagnostics
to help us decide what form and degree of collinearity invalidates the Exp(1)

form of the null distribution. We may also have to live with trade-offs again, as
when the true mean response is X1 + X2 but X1 and X2 are highly collinear in
relation to the sample size n and the noise level σ , in which case model selection
procedures will make a random choice between the two predictors.

• “The appropriateness of FDR as an error criterion becomes questionable when
X is highly correlated. If a noise variable is highly correlated with a signal
variable, should we consider it to be a false selection? This is a broad question
that is beyond the scope of this paper, but is worth considering when discussing
selection errors in problems with highly correlated X.” This comment speaks to
us like no other. Our work on valid post-selection inference [Berk et al. (2013)]
is FWER-based, but we wondered what a FDR-based version would look like.
We, too, decided that FDR does not even make sense for similar reasons: if
some predictors form a cluster (are mutually highly collinear), then there are
many ways of making a selection error that really amounts to the same error,
whereas for a predictor that is nearly orthogonal to all others there is only one
way to make this selection error. As a consequence, counting selection errors
and forming rates does not seem meaningful in the presence of collinearity; the
FDR concept needs adjusting, but it is not obvious how.

Larger issues in statistical inference. Finally, we wish to step back and discuss
some larger issues. While the authors’ article is a tremendous advance, it is a first
and necessary step on a long path to solve larger problems:

(1) Lasso tests do assume an underlying linear model with Gaussian errors.
At some point, we may need tests that do not require this assumption. Generally
speaking, we will need statistical inference that is valid under model misspecifi-
cation [Buja et al. (2014)]. The dangers from misspecification should increase as
data with p > n become common place because diagnosing nonlinearity and het-
eroskedasticity will become impossible, yet their effects on sampling variability
and inference will persist, just better concealed due to their undiagnosability in the
p > n regime.

(2) Each class of tests, be they lasso tests or stepwise tests, can ultimately be
augmented in such a way that they control FWER or FDR if used sequentially
[Grazier G’Sell et al. (2013)]. However, this assumes for their validity that data
analysts obey a protocol whereby they commit a priori to one and only one selec-
tion method, lasso, for example, and nothing else. Now consider the more realistic
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situation in which a data analyst tries both, lasso and forward stepwise selection,
and decides based on gut feeling or informal devices such as plots which of the
two to use: if the data analyst is honest at heart and clear in his mind, he will re-
alize that he faces a meta-selection problem. Compounding the problem is that he
may not even have followed a generalizable rule in his decision in favor of lasso
or stepwise. How are we to evaluate such practice and its effects on statistical in-
ference? One of the benefits of our approach in Berk et al. (2013) is that it sets
analysts free to do experimenting with selection methods to their hearts’ content,
followed by meta-selection according to any rule or none—subsequent inference
will still be valid.

(3) The preceding point opens up the bigger issue of informal methods, of-
ten graphical, that are used for exploratory data analysis and model diagnostics.
Such methods often inform data analysts in fruitful ways to guide them to more
meaningful analyses, but they may have insidious effects on subsequent inference.
Analysts may have no feelings of dishonesty and may not be aware that they are bi-
asing the analysis and modeling process in unaccountable ways. It just seems like
the reasonable thing to do to prevent nonsense from happening. We have tried to
introduce a small measure of inference in the EDA and model diagnostics process
in Buja et al. (2009) and Wickham et al. (2010), but the larger question remains
unanswered: what is the compounded effect of the many informal activities at all
stages of data analysis on statistical inference?

(4) Empirical research has taken to statistics with a vengeance in less than half
a century. Yet, empirical research suffers from a systemic malady that is well
reflected by Ioannidis (2005) piece with the provocative yet realistic title “Why
most published research findings are false.” The culprit of first order is most likely
publication bias, also called the “file drawer problem,” that is, the fact that neg-
ative results tend not to see the light of publication. A culprit of second order
we hypothesize to be the fact of unaccounted data analytic activity, ranging from
meta-selection among variable selection methods to the use of informal EDA and
diagnostics methods. It may just be the case that the most expert and thorough
data analysts are also the ones who produce the most spurious findings in ap-
plied statistical work. This should not be construed as a call to apply less com-
petence and abandon research into efficient statistical methods, but it should be
motivation to create statistical inference that integrates ever more of the informal
data analytic activities for which there is currently no accounting. This is again
some of the background of our proposal in Berk et al. (2013) which provides valid
post-selection inference even if data analysts are arbitrarily informal in their meta-
selection of variable selection methods.

Returning to the occasion of this discussion, clearly the authors’ article repre-
sents an advance which, with suitable methodology, will fill a large missing piece
in statistical inference. We hope that this and forthcoming pieces will ultimately
coalesce into a larger methodology that will account for data analytic activities
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which still fall through the cracks of current best practice. We conclude by thank-
ing the authors for an inspiring article.
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