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Abstract
We propose a coupled bootstrap (CB) method for the test error of an arbitrary algorithm that estimates

the mean in a Poisson sequence, often called the Poisson means problem. The idea behind our method is
to generate two carefully-designed data vectors from the original data vector, by using synthetic binomial
noise. One such vector acts as the training sample and the second acts as the test sample. To stabilize the
test error estimate, we average this over multiple bootstrap B of the synthetic noise. A key property of
the CB estimator is that it is unbiased for the test error in a Poisson problem where the original mean has
been shrunken by a small factor, driven by the success probability p in the binomial noise. Further, in the
limit as B → ∞ and p → 0, we show that the CB estimator recovers a known unbiased estimator for test
error based on Hudson’s lemma, under no assumptions on the given algorithm for estimating the mean (in
particular, no smoothness assumptions). Our methodology applies to two central loss functions that can
be sused to define test error: Poisson deviance and squared loss. Via a bias-variance decomposition, for
each loss function, we analyze the effects of the binomial success probability and the number of bootstrap
samples and on the accuracy of the estimator. We also investigate our method empirically across a variety
of settings, using simulated as well as real data.

1 Introduction
We study the problem of estimating the test error of an algorithm in the Poisson many means problem, also
called the Poisson compound decision problem. The importance of test error estimation in general rests on
the fact that such estimates can be used in many dowstream applications, such as model assessment, selection,
or tuning. To fix notation, given a data vector Y = (Y1, . . . Yn) ∈ Zn+ (where we write Z+ = {0, 1, 2, . . . } for
the nonnegative integers) distributed according to

Yi ∼ Pois(µi), independently, for i = 1, . . . , n, (1)

we seek to estimate the mean vector µ = (µ1, . . . , µn) ∈ Rn+ (where we use R+ = {x ∈ R : x ≥ 0} for the set
of nonnegative real numbers). Let g : Zn+ → Rn+ be a measurable function that estimates µ from the data Y ,
so that we can write µ̂ = g(Y ). We will often refer to g as an algorithm, in the context of estimating µ in the
Poisson many means problem.

To evaluate the performance of g, we can use various metrics. One class of metrics evaluate what we call
test error, based on a loss function L : Zn+ × Rn+ → R,

Err(g) = E[L(Ỹ , g(Y ))], where Ỹ is drawn from (1), independently of Y , (2)

which measures how well g tracks an independent copy Ỹ of the data. A second class of metrics evaluate
what we call risk, again based on a loss function L,

Risk(g) = E[L(µ, g(Y ))], (3)

which measures how well g tracks the mean µ = E[Y ] of the data. Admittedly, many authors use the terms
“test error” and “risk” interchangeably, but in this paper we are careful to use terminology that distinguishes
the two, for reasons that we will become apparent in the next subsection.
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1.1 Test error versus risk
In the classical normal means problem, where instead of (1) we observe Yi ∼ N(µi, σ

2) independently, it is
straightforward to show that under a squared loss L, the test error (2) and risk (3) differ only by the noise
level σ2. In the Poisson means problem, there is no direct analogy for typical loss functions of interest, and
the difference between (2) and (3) will generally depend on µ. This means that an estimator of one metric
(test error or risk) does not as easily translate into an estimator of the other, since µ is of course unknown,
and the primary estimand of interest.

Thankfully, as we show here, when L is a Bregman divergence the difference between test error and risk
does not depend on g. A Bregman divergence is a loss function of the form L(a, b) = Dφ(a, b), where

Dφ(a, b) = φ(a)− φ(b)− 〈∇φ(b), a− b〉, (4)

for a convex, differentiable function φ : Rn → R, where here an subsequently we use 〈u, v〉 = uTv for vectors
u, v. In this case it is straightforward to see that

Err(g)− Risk(g) = E[Dφ(Ỹ , g(Y ))]− E[Dφ(µ, g(Y ))]

= E[φ(Ỹ )]− E[φ(g(Y ))]− E[〈∇φ(g(Y )), Ỹ − g(Y )〉]
− φ(µ) + E[φ(g(Y ))] + E[〈∇φ(g(Y )), µ− g(Y )〉]

= E[φ(Y )]− φ(µ), (5)

where the cancellation of terms in the third line holds because Y, Ỹ are i.i.d., and thus E[〈∇φ(g(Y )), Ỹ 〉] =
〈E[∇φ(g(Y ))], µ〉. Observe that (5) is the gap in Jensen’s inequality. Therefore it is always nonnegative, and
Err(g) ≥ Risk(g).

In this paper, we will focus on estimating the test error (2) in the Poisson means problem (1), for two
special instances of a Bregman divergence: squared loss and Poisson deviance, as will be discussed in the
next subsection. Since Err(g)− Risk(g) = E[φ(Y )]− φ(µ) depends on µ, it will not be the case that we can
automatically translate an estimator of the test error of g into an estimator of its risk. However, we can still
unbiasedly estimate the difference in risk between two models g and h, as discussed next.

Model comparisons. The gap (5) does not depend on g. Thus for a comparison between two algorithms
g and h, we always have (provided we use Bregman divergence to define the test error and risk metrics):

Err(g)− Err(h) = Risk(g)− Risk(h),

To be clear, this means that if Êrr(g) is an unbiased estimator of Err(g) for any g, just as we will produce in
this paper, then

Êrr(g)− Êrr(h) is unbiased for Risk(g)− Risk(h), for any g, h.

As such, we can still use the tools developed in this paper to perform model comparisons, or more broadly,
model tuning (where gs is indexed by a tuning parameter s ∈ S, and we select s to minimize an unbiased
estimate of test error, or equivalently, risk).

Fixed-X Poisson regression. A special case of our problem setting to keep in mind is fixed-X Poisson
regression. Here we view Y ∈ Rn as a response vector and we have an associated feature matrix X ∈ Rn×p.
The algorithm g typically performs a kind of Poisson regression of Y on X. As long as we consider X to be
fixed (nonrandom), we can still interpret this as a problem of the form (1), with µ = µ(X). In this setting,
the test error metric (2) translates to what is called fixed-X prediction error, where we evaluate predictions
at the same feature vectors (rows of X), but against new responses (elements of Ỹ ).

While fixed-X analyses are more typical in classical statistics, the random-X perspective is great interest
in modern prediction problems. Here the feature vectors at which we make predictions are random, giving
rise to random-X prediction error as the metric of concern. Estimating random-X prediction error is not in
general equivalent to estimating fixed-X prediction error and the two can behave quite differently (see, e.g.,
Rosset and Tibshirani (2020) for an extended discussion). The random-X perspective eludes the framework
of the current paper, but is an important topic for future work.
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1.2 Squared loss versus Poisson deviance
When φ(x) = ‖x‖22, it is easy to check that

Dφ(a, b) = ‖a− b‖22,

which is the squared loss. Meanwhile, when φ(x) = 2
∑n
i=1 xi(log xi − 1), it follows that

Dφ(a, b) = 2

n∑
i=1

(
ai log

ai
bi

+ bi − ai
)
,

which is known as Poisson deviance. We will take these to be the two loss functions of primary interest in
our work. Accordingly, we introduce the notation for test error under squared loss and Poisson deviance:

Errsqr(g) = E‖Ỹ − g(Y )‖22, (6)

Errdev(g) = 2E
[ n∑
i=1

(
Ỹi log

Ỹi
gi(Y )

+ gi(Y )− Ỹi
)]
. (7)

Squared loss is a standard choice in many estimation and prediction problems and does not really need
further motivation. Poisson deviance can be motivated from different perspectives; one nice perspective is
that, if we parametrize gi(Y ) = exp(θi) for i = 1, . . . , n, then fitting g to minimize Poisson deviance on the
given data is equivalent to maximum likelihood in the Poisson model,

minimize
g

2

[ n∑
i=1

(
Yi log

Yi
gi(Y )

+ gi(Y )− Yi
)]
⇐⇒ minimize

θ

n∑
i=1

(
− Yiθi + exp(θi)

)
.

In the same vein, evaluating g by Poisson deviance on Ỹ is equivalent to evaluating g by Poisson likelihood
on an independent copy of the training sample.

In our view, squared loss and Poisson deviance are each important loss functions, and are each deserving
of study. This is only strengthened by the fact that they can have very different behaviors in certain problem
settings. As a simple example, suppose n = 1, and we have two scenarios: in the first Ỹ = 1 and g(Y ) = 2,
while in the second Ỹ = 500 and g(Y ) = 501. The squared loss in each scenario is 1. However, the Poisson
deviance in first scenario is ≈ 0.307, and in the second scenario it is ≈ 0.001. The difference here is driven by
the fact that in the Poisson model the variance scales with the mean. Hence according to Poisson deviance
(equivalent to Poisson likelihood), a prediction of 502 when the predictand is 501 is not nearly as bad as a
prediction of 2 when the predictand is 1.

In Sections 5 and 6, we will present and discuss several examples that expose differences in the behavior
of squared loss and Poisson deviance in different settings. That said, our primary focus is on estimating test
error defined with respect to these loss functions, and not on comparing them. A comprehensive analysis of
their differences is beyond the scope of the current paper.

1.3 Hudson’s lemma
A fundamental result in this area is Hudson’s lemma, due to Hudson (1978). Hudson actually derived two
identities, one each for continuous and discrete exponential families. These can be viewed as extensions of
Stein’s celebrated identity (Stein, 1981) for the Gaussian family.1 For concreteness, we state Hudson’s result
for the Poisson case.

Lemma 1 (Hudson 1978). Let Yi ∼ Pois(µi), independently, for i = 1, . . . , n. Let g : Zn+ → Rn be such that
E|gi(Y )| <∞, i = 1, . . . , n. Then, denoting by ei ∈ Rn the vector whose ith entry is 1, with all others 0,

µiE[gi(Y )] = E[Yigi(Y − ei)], i = 1, . . . , n, (8)

where by convention we set gi(−1) = 0, i = 1, . . . , n.
1Stein’s work was actually completed as a technical report in 1973, and was a motivation for Hudson’s work, even though the

publication dates of their papers do not reflect this. According to Hudson, Stein already knew of the result in (8).
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Compared to Stein’s identity, which requires that g is weakly differentiable, Hudson’s identity (8) holds
without any smoothness assumptions on g (of course, even formulating precisely what smoothness would
mean over a discrete domain like Z+

n would be tricky, but the lack of assumptions needed for Lemma 1 are
remarkable nonetheless). Hudson’s main interest was in developing inadmissibility results for estimators of
the location parameter in an exponential family distribution. The identities he established were used as tools
in his analysis, which parallels Stein’s use of his own identity in Stein (1981).

Moreover, analogous to what can be done with Stein’s lemma, Hudson’s lemma can be used to derived
unbiased estimators for various risk metrics in exponential families. An important contribution in this area is
Eldar (2009), and further contributions (along with a comprehensive summary of available tools and results
from the literature) are given in Deledalle (2017).

1.4 Unbiased estimation
Our focus in this paper is slightly unique, since we consider test error (2) as the primary target and not risk
(3), as considered by Eldar (2009); Deledalle (2017), and most other authors in the literature. Nonetheless,
the estimators developed by these authors have natural analogues for test error. In fact, the story is for test
error is simpler, and an unbiased estimator can be obtained for any Bregman divergence loss function.

To see this, we first recall a general decomposition of test error for Bregman divergence losses known as
Efron’s optimism theorem, due to Efron (1975, 1986, 2004): this shows that for any Bregman divergence Dφ

in (4) and any algorithm g, this difference in test error and training error satisfies

E[Dφ(Ỹ , g(Y ))]− E[Dφ(Y, g(Y ))] = E[φ(Ỹ )]− E[φ(g(Y ))]− E[〈∇φ(g(Y )), Ỹ − g(Y )〉]
− E[φ(Y )] + E[φ(g(Y ))] + E[〈∇φ(g(Y )), Y − g(Y )〉]

= E[〈∇φ(g(Y )), Y 〉]− E[〈∇φ(g(Y )), µ〉]. (9)

The second line follows from the fact that E[φ(Ỹ )] = E[φ(Y )].2 Simply rewriting the above, we see that if we
are able to construct an unbiased estimator V (g) of E[〈∇φ(g(Y )), µ〉] then

Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉 − V (g)

will be an unbiased estimator for E[Dφ(Ỹ , g(Y ))]. In the Poisson case, Hudson’s identity (8) precisely gives
the unbiased estimator V (g) that we require, which leads to the following result.

Proposition 1. Let Yi ∼ Pois(µi), independently, for i = 1, . . . , n. Let g : Zn+ → Rn be any algorithm and
Dφ be any Bregman divergence loss function (indexed by a convex, differentiable function φ : Rn → R) such
that E|φ(g(Y ))| <∞ and E|∇iφ(g(Y ))| <∞, i = 1, . . . , n. Then

UE(g) = Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉 − 〈∇φ(g−(Y )), Y 〉 (10)

is unbiased for Err(g) = E[Dφ(Ỹ , gi(Y ))], where we abbreviate g−(Y ) = (g1(Y − e1), . . . , gn(Y − en)), and as
usual, Ỹ denotes an independent copy of Y .

As a consequence, we have the following unbiased estimators for squared loss and Poisson deviance:

UEsqr(Y ) = ‖Y ‖22 + ‖g(Y )‖22 − 2〈g−(Y ), Y 〉, (11)

UEdev(Y ) = 2

n∑
i=1

(
Yi log Yi − Yi log gi(Y − ei) + gi(Y )− Yi

)
. (12)

These are altogether highly similar to the unbiased risk estimators in Eldar (2009); Deledalle (2017), and to
be clear, we do not consider (11), (12) to be major (or even original) contributions of our work. That said,
we have not yet seen the general unbiased estimator for Bregman divergence (10) noted in the literature,
thus we believe it may be useful to record it (along with the observation that estimation of test error can be
easier than estimation of risk).

2This exposes the reason why the analogous decomposition for risk can be more complex: when we replace Ỹ with µ in the
calculation that led to (9), we are left with an extra term φ(µ)− E[φ(Y )] that does not cancel and must be estimated.
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The estimators in (11), (12) have a clear strength: they are unbiased for any algorithm g. This is a strong
property; recall that by comparison, in the Gaussian model, the analogous estimator is Stein’s unbiased risk
estimator (SURE), which requires g to be weakly differentiable. The estimators in (11), (12) also have a clear
downside: they require the algorithm g to be run n+ 1 times, once to obtain the original fit g(Y ), and then
n more times to obtain g−(Y ), which recall has entries gi(Y − ei), i = 1, . . . , n. Thus we can liken (11), (12)
to leave-one-out cross-validation, in terms of computational cost.

This draws a clear line of motivation to the main contribution of our paper: in what follows, we develop
an unbiased estimator of test error, for any Bregman divergence loss function Dφ and any algorithm g, using
a carefully-crafted parametric bootstrap scheme. The computational cost (number of runs of g) here is tied
to a user-controlled parameter B, the number of bootstrap samples. In general, increasing B decreases the
variance of the estimator, but any choice of B ≥ 1 yields an estimator that is unbiased for the test error in a
mean-shrunken Poisson problem, with mean (1− p)µ, where p > 0 is another user-controlled parameter.

1.5 Summary of contributions
The following gives a summary of our main contributions and an outline for this paper.

• In Section 2, we introduce the coupled bootstrap (CB) estimator, and prove that it is unbiased for the
test error in a mean-shrunken Poisson problem.

• In Section 3, we analyze the behavior of the CB estimator as B →∞ and p→ 0, and prove that the
limiting CB estimator is exactly the unbiased estimator (10) from Hudson’s lemma.

• In Section 4, we study the bias and variance of the CB estimator and quantify how they depend on
B, p and other problem parameters.

• In Section 5, we compare the CB and the unbiased estimator on various simulated data sets, and find
that the performance of the CB estimator is favorable, especially when the algorithm g is unstable.

• In Section 6, we examine the use of the CB estimator for model tuning—selecting from a family gs,
s ∈ S of algorithms—in two applications: image denoising and density estimation. We find that using
Poisson deviance (to define the test error metric) consistently delivers more regularized models than
using squared loss.

• In Section 7, we conclude with a brief discussion and ideas for future work.

1.6 Related work
Estimating risk and test error is of central importance in statistics and machine learning. In the random-X
prediction setting (which recall does not fit in the framework of our work) the most ubiquitous estimator is
arguably cross-validation, which itself carries a long line of literature. We do not describe this literature here,
but highlight Bates et al. (2021) as a nice recent paper that carefully reexamines this classic estimator, and
also provides a nice overview of literature on cross-validation.

In the fixed-X prediction setting—or in general, parametric many means problems—there has also been
a long history of work in statistics, with Akaike (1973); Mallows (1973); Efron (1975); Stein (1981); Efron
(1986) marking early important contributions. This has been particularly well-studied in the Gaussian means
problem, and in this area, we draw attention to Breiman (1992); Ye (1998); Efron (2004), and particularly to
Oliveira et al. (2021), as motivation for our current work in the Poisson means problem. These papers use
auxiliary noise—they inject synthetic (Gaussian) noise into the data at hand—in order to estimate the risk
or fixed-X prediction error of an arbitrary algorithm g. Our previous work, Oliveira et al. (2021), proposes a
coupled bootstrap (CB) scheme for doing so that has a simple, intuitive target of estimation for any auxiliary
noise level. In particular, for any auxiliary noise level α > 0 (a user-controlled parameter), the CB method
produces an unbiased estimator for the risk in a Gaussian means problem that has an inflated noise variance
(1 + α)σ2 (where σ2 denotes the original noise level). The current paper builds off this idea, and develops a
coupled boostrap scheme in the Poisson model that enjoys analogous properties.

Relative to the Gaussian case, risk and test error estimation in the Poisson means model has been less
well-studied. However, there has still certainly been important and influential work in the area. This includes
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Hudson (1978), as already described in the introduction, and also Shen et al. (2004); Eldar (2009); Deledalle
(2017). Meanwhile, the literature on mean estimation—the role played by what we are calling the algorithm
g—in the Poisson many means problem is vast. Quite a lot of work on this topic has been done in the signal
processing community, where it is often called Poisson denoising; see, e.g., Harmany et al. (2009); Luisier et al.
(2010); Raginsky et al. (2010); Harmany et al. (2012); Salmon et al. (2014); Cao and Xie (2016). Therefore
we believe that the techniques we develop for estimating test error in the Poisson means model should have
widespread practical applications, in signal processing and elsewhere.

Lastly, we mention a concurrent, related line of work on auxiliary randomization approaches that allow
for rigorous post-selection inference in parametric many means models, including the Poisson means model.
We highlight Leiner et al. (2021); Neufeld et al. (2023) as two nice recent papers in the area. In particular, a
core piece of the auxiliary randomization procedure in our work was directly inspired by the former paper,
and their use of binomial auxiliary noise in the Poisson model.

2 Coupled boostrap estimator
In this section, we introduce the CB estimator in the Poisson means model, and investigate some of its basic
properties.

2.1 Proposed estimator
The following is a simple but key “three-point” formula for expected Bregman divergence loss from Oliveira
et al. (2021) that will drive our main proposal in this paper.

Proposition 2. Let U, V,W ∈ Rn be independent random vectors. For any g, and Bregman divergence Dφ,

E[Dφ(V, g(U))]− E[Dφ(W, g(U))] = E[φ(V )]− E[φ(W )] + 〈E[∇φ(U)],E[W ]− E[V ]〉, (13)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d. and E[U ] = E[W ], then

E[Dφ(V, g(U))] = E[Dφ(W, g(U))] + E[φ(U)]− E[φ(W )]. (14)

Proof. The first statement (13) follows from the definition of Bregman divergence (4), and the independence
of U, V,W . The second result (14) follows from the first, by noting that if U, V are i.i.d. and E[U ] = E[W ]
then E[V ] = E[W ], thus the last term on the right-hand side in (13) is zero, and the first term is E[φ(U)].

While simple to state and prove, the results in Proposition 2 are useful observations. To map them onto
to the problem of estimating of test error in the Poisson model, consider the following. Given a Poisson data
vector Y from (1), suppose that we can generate a pair of vectors (U,W ) = (Y ∗, Y †) that are independent of
each other and have the same mean. Then (14) says that

Dφ(Y †, g(Y ∗)) + φ(Y ∗)− φ(Y †) is unbiased for E[Dφ(Ỹ ∗, g(Y ∗))], (15)

where Ỹ ∗ is an independent copy of Y ∗. In other words, the above constructs an unbiased esitmator for the
test error in a problem in which the original data vector was Y ∗, rather than Y . Thus if Y ∗ was “close” in
distribution to Y , then this estimator would be meaningful. (Ideally, we would like Y ∗ to be be identical in
distribution to Y , but that will not be generically possible without knowledge of µ.)

What remains is a precise scheme in the Poisson setting to generate the pair (Y ∗, Y †) from Y such that
Y ∗, Y † are independent, E[Y ∗] = E[Y †], and Y ∗, Y are “close” in distribution. The next lemma does the trick
and fulfills these three properties precisely. It was brought to our attention by Leiner et al. (2021) who used
it in a distinct but generally related post-selection inference context. For completeness, we provide a proof in
Appendix A.1. Here and henceforth we use the following abbreviations: we write Y ∼ Pois(µ) to mean that
we draw Yi ∼ Pois(µi), independently, for i = 1, . . . , n, and similarly Z ∼ Binom(N, p) to mean that we draw
Zi ∼ Binom(Ni, p), independently, for i = 1, . . . , n.

Lemma 2. Given Y ∼ Pois(µ), fix any 0 < p < 1 and let ω |Y ∼ Binom(Y, p). Then, defining Y ∗ = Y − ω
and Y † = (1− p)/p · ω, it holds that:
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(i) Y ∗, Y † are independent;

(ii) E[Y ∗] = E[Y †]; and

(iii) Y ∗ ∼ Pois((1− p)µ).

Lemma 2, combined with the observation in (15), forms the basis for the CB test error estimator in the
Poisson many means problem. To stabilize the estimator, we can simply repeat the draws of binomial noise
from Lemma 2 over independent repetitions b = 1, . . . , B. To be concrete, this leads to the following method:
we first generate samples according to

ωb |Y ∼ Binom(Y, p), independently, for b = 1, . . . , B,

Y ∗b = Y − ωb, , Y †b =
1− p
p

ωb, for b = 1, . . . , B,
(16)

for an arbitrary binomial success probability 0 < p < 1, and a number of bootstrap draws B ≥ 1; then we
define the coupled bootstrap (CB) estimator, for test error under Bregman divergence loss Dφ, by:

CBp(g) =
1

B

B∑
b=1

(
Dφ(Y †b, g(Y ∗b)) + φ(Y ∗b)− φ(Y †b)

)
. (17)

We can view each Y ∗b as a synthetic training set for g, and each Y †b as a synthetic test set. The correction
term φ(Y ∗b)− φ(Y †b) accounts for the fact that Y ∗b, Y †b do not have the same distribution (though recall
they do have the same mean, by construction).

For the two loss functions of primary interest, squared loss and Poisson deviance, the CB estimator in
(17) becomes, respectively:

CBsqr
p =

1

B

B∑
b=1

(
‖Y †b − g(Y ∗b)‖22 + ‖Y ∗b‖22 − ‖Y †b‖22)

)
, (18)

CBdev
p =

2

B

B∑
b=1

n∑
i=1

(
Y ∗bi log Y ∗bi − Y

†b
i log gi(Y

∗b) + gi(Y
∗b)− Y †bi

)
. (19)

Interlude: special care with deviance estimators. We take a brief but practically important detour
to note that special care must be taken with test error estimators with respect to Poisson deviance loss. In
this case, each of the unbiased (12) and the coupled bootstrap (19) estimators can diverge if the coordinate
functions of g can output zero. For the unbiased estimator this occurs when Yi 6= 0 and gi(Y − ei) = 0; for
the coupled bootstrap estimator this occurs when Y †bi 6= 0 and gi(Y ∗b) = 0. As a safety mechanism, we can
simply pad the output of g so that zero is never in the range of its coordinate functions: say, we can define a
modified algorithm

g̃i(y) = gi(y)1{gi(y) 6= 0}+ c1{gi(y) = 0}, i = 1, . . . , n,

for a small constant c > 0. This is reasonable because even the population Poisson deviance (7) can itself
diverge when the coordinate functions of g can output zero. With a modified rule like the one above, we
may ask how frequently the padding is actually in effect in the computation of the estimators (12) and (19).
We study this in Appendix A.2 and show that, in a sense, it is typically in effect less frequently in the CB
estimator (19) than in the unbiased one (12).

2.2 Unbiasedness for mean-shrunken target
The next result is immediate from Lemma 2 and (15).

Corollary 1. Let Y ∼ Pois(µ). Let g : Zn+ → Rn be any algorithm, let Dφ be any Bregman divergence loss
function, and let 0 < p < 1 and B ≥ 1 be arbitrary. Then the CB estimator CBp(g) in (17) is unbiased for
Errp(g) (assuming all terms in (17) have finite expectations), where Errp(g) is the test error of g with respect
to a mean-shrunken Poisson problem:

Errp(g) = E[Dφ(Ỹp, g(Yp))], where Yp, Ỹp ∼ Pois((1− p)µ), and Yp, Ỹp are independent. (20)
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The strength of Corollary 1 rests on the fact that the estimand in (17) of CBp(g) for any choice of p > 0
is highly intuitive: it is Errp(g) in (20), which is the test error that we would encounter in a slightly harder
version of our original problem, where the mean µ has been replaced by (1− p)µ.

Why is this important? It means that we do not have to send p→ 0 in order to be able to interpret the
estimand of the CB estimator, and thus justify its use. Any nonzero (noninfinitesimal) p will still result in a
target that has a clear, intuitive meaning. This is good news for the CB estimator, because when p is away
from zero, we can generally choose a reasonably small number of bootstrap draws B in order to stabilize the
variance of the estimator, which presents a computational advantage over the unbiased estimator in (10). We
will learn more about the behavior of the CB estimator, as we vary p and B, in Sections 4 and 5 (where we
formally analyze the bias and variance, and carry out empirical comparisons, respectively).

2.3 Smoothness of mean-shrunken target
Now that we have shown that CBp(g) is unbiased for Errp(g), it is natural to ask whether Errp(g) will be close
to Err(g) for small p. Our next result gives a partial answer by proving that if g satisfies some mild moment
conditions, then the map p 7→ Errp(g) will be continuous (and in fact, it can be continuously differentiable,
depending on the number of moments assumed) in an interval containing p = 0. Later on, in Section 4, we
will derive results that give a more quantitative sense of how close Errp(g) can be to Err(g).

Proposition 3. For 0 ≤ p < 1, let Errp(g) be as defined in (20). If for some integer k ≥ 0,

E
[
Dφ(Ỹ , g(Y ))〈Ỹ + Y, 1n〉m

]
<∞, m = 0, . . . , k,

where in the above above Y, Ỹ ∼ Pois(µ) are independent, and 1n ∈ Rn denotes the vector of all 1s, then the
map p 7→ Errp(g) has k continuous derivatives on [0, 1).

The proof of this result is not difficult but a bit technical and deferred to Appendix A.3. We remark that
when k = 0, the assumption in Proposition 3 is simply Err(g) = E[Dφ(Ỹ , g(Y ))] <∞ (i.e., the original test
error is finite), which is extremely weak, and even in this case we get that Errp(g)→ Err(g) as p→ 0.

3 Noiseless limit
In this section, we consider the infinite-bootstrap version of the CB estimator, CB∞p (g) = limB→∞CBp(g).
By the law of large numbers, this estimator is equivalent to taking the expectation over the binomial noise,

CB∞p (g) = E[CBp(g) |Y ] = E
[
Dφ

(
1− p
p

ω, g(Y − ω)

)
+ φ(Y − ω)− φ

(
1− p
p

ω

)]
, (21)

where ω |Y ∼ Binom(Y, p), as in (16).
The next result considers the noiseless limit of the infinite-bootstrap version of the CB estimator (21),

where p→ 0. Its proof is deferred until Appendix B.

Theorem 1. Let Y ∼ Pois(µ). Let g : Zn+ → Rn be any algorithm, let Dφ be any Bregman divergence loss
function, and assume that |φi(g(Y ))| <∞, |∇iφ(g(Y ))| <∞, and |∇iφ(g(Y − ei))| <∞ almost surely, for
each i = 1, . . . , n. Then

lim
p→0

CB∞p (g) = UE(g), almost surely, (22)

where UE(g) is the unbiased estimator defined in (10). Thus as a consequence, the noiseless limit of CB∞p (g)
is unbiased for Err(g).

That the limiting CB estimator (17) recovers the unbiased estimator (10) based on Hudson’s lemma, as
B →∞ and p→ 0, is certainly an encouraging property for the former. We recall that in the Gaussian many
means problem, the analogous result was derived in Oliveira et al. (2021): there, the CB estimator recovers
the unbiased estimator based on Stein’s lemma, in the noiseless limit. However, this Gaussian result requires
g to be weakly differentiable (which is the condition required for Stein’s unbiased estimator to be valid in the
first place). In the current Poisson many means problem, note that Theorem 1 requires no such restrictions
on g (and indeed, recall, the unbiased estimator does not either, from Proposition 1).

Figure 1 illustrates this difference via a simple simulation; see the figure caption for details.
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Figure 1: Density of the CB and unbiased estimators of test error in Gaussian and Poisson settings, where the
CB estimators effectively take large B and a small amount of auxiliary noise. This is based on a simulation
with n = 30, where we generate Gaussian or Poisson data with constant mean, and consider two estimators:
soft-thresholding and hard-thresholding (the latter violating weak differentiability). The black vertical line in
each panel marks the true test error. For small auxiliary noise in the Gaussian hard-thresholding setting, it is
clear that CB and the unbiased estimator are separated (and the latter is far from unbiased).

4 Bias and variance
In this section, we study a bias-variance decomposition of the estimator CBp(g) in (17), when targeting the
original error Err(g). We will consider an arbitrary Bregman divergence loss (used to define Err(g)), and use
the decomposition

E[CBp(g)− Err(g)]2 =
[
Errp(g)− Err(g)

]2︸ ︷︷ ︸
Bias2(CBp(g))

+ E
[
Var(CBp(g) |Y )

]︸ ︷︷ ︸
RVar(CBp(g))

+ Var
(
E[CBp(g) |Y ]

)︸ ︷︷ ︸
IVar(CBp(g))

. (23)

This is the usual bias-variance decomposition of squared error loss, where we have used E[CBp(g)] = Errp(g)
in the bias term, and we have further expanded the usual variance term (using the law of total variance) into
two components which we call the reducible and irreducible variance, respectively, as in Oliveira et al. (2021).
We note that as the number of bootstrap draws B grows, the reducible variance shrinks, but the irreducible
variance does not; the latter does not depend on B at all, and in fact, it can be viewed as the variance of the
infinite-bootstrap version of the estimator, CB∞p (g) = E[CBp(g) |Y ].

In what follows, we will analyze each of the three terms in (23) to understand their behavior as functions
of p and B, with a focus on small p and large B. As usual, we assume throughout that Y ∼ Pois(µ), where
Yp ∼ Pois((1− p)µ) for p ≥ 0, and we denote by Ỹ , Ỹp independent copies of Y, Yp, respectively. Lastly, Dφ

represents an arbitrary Bregman divergence loss.

4.1 Bias
First we give an exact expression for the bias, Bias(CBp(g)) = Errp(g)− Err(g), and an upper bound on its
magnitude for small p, under an assumption of monotone variance. The proof is given in Appendix C.1.

Proposition 4. Assume that E[Dφ(Ỹp, gp(Y ))〈Yp + Ỹp, 1n〉] <∞. Then for all p ∈ [0, 1),

Errp(g)− Err(g) = −

√√√√2

n∑
i=1

µi

∫ p

0

1√
1− t

Cor
(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)√
Var
[
Dφ(Ỹt, g(Yt))

]
dt. (24)

Further, if Var[Dφ(Ỹp, g(Yp))] is decreasing in p on [0, 1/2], then for any p in this range,

|Errp(g)− Err(g)| ≤ 5p

3

√√√√Var
[
Dφ(Ỹ , g(Y ))

] n∑
i=1

µi (25)

9



We remark that the assumption of decreasing variance of the loss is fairly natural (because the variance
of each component of Yp decreases monotonically to 0 as p increases to 1). We can also drop this condition,
and replace the variance term in the bound (25) by supt∈[0,p) Var[Dφ(Ỹt, g(Yt))].

4.2 Reducible variance
Next we bound the reducible variance, RVar(CBp(g)). We focus on the dependence on p and B, for small
p and large B. The notation O(·) is to be interpreted in this regime (small p, large B), and hides factors
that may depend on the mean µ, which may in turn depend on the dimensionality n. The proof is given in
Appendix C.2.

Proposition 5. Assume the variables f(Yp), f2(Yp), f(Yp)〈Yp, 1n〉, f2(Yp)〈Yp, 1n〉 all have finite L1 norm,
uniformly bounded over all functions f ∈ F and all p ∈ [0, q), for some q > 0, where

F =
{
y 7→ Dφ(y, g(y))

}
∪
{
y 7→ ∇iφ(g(y)) : i = 1, . . . , n

}
.

Then for all p ∈ [0, q),

RVar(CBp(g)) ≤ 2

B
Var
[
Dφ(Y, g(Y ))) + 〈Y,∇φ(g(Y ))〉

]
+

2

Bp

n∑
i=1

µiE
[
∇iφ(g(Yp))

2
]

+

2

B

n∑
i=1

µ2
iVar

[
∇iφ(g(Yp))

]
+O

(
p

B

)
. (26)

A simple simulation, whose results are presented in Figure 2, shows that the reducible variance bound
(26) appears to have the right dependence on µ and B. See the figure caption for details.
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Figure 2: Comparison of the true reducible variance (approximated by Monte Carlo) and the bound given in
(26), for squared and deviance loss, in a simulation with n = 100 and p = 0.1. The data vector Y has Poisson
entries, and µ denotes the common mean of each component; we use a simple linear shrinkage estimator g.
We can see that the behavior for varying B,µ looks qualitatively similar across the true reducible variance
heatmap and the bound heatmap, for each loss function.

4.3 Irreducible variance
Last we analyze the irreducible variance, IVar(CBp(g)). The proof is given in Appendix C.3.
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Proposition 6. Assume that E[D2
φ(Y, g(Y ))] <∞ and E[〈∇(g(Y )), Y 〉2] <∞. Define Φg to have component

functions
Φg,i(y) = sup

0≤z≤y

∣∣∇iφ(g(y))
∣∣, i = 1, . . . , n.

(Here when we write 0 ≤ z ≤ y, all inequalities are to be interpreted componentwise.) Then,

lim
p→0

IVar(CBp(g)) ≤ 2Var
[
Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉

]
+ 2E

[
〈Φg(Y ), Y 〉2

]
. (27)

4.4 Discussion of bias and variance results
We discuss interpretation of the results above. The bias bound (25) decreases linearly with p, which suggests
that we should take p to be as small as possible in order to decrease the bias. The irreducible variance bound
(27) provides no resistance to this idea, as it has a stable noiseless limit, as we send p→ 0. The behavior of
the reducible variance bound (26), however, is more intricate. The second term on the right-hand side in (26)
diverges as p→ 0, but this can be offset by sending B →∞.

How large do we need to take B? Altogether, there are really only two quantities on the right-hand side
in (26) that B needs to balance out, which are the second and third terms. First, let us normalize the target
error by the number of samples, because this would be the natural scale of concern, in general (our original
definition of Err(g) in (6) or (7) is a sum, rather than an average, over samples). We can see from (23) that
rescaling each of Err(g) and CBp(g) by 1/n multiplies all terms in the error decomposition—bias, reducible
variance, and irreducible variance—by a factor of 1/n2. Now, ignoring constants, the (squared) bias bound
(25) and the second and third terms in the reducible variance bound (26) are, after multiplying by 1/n2:

p2

n2
‖µ‖1 and

1

n2Bp
‖µ‖1 +

1

n2B
‖µ‖22,

respectively, where recall, we use µ = (µ1, . . . , µn) ∈ Rn+ for mean vector. As we can see, increasing the total
signal energy ‖µ‖1 adversely affects the control we have over the bias and reducible variance. In a moderate
signal regime, where ‖µ‖1/n is moderate or small, the rough orders for the bias and the reducible variance in
the above display would be small, even for only modest values of p and B. However, in a large signal regime,
where ‖µ‖1/n is large (possibly increasing as the sample size n grows), we may need to take p to be small
to offset this (if we want the bias to be held small), which requires us to take B large enough to dominate
‖µ‖1/(n2p) or ‖µ‖22/n2 (depending on which is larger) in the reducible variance bound.

In practice, for any given problem at hand, we would generally recommend choosing p to be small, such
as p = 0.05 or p = 0.1, but not tiny. This choice is made in favor of keeping the variance under control (for a
reasonable number of bootstrap samples B), at the potential expense of incurring a nontrivial bias in the CB
estimator. However, this brings us back to a primary feature of the CB estimator—recall, for any p > 0, it is
unbiased for Errp(g). This represents a shift in focus, where we now consider estimating error in a problem
setting where the mean has been shrunk from µ to (1− p)µ, which is intuitively a conservative bet and often
a reasonable undertaking even for moderately small but not infinitesimal values of p.

5 Simulated experiments
In this section, we run and analyze two sets of simulations. The first, presented in Section 5.1, compares the
unbiased estimator (UE) in (10) and the CB estimator in (17), across four settings. Each setting is defined by
a different data model and algorithm g, and we examine the performance of CB versus UE in estimating the
true error, as we vary the binomial noise parameter p, for a fixed sample size n. We find that CB performs
favorably overall: it delivers similar error estimates to UE for small values of p, and importantly, it can have
much smaller variance than UE when g is unstable.

The second set of simulations, presented in Section 5.2, focuses on just one setting in which UE generally
behaves favorably. The motivation here is to compare the variability of CB and UE after stratifying the two
to have roughly equal computational cost—which is accomplished by sampling summands in (11) or (12). In
this simulation, we fix the binomial noise parameter p, and vary the sample size n and signal size µ. We find
that CB has lower variability unless the signal size µ is very large.
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(d) Denoising, g = EB 1-step estimator

Figure 3: Comparison of CB and UE across different data models, algorithms, and loss functions.

5.1 CB versus UE, varying p

Here we compare the CB and UE estimators, for squared and deviance loss functions: see (18), (19) for CB
and (11), (12) for UE. Throughout, we set n = 100, and use B = 100 bootstrap samples for CB. We consider
the following combinations of different data models for Y , and algorithms g:

• Low-dimensional regression. We set p = 10, draw features Xi ∼ N(θ, Ip), independently, i = 1, . . . , n,
where each θj = 3 and Ip denotes the p× p identity matrix; then we draw responses Yi ∼ Pois(XT

i β),
independently, i = 1, . . . , n, where each βj = 0.05. This corresponds to a signal-to-noise ratio (SNR) of
approximately 2. We examine two choices for g, a Poisson regression and a regression tree.

• High-dimensional regression. We set p = 200, and use a similar setup to the above, except with features
Xi ∼ N(0, σ2Ip), where σ2 = 1.5, and responses Yi ∼ Pois(XT

i β), where each βj = 0.13. This was done
to maintain an SNR of roughly 2. In this setting, we take g to be a lasso Poisson regression, with the
tuning parameter λ chosen by 5-fold cross-validation (CV).

• Denoising. We draw Yi ∼ Pois(µi), independently, i = 1, . . . , n, where µi = 10 for i ≤ 10 and µi = 0.5
for i > 10. In this setting, we take g to be a 1-step improvement on an empirical Bayes (EB) estimator
as described in Brown et al. (2013), with tuning parameter fixed at h = 0.85.

In each setting, we perform 100 repetitions (i.e., we draw the data vector Y ∈ Rn 100 times from the specified
data model); but we note that in the regression settings, the features are drawn once and fixed throughout.
We consider a range of noise levels p for the CB estimator: 0.05, 0.1, 0.3, 0.5, and 0.7. All error metrics and
error estimators, here and throughout all empirical examples, are scaled by 1/n.

The results are displayed in Figure 3, with each panel (a)–(d) displaying a different combination of data
model and algorithm g. In each panel, the average test error estimate is displayed for each method (CB or
UE), as well as standard errors measured over the 100 repetitions. Furthermore, the black points denote the
true estimands (computed via Monte Carlo): Err(g) for UE, and Errp(g) for CB. As expected, all estimators
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are seen to be roughly unbiased for their targets: Err(g) or Errp(g). Interestingly, we also see that for squared
loss, the target Errp(g) clearly decreases as p grows, but for deviance loss, the behavior of Errp(g) tends to
be more robust to growing p (and can increase or decrease, depending on the setting).

In panel (a), which is the low-dimensional regression setting, with Poisson regression as the algorithm
g, we can see that UE has a noticeably lower standard error than CB at the lowest binomial noise level of
p = 0.05, particularly for deviance loss. This is the only setting in which this happens. In all others, the CB
estimator at the lowest noise level has either comparable or smaller variability than UE. In fact, in panel (c),
which is the high-dimensional regression setting, with CV-tuned lasso as the algorithm g, we see that UE has
a dramatically higher standard error than CB at any level of noise p. The algorithm g is inherently unstable
here, because CV (operating in high-dimensions, and at a moderate SNR) can choose very different tuning
parameter values across different data instances. Despite this, CB is able to deliver estimates of reasonably
low variance, since it averages across draws of auxiliary binomial noise, which acts as a method of smoothing
(like bagging). We note that the analogous phenomenon also occurs in the Gaussian setting, as observed by
Oliveira et al. (2021).

5.2 CB versus UE, sampling summands
The unbiased estimator in (10) requires n+ 1 runs of the algorithm g, making it computationally expensive
for large sample sizes. In contrast, the number of runs of g required by the CB estimator in (17) is B, which
is a user-chosen parameter (recall that any choice of B results in an unbiased estimator CBp(g) for Errp(g),
whereas larger B reduces the variance of the estimator). In the last subsection, we fixed n = B = 100. In
this one, we consider larger much sample sizes, with n ranging from 103 to 105. We maintain B = 100, but
we equate computational costs between UE and CB by sampling m = 100 summands uniformly at random
(and without replacement) from (11) or (12), and then scaling up the resulting sum by n/m. We denote the
estimator resulting from this “sampling summands” approach by UEss(g), which is unbiased for Err(g).

For the data model, we draw Yi ∼ Pois(µ), independently, i = 1, . . . , n, where µ ranges from 0.5 to 30. For
the algorithm, we use a simple linear shrinkage estimator: g(y) = 0.8y + 0.2ȳ + 0.011{ȳ = 0}. We note that
this choice is generally favorable to UE, and more unstable algorithms g would only create more variability for
UE relative to CB, and thus look more favorable to CB, as observed in the last subsection. For the binomial
noise parameter, we set p = min{0.1,

∑n
i=1 µi/

∑n
i=1 µ

2
i }, which roughly balances the leading terms in the

reducible variance upper bound (26).
The results are displayed in Figure 4. For deviance loss, the results are overall quite favorable for CB: it

has a lower variance than UEss (darker shade of blue) in all but the top left corner, which corresponds to
small n and large µ. In fact, the variability of CB is quite similar (across all n, µ) to that of UE for deviance
loss, even though the former is considerably cheaper (B = 100 runs of the algorithm g, versus n runs). For
squared loss, there is more of a clear tradeoff: for large values of µ (i.e., roughly logµ > 2, or µ > 7.38), we
see that CB has greater variability than UEss; for moderate values of µ (roughly logµ between 0 and 2, or µ
between 1 and 7.38), CB has comparable variability for small n and smaller variability for large n; while for
small values of µ (roughly logµ < 0, or µ < 1), CB has smaller variability than UEss.

6 Applications

6.1 Image denoising
We consider the following Poisson image denoising framework from Harmany et al. (2012) (motivated by the
study of Poisson noise or shot noise in areas such as microscopy and astrophotography). We observe data
Yi ∼ Pois(f∗i ), independently, i = 1, . . . , n, where f∗ ∈ Rn+ is an unknown signal of interest, which we assume
has the structure of an N ×N image, where n =

√
N . We consider an estimator f̂ = g(Y ) for f∗ given by

solving the optimization problem:

minimize
f≥0

n∑
i=1

(
− Yi log(fi + ρ) + fi + ρ

)
+ τ

∑
i∼j
|fi − fj |, (28)

where ρ is a small positive constant to avoid the singularity f = 0, and we write i ∼ j to indicate that indices
i, j are adjacent to each other in the ordering determined by the underlying image. This estimator is a form
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Figure 4: Variability of CB, UEss, and UE as functions of n and µ, for a simple linear shrinkage estimator.

of total variation (TV) regularized Poisson image denoising; we note that the loss term is equivalent (up to
constants) to the Poisson deviance between f and Y , and the penalty term encourages the estimated image f̂
to be piecewise constant, with the tuning parameter τ ≥ 0 determining the strength of regularization.

As an example, we consider the well-known synthetic phantom image f∗, of resolution 128× 128 (so that
n = 16384). We use CB to estimate the test error of f̂ , the Poisson image denoising estimator defined in (28),
over a range of values of the tuning parameter τ . We consider both squared (18) and deviance (19) loss, and
set B = 50 and p = 0.1. We did not consider the unbiased estimator in (11) or (12) in this experiment, due
to its prohibitive computational cost (it requires n = 16384 refits of the TV denoising estimator (28)).

Figure 5 displays the CB error curve and true error curve (approximated by Monte Carlo), as functions of
τ , with separate panels for squared and deviance loss. There are two points worth noting. First, despite the
gap between the CB and true test error curves (unsurprising, because p = 0.1), their curvature is similar; in
particular, the value of τ minimizing the CB curve is close to the value minimizing test error. This is the case
for both squared and deviance loss, and it shows that the CB estimator can be useful for model tuning, even
when p is not small. Second, the value of τ minimizing the CB curve is larger for deviance loss than it is for
squared loss, marked by the dotted lines in each panel. This translates into a greater degree of regularization,
as can be seen clearly in Figure 6, which plots the denoised estimates themselves at the CB-optimal values of
τ , for squared and deviance loss.
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Figure 5: Comparison of CB and true test error curves, as functions of the tuning parameter τ , for a Poisson
image denoising estimator.
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Figure 6: Original, noisy, and denoised estimates at the CB-optimal value of τ , for squared and deviance loss.

6.2 Density estimation
We study density estimation, which can be turned into a Poisson regression via Lindsey’s method (Lindsey,
1974; Lindsey and Mersch, 1992; Efron and Tibshirani, 1996). The basic idea is to discretize the domain into
bins, and model the count in each bin as a Poisson random variable, with the mean parameter constrained or
regularized to be smoothly varying across the bins. We can then estimate the mean parameter by (regularized)
maximum likelihood, which in turn gives a discretized density estimate.

In particular, we consider an example from Phillips et al. (2006) on the distribution of Bradypus variegatus,
a lowland species of sloth found across Central and South America. Each data point consists of latitude and
longitude pair, representing a site where a sloth was seen, and the data set contains 116 total sightings. To
form a 2d density estimate, we apply Lindsey’s method, with 200 equally-spaced bins along the latitude and
longitude axes, and we use a P-spline to model the Poisson mean parameter. P-splines were first proposed by
Eilers and Marx (1996); details for the 2d case can be found in Eilers and Marx (2003); Eilers et al. (2006);
Eilers and Marx (2021). We use a 2d cubic B-spline parametrization for the mean function with 30 knots in
each dimension, and we use a penalty on the sum of squared second-order differences across adjacent B-spline
parameters along each dimension. Moreover, we consider two versions of this penalty: an anisotropic version,
which decouples the regularization strength along each dimension, and has two tuning parameters λ1, λ2 ≥ 0;
and an isotropic version, which ties together the regularization strength over the dimensions, and has a single
tuning parameter λ ≥ 0.

Figure 7 shows the results of using the CB method, with B = 100 and p = 0.1, to estimate both squared
and deviance loss, across a range of tuning parameter values. For either the anisotropic or isotropic penalty, it
is clear that minimizing CB-estimated deviance loss leads to larger tuning parameter values—and hence more
regularized density estimates—than minimizing CB-estimated squared loss. As we can see in Figure 8, this
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(a) Anisotropic penalty, deviance loss (b) Anisotropic penalty, squared loss
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Figure 7: CB curves for anisotropic and isotropic penalties as a function of the tuning parameter(s).
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Figure 8: Density estimates at the CB-optimized values of the tuning parameters for anisotropic and isotropic
penalties, and squared and deviance loss.
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leads to more plausible looking density estimates (top row). The estimates obtained optimizing CB-estimated
squared loss (bottom row) appear too concentrated around the observations themselves.

7 Discussion
We proposed and analyzed a coupled bootstrap (CB) method for test error estimation in the Poisson means
problem, with a focus on squared and Poisson deviance loss functions. The CB estimator, for any choice of
the binomial noise parameter p > 0, is unbiased for an intuitive target: Errp(g), the test error of the given
algorithm g, when the mean vector in the Poisson model has been shrunk from µ to (1− p)µ. Importantly,
this unbiasedness requires no assumptions on g whatsoever. Furthermore, we proved that in the noiseless limit
p→ 0, the CB estimator (with infinite bootstrap iterations) reduces to the natural unbiased estimator (UE)
for test error that comes from an application of Hudson’s lemma. However, CB has two key advantages over
UE. First, it requires running the algorithm g in question B times (which is a user-controlled parameter in
CB), versus n+ 1 times (which comes directly from the form of UE). Second, as we show in our experiments,
CB can often have smaller variance than UE, particularly when the underlying algorithm g is unstable.

We finish by emphasizing that it would be interesting to extend the CB framework to other data models,
beyond Gaussian, as in Oliveira et al. (2021), and Poisson, as in the current paper. To explain what would be
required for this, it may be helpful to first recap the general developments in Section 2. Given any random
vector Y , suppose that we can generate a pair (Y ∗, Y †) such that:

(i) Y ∗, Y † are independent; and

(ii) E[Y ∗] = E[Y †].

Then letting Ỹ ∗ denote an independent copy of Y ∗, Proposition 2 implies (as stated in (15), which we copy
here for convenience):

Dφ(Y †, g(Y ∗)) + φ(Y ∗)− φ(Y †) is unbiased for E[Dφ(Ỹ ∗, g(Y ∗))],

for any Bregman divergence Dφ which serves as our loss function. Therefore, under properties (i) and (ii) we
can estimate error as measured by an arbitrary Bregman divergence, unbiasedly—granted, the error here is
defined when the training and test distributions are given by that of Y ∗, which is different from our original
data distribution. This means that there is actually an implicit third property that we need in order for us to
want to use the estimator in the above display:

(iii) the law of Y ∗ is “close enough” to that of Y that E[Dφ(Ỹ ∗, g(Y ∗))] is an “interesting” proxy target.

This is less explicit than either (i) or (ii) but it is just as important. To be clear, the properties (i), (ii), and
(iii) are already met by the existing Gaussian and Poisson constructions. Moreover, for any given distribution
of Y , if we can fulfill (i), (ii), and (iii), then we can build a corresponding CB estimator for the (proxy) test
error by averaging the above construction over multiple bootstrap draws, as in (17).

Towards satisfying properties (i) and (ii), the recent paper of Neufeld et al. (2023) provides a number of
constructions which serve a related but distinct purpose, in a selective inference context. From some initial
random vector Y , they seek to create a pair (Y (1), Y (2)) which are independent, and satisfy Y (1) + Y (2) = Y .
Fortunately, by simple rescaling, one can check that their constructions (from their Table 2) can be adapted
to satisfy (i) and (iii) for the gamma, exponential, binomial, multinomial, and negative binomial families
of distributions. Meanwhile, property (iii) can be argued on a case-by-case basis. As an example, consider
n = 1 (only for simplicity, the same idea can be applied coordinatewise in the multivariate case), and assume
Y ∼ Exp(λ), exponentially distributed with rate λ > 0. Then for arbitrary ε ∈ (0, 1), we can define

Z ∼ Beta(ε, 1− ε),

Y ∗ =
Z

ε
· Y,

Y † =
1− Z
1− ε

· Y,
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where Beta(α, β) denotes the beta distribution with shapes α, β > 0. From Neufeld et al. (2023), we know
that Y ∗, Y † are independent, with Y ∗ ∼ Gam(ε, ελ) and Y † ∼ Gam(1− ε, (1− ε)λ), where Gam(α, β) is the
gamma distribution with shape α > 0 and rate β > 0. Thus, we can see that E[Y ∗] = E[Y †], and so (i) and
(ii) are clearly satisfied. Furthermore, the distribution Gam(ε, ελ) of Y ∗ is indeed similar to that Exp(λ) of
Y , with the latter approaching the former as ε→ 1, which confirms our property (iii).

Given the success we have seen for the CB method in the Gaussian and Poisson settings, we feel these
and other extensions are worth exploring, along of course with theory and experiments to support their use
as potentially core tools for error and risk estimation in denoising and fixed-X regression problems.
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A Proofs and additional details for Section 2

A.1 Proof of Lemma 2
The joint probability mass function of (Y, ω) is given by

P(Y = y, ω = w) = P(ω = k |Y = y)P(Y = y)

=

(
y

k

)
pk(1− p)y−k µ

ye−µ

y!
,

for all y ≥ 0 and k ∈ {0, . . . , y}. The probability mass function of (U, V ) = (Y − ω, ω) is thus

P(U = u, V = v) = P(Y = u+ v, ω = v)

=

(
u+ v

v

)
pv(1− p)uµ

u+ve−µ

(u+ v)!

=
1

u!v!
pv(1− p)uµuµve−(p+1−p)µ

=
((1− p)µ)ue−(1−p)µ

u!

(pµ)ve−pµ

v!
.

This shows that U and V are independent Pois((1− p)µ) and Pois(pµ) random variables, respectively, which
proves the desired result.

A.2 Divergence deviance terms in UE versus CB
For deviance loss, a summand in the unbiased estimator (12) is undefined if Yi 6= 0 and gi(Y − ei) = 0, and a
summand in the CB estimator (19) is undefined if Y †i 6= 0 and gi(Y ∗) = 0, where Y ∗, Y † are a sample from
(16) (we have hidden the dependence on b). Suppose for simplicity that n = 1 and g(0) = 0. We can then
compute, under Y ∼ Pois(µ), the probability with which this happens for the unbiased and CB estimators.
For the unbiased estimator, this is:

P(Y = 1) = e−µµ.

For the CB estimator, this is:

∞∑
y=1

P(Y ∗ = 0 |Y = y)P(Y = y) =

∞∑
y=1

P(ω = Y |Y = y)P(Y = y)

=

∞∑
y=1

pye−µµy/y!

= e−(1−p)µ
∞∑
y=1

e−pµ(pµ)y/y!

= e−(1−p)µ(1− e−pµ)

= e−µ(epµ − 1).

Figure 9 plots these two probabilities, a functions of µ, for p ranging over 0.01, 0.1, 0.3, 0.5. For small p, it is
clear that the CB estimator has much lower probability of being ill-defined than the unbiased estimator.

A.3 Proof of Proposition 3
In this proof we use f(Yp, Ỹp) to denote Dφ(Ỹp, g(Yp)). First, we show that the map is continuous. For any
p ∈ [0, 1),

lim
t→p

E[f(Yt, Ỹt)] = lim
t→p

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

f(y, ỹ)
e−2(1−t)

∑n
i=1 µi(

∏n
i=1 µ

yi+ỹi
i )(1− t)

∑n
i=1 yi+ỹi∏n

i=1 yi!ỹi!

20



p = 0.01 p = 0.1 p = 0.3 p = 0.5

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.1

0.2

0.3

µ

P
ro

ba
bi

lit
y

UE

CB

Figure 9: Comparison of the probabilities of an individual summand from the unbiased and CB estimators
being ill-defined, as functions of the mean µ. The four panels show different values of p.

=

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

f(y, ỹ)
e−2(1−p)

∑n
i=1 µi(

∏n
i=1 µ

yi+ỹi
i )(1− p)

∑n
i=1 yi+ỹi∏n

i=1 yi!ỹi!

= E[f(Yp, Ỹp)].

To switch the infinite sum and the limit, we used the dominated convergence theorem (DCT). The dominating
function is given by

h(ỹ, y) = f(y, ỹ)

∏n
i=1 µ

yi+ỹi
i∏n

i=1 yi!ỹi!
,

which is integrable by assumption:

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

h(ỹ, y) =

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

f(y, ỹ)

∏n
i=1 µ

yi+ỹi
i∏n

i=1 yi!ỹi!
e−2

∑n
i=1 µie2

∑n
i=1 µi

= e2
∑n

i=1 µiE[f(Y0, Ỹ0)] <∞.

Next, for the first derivative, note that

∂

∂p
E[f(Yp, Ỹp)] =

∂

∂p

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

f(y, ỹ)
e−2(1−p)

∑n
i=1 µi

∏n
i=1 µ

yi+ỹi
i (1− p)

∑n
i=1 yi+ỹi∏n

i=1 yi!ỹi!

=

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

f(y, ỹ)
∏n
i=1 µ

yi+ỹi
i∏n

i=1 yi!ỹi!

∂

∂p
e−2(1−p)

∑n
i=1 µi(1− p)

∑n
i=1 yi+ỹi

=

∞∑
y1,...,yn=0

∞∑
ỹ1,...,ỹn=0

f(y, ỹ)
∏n
i=1 µ

yi+ỹi
i∏n

i=1 yi!ỹi!

(
2

n∑
i=1

µie
−2(1−p)

∑n
i=1 µi(1− p)

∑n
i=1 yi+ỹi

−
n∑
i=1

(yi + ỹi)e
−2(1−p)

∑n
i=1 µi(1− p)

∑n
i=1 yi+ỹi−1

)

= 2

n∑
i=1

µiE[f(Yp, Ỹp)]−
1

1− p
E
[
f(Yp, Ỹp)〈Ỹp + Yp, 1n〉

]
,

where we used DCT to switch the sums and derivative, using a similar dominating function as above and
recognizing that the summand is Lipschitz in p with Lipschitz constant depending on µ, y, ỹ. Now to prove
continuity of the first derivative, we apply the above continuity result with f(Yp, Ỹp)〈Ỹp + Yp, 1n〉 in place of
f(Yp, Ỹp). For kth derivatives, the argument follows from sequential applications of the same continuity result
and similar derivative calculations.
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B Proof of Theorem 1
We start with a lemma that contains two key results to be used in the proof of Theorem 1.

Lemma 3. Let h : Zn+ → Rn+, and set h(z) = 0 for z /∈ Zn+. Fix any y ∈ Zn+, and draw ωi ∼ Binom(yi, p),
independently, for i = 1, . . . , n, where p ∈ [0, 1). Then, for each i = 1, . . . , n,

(a) limp→0 E[hi(y − ω)] = hi(y);

(b) limp→0
1−p
p · E[ωihi(y − ω)] = yihi(y − ei).

Recall, we use ei ∈ Rn to denote the vector whose ith entry is 1, with all others 0.

Proof. Define the following sets:

Ω = {(ω1, . . . , ωn) : ωj ∈ {0, . . . , yj}, j = 1, . . . , n},
Ω\0 = Ω \ {0},
Ωi0 = {(ω1, . . . , ωn) : ωi = 0, ωj ∈ {0, . . . , yj}, j 6= i},

Ωi10 = {(ω1, . . . , ωn) : ωi = 1, ωj = 0, j 6= i},
Ωi10̄ = {(ω1, . . . , ωn) : ωi ≥ 1, ωj ∈ {0, . . . , yj}, j 6= i} \ Ωi10.

For the first result (a), we have

lim
p→0

E[hi(y − ω)] = lim
p→0

∑
ω∈Ω

hi(y − ω)p
∑n

k=1 ωk(1− p)
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)
= lim
p→0

hi(y)(1− p)
∑n

k=1 yk

+
∑
ω∈Ω\0

lim
p→0

hi(y − ω)p
∑n

k=1 ωk(1− p)
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)
= hi(y),

since for ω ∈ Ω\0, we have that
∑n
k=1 ωk > 0. For the second result (b),

lim
p→0

1− p
p

E[ωihi(y − ω)] = lim
p→0

1− p
p

∑
ω∈Ω

ωihi(y − ω)p
∑n

k=1 ωk(1− p)
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)

= lim
p→0

∑
ω∈Ω

ωihi(y − ω)p
∑n

k=1 ωk−1(1− p)1+
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)

= lim
p→0

∑
ω∈Ωi10

ωihi(y − ω)p
∑n

k=1 ωk−1(1− p)1+
∑n

k=1 Yk−ωk

n∏
j=1

(
yj
ωj

)

= lim
p→0

hi(y − ei)p0(1− p)1+
∑n

k=1 yk−ωk

(
yi
1

) n∏
j 6=i,j=1

(
yj
0

)
= yihi(y − ei),

where we use the fact that Ω = Ωi0 ∪ Ωi10 ∪ Ωi10̄ and

lim
p→0

∑
ω∈Ωi0

ωihi(y − ω)p
∑n

k=1 ωk−1(1− p)1+
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)

= lim
p→0

∑
ω∈Ωi0

0hi(y − ω)p
∑n

k=1 ωk−1(1− p)1+
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)
= 0
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as well as

lim
p→0

∑
ω∈Ωi10̄

ωihi(y − ω)p
∑n

k=1 ωk−1(1− p)1+
∑n

k=1 yk−ωk

n∏
j=1

(
yj
ωj

)

=
∑

ω∈Ωi10̄

ωihi(y − ω)0
∑n

k=1 ωk−1
n∏
j=1

(
yj
ωj

)
= 0,

since for ω ∈ Ωi10̄, we have that
∑n
k=1 ωk − 1 > 0.

Now we are ready to prove Theorem 1. We start by expanding the infinite bootstrap estimator

E[CBp(g) |Y ] =

n∑
i=1

E
[
Dφ(Y †i , gi(Y

∗)) + φ(Y ∗i )− φ(Y †i )
∣∣Y ]

=

n∑
i=1

E
[
φ(Y ∗i )− φ(gi(Y

∗))−∇iφ(g(Y ∗))(Y †i − Y
∗
i )
∣∣Y ]

=

n∑
i=1

E
[
φ(Yi − ωi)− φ(gi(Y − ω))−∇iφ(g(Y − ω))

(
1− p
p

ωi − (Yi − ωi)
) ∣∣∣Y ]

=

n∑
i=1

E
[
φ(Yi − ωi)− φ(gi(Y − ω))− 1− p

p
∇iφ(g(Y − ω))ωi +∇iφ(g(Y − ω))(Yi − ωi)

∣∣∣Y ].
Then, taking the limit in the last line,

n∑
i=1

lim
p→0

E
[
φ(Yi − ωi)− φ(gi(Y − ω))− 1− p

p
∇iφ(g(Y − ω))ωi +∇iφ(g(Y − ω))(Yi − ωi)

∣∣∣Y ]

=

n∑
i=1

lim
p→0

E
[
φ(Yi − ωi)− φ(gi(Y − ω)) +∇iφ(g(Y − ω))(Yi − ωi)

∣∣Y ]− Yi∇iφ(g(Y − ei))

=

n∑
i=1

φ(Yi)− φ(gi(Y )) +∇iφ(g(Y ))(Yi)− Yi∇iφ(g(Y − ei))

= UE(Y ),

where in the second-to-last and last lines we used Lemma 3 parts (b) and (a), respectively. This completes
the proof.

C Proofs for Section 4

C.1 Proof of Proposition 4
From Proposition 3, the mapping p 7→ Errp(g) has a continuous derivative for p ∈ [0, 1). By an application of
the fundamental theorem of calculus, we can write the bias as

Errp(g)− Err(g) =

∫ p

0

∂

∂t
Errt(g) dt

=

∫ p

0

{
2

n∑
i=1

µiE[Dφ(Ỹt, g(Yt))]−
1

(1− t)
E
[
Dφ(Ỹt, g(Yt))〈Ỹt + Yt, 1n〉

]}
dt

=

∫ p

0

{
2

n∑
i=1

µiErrt(g)− 1

(1− t)
Cov

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)
− 1

(1− t)
2Errt(g)(1− t)

n∑
i=1

µi

}
dt

= −
∫ p

0

1

(1− t)
Cov

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)
dt
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= −
∫ p

0

1

(1− t)
Cor

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)√
Var
[
Dφ(Ỹt, g(Yt))

]√
Var
[
〈Ỹt + Yt, 1n〉

]
dt

= −
∫ p

0

1

(1− t)
Cor

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)√
Var
[
Dφ(Ỹt, g(Yt))

]√√√√(2(1− t)
n∑
i=1

µi dt

= −
∫ p

0

1√
1− t

Cor
[
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)√
Var
[
Dφ(Ỹt, g(Yt))

]
dt ·

√√√√2

n∑
i=1

µi.

which proves (24). Upper bounding the correlation by 1, and using the monotone variance assumption for
p ∈ [0, 1/2], we have

|Errp(g)− Err(g)| ≤
∫ p

0

1√
1− t

√
Var
[
Dφ(Ỹt, g(Yt))

)
dt ·

√√√√2

n∑
i=1

µi

≤
∫ p

0

1√
1− t

√
Var
[
Dφ(Ỹ , g(Y ))

)
dt ·

√√√√2

n∑
i=1

µi

=

√
Var
[
Dφ(Ỹ , g(Y ))

)√√√√2

n∑
i=1

µi

∫ p

0

1√
1− t

dt

=

√
Var
[
Dφ(Ỹ , g(Y ))

)√√√√2

n∑
i=1

µi
2p

1 +
√

1− p

=

√
Var
[
Dφ(Ỹ , g(Y ))

)√√√√2

n∑
i=1

µi
5p

3
,

which proves (25).

C.2 Proof of Proposition 5
We start from the fact that

Var[CBp |Y ] =
1

B
Var
[
Dφ(Y †, g(Y ∗)) + φ(Y ∗)− φ(Y †)

∣∣Y ].
Then

E
[
Var[CBp |Y ]

]
=

1

B
E
[
Var
[
Dφ(Y †, g(Y ∗)) + φ(Y ∗)− φ(Y †)

∣∣Y ]]
=

1

B
E
[
Var
[
φ(Y ∗)− φ(g(Y ∗))− 〈∇φ(g(Y ∗)), Y † − g(Y ∗)〉

∣∣Y ]]
=

1

B
E
[
Var
[
φ(Y ∗)− φ(g(Y ∗))− 〈∇φ(g(Y ∗)), Y † − Y ∗ + Y ∗ − g(Y ∗)〉

∣∣Y ]]
=

1

B
E
[
Var
[
Dφ(Y ∗, g(Y ∗))− 〈∇φ(g(Y ∗)), Y † − Y ∗〉

∣∣Y ]]
=

1

B
E
[
Var
[
Dφ(Y ∗, g(Y ∗))− 1

p
〈ω,∇φ(g(Y ∗))〉+ 〈∇φ(g(Y ∗)), Y 〉

∣∣Y ]]
≤ 2

B
E
[
Var
[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y 〉

∣∣Y ]]+
2

Bp2
E
[
Var
[
〈ω,∇φ(g(Y ∗))〉

∣∣Y ]]
≤ 2

B
Var
[
Dφ(Y ∗, g(Y ∗)) + 〈Y ∗,∇φ(g(Y ∗))〉

]
+

2

Bp2
Var
[
〈ω,∇φ(g(Y ∗))〉

]
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=
2

B
Var
[
Dφ(Y, g(Y )) + 〈Y,∇φ(g(Y ))〉

]
+

2

B
O(p) +

2

Bp2
Var
[
〈ω,∇φ(g(Y ∗))〉

]
,

where the second-to-last line uses the law of total variance, and the last line uses a Taylor expansion which
follows from the continuity in p of expected value of functions of Yp as assumed in the proof of Proposition 3.
For the last term in the above display, note that ω and Y ∗ are independent. Therefore, we can use that fact
that if X1 and X2 are independent, then Var[X1X2] = Var[X1]Var[X2] + Var[X1]E2[X2] + Var[X2]E2[X1],
which translates to

2

Bp2
Var
[
〈ω,∇φ(g(Y ∗))〉

]
=

2

Bp2

n∑
i=1

Var
[
ωi∇iφ(g(Y ∗))

]
=

2

Bp2

n∑
i=1

(
Var[ωi]Var

[
∇iφ(g(Y ∗))

]
+ Var[ωi]E2

[
∇iφ(g(Y ∗))

]
+ Var

[
∇iφ(g(Y ∗))

]
E2[ωi]

)
=

2

Bp2

n∑
i=1

(
pµiVar

[
∇iφ(g(Y ∗))

]
+ pµiE2

[
∇iφ(g(Y ∗))

]
+ Var

[
∇iφ(g(Y ∗))

]
p2µ2

i

)
=

2

Bp

n∑
i=1

µiE
[
∇iφ(g(Y ∗))2

]
+

2

B

n∑
i=1

µ2
iVar

[
∇iφ(g(Y ∗))

]
=

2

Bp

n∑
i=1

µiE
[
∇iφ(g(Y ∗))2

]
.

Putting it all together gives the desired result (26).

C.3 Proof of Proposition 6
Note that the irreducible variance Var(E[CBp(g) |Y ]) does not depend on B (because the inner expectation
does not), so we assume without a loss of generality that B = 1 henceforth. Observe that

Var
(
E[CBp(g) |Y ]

)
= Var

(
E
[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗ − Y †〉

∣∣Y ])
= Var

(
E
[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉 − 1− p

p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y ])
≤ 2Var

(
E
[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉

∣∣Y ])+ 2Var

(
E
[

1− p
p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y ]). (29)

For the first term in (29), we apply the law of total variance and

Var
(
E
[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉

])
≤ Var

[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉

]
→ Var

[
Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉

]
, as p→ 0,

where the last convergence is guaranteed provided that D2
φ(Y, g(Y )) and 〈∇φ(g(Y )), Y 〉2 have finite expecta-

tion, according to the first step in the proof of Proposition 3.
For the second term in (29) recalling that Φg as defined in the statement of the proposition,

lim
p→0

Var

(
E
[

1− p
p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y ]) ≤ lim
p→0

E
(
E2

[
1− p
p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y ])
≤ lim
p→0

E
(
E2

[
1− p
p
〈Φg(Y ), ω

∣∣∣Y ])
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= lim
p→0

(1− p)2E
[
〈Φg(Y ),E[ω/p |Y ]〉2

]
= lim
p→0

(1− p)2E
[
〈Φg(Y ), Y 〉2

]
= E

[
〈Φg(Y ), Y 〉2

]
.

Putting it all together gives the desired result (27).
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