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Abstract
We develop a new approach for estimating the risk of an arbitrary estimator of the mean vector in

the classical normal means problem. The key idea is to generate two auxiliary data vectors, by adding
carefully constructed normal noise vectors to the original data. We then train the estimator of interest on
the first auxiliary vector and test it on the second. In order to stabilize the risk estimate, we average this
procedure over multiple draws of the synthetic noise vector. A key aspect of this coupled bootstrap (CB)
approach is that it delivers an unbiased estimate of risk under no assumptions on the estimator of the
mean vector, albeit for a modified and slightly “harder” version of the original problem, where the noise
variance is elevated. We prove that, under the assumptions required for the validity of Stein’s unbiased
risk estimator (SURE), a limiting version of the CB estimator recovers SURE exactly. We then analyze a
bias-variance decomposition of the error of the CB estimator, which elucidates the effects of the variance
of the auxiliary noise and the number of bootstrap samples on the accuracy of the estimator. Lastly, we
demonstrate that the CB estimator performs favorably in various simulated experiments.

1 Introduction
Given a model that has been fitted on a particular data set, assessing its risk—typically defined in terms of
the accuracy in estimating some population parameter, or its prediction error—typically defined in terms of
the accuracy in predicting new (unseen) observations, are fundamental questions in both classical statistical
decision theory and modern statistical machine learning. Estimates of risk or prediction error can be used for
a multitude of purposes, e.g., serving as a key input for a decision point (is the given model good enough to be
deployed? ), or a tool for model selection (is model A preferred over model B? ), or model tuning (which level
of regularization strength should be used? ). Naturally, methodology for risk and prediction error estimation
has received considerable attention over the years in the literature, with foundational work contributed by
Akaike, Mallows, Stein, Efron, Breiman, and others (precise references and discussion to be given shortly).
The current paper revisits this classical topic and proposes a method to estimate the risk—or equivalently
the prediction error in a fixed-X regression model—based on an auxiliary randomization scheme that avoids
data splitting or resampling techniques.

To fix notation, consider a standard normal means setting, where we observe data Y = (Y1, . . . , Yn) ∈ Rn
distributed according to:

Y ∼ N(θ, σ2In), (1)

where θ ∈ Rn is an unknown parameter to be estimated. The marginal error variance σ2 > 0 is assumed to
be known, and In denotes the n× n identity matrix. An estimator in the context of this problem is simply a
measurable function g : Rn → Rn that, from Y , produces an estimate θ̂ = g(Y ) of the mean vector θ ∈ Rn.
Given a loss function L : Rn × Rn → R, the risk of g is defined by its expected loss to θ,

Risk(g) = E[L(θ, g(Y ))]. (2)

In what follows, without further specification, we work under quadratic loss, so that the above becomes:

Risk(g) = E‖θ − g(Y )‖22 = E
[ n∑
i=1

(θi − gi(Y ))2

]
, (3)
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with gi denoting the ith component function of g. In the discussion, we return to a more general setting and
consider (2) in the case of loss functions defined by a Bregman divergence.

In this work, we propose and study a method that we call the coupled bootstrap to estimate the risk of an
arbitrary function g as in (3). Before introducing this method, we discuss the connection to prediction error,
and introduce and descibe related methods from the literature, to better contextualize our contributions.

1.1 Prediction error, fixed-X regression
Under quadratic loss (with known σ2), estimating risk in (3) is equivalent to estimating prediction error, the
expected loss between g(Y ) and an independent copy of Y , as these two quantities are related via

E‖Ỹ − g(Y )‖22 = E‖θ − g(Y )‖22 + nσ2, where Ỹ ∼ N(θ, σ2In), independent of Y . (4)

In other words, prediction error and risk differ only by a known constant nσ2. In the literature, the choice of
whether to focus on prediction error or risk is generally based on which is the more natural metric in the
applications they use to motivate the study at hand.

An important special case of the normal means problem in which prediction error is a common focus is
fixed-X regression: here Y ∈ Rn is viewed as a response vector that is paired with a feature matrix X ∈ Rn×p
i.e., the ith row of X is a feature vector associated with Yi, and g usually performs a kind of regression of Y
on X. For example, when g(Y ) = Xβ̂ for some estimated coefficient vector β̂ ∈ Rp, and the mean in (1) is
itself linear in X, i.e., θ = Xβ for some coefficient vector β ∈ Rp, then the decomposition in (4) becomes

E‖Ỹ −Xβ̂‖22 = E‖Xβ −Xβ̂‖22 + nσ2, where Ỹ ∼ N(Xβ, σ2In), independent of Y . (5)

We emphasize that we are treating X here as fixed (nonrandom); further, by measuring prediction error as in
(5), we are treating X as the common set of features that are used across both training and testing (i.e., Ỹ is
a new vector of response values, but observed at the same features as Y ).

Much of the classical literature on prediction error estimation in statistics falls in the fixed-X regression
setting, with, e.g., Mallow’s Cp (Mallows, 1973) marking a seminal early contribution in this area. In some
applications of regression (such as experimental design), the fixed-X perspective is natural; yet in others, a
random-X perspective is more natural, where prediction error is measured with respect to a new feature
vector (drawn i.i.d. from the same distribution as the training features). It is worth being clear that prediction
error in the fixed-X and random-X sense are generally not equivalent and admit critical differences (see, e.g.,
Rosset and Tibshirani (2020) for a discussion); thus, methods for estimating prediction error in the fixed-X
setting do not necessarily translate to the random-X setting, and vice versa. For example, sample splitting
and cross-validation are arguably the most widely-used tools for estimating random-X prediction error, but
are not generally applicable for fixed-X (when X is fixed, there is no reason to believe that a random subset
of its rows will be representative of the full set). On the other hand, the CB estimator that we will develop is
aligned with fixed-X prediction error, but not random-X prediction error in general.

To summarize, in this paper, we choose to focus on risk as in (3) for simplicity of exposition, but as we
explained above, our results translate over to prediction error in (4), which encompasses fixed-X regression
error as in (5). In what follows, we will move back and forth between the two concepts (risk and prediction
error) fluidly, as needed.

1.2 Stein’s unbiased risk estimator
One of the most well-known and widely-used risk estimators in the normal means problem is due to Stein
(1981). For concreteness, we translate this result into the notation of our paper.

Theorem 1 (Stein 1981). Let Y ∼ N(θ, σ2In). Let g : Rn → Rn be weakly differentiable1, and write ∇igj for
the weak partial derivative of component function gj with respect to variable yi. Assume that E‖g(Y )‖22 <∞,
and E|∇igi(Y )| <∞, for i = 1, . . . , n. Denote the divergence of g by ∇ · g =

∑n
i=1∇igi, and define

SURE(g) = ‖Y − g(Y )‖22 + 2σ2(∇ · g)(Y )− nσ2, (6)

Then the above provides an unbiased estimator of risk: E[SURE(g)] = Risk(g).
1Weak differentiability of g is actually a slightly stronger assumption than needed, but is stated for simplicity; see Remark 3.
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The estimator defined in (6) is known as Stein’s unbiased risk estimator (SURE). Ignoring the last term:
−nσ2, a constant not depending on g, the first two terms here are the observed training error: ‖Y − g(Y )‖22,
and a measure of complexity: 2σ2(∇ · g)(Y ). At the heart of Theorem 1 is a result known as Stein’s formula,
which says for weakly differentiable g (Stein, 1981),

1

σ2
Cov(Yi, gi(Y )) = E[∇igi(Y )], i = 1, . . . , n. (7)

Recall that the (effective) degrees of freedom of g is defined by (Hastie and Tibshirani, 1990; Ye, 1998):

df(g) =
1

σ2

n∑
i=1

Cov(Yi, gi(Y )). (8)

This measures complexity based on the association (summed over the training set) between each Yi and the
corresponding estimate gi(Y ) of θi (generally speaking, the more complex g is, the greater this association
will be). Note that, according to (7), (8), the second term in (6) leverages an unbiased estimator for degrees
of freedom: E[(∇ · g)(Y )] = df(g).

1.3 Efron, Breiman, and Ye
For arbitrary g, we can always decompose its risk by:

Risk(g) = E‖Y − g(Y )‖22 + 2

n∑
i=1

Cov(Yi, gi(Y ))− nσ2, (9)

which follows from simple algebra (add and subtract Y inside the expectation in E‖θ − g(Y )‖22, and expand
the quadratic). This is often referred to as Efron’s covariance decomposition (or Efron’s optimism theorem),
after Efron (1975, 1986, 2004). We reiterate that the covariance decomposition in (9) holds for any function
g. The same is true of the definition of degrees of freedom in (8): it applies to any g. In fact, these do not
even require normality of the data vector: (8), (9) only require the distribution of Y to be isotropic (i.e., to
have a covariance matrix σ2In). Meanwhile, Stein’s formula (7), and hence the unbiasedness of SURE (6),
only holds for a weakly differentiable g, and Gaussian Y .

Efron’s covariance decomposition reveals that, to get an unbiased estimator of Risk(g), we only need an
unbiased estimator of the second term: 2

∑n
i=1 Cov(Yi, gi(Y )), called the optimism of g. This is because the

first term, the (expected) training error, clearly yields the observed training error as its unbiased estimator.
A natural way to estimate optimism is to use the bootstrap, or more precisely, the parametric bootstrap. This
has been pursued by several authors, notably Breiman (1992); Ye (1998); Efron (2004). In the parametric
bootstrap, we generate samples

Y ∗b |Y ∼ N(Y, ασ2In), independently, for b = 1, . . . , B, (10)

for some constant α > 0 (typically α ≤ 1). We then form the estimates:

Ĉov
∗
i =

1

B − 1

B∑
b=1

(Y ∗bi − Ȳ ∗i )gi(Y
∗b), i = 1, . . . , n, (11)

where Ȳ ∗i = 1
B

∑B
b=1 Y

∗b
i , i = 1, . . . , n are the bootstrap means of the coordinates. Efron (2004) also presents

a more general framework in which, instead of (10), we draw bootstrap samples from N(θ̌, ασ2In), for some
seed estimate θ̌. As an effort to reduce bias, Efron recommends using a more flexible model for estimating θ̌
compared to that for θ̂ = g(Y ), where the “ultimate” flexible model (as Efron calls it) reduces to θ̌ = Y , in
(10). This is also the choice made in both Breiman (1992) and Ye (1998).

While there are strong commonalities among the parametric bootstrap proposals of Efron, Breiman, and
Ye, all three being centered around (11), there are also noteworthy differences in how these authors use (11)
in order to estimate risk. Efron proposes the risk estimator:

Efrα(g) = ‖Y − g(Y )‖22 + 2

n∑
i=1

Ĉov
∗
i − nσ2, (12)
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whereas Breiman and Ye effectively propose the risk estimator:

BYα(g) = ‖Y − g(Y )‖22 +
2

α

n∑
i=1

Ĉov
∗
i − nσ2. (13)

We say “effectively” here because Breiman and Ye consider a slightly different estimator than that in (13).
See Appendix A for details. But for a large number of bootstrap draws B, the proposals of Breiman and Ye
will behave very similarly to (13), and thus we refer to (13) as the Breiman-Ye (BY) risk estimator.

The difference between (12) and (13) is that in the latter the sum of estimated covariances is scaled by
1/α. Efron, Breiman, and Ye each generally advocate for choices of α in between 0.6 and 1. For such a large
value of α, the scaling factor 1/α in (13) will not play a huge role. But for small values of α—a regime that
is of interest in the current paper—this scaling factor will make all the difference.

1.4 What are these bootstrap methods estimating?
The bootstrap methods in (12) and (13) are well-known and widely-used for estimating risk in normal means
problems. Both are fairly natural. Efron’s estimator (12) directly uses the parametric bootstrap to estimate
optimism: 2

∑n
i=1 Cov(Yi, gi(Y )). For the BY estimator (13), writing

2

α

n∑
i=1

Ĉov
∗
i = 2σ2 1

ασ2

n∑
i=1

Ĉov
∗
i︸ ︷︷ ︸

d̂f(g)

,

we see that it can be motivated from the perspective of estimating degrees of freedom (rather than optimism)
via the parametric bootstrap, since the conditional variance of the bootstrap draws (given Y ) is ασ2.

Now we come to a key point: the motivation given for the above estimators is based on the conditional
distribution of bootstrap samples (conditional on the data Y ). However, their performance as risk estimators
hinges on how they behave marginally over Y , and unfortunately, from the marginal point of view, it is not
as clear what these methods are actually targeting. We discuss this for each method separately.

1.4.1 Efron’s Estimator

First, consider Efron’s estimator in (12). Write Y ∗ for a single bootstrap draw, i.e., Y ∗ |Y ∼ N(Y, ασ2In).
As this estimator treats Y ∗ as the data vector (in place of Y ), one might suppose that marginally it targets
the optimism of g, but at an elevated noise level (1 + α)σ2 (instead of σ2), because Y ∗ ∼ N(θ, (1 + α)σ2).
However, its expectation does not really support this claim. To see this, first observe that

E
[
Ĉov

∗
i

∣∣Y ] = Cov
(
Y ∗i , gi(Y

∗)
∣∣Y ).

Here we simply used the fact that an empirical covariance computed from i.i.d. samples of a pair of random
variables is unbiased for their covariance (everything here being conditional on Y ). Next observe that

n∑
i=1

Cov(Y ∗i , gi(Y
∗)) =

n∑
i=1

E
[
Cov

(
Y ∗i , gi(Y

∗)
∣∣Y )]︸ ︷︷ ︸

Aα

+

n∑
i=1

Cov(Yi, gi(Y
∗))︸ ︷︷ ︸

Bα

, (14)

by the law of total covariance, and where we used Cov(E[Y ∗i |Y ],E[gi(Y
∗) |Y ]) = Cov(Yi, gi(Y

∗)), for each
summand in the second term, which follows from a short calculation. Therefore Efron’s method delivers a
covariance term with marginal expectation:

E
[ n∑
i=1

Ĉov
∗
i

]
= E

[ n∑
i=1

Cov
(
Y ∗i , gi(Y

∗)
∣∣Y )]. (15)

This only captures a part of the optimism of g at the elevated noise level (1 + α)σ2, labeled Aα in (14), and
not a second part, labeled Bα in (14).
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Based on this, we can reason that for small α, the bootstrap estimator
∑n
i=1 Ĉov

∗
i will typically be badly

biased for the noise-elevated covariance
∑n
i=1 Cov(Y ∗i , gi(Y

∗)), and hence also badly biased for the original
covariance

∑n
i=1 Cov(Yi, gi(Y )) (as this will be close to the noise-elevated version). This is because it will be

concentrated around Aα in (14), which will typically be small in comparison to the second component Bα in
(14). For example, for a linear smoother g(Y ) = SY (for a fixed matrix S ∈ Rn×n), note that

Aα = ασ2tr(S) and Bα = σ2tr(S), (16)

and the latter term will dominate for small α. Similar arguments hold for locally linear g (well-approximated
by its first-order Taylor expansion).

Meanwhile, for moderate α, the estimator
∑n
i=1 Ĉov

∗
i can have low bias for

∑n
i=1 Cov(Yi, gi(Y )) (this is

the original covariance and not the noise-elevated version, which will be generally larger for moderate α), if
we are able to choose α such that Aα ≈

∑n
i=1 Cov(Yi, gi(Y )). For linear smoothers, as we can see from (16),

we simply need to take α = 1. In general, however, it will not be at all clear how to choose α appropriately,
as it will be unclear how Aα behaves with α. More broadly, for any given value of α in hand, it is not clear
precisely what is being targeted in (15), and thus, not clear precisely what risk is being estimated by (12).

1.4.2 Breiman-Ye Estimator

Next, consider the BY estimator in (13). By the same calculations as in the last case, we see that the BY
method uses a covariance term with marginal expectation:

1

α
E
[ n∑
i=1

Ĉov
∗
i

]
=

1

α
E
[ n∑
i=1

Cov
(
Y ∗i , gi(Y

∗)
∣∣Y )]. (17)

The sum above only captures one part of the optimism at the elevated noise level (1 + α)σ2, labeled Aα in
(14), but the sum is also inflated by division by α (recall, usually α ≤ 1). This makes the behavior of the BY
method more subtle than that of Efron’s method; we seek α so that Aα/α ≈

∑n
i=1 Cov(Yi, gi(Y )), yet it is

unclear whether this means that we should choose α to be small or large.
The case of a linear smoother g(Y ) = SY is encouraging: recalling (16), we have Aα/α = σ2tr(S), which

is equal to
∑n
i=1 Cov(Yi, gi(Y )) for any value of α. Of course, in general we will not be so lucky, and varying

α will vary Aα/α, hence vary what we are targeting in (17). This brings us to the same general difficulty
with the BY estimator as in the last case: for any given choice of α, it is unclear what quantity is actually
being estimated by 1

α

∑n
i=1 Ĉov

∗
i , and thus, unclear precisely what risk is being estimated by (13).

1.5 Proposed estimator
The main proposal in this paper is a new estimator for the risk of an arbitrary function g, based on bootstrap
draws as in (10). The key motivation for our estimator is that, for any α, it will be unbiased for an intuitive,
explicit target: the risk of g at the noise level of (1 + α)σ2, which we denote by

Riskα(g) = E‖θ − g(Yα)‖22, where Yα ∼ N(θ, (1 + α)σ2In). (18)

One can think of Riskα(g) as the risk for a “harder” version of the original problem, where the mean θ is the
same, but the noise variance σ2 is multiplied by a factor of 1 + α. Later (in Proposition 2), we will show that
Riskα(g) converges to Risk(g) as α→ 0, and in fact, does so smoothly: it is continuously differentiable in α,
under only mild moment conditions on g(Y ).

In order to estimate Riskα(g), we take an approach that departs in two ways from prior work. First, we
do not rely on the covariance decomposition (9), and do not frame the problem in terms of directly estimating
optimism (or degrees of freedom); this circumvents the need to estimate a covariance with the bootstrap (and
as such, avoids challenges due to the law of total covariance (14)). Second, coupled with each bootstrap draw
in (10), we carefully generate another bootstrap draw that is marginally independent from it (which gives us
a total of 2B draws). In particular, we generate samples according to:

ωb ∼ N(0, σ2In), independently, for b = 1, . . . , B,

Y ∗b = Y +
√
αωb, Y †b = Y − ωb/

√
α, for b = 1, . . . , B,

(19)
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for some constant α > 0, and based on these samples, we define the risk estimator:

CBα(g) =
1

B

B∑
b=1

(
‖Y †b − g(Y ∗b)‖22 − ‖ωb‖22/α

)
− nσ2. (20)

The intuition here is that each pair (Y ∗b, Y †b) comprises two independent samples from a normal distribution
with mean θ, and hence each squared error term ‖Y †b − g(Y ∗b)‖22 imitates the prediction error incurred by
g(Y ) at a new copy of Y . Together, the remaining terms −‖ωb‖22/α (in each summand) and −nσ2 adjust for
the fact that Y ∗b and Y †b have different variances, and bring us from the prediction scale to the risk scale
(recall (4)). In this paper, we refer to (20) as the coupled bootstrap (CB) risk estimator.

In (20), as g is applied to a noise-elevated draw Y ∗b that has mean θ and variance (1 + α)σ2, one might
conjecture that we are targeting risk (or prediction error) at the noise-elevated level (1 + α)σ2. Later, when
we provide more details behind the construction of the CB estimator (20), we will show (in Corollary 1) that
this is indeed true: E[CBα(g)] = Riskα(g). This is a strong property, and it holds without any assumptions
on g whatsoever.

1.6 Summary of contributions
The following is a summary of our main contributions and an outline for this paper.

• In Section 2, we examine basic properties of the CB risk estimator, which includes proving that for any
g and any α, the CB estimator is unbiased for Riskα(g).

• In Section 3, we study the behavior of the CB estimator as B →∞ and α→ 0, and prove that under
the same smoothness assumptions on g as those in Stein (1981) (to guarantee unbiasedness of SURE;
recall Theorem 1), the limiting CB estimator recovers SURE exactly.

• In Section 4, we analyze the bias and variance (quantifying their dependence on α and other problem
parameters) of the CB estimator when it is viewed as an estimator of Risk(g), the original risk. Insights
from this include a recommendation to choose the number of bootstrap draws B to scale with 1/α, for
small α, in order to control the variance of the CB estimator.

• In Section 5, we compare the CB estimator to the existing bootstrap methods (Efron and BY) for risk
estimation in simulations. We find that the CB estimator generally performs favorably, particularly so
when g is unstable.

• In Section 6, we conclude with a discussion, and give an extension of our coupled bootstrap framework
to the setting of structured errors (i.e., a non-isotropic covariance in (1)), as well as extensions to other
loss functions and distributions.

1.7 Related work
Risk (or prediction error) estimation is a well-studied topic and has a rich history in statistics. What follows
is by no means comprehensive, but is a selective review of papers that are most related to our paper, apart
from Breiman (1992); Ye (1998); Efron (2004), which have already been discussed in some detail.

In a sense, covariance penalties originated in the work of Akaike (1973) and Mallows (1973), who focused
on classical likelihood-based models and fixed-X linear regression, respectively. Stein (1981) greatly extended
the scope of models under consideration (or in our notation, functions g whose risk is to be estimated) with
SURE, which applies broadly to models whose predictions vary smoothly with respect to the input data Y ;
recall Theorem 1. Stein’s work has had a huge impact in both statistics and signal processing, and SURE is
now a central tool in wavelet modeling, image denoising, penalized regression, low-rank matrix factorization,
and other areas; see, e.g., Donoho and Johnstone (1995); Cai (1999); Johnstone (1999); Blu and Luisier
(2007); Zou et al. (2007); Zou and Yuan (2008); Tibshirani and Taylor (2011, 2012); Candès et al. (2013);
Ulfarsson and Solo (2013a,b); Wang and Morel (2013); Krishnan and Seelamantula (2014).

A downside of SURE is that it cannot be applied to various models of interest (e.g., tree-based methods,
certain variable selection methods, and so on), as it requires g to be weakly differentiable, which is generally
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violated when g is discontinuous. Meanwhile, even when SURE is applicable, it is often highly nontrivial to
(analytically) calculate the Stein divergence ∇ · g; in fact, the key contribution in many of the papers given in
the last set of references is that the authors were able to calculate this divergence for an interesting class of
models (e.g., wavelet thresholding, total variation denoising, lasso regression, and so on).

These shortcomings of SURE are well-known. Extensions of SURE to accommodate discontinuities in g
were derived in Tibshirani (2015); Mikkelsen and Hansen (2018); see also Tibshirani and Rosset (2019). While
useful in some contexts, these extensions are generally far more complicated (and harder to compute) than
SURE. On the computational side, Ramani et al. (2008) proposed a Monte Carlo method for approximating
SURE that only requires evaluating g (and not its partial derivatives). This has since become quite popular
in the signal processing community, see, e.g., Chatterjee and Milanfar (2009); Lingala et al. (2011); Metzler
et al. (2016); Soltanayev and Chun (2018) for applications of this idea and follow-up work.

As it turns out, the Monte Carlo SURE approach of Ramani et al. (2008) is precisely the same as the
bootstrap method of Breiman (1992). It is thus also highly related to the work of Ye (1998), and essentially
equivalent to what we call the BY risk estimator in (13); recall the discussion in Section 1.3. It seems that
Ramani et al. were unaware of the past work of Breiman and Ye. That being the case, their work provided
an important new perspective on this methodology: they show that for infinite bootstrap samples (B =∞)
and with appropriate smoothness conditions on g, Monte Carlo SURE (and thus the BY estimator in (13))
converges to SURE in (6) as α→ 0. Breiman and Ye, on their part, seemed unaware of this connection, as
they both cautioned against choosing small values of α, advocating for choices of α upwards of 0.5.

Finally, we note that the work of Tian (2020) inspired us to pursue the current paper. Tian proposed the
coupled bootstrap approach in (19) (albeit with B = 1) to estimate the fixed-X regression error of prediction
rules that perform feature selection in a working linear model (such as the lasso). Their focus was different
than ours: they study the estimation of prediction error conditional on a model selection event (such as the
event that the lasso selects a particular active set). They conduct a bias-variance analysis as a function of the
noise inflation parameter α, under the assumption that the true model is itself linear. They also recommend
a diminishing choice of α as the sample size grows. This is all done in service of an asymptotic analysis which
shows that the estimated prediction error converges to the true one as n→∞. The idea of using auxiliary
randomization in the literature on inference after model selection was initiated by Tian and Taylor (2018),
and has since been further developed by several others, e.g., Rasines and Young (2021); Leiner et al. (2021);
Neufeld et al. (2023), some of this literature developed concurrently with our paper, and some after.

2 Basic properties
In this section, we investigate basic properties of the CB estimator in (20), beginning with its unbiasedness
for the noise-elevated risk in (18).

2.1 Unbiasedness for noise-elevated target
The unbiasedness of CB estimator for the appropriate noise-elevated risk stems from a simple “three-point”
formula under squared error loss. Here and subsequently, we use 〈a, b〉 = aTb for vectors a, b.

Proposition 1. Let U, V,W ∈ Rn be independent random vectors. Then for any g,

E‖V − g(U)‖22 − E‖W − g(U)‖22 = E‖V ‖22 − E‖W‖22 + 2〈E[g(U)],E[W ]− E[V ]〉, (21)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d. and E[U ] = E[W ], then

E‖V − g(U)‖22 = E‖W − g(U)‖22 + E‖U‖22 − E‖W‖22. (22)

Proof. The first statement (21) just follows from expanding the quadratic terms and using the independence
of U, V,W . The second statement (22) follows from the first by noting that if U, V are i.i.d. and E[U ] = E[W ]
then E[V ] = E[W ], thus the first term on the right-hand side in (21) is E‖U‖22, and the last term is zero.

The statements in Proposition 1 are the result of somewhat trivial algebraic manipulations. Nonetheless,
they are useful observations: to recap, the second display (22) says that given a random vector U , if we can

7



generate another random vector W that is independent of U and shares the same mean (importantly, we do
not require it to be i.i.d.), then we can unbiasedly estimate the predicion error (or risk) of g applied to U .

This is the basis for the CB risk estimator. By carefully adding and substracting noise to Y , we generate
a pair of random vectors (U,W ) = (Y ∗b, Y †b) that are independent of each other and have a common mean
θ. Then we pivot slightly from the original problem and now seek to estimate the risk of g when it is applied
to U , which has marginal distribution N(θ, (1 + α)σ2). For this task, we have a simple unbiased estimator,
following (22).

Corollary 1. Let Y ∼ N(θ, σ2In). Then for any g, any α > 0, and any B ≥ 1, the CB estimator defined by
(19), (20) is unbiased for the noise-elevated risk in (18): E[CBα(g)] = Riskα(g).

Proof. For each b, note that Y ∗b, Y †b are independent since they are jointly normal and uncorrelated:

Cov(Y +
√
αωb, Y − ωb/

√
α) = Cov(Y, Y ) + (

√
α− 1/

√
α)Cov(Y, ωb)− Cov(ωb, ωb)

= σ2In + 0− σ2In

= 0.

They also clearly have the same mean, thus we can apply (22) with U = Y ∗b, V = Ỹ ∗b,W = Y †b, where Ỹ ∗b
is an independent copy of Y ∗b. This shows that

‖Y †b − g(Y ∗b)‖22 + ‖Y ∗b‖22 − ‖Y †b‖22 (23)

is unbiased for E‖Ỹ ∗b − g(Y ∗b)‖22. Now observe that we can replace ‖Y ∗b‖22 − ‖Y †b‖22 in the above display by
anything with the same expectation, nσ2(α− 1/α), and the result will still be unbiased for E‖Ỹ ∗b − g(Y ∗b)‖22.
One such option is

‖Y †b − g(Y ∗b)‖22 + nσ2α− ‖ωb‖22/α, (24)

and thus, after subtracting off nσ2(1 + α), we learn that

‖Y †b − g(Y ∗b)‖22 − ‖ωb‖22/α− nσ2

is unbiased for Riskα(g) in (18). The CB estimator in (20), being an average of such terms over b = 1, . . . , B,
is therefore also unbiased for Riskα(g).

Remark 1. In Proposition 1, we require that U,W are independent so that we can factorize E〈g(U),W 〉 =
〈E[g(U)],E[W ]〉 in (21) and hence cancel out this term with 〈E[g(U)],E[V ]〉, when E[V ] = E[W ], to achieve
(22). This is the only reason that we require a normal data model Y ∼ N(θ, σ2In) for the unbiasedness result
in Corollary 1; we can construct U = Y ∗b,W = Y †b to be uncorrelated, but it is only under normality that
this will imply independence.

When g(Y ) = SY is linear, if U,W are merely uncorrelated then we still get the desired factorization:

E〈SU,W 〉 = Etr(SUWT) = tr(SE[UWT]) = tr(SE[U ]E[W ]T) = 〈SE[U ],E[W ]〉,

so the unbiasedness result in Corollary 1 still holds under the weaker conditions: E[Y ] = θ,Cov(Y ) = σ2In.
As an example consequence, this means that the CB estimator for ridge regression is still unbiased for the
noise-elevated risk even when the data is not Gaussian, but has isotropic error covariance.

Remark 2. As alluded to in the proof of the proposition, various options are available in the construction of
the CB estimator; starting from (23), we can replace two rightmost terms by anything that has the same
mean. One might wonder why we therefore do not just use the exact mean itself, nσ2(α− 1/α), to define the
risk estimator; as we discuss later (see Remark 8 after Proposition 5), this not a good choice, as it would lead
to a much larger variance for the risk estimator when α is small.

2.2 Smoothness of noise-elevated target
Now that we have shown that CBα(g) is unbiased for Riskα(g), it is natural to ask whether Riskα(g) will
generally be close to the original target of interest Risk(g). Our next result provides a basic answer to this
question: we show that if g satisfies a certain moment condition, then the map α 7→ Riskα(g) is continuous
on an interval containing α = 0. In fact, if g satisfies a certain kth order moment condition, then this map is
k times continuously differentiable around α = 0.

8



Proposition 2. For α ≥ 0, let Riskα(g) be as defined in (18). If, for some β > 0 and integer k ≥ 0,

E
[
‖g(Yβ)‖22‖Yβ − θ‖2m2

]
<∞, m = 0, . . . , k,

where recall Yα ∼ N(θ, (1 + α)σ2In), then the map α 7→ Riskα(g) has k continuous derivatives on [0, β).

The proof is not conceptually difficult but a bit technical and deferred to Appendix B. It is worth noting
that Proposition 2 shows Riskα(g) is continuous in α under only a moment condition, and not a continuity
condition, on g. Intuitively, it is reasonable to expect that continuity of g would not be needed, as evaluating
the risk of g at the elevated noise level (1 + α)σ2 is akin to mollifying g, i.e., convolving it with a Gaussian
kernel of bandwidth ασ2, which renders the result smooth even if g was nonsmooth to begin with.

3 Noiseless limit
Here we study the infinite-bootstrap version of the CB estimator, CB∞α (g) = limB→∞CBα(g). Equivalently
(by the law of large numbers), we can define this via an expectation over ω, CB∞α (g) = E[CBα(g) |Y ], i.e.,

CB∞α (g) = E
[
‖Y † − g(Y ∗)‖22 − ‖ω‖22/α

∣∣Y ]− nσ2. (25)

where ω, Y ∗, Y † denote a triplet sampled as in (19). Adding and subtract Y in the first quadratic term, and
expanding, we get

CB∞α (g) = E
[
‖Y − g(Y +

√
αω)‖22

∣∣Y ]+
2√
α
E
[
〈ω, g(Y +

√
αω)〉

∣∣Y ]− nσ2, (26)

where we used the fact that the inner product of ω and Y has zero conditional expectation.
Our particular interest in this section is the behavior of CB∞α (g) as α→ 0, which we call the noiseless

limit (referring here to the amount of auxiliary noise). The key is the middle term in (26). Under a moment
condition on g, the first term will converge the observed training error ‖Y − g(Y )‖22, by an argument similar
to that used for Proposition 2. As for the middle term in (26), Ramani et al. (2008) show that if g admits a
well-defined second-order Taylor expansion, then this same term converges to a (scaled) divergence evaluated
at Y : 2σ2(∇ · g)(Y ). Note that, in this case, the limit of CB∞α (g) as α→ 0 is precisely SURE in (6).

In fact, as Ramani et al. also note, the middle term in (26) converges to 2σ2(∇ · g)(Y ) even if g is only
weakly differentiable. (They do not consider this extended case in their main paper, and refer to an online
supplement for details.) For completeness, we give a self-contained proof of our next result in Appendix C.

Theorem 2. Assume the conditions of Theorem 1 (Stein’s result), but with the moment conditions holding
at an elevated noise level: E‖g(Yβ)‖22 < ∞ and E|∇igi(Yβ)| < ∞, for i = 1, . . . , n, and some β > 0. Then
the infinite-bootstrap version (25) of the CB estimator (equivalently, the formulation in (26)) satisfies

lim
α→0

CB∞α (g) = ‖Y − g(Y )‖22 + 2σ2(∇ · g)(Y ) = SURE(g), almost surely. (27)

Therefore, by Stein’s result, the noiseless limit of CB∞α (g) is unbiased for Risk(g).

Remark 3. Recall that a real-valued function f : Rn → R is called weakly differentiable, with weak partial
derivatives ∇if , i = 1, . . . , n, provided that for each compactly supported and continuously differentiable test
function φ : Rn → R, it holds that∫

f(x)∇iφ(x) dx = −
∫
∇if(x)φ(x) dx, i = 1, . . . , n. (28)

Equivalently (e.g., Theorem 4.21 of Evans and Gariepy (2015)), a real-valued function is weakly differentiable
if it is absolutely continuous on almost every line segment parallel to the coordinate axes.

Meanwhile, a vector-valued function g : Rn → Rn is called weakly differentiable if each of its component
functions gi, i = 1, . . . , n are. Equivalently, by the aforementioned “absolute continuity on lines” formulation
of weak differentiability, this means that for each i = 1, . . . , n and j = 1, . . . , n,

yi 7→ gj(y) is absolutely continuous on compact subsets of R, for almost every y−i ∈ Rn−1,

9



where y−i denotes the vector y with the ith component removed. This is a stronger condition than what is
really required in Theorems 1 or 2. Each result in fact only requires that for each i = 1, . . . , n,

yi 7→ gi(y) is absolutely continuous on compact subsets of R, for almost every y−i ∈ Rn−1.

Effectively, each component function gi only needs to be weakly differentiable with respect to the ith variable
(not all of the other variables), for almost every choice of y−i ∈ Rn−1. While this is technically weaker than
weak differentiability, it is also harder to explain, and not clear whether this distinction is all that meaningful.
For simplicity, we thus state the assumption as weak differentiability of g in both Theorems 1 and 2.

Remark 4. The limiting result in (27) also holds for the infinite-bootstrap version of the BY estimator in
(13), which is the estimator studied in Ramani et al. (2008) (as we mentioned in Section 1.7, these authors
seemed to be unaware of the prior work of Breiman and Ye, and independently proposed the same estimator).
The infinite-bootstrap formulation of the BY estimator, BY∞α (g) = E[BYα(g) |Y ], can be expressed as

BY∞α (g) = ‖Y − g(Y )‖22 +
2√
α
E
[
〈ω, g(Y +

√
αω)〉

∣∣Y ]− nσ2, (29)

which is very similar to the analogous representation (26) for the infinite-bootstrap CB estimator. From this
B =∞ perspective, the only difference between the estimators (26) and (29) is the first term; and as α→ 0,
the first term in (26) will converge to that in (29) if E‖g(Y )‖22 <∞ (even for nonsmooth g).

Remark 5. The fact that SURE can be recreated as a certain limiting case of the CB estimator is of course
reassuring, as the former is one of the most celebrated and well-studied ideas in risk estimation in the normal
means model. When g is weakly differentiable but its divergence is not analytically tractable, using the CB
estimator for small but nonzero α > 0 (which can be seen as employing a particular numerical approximation
scheme for the divergence) is appealing, because we know that it should behave similarly to SURE for small
enough α > 0; and yet for any α > 0, we know that it targets the noise-elevated risk Riskα(g).

Remark 6. What happens in the limit when g is not weakly differentiability? While it still may be the
case that the noiseless limit of the infinite-bootstrap CB estimator is SURE, it will no longer be generally
true that this noiseless limit is unbiased for Risk(g), because the unbiasedness of SURE itself requires weak
differentiability of g. (Of course, the same can be said about the infinite-bootstrap BY estimator, since, as
the above remark explains, it has the same limit as α→ 0.)

As a simple example, consider the hard-thresholding estimator g, which is discontinuous (and not weakly
differentiable), with component functions gi(Y ) = Yi · 1{|Yi| ≥ t}, i = 1, . . . , n, for some fixed t > 0. In this
case, we can check by direct computation (see Appendix D) that

lim
α→0

2√
α
E
[
〈ω, g(y +

√
αω)〉

]
= 2σ2

n∑
i=1

1{|yi| ≥ t}, for almost every y ∈ Rn. (30)

The right-hand side is again the (scaled) divergence of g evaluated at y, which is well-defined for almost every
y; however, it is known that the divergence does not lead to an unbiased estimate of risk for hard-thresholding,
due to the discontinuous nature of this estimator; see, e.g., Tibshirani (2015).

4 Bias and variance
In this section, we analyze a bias-variance decomposition of the mean squared error of CBα(g) in (20), when
we measure its error to the original risk Risk(g). For any estimator R̂(g) of Risk(g), recall:

E[R̂(g)− Risk(g)]2 =
[
E[R̂(g)]− Risk(g)

]2︸ ︷︷ ︸
Bias2(R̂(g))

+ E
[
R̂(g)− E[R̂(g)]

]2︸ ︷︷ ︸
Var(R̂(g))

.

Applying this decomposition to the CB estimator CBα(g), we get:

E[CBα(g)− Risk(g)]2 =
[
Riskα(g)− Risk(g)

]2︸ ︷︷ ︸
Bias2(CBα(g))

+ E
[
Var(CBα(g) |Y )

]︸ ︷︷ ︸
RVar(CBα(g))

+ Var
(
E[CBα(g) |Y ]

)︸ ︷︷ ︸
IVar(CBα(g))

. (31)
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Here, for the bias term, we used the fact that CBα(g) is unbiased for the noise-elevated risk Riskα(g) from
Corollary 1; and for the variance term, we used the law of total variance, and denote the two terms that fall
out by RVar(CBα(g)) (expectation of the conditional variance) and IVar(CBα(g)) (variance of the conditional
expectation), which we will call the reducible and irreducible variance of CBα(g), respectively. This is meant
to reflect the effect of the number of bootstrap draws B: the reducible variance will shrink as B grows, but
the irreducible variance does not depend depend on B at all, and in fact, it can be viewed as the variance of
the infinite-bootstrap version of the risk estimator, CB∞α (g) = E[CBα(g) |Y ].

The goal of this section is to develop a precise understanding of how the individual terms in (31) behave
as a function of α and B, with a particular focus on small α and large B. As usual, we assume throughout
that Y ∼ N(θ, σ2In), and recall we denote Yα ∼ N(θ, (1 + α)σ2In) for α ≥ 0.

4.1 Bias
The next result provides an exact expression for Bias(CBα(g)) = Riskα(g)− Risk(g), and some bounds for
its magnitude.

Proposition 3. Assume E[‖g(Yβ)‖22‖Yβ − θ‖2m2 ] <∞ for m = 0, 1 and some β > 0. Then for all α ∈ [0, β),

Riskα(g)− Risk(g) =

∫ α

0

√
n√

2(1 + t)

√
Var(‖θ − g(Yt)‖22) Cor

(
‖θ − g(Yt)‖22, ‖Yt − θ‖22

)
dt. (32)

If Var(‖θ − g(Yt)‖22) is increasing with t on [0, α], then a simple upper bound is

|Riskα(g)− Risk(g)| ≤
√
nα√
2

√
Var(‖θ − g(Yα)‖22). (33)

If in addition E[‖g(Yβ)‖42‖Yβ − θ‖2m2 ] <∞ for m = 0, 1, then for all α ∈ [0, β),

|Riskα(g)− Risk(g)| ≤
√
nα√
2

√
Var(‖θ − g(Y )‖22) +O(α3/2), (34)

where here and throughout, we use the asymptotic notation f(α) = O(h(α)) to mean that there is a constant
C > 0 such that f(α) ≤ Ch(α) for small enough α.

The proof of Proposition 3 is deferred to Appendix E. The upper bound in (33) shows that the absolute
bias has a near-linear decay with α, where “near” reflects that Var(‖θ − g(Yα)‖22) also depends on α. Under
additional moment conditions on g, we see from (34) that the bias indeed decays linearly with α. Empirical
examples that assess the bias bounds from Proposition 3 are given in Appendix F.

Remark 7. With regard to the bound in (34), observe that√
Var(‖θ − g(Y )‖22) ≤

√
E‖θ − g(Y )‖42 ≤ Risk(g), (35)

with the last step holding by Jensen’s inequality, and thus to leading order, we can interpret (34) as providing
for us an upper bound on the relative bias:

|Riskα(g)− Risk(g)|
Risk(g)

.

√
nα√
2
, (36)

where . means that we omit all terms with a lower-order dependence on α. This suggests that to achieve a
relative bias of x, we should choose α =

√
2x/
√
n (e.g., for x = 10%, we set α ≈ 14/

√
n).

We remark that (36) will be often conservative in practice. This is due to of looseness in the inequality√
Var(‖θ − g(Y )‖22) ≤ Risk(g) derived in (35), and looseness in the bound Cor(‖θ − g(Yt)‖22, ‖Yt − θ‖22) ≤ 1

used to derive (33), (34). For example, when g(Y ) = SY and S projects onto a p-dimensional linear suspace
(as in linear regression), one can check that√

Var(‖θ − g(Y )‖22) =
√

2pσ2 � ‖θ − Sθ‖22 + pσ2 = Risk(g) when p� n (or θ is far from Sθ),

and
Cor

(
‖θ − g(Yt)‖22, ‖Yt − θ‖22

)
=
√
p/n� 1 when p� n.
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4.2 Reducible variance
The next result gives a simple bound on the reducible variance RVar(CBα(g)).

Proposition 4. Assume E‖g(Yβ)‖42 <∞ for some β > 0. Then for all α ∈ (0, β),

RVar(CBα(g)) =
4σ2

Bα
E‖Y − g(Y )‖22 +O

(
1

B
√
α

)
. (37)

The proof of Proposition 4 is in Appendix E. Empirical examples that investigate the reducible variance
and the dominance of the leading term 4σ2E‖Y − g(Y )‖22/(Bα) in (37) are given in Appendix F.

Remark 8. The dependence of the leading term in (37) on α, which scales as 1/α, is a consequence of a
careful construction in the CB estimator. Recall that in Remark 2, we explained that various options can be
used in place of the last two terms in (23). One can check that choosing the exact mean nσ2(α− 1/α) would
lead to an estimator with irreducible variance 2nσ4/(Bα2) +O(1/(Bα)), whose leading term scales as 1/α2.
This is due to the conditional variance of ‖Y †‖22 given Y , where Y † = Y − ω/

√
α is as in (19). Both of the

options in (23) and (24)—the second one here being the basis for the CB estimator—substantially improve
upon this, bringing the order of dependence down to 1/α, as they each subtract off a term that effectively
cancels out the variation of ‖Y †‖22. The differences between (23) and (24) are much less pronounced; the
former yields a reducible variance with leading term 4σ2E‖g(Y )‖22/(Bα), whereas the latter yields a reducible
variance (37) with leading term 4σ2E‖Y − g(Y )‖22/(Bα), which can often be smaller. For this reason, we
choose to define the CB estimator as we did, based on (24).

Remark 9. For the BY estimator in (13), the same arguments as in the proof of Proposition 4 show that,
under the same conditions on g, the reducible variance satisfies

RVar(BYα(g)) =
4σ2

Bα
E‖g(Y )‖22 +O

(
1

B
√
α

)
. (38)

Note that the order of dependence here is 1/α, as in the CB estimator. However, the factor E‖g(Y )‖22 that
multiplies the leading order in (38) can often be larger than the factor E‖Y − g(Y )‖22 in (37) (as just noted
at the end of the last remark).

Remark 10. If we are using risk estimation to choose between models (functions) g and g̃, where each of
these satisfy the conditions of Proposition 4, and importantly, we use the same bootstrap draws in (19) for
constructing CBα(g) and CBα(g̃), then the same arguments as in the proof of Proposition 4 show that

RVar
(
CBα(g)− CBα(g̃)

)
=

4σ2

Bα
E‖g(Y )− g̃(Y )‖22 +O

(
1

B
√
α

)
. (39)

Note that the factor in E‖g(Y )− g̃(Y )‖22 multiplying the leading order in (39) can be even smaller than the
factor E‖Y − g(Y )‖22 in (37), when g and g̃ are similar.

4.3 Irreducible variance
Recalling the expression for the infinite-bootstrap version of the CB estimator in (26), observe that we can
always write the irreducible variance, for any g and any α > 0, as

IVar(CBα(g)) = Var

(
E
[
‖Y − g(Y +

√
αω)‖22

∣∣Y ]+
2√
α
E
[
〈ω, g(Y +

√
αω)〉

∣∣Y ]). (40)

The following result studies the behavior of IVar(CBα(g)) for small α, under a suitable condition on g.

Proposition 5. Assume that

h(y) = lim
α→0

2√
α
E[〈ω, g(y +

√
αω)〉] exists for almost every y ∈ Rn, (41)
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and this convergence comes with a dominating function H with E[H(Y )] <∞ such that

4

α
E
[
〈ω, g(y +

√
αω)〉

]2 ≤ H(y) for almost every y ∈ Rn and α ≤ β, (42)

for some β > 0. Assume also that g satisfies E‖g(Yβ)‖42 <∞. Then

IVar(CBα(g)) = Var
(
‖Y − g(Y )‖22 + h(Y )

)
+ o(1), (43)

where o(1) denotes a term that converges to zero as α→ 0.

The proof of Proposition 5 is in Appendix E. Empirical examples that examine the irreducible variance
for small α can be found in Appendix F.

Remark 11. For the BY estimator, recall, its infinite-bootstrap version takes the form (29), which means
that its irreducible variance is

IVar(BYα(g)) = Var

(
E[‖Y − g(Y )‖22] +

2√
α
E
[
〈ω, g(Y +

√
αω)〉

∣∣Y ]). (44)

This is just as in (40), but in the first term (inside of the variance), we are measuring the error between Y
and g(Y ), rather than Y and g applied to the noise-elevated data. The result of Proposition 5 carries over
to the BY estimator: under (41), (42), and the moment condition on g, the same small-α representation in
(43) holds for IVar(BYα(g)). The subtle difference between (40) and (44) can indeed materialize in practice,
especially when the estimate g is nonsmooth and unstable. See Figure 2 and the discussion in Section 5.1.

Remark 12. As we showed in Theorem 2 (a similar result appears in Ramani et al. (2008)), when g is
weakly differentiable and its weak partial derivatives are integrable, the limit in (41) exists, and equals

h(y) = σ2(∇ · g)(y) = 2σ2
n∑
i=1

∇igi(y),

which is the divergence of g (scaled by 2σ2). Furthermore, one can check that condition (42) is implied by
squared integrability of the divergence at an elevated noise level: E[(∇ · g)(Yα)2] <∞ for some α > 0. The
result in (43) then reads

IVar(CBα(g)) = Var
(
‖Y − g(Y )‖22 + 2σ2(∇ · g)(Y )

)
+ o(1),

i.e., the irreducible variance of the CB estimator converges to the variance of SURE, as α→ 0.

Remark 13. It is worth emphasizing that the dominating condition in (42) is key: without it, the result in
the proposition is not true in general. As an example, consider the hard-thresholding function, which, recall,
has components gi(Y ) = Yi · 1{|Yi| ≥ t}, i = 1, . . . , n. This satisfies the limit condition in (41), where the
limiting function h is 2σ2∇ · g, as in (6). However, in a sense we already know that the limiting irreducible
variance of hard-thresholding should not simply be the variance of SURE, due to the bias of SURE for the
risk in this case (Tibshirani, 2015). Indeed, a direct calculation (building off that in Appendix D) confirms
that (42) fails for the hard-thresholding function.

The importance of the dominating condition (42) raises a natural question: what are the most general
conditions under which (42) holds? Can it be met outside of weak differentiability of g? As of now, we do
not have a good answer to this, and it remains an open question for future work.

4.4 Summary of bias and variance results
Table 1 summarizes the bias and variance results from this section. We use “stable when g is smooth” for
the irreducible variance to reflect the fact that it is not clear in what general settings this will be stable as
α→ 0, for the CB and BY methods; recall, for either method, the conditions in (41), (42) are sufficient to
ensure that the limiting irreducible variance satisfies (40). While these conditions are met (and the limiting
irreducible variance is the variance of SURE) in the case of weakly differentiable g (Remark 12), the extent
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Bias to Risk(g) Reducible variance Irreducible variance

CB estimator . α
√

n
2
Var(‖θ − g(Y )‖22) . 4σ2

Bα
E‖Y − g(Y )‖22 stable when g is smooth

BY estimator ? . 4σ2

Bα
E‖g(Y )‖22 stable when g is smooth

Table 1: Summary of bias and variance results described across Propositions 3–5 and ensuing remarks. Above, .
means that we omit all terms with a lower-order dependence on α.

to which these conditions apply beyond weak differentiability remains unclear, and for hard-thresholding as a
key non-weakly differentiable example, the second condition fails (Remark 13).

The lack of clarity on the irreducible variance prevents us from reasoning holistically about the behavior
of the CB or BY methods in the infinitesimal α regime (beyond the case of smooth g). However, practically
speaking, for a given data set at hand, we would of course choose α to be small but non-infinitesimal, such as
α = 0.01, or α = 0.05. This brings us to a primary advantage of the CB estimator in particular, reflected in
the first column of the table: it is always unbiased for Riskα(g), the risk of g at the noise-elevated level of
(1 + α)σ2. Therefore, provided that we have a sense—practically, conceptually, or theoretically (first column,
see also Remark 7)—that Riskα(g) is a reasonable target of estimation, we do not have to concern ourselves
with the infinitesimal α regime.

5 Experiments
In this section, we study the performance of the CB method empirically. The first two subsections compare
the CB and BY estimators in simulations (the performance for Efron’s method was generally much worse and
its results were omitted accordingly). The third studies the use of the CB estimator for parameter tuning in
an image denoising application. Code to reproduce all experimental results in this section is available online
at https://github.com/nloliveira/coupled-bootstrap-risk-estimation.

5.1 Comparison of CB and BY
We compare the CB estimator (20) to the BY estimator (13) in simulations. At a high level, our goal is not
to show that CB is better than BY at estimating risk in every scenario, but instead to provide experimental
support around the following four points:

(i) for any g and any α, CBα(g) is unbiased for Riskα(g);

(ii) for linear g and any α, BYα(g) is unbiased for Risk(g);

(iii) for nonlinear g, the bias of BYα(g) is unpredictable—it can be increasing or decreasing as α increases,
and it can be larger or smaller than Riskα(g);

(iv) for unstable g, the variance of BYα(g) can be much larger than that of CBα(g).

Throughout, we fix n = 100 and p = 200, and we generate data Y ∈ Rn from a linear model with feature
matrix X ∈ Rn×p. At the outset, we draw the entries of X from N(0, 1), and we draw the coefficient vector
in the linear model β ∈ Rp to have s nonzero entries from Unif(−1, 1). The features X and coefficient vector
β are then fixed for all subsequent repetitions of the given simulation. For each repetition r = 1, . . . , 100, we
generate a response vector

Y (r) = Xβ + ε(r),

where the error vector ε(r) ∈ Rn has i.i.d. entries from N(0, σ2), and the error variance σ2 is chosen to meet a
desired signal-to-noise ratio SNR = Varn(Xβ)/σ2 (where Varn(·) denotes the empirical variance operator on
n samples). We then apply each risk estimator (CB or BY) to Y (r), with a particular function g, number of
bootstrap draws B, and auxiliary noise parameter α, in order to produce a risk estimate. Finally, we report
aggregate results over all repetitions r = 1, . . . , 100.

The number of bootstrap draws is fixed at B = 100 throughout. We consider four different functions g:
(a) ridge regression, with a fixed tuning parameter, λ = 5; (b) lasso regression, with a fixed tuning parameter,
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λ = 0.31; (c) forward stepwise regression, with a fixed number of steps, k = 2; and (d) lasso regression, with
the tuning parameter λ chosen by cross-validation. (The particular tuning parameter values λ for ridge and
lasso were chosen because they were close to the middle, roughly speaking, of their effective solution paths.)
Our implementation uses the glmnet (Friedman et al., 2010) R package for ridge and lasso, and bestsubset
(Hastie et al., 2020) R package for forward stepwise. We note that the functions g in (a) and (b) are weakly
differentiable, but those in (c) and (d) are not. For CB, we consider six values for α: 0.05, 0.1, 0.2, 0.5, 0.8,
and 1. All risks and risk estimates throughout are scaled by 1/n.

Figure 1 shows the results for when the underlying linear model has sparsity s = 5, and SNR = 0.4. The
figure displays the average risk estimate from each method, CB and BY, as well as standard errors of these
risk estimates. Each panel (a)–(d) corresponds to one of the four functions g described above. In each panel,
the black horizontal line represents Risk(g), and the black dots represent Riskα(g) (which are themselves
estimated via Monte Carlo). We can see that for each function g, the CB method is unbiased for Riskα(g), as
expected. Meanwhile, we see that the bias of the BY method varies quite a lot with g, having zero, positive,
or negative bias, depending on the situation. In panel (a), where g is a linear smoother (ridge), the average
BY estimate matches Risk(g), for any α, as expected. In (b), where g is nonlinear but weakly differentiable
(lasso), it overestimates Riskα(g) and thus also Risk(g), more so at the larger values of α. In panel (c), where
g is both nonlinear and nonsmooth (forward stepwise), BY underestimates Riskα(g) but also overestimates
Risk(g), for larger α; and in (d), where g is again nonlinear and nonsmooth (lasso tuned by cross-validation),
it underestimates both Riskα(g) and Risk(g) for larger α. In summary, there is no single consistent behavior
for the bias of BYα(g) across all scenarios. (Certainly, the rule-of-thumb advocated by Ye (1998) of simply
taking α = 0.6 does deliver consistently favorable performance throughout.)

Overall, for small α, the average BY estimate appears to be empirically close to Risk(g) in all situations
(as does the average CB estimate), but we reiterate that there is no guarantee this will be true in general for
nonsmooth g (as in panels (c) and (d)). However, the average CB estimate will always be close to Riskα(g),
which will be in turn close to Risk(g) for small α, no matter the smoothness of g (Propositions 2 and 3).

In the previous figure, the variability of the BY and CB estimates (reflected in the standard error bars)
appears roughly similar throughout. In Figure 2, we demonstrate that this need not be the case in general.
By increasing the true sparsity level to s = 200 (the true linear model is dense) and the signal-to-noise ratio
to SNR = 2, we see that the BY estimates appear much more volatile than those from CB, when we take g
to be the lasso tuned by cross-validation. This holds across all values of α. In Appendix F, we show that the
larger variance of BY in this setting is due to its irreducible variance, and in particular, just one part of its
irreducible variance: comparing (40) and (44), we see that the only difference between the two is the first
term (inside the variance). In CB, this is the conditional expectation of the noise-added training error, and
in BY, it is the training error itself. When g is unstable, as in the current setting (the use of cross-validation
for tuning induces instability into the ultimate prediction function), the latter can be much more variable.

5.2 Degrees of freedom
Recalling Efron’s covariance decomposition (9), and the definition of degrees of freedom (8), it is clear that
estimating Risk(g) and estimating df(g) are equivalent problems, in the normal means setting. Thus, parallel
to the perspective and development used in this paper, where the CB method (20) is crafted as an unbiased
estimator of Riskα(g), the risk of g at the elevated noise level of (1 + α)σ2, we can equivalently view:

d̂fα(g) =
CBα(g)− 1

B

∑B
b=1 ‖Y ∗b − g(Y ∗b)‖22 + nσ2(1 + α)

2σ2(1 + α)
(45)

as an unbiased estimator of dfα(g), the degrees of freedom of g at the elevated noise level (1 + α)σ2. For the
BY method, meanwhile, one can proceed similarly in moving from (13) to an estimator of degrees of freedom
(by subtracting off training error and rescaling); however, there is an alternative and more direct estimator
that stems from this method, which was the original proposal of Ye (1998), namely:

d̃fα(g) =
1

σ2α

B∑
i=1

Ĉov
∗
i , (46)
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Figure 1: Comparison of CB and BY risk estimators for different functions g, when s = 5 and SNR = 0.4.
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Figure 2: Comparison of CB and BY risk estimators when g is the lasso tuned by cross-validation, s = 200,
and SNR = 2.
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where Ĉov
∗
i , i = 1, . . . , n, are as in (11). While d̂fα(g) estimates dfα(g) (unbiasedly), it seems that d̃fα(g) is

designed to directly estimate df(g) (though not unbiasedly).
In Figure 3, we evaluate the performance of these two degrees of freedom estimators (45), (46) using the

same simulation framework as that described in the last subsection, with s = 5 and SNR = 2. We consider
two functions g: lasso and forward stepwise, and for each, we vary their tuning parameters over their effective
ranges. Lastly, we fix α = 0.1. The figure displays the estimated degrees of freedom from CB (45) or BY
(46), against the support size of the underlying fitted sparse regression model (for the lasso, we take this to
be the average support size for the given value of λ over all 100 repetitions): the bands represent the degrees
of freedom estimate plus and minus one standard error, over the 100 repetitions. The true degrees of freedom
(itself estimated via Monte Carlo) is plotted as a dashed line. To be clear, this plots the degrees of freedom
df(g) at the original noise level, not the noise-elevated degrees of freedom dfα(g). We see that both methods
provide reasonably accurate estimates of df(g) throughout, albeit slightly biased upwards at various points
along the path (support sizes), due to the use of α = 0.1. Reducing α would reduce the bias, but also increase
the variability. We also see that the estimates of degrees of freedom from the CB method are just a bit more
variable across the lasso path, and most noticeably so at the smallest support sizes.
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Figure 3: Comparison of CB and BY degrees of freedom estimators applied to the full forward stepwise and
lasso paths, when s = 5, SNR = 2, and α = 0.1.

5.3 Image denoising
As a last example, we consider using the CB method for tuning parameter selection in image denoising. In
image denoising, and signal processing more broadly, SURE has become a central method for risk estimation
and parameter tuning (see Section 1.7 for references). We focus on the 2-dimensional fused lasso (Tibshirani
et al., 2005; Hoefling, 2010) as an image denoising estimator, as it is weakly differentiable and its divergence
can be computed in analytic form (Tibshirani and Taylor, 2011, 2012). This allows us to draw a comparison
to SURE, which takes the simple form:

SURE(g) = ‖Y − g(Y )‖22 + 2σ2
(
# of fused groups in g(Y )

)
− nσ2.

To compare the CB estimator (20) and SURE (above) empirically, we use the standard “parrot” image from
the image processing literature (leftmost panel of Figure 5), and we generate data Y by adding i.i.d. normal
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noise to each pixel (second from the left in Figure 5). Figure 4 compares SURE and CB estimates across
several values of α, each as functions of the underlying tuning parameter λ in the 2d fused lasso optimization
problem. The main observation is that, for all values of α (even the largest, α = 0.5), the minimizers of the
CB curve over λ are all close to that of SURE, which means that the subsequent CB-tuned and SURE-tuned
estimates are themselves all quite similar (second to right and rightmost panels of Figure 5).

This speaks, informally, to model selection being “easier” than risk estimation in the current context, as
we can get away with larger values of α and still make the relevant risk comparisons that are needed in order
to accurately select a model (indexed by a tuning parameter). In Appendix F, we provide a more in-depth
analysis by aggregating model selection results in the image denoising simulation over multiple repetitions.
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Figure 4: Comparison of CB and SURE in image denoising.
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Figure 5: Original “parrot” image (leftmost), and a noisy version (second from left) used for image denoising.
The CB-tuned (second from right) and SURE-tuned (righmost) estimates look very similar. The CB tuning
here uses α = 0.5, which corresponds the biggest gap in the selected λ to that from SURE.

6 Discussion
In this work, we proposed and studied a coupled bootstrap (CB) method for risk estimation in the standard
normal means problem. Our estimator is on one hand similar to bootstrap-based proposals for risk estimation
(via a covariance decomposition) in this setting from Breiman (1992); Ye (1998); Efron (2004). On the other
hand, it is different in a crucial way: for any value of the auxiliary (bootstrap) noise parameter α > 0, the CB
estimator is unbiased for Riskα(g), the risk of the given function g, when the noise level in the normal means
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problem is elevated from σ2 to (1 + α)σ2. We proved that when g is weakly differentiable, the CB estimator
(with infinite bootstrap iterations) reduces to SURE as α→ 0. The same is true of the Breiman-Ye estimator
does in this noiseless limit. However, for nonsmooth g and an arbitrary non-infinitesimal α, the CB estimator
still tracks an intuitively reasonable target: Riskα(g). Indeed, it is always unbiased for Riskα(g), requiring no
assumptions on g whatsoever, which is a unique property. As such, it can be applied to arbitrarily complex
functions g, including those that use some sort of internal tuning parameter selection mechanism.

Of course, one of the most important practical problems not addressed in the current paper is estimation
of the error variance σ2. In practice, the simplest strategies here tend to be among the most commonly-used,
and among the most effective: we could simply estimate σ2 by using the sample variance of training residuals
Yi − gi(Y ), i = 1, . . . , n (possibly with a degrees of freedom correction, which can be important for complex
models g). A study of the impact of estimating σ2 on risk estimation and model selection is a topic for future
work. (For model selection, we may not actually need to estimate σ2 up to the same degree of accuracy as we
would in risk estimation; recall, we have already seen that relative large values of the auxiliary noise level
α > 0 can still result in good model selection performance, in Figure 4.)

Two more extensions of the CB framework that may be of interest for future work are described below.

6.1 General error covariance
Consider, instead of (1), data drawn according to:

Y ∼ N(θ,Σ), (47)

for a positive definite covariance matrix Σ ∈ Rn×n. In such a structured error setting, it may be of interest
to measure loss according to a generalized quadratic norm, thus we introduce the notation ‖x‖2A = xTA−1x
for a vector x and positive semidefinite matrix A. For example, we may choose to measure loss according to
‖θ − g(Y )‖2Σ, since the curvature in this loss takes Σ into account, just like the negative log-likelihood in the
model (47).

We extend the CB estimator so that it applies to an arbitrary positive semidefinite matrix A defining the
risk, and an arbitrary positive semidefinite matrix Σ in (47). The next result is a straightforward extension
of Proposition 1.

Proposition 6. Let U, V,W ∈ Rn be independent random vectors. Then for any g, and positive semidefinite
matrix A ∈ Rn×n,

E‖V − g(U)‖2A − E‖W − g(U)‖2A = E‖V ‖2A − E‖W‖2A + 2〈A−1E[g(U)],E[W ]− E[V ]〉. (48)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d. and E[U ] = E[W ], then

E‖V − g(U)‖2A = E‖W − g(U)‖2A + E‖U‖2A − E‖W‖2A. (49)

And in turn, the next result is a straightforward extension of Corollary 1.

Corollary 2. Let Y ∼ N(θ,Σ). Given any function g, a positive semidefinite matrix A ∈ Rn×n that will be
used to measure risk, and an auxiliary noise level α > 0, consider defining a CB estimator according to:

ωb ∼ N(0,Σ), independently, for b = 1, . . . , B,

Y ∗b = Y +
√
αωb, Y †b = Y − ωb/

√
α, for b = 1, . . . , B,

(50)

and:

CBA,α(g) =
1

B

B∑
b=1

(
‖Y †b − g(Y ∗b)‖2A − ‖ωb‖2A/α

)
− tr(A−1Σ). (51)

Then this is unbiased for risk at the noise-elevated level (1 + α)Σ measured with respect to A, i.e.,

E[CBA,α(g)] = RiskA,α(g) = E‖θ − g(Yα)‖2A, where Yα ∼ N(θ, (1 + α)Σ).

Of course, the main challenge in using the extended estimator CBA,α(g) defined in the above corollary is
that it requires knowledge of the full error covariance matrix Σ. However, in some settings, e.g., time series
problems, it may be reasonable to assume that Σ or its inverse is highly structured and therefore estimable.
It may be interesting to rigorously study how risk estimation is affected by upstream estimation of Σ in this
and related problem settings.
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6.2 Bregman divergence
Finally, we present a further extension of the simple and yet key results in Proposition 6 underpinning the
construction of the CB estimator, to the case in which a Bregman divergence is used to measure error:

Err(g) = E[Dφ(Ỹ , g(Y ))], where Ỹ is an independent copy of Y . (52)

Here Dφ is the Bregman divergence with respect to a strictly convex and differentiable function φ : Rn → R,
which recall is defined by:

Dφ(a, b) = φ(a)− φ(b)− 〈∇φ(b), a− b〉.
When φ(x) = ‖x‖22, it is easy to check that

D‖·‖22(a, b) = ‖a‖22 − ‖b‖22 − 2〈b, a− b〉 = ‖a− b‖22,

and hence (52) reduces to prediction error as measured by squared loss in (4). In fact, properties (48), (49)
are entirely driven by this “Bregman representation” of squared loss, leading to the following extension.

Proposition 7. Let U, V,W ∈ Rn be independent random vectors. For any g, and Bregman divergence Dφ,

E[Dφ(V, g(U))]− E[Dφ(W, g(U))] = E[φ(V )]− E[φ(W )] + 〈E[∇φ(U)],E[W ]− E[V ]〉. (53)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d. and E[U ] = E[W ], then

E[Dφ(V, g(U))] = E[Dφ(W, g(U))] + E[φ(U)]− E[φ(W )]. (54)

Proposition 7 is, in principle, a powerful tool: it provides “one half” of a recipe to move the CB estimator
beyond the Gaussian setting, to a setting in which data follows (say) an exponential family distribution and
loss is measured by the out-of-sample deviance. This is because for every exponential family distribution,
there is a natural function φ (defined in terms of the log-partition function of the distribution) that makes
(52) the deviance.

The “other half” of the recipe needed to arrive at a CB estimator is a mechanism for generating relevant
bootstrap draws, as in (50) in the previous subsection. Specifically, for a given problem setting with data Y
(exponential family distributed or otherwise) we must be able to design a pair of bootstrap draws (Y ∗, Y †)
that adhere to three criteria:

1. Y ∗, Y † are independent;

2. E[Y ∗] = E[Y †]; and

3. E[Dφ(Ỹ ∗, g(Y ∗))] is an “interesting” proxy target, where Ỹ ∗ is an independent copy of Y ∗.

Criteria 1 and 2 are straightforward enough to understand, and they should be possible to fulfill in certain
exponential family models with various noise augmentation tricks. However, criterion 3 deserves a bit more
explanation. With U = Y ∗, V = Ỹ ∗, and W = Y †, assumed to fulfill criteria 1 and 2, observe that (54) says
that Dφ(Y †, g(Y ∗)) is unbiased for E[Dφ(Ỹ ∗, g(Y ∗))]. That is, we originally wanted to estimate the quantity
in (52), and have now pivoted to estimating E[Dφ(Ỹ ∗, g(Y ∗))] instead.

In the Gaussian setting studied in this paper, this meant estimating risk based on data from a Gaussian
distribution with the same mean but an elevated noise level. In a more general setting, the noise augmentation
strategy used to generate Y ∗ may in fact bring us outside of the distributional family assumed for the data
originally, and it may even alter non-nuisance parameters of the distribution. This would still altogether be
fine, as long as E[Dφ(Ỹ ∗, g(Y ∗))] it still an “interesting” target (i.e., for error assessment or model selection),
as per criterion 3.

As a concrete example of where such an extension is possible (along the lines of the above discussion), we
note that after the completion of the current paper, we were able to extend the CB framework to the Poisson
many means model, in Oliveira et al. (2022).
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A More details on Breiman’s and Ye’s estimators
Instead of defining Ĉov

∗
i , i = 1, . . . , n as in (11), Breiman uses

Ĉov
∗
i =

1

B − 1

B∑
b=1

(Y ∗bi − Yi)gi(Y ∗b), i = 1, . . . , n,

which are just inner products between the noise increments {Y ∗bi − Yi}Bb=1 and fitted values {gi(Y ∗b)}Bb=1,
instead of an empirical covariances.

Furthermore, instead of dividing the whole sum by α, Ye divides each summand Ĉov
∗
i in (13) by

(s∗i )
2 =

1

B − 1

B∑
b=1

(Y ∗bi − Ȳ ∗i )2,

the bootstrap estimate of the variance of Yi, rather than dividing the entire sum by α. In fact, Ye actually
formulates his estimator in terms of the slopes from linearly regressing the fitted values {gi(Y ∗b)}Bb=1 onto
the noise increments {Y ∗bi − Yi}Bb=1, but it is equivalent to the form described here.

B Proof of Proposition 2
The proposition follows from an application of the next lemma, as we can take f(y) = ‖θ − g(y)‖22, and then
the moment conditions on f will be implied by those on ‖g‖22, via the simple bound f(y) ≤ 2‖θ‖22 + 2‖g(y)‖22.

Lemma 1. For α ≥ 0, denote Yα ∼ N(θ, (1 + α)σ2In). Let f : Rn → R be a function such that, for some
β > 0 and integer k ≥ 0,

E
[
f(Yβ)‖Yβ − θ‖2m2

]
<∞, m = 0, . . . , k.

Then, the map α 7→ E[f(Yα)] has k continuous derivatives on [0, β).

Proof. First, we prove that this map is continuous. Fix α ∈ [0, β). Observe that

lim
t→α

E[f(Yt)] = lim
t→α

∫
f(y)

(2π(1 + t)σ2)n/2
exp

{
−‖y − θ‖2

2(1 + t)σ2

}
dy

=

∫
lim
t→α

f(y)

(2π(1 + t)σ2)n/2
exp

{
−‖y − θ‖2

2(1 + t)σ2

}
dy

= E[f(Yα)],

where in the second line we used Lebesgue’s dominated convergence theorem (DCT), applicable because the
integrand is bounded by

f(y)

(2πσ2)n/2
exp

{
−‖y − θ‖2

2(1 + α)σ2

}
,

which is integrable by assumption. Now for the first derivative, note that

∂

∂α
E[f(Yα)] = − n

2(1 + α)
E[f(Yα)] +

1

2σ2(1 + α)2
E[f(Yα)‖Yα − θ‖22],

where we used the Leibniz integral rule, applicable because the integrands (when we write these expectations
as integrals) are bounded by

f(y)

(2πσ2)n/2
‖y − θ‖2m2 exp

{
−‖y − θ‖2

2(1 + α)σ2

}
,

for m = 0, 1, again integrable by assumption. Another application of DCT proves the derivative in the second
to last display is continuous on [0, β). For a general number of derivatives k, the argument is similar, and the
integrability of the dominating functions in the above display, for m = 0, . . . , k, ensures that we can apply
the Leibniz rule and DCT to argue continuity of the kth derivative on [0, β).
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C Proof of Theorem 2

C.1 Proof of theorem
Observe that, writing Eω for the conditional expectation operator on Y = y (i.e., the operator that integrates
over ω),

CB∞α (g) = Eω
[
‖y − ω/

√
α− g(y +

√
αω)‖22 − ‖ω‖22/α

]
− nσ2

= Eω‖y − g(y +
√
αω)‖22︸ ︷︷ ︸

a

− 2√
α
Eω〈ω, g(y +

√
αω)〉︸ ︷︷ ︸

b

−nσ2.

It is not hard to show that for almost every y ∈ Rn, it holds that a→ ‖y − g(y)‖22 as α→ 0, by Lemma 3. It
remains to study term b.

Denote by φµ,σ2 the density of a Gaussian with mean µ and variance σ2. Then,

b =
2√
α

n∑
i=1

Eω−iEωi [ωigi(y +
√
αω)]

=
2√
α

n∑
i=1

Eω−i

∫
ωigi(y +

√
αω)φ0,σ2(ωi) dωi

= −2σ2

√
α

n∑
i=1

Eω−i

∫
gi(y +

√
αω)φ′0,σ2(ωi) dωi

= −2σ2
n∑
i=1

Eu−i

∫
gi(u)φ′0,ασ2(ui − yi) dui

= 2σ2
n∑
i=1

Eu−i

∫
∇igi(u)φ0,ασ2(ui − yi) dui

= 2σ2
n∑
i=1

∫
∇igi(u)φ0,ασ2(u− y) dui.

The second to last line holds by Lemma 2. Now, by Lemma 3, for almost every y ∈ Rn,

lim
α→0

2σ2
n∑
i=1

∫
∇igi(u)φ0,ασ2(u− y) du = 2σ2

n∑
i=1

∇igi(y),

which completes the proof.

C.2 Supporting lemmas
Here we state and prove supporting lemmas for the proof of Theorem 2. The first lemma shows that for a
weakly differentiable function, the integration by parts property in (28) still holds when we take the test
function to be a normal density (which is continuously differentiable by not compactly supported).

Lemma 2. If f : R→ R is weakly differentiable, with (fφµ,σ2) ∈ L1(R) and (f ′φµ,σ2) ∈ L1(R), then∫
f(x)φ′µ,σ2(x) dx = −

∫
f ′(x)φµ,σ2(x) dx.

Proof. Let ψn : R→ [0, 1], n = 1, 2, 3, . . . be a sequence of continuously differentiable functions such that for
each z ∈ R,

lim
n→∞

ψn(z) = 1, lim
n→∞

ψ′n(z) = 0, and |ψ′n(z)| ≤ C for n = 1, 2, 3, . . . and a constant C <∞.

25



One example of such a sequence is

ψn(z) = 1(−n,n)(z) + exp

(
− 1

1− (z − nsign(z))

)
1[−n−1,−n]∪[n,n+1](z), n = 1, 2, 3, . . . .

Now let ξn(z) = ψn(z)φµ,σ2(z). Note that

lim
n→∞

ξn(z) = φµ,σ2(z) lim
n→∞

ψn(z) = φµ,σ2(z),

lim
n→∞

ξ′n(z) = lim
n→∞

ψ′n(z)φµ,σ2(z) + φ′µ,σ2(z) lim
n→∞

ψn(z) = φ′µ,σ2(z).

Turning to the result we want to prove,∫
f(z)φ′µ,σ2(z) dz =

∫
f(z) lim

n→∞
ξ′n(z) dz

= lim
n→∞

∫
f(z)ξ′n(z) dz

= − lim
n→∞

∫
f ′(z)ξn(z) dz

= −
∫
f ′(z) lim

n→∞
ξn(z) dz

= −
∫
f ′(z)φµ,σ2(z) dz.

The second and fourth lines here can be verified using Lebesgue’s dominated convergence theorem (DCT),
and the third uses (28), applicable because each ξn is compactly supported. This completes the proof.

The next lemma essentially shows that the notion of a Lebesgue point can be extended to the Gaussian
kernel (beyond the uniform kernel, as it is traditionally defined).

Lemma 3 (Adapted from Theorem 1.25 of Stein and Weiss 1971). Let φ : Rn → R be the Gaussian density
with mean zero and identity covariance, and denote φα = α−nφ(x/α). Let f : Rn → R be a function such
that (fφβ) ∈ L1(Rn) for some β > 0. Then, limα→0(f ∗ φα)(x) = f(x) for almost every x ∈ Rn.

Proof. Let x ∈ Rn be a Lebesgue point of f . We will prove that the desired result holds for x, which will
imply that it holds almost everywhere (because any function in L1

loc(Rn) has the property that almost every
point is a Lebesgue point; see, e.g., Theorem 1.32 of Evans and Gariepy (2015)).

Fix ε > 0. By the definition of a Lebesgue point, there exists ρ > 0 such that

δ−n
∫
‖t‖2≤δ

|f(x− t)− f(x)| dt ≤ Cε, (55)

for all δ ∈ (0, ρ] and a constant C > 0 to be specified later. In what follows, we will show that there exists
β > 0 such that |(f ∗ φα)(x)− f(x)| ≤ ε for all α ∈ (0, β]. To do so, we decompose

|(f ∗ φα)(x)− f(x)| ≤
∣∣∣∣ ∫
‖t‖2≤δ

(f(x− t)− f(x))φα(t) dt

∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣ ∫
‖t‖2>δ

(f(x− t)− f(x))φα(t) dt

∣∣∣∣︸ ︷︷ ︸
I2

. (56)

We study each term above separately.

Term I1. Let g(r) =
∫
‖t‖2=1

|f(x− rt)− f(x)| dt and G(r) =
∫ r

0
sn−1g(s) ds. Note that (55) translates into

the statement
G(r) ≤ Cεrn, (57)

for all r ∈ (0, ρ].
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For notational convenience, we write ϕ(r) = φ(u) whenever ‖u‖2 = r, where ϕ is the univariate standard
normal density. Observe that for any δ ≤ ρ,

I1 ≤
∫
‖t‖2≤δ

|f(x− t)− f(x)|α−nφ(t/α) dt

=

∫ δ

0

rn−1g(r)α−nϕ(r/α) dr

= G(r)α−nϕ(r/α)
∣∣δ
0
− α−n

∫ δ

0

G(r) d(ϕ(r/α))

≤ Cε(δ/α)nϕ(δ/α)− α−n
∫ δ

0

G(r) d(ϕ(r/α))

= Cε(δ/α)nϕ(δ/α)− α−n
∫ δ/α

0

G(αs) d(ϕ(s))

≤ Cε(δ/α)nϕ(δ/α) + Cε

∫ δ/α

0

sn |d(ϕ(s))|

≤ Cε(cn +mn+1).

In the fourth and sixth lines, we used (57). In the last line, we used the fact the map z 7→ znϕ(z) attains a
maximum of cn =

√
n
n
φ(
√
n) at z =

√
n, as well as the bound

∫ δ/α
0

sn |d(ϕ(s))| ≤
∫∞

0
sn+1ϕ(s) ds ≤ mn+1,

where mn+1 uncentered, absolute moment of order n+ 1 of the standard normal distribution. By choosing
C ≤ 1/(2(cn +mn+1)), we see that I1 ≤ ε/2 for any δ ≤ ρ, and any α > 0.

Term I2. Consider

I2 =

∫
‖t‖2≥δ

|f(x− t)|φα(t) dt︸ ︷︷ ︸
I21

+ |f(x)|
∫
‖t‖2≥δ

φα(t) dt︸ ︷︷ ︸
I22

.

Clearly

lim
α→0

I22 = |f(x)| lim
α→0

∫
‖u‖2≥δ/α

φ(u) du = 0,

so there exists β1 > 0 such that for α ≤ β1, we have I22 ≤ ε/4. As for I21, we have

lim
α→0

I21 = lim
α→0

∫
‖t‖2≥δ

|f(x− t)|φα(t) dt =

∫
‖t‖2≥δ

lim
α→0
|f(x− t)|φα(t) dt = 0,

where the interchange between integration and the limit as α→ 0 can be shown using DCT. Thus there is
β2 > 0 such that for α ≤ β2, we have I21 < ε/4.

Completing the proof. Putting the above parts together, we get that I1 + I2 ≤ ε/2 + ε/4 + ε/4 = ε, for
all δ ≤ ρ and α ≤ β = min{β1, β2}. Recalling (56), this gives the desired result and completes the proof.

D Noiseless limit for hard-thresholding
The limit in question is that of

2√
α

n∑
i=1

E
[
ωi(yi +

√
αωi) · 1{|yi +

√
αωi| > t}

]
as α→ 0. Inspecting term i,

E
[
ωi(yi +

√
αωi) · 1{|yi +

√
αωi| > t}

]
=

y√
α

(
E
[
ωi · 1

{
ωi ≤ −

t+ yi√
α

}]
+ E

[
ωi · 1

{
ωi ≥

t− yi√
α

}])
+

E
[
ω2
i · 1

{
ωi ≤ −

t+ yi√
α

}]
+ E

[
ω2
i · 1

{
ωi ≥

t− yi√
α

}]
.
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To compute the above, we recall the identities, for Z ∼ N(0, τ2),

E
[
Z · 1{Z ≤ a}

]
= −τφ(a/τ),

E
[
Z · 1{Z ≥ b}

]
= τφ(b/τ),

E
[
Z2 · 1{Z ≤ a}

]
= −τaφ(a/τ) + τ2Φ(a/τ),

E
[
Z2 · 1{Z ≥ b}

]
= τbφ(b/τ) + τ2Φ̄(b/τ),

where φ and Φ denote the standard normal density and distribution function, respectively, and Φ̄ = 1− Φ
the standard normal survival function. Thus we find that the second to last display equals

E
[
ωi(yi +

√
αωi)·1{|yi +

√
αωi| > t}

]
=
σyi√
α

[
− φ

(
t+ yi√
ασ

)
+ φ

(
t− yi√
ασ

)]
+

σ√
α

[
(t+ yi)φ

(
t+ yi√
ασ

)
+ (t− yi)φ

(
t− yi√
ασ

)]
+

σ2

[
Φ

(
−t− yi√

ασ

)
+ Φ̄

(
t− yi√
ασ

)]
=

σt√
α

[
φ

(
t+ yi√
ασ

)
+ φ

(
t− yi√
ασ

)]
+ σ2

[
Φ

(
−yi − t√

ασ

)
+ Φ

(
yi − t√
ασ

)]
→ σ21{|yi| > t}, for yi 6= ±t,

where the last line is the limit as α→ 0. In other words, we have shown

lim
α→0

2√
α

n∑
i=1

E
[
ωi(yi +

√
αωi) · 1{|yi +

√
αωi| > t}

]
= 2σ2

n∑
i=1

1{|yi| > t} for yi 6= ±t, i = 1, . . . , n,

which proves (30).

E Proofs of bias and variance results

E.1 Proof of Proposition 3
Under the given assumptions on g, the map α→ Riskα(g) is continuously differentiable, and as shown in the
proof of Proposition 2, we can use the Leibniz integral rule, to compute for t ∈ [0, α),

∂

∂t
Riskt(g) =

1

2(1 + t)
E
[
‖θ − g(Yt)‖22

(
‖Yt − θ‖22
σ2(1 + t)

− n
)]

=
1

2(1 + t)
Cov

(
‖θ − g(Yt)‖22,

‖Yt − θ‖22
σ2(1 + t)

)
=

√
n√

2(1 + t)

√
Var(‖θ − g(Yt)‖22) Cor

(
‖θ − g(Yt)‖22, ‖Yt − θ‖22

)
,

where in the second line we used the fact that ‖Yt − θ‖22/(σ2(1 + t)) ∼ χ2
n and thus has mean n, and in the

third line we used that its variance is 2n. Applying the fundamental theorem of calculus

Riskα(g)− Risk(g) =

∫ α

0

∂

∂t
Riskt(g) dt

gives the result in (32). The bound in (33) is obtained by bounding the correlation (between ‖θ − g(Yt)‖22
and ‖Yt − θ‖22) by 1, and then using the assumed monotonicity of the resulting integrand.

For the second bound, in (34), observe that under the additional (higher-order) moment conditions on g,
the map α 7→ Var(‖θ − g(Yα)‖22) is continuously differentiable on [0, β) by an application of Lemma 1. Thus
we get Var(‖θ − g(Yα)‖22) = Var(‖θ − g(Y )‖22) +O(α) (say, by the fundamental theorem of calculus), which,
along with the simple inequality

√
a+ b ≤

√
a+
√
b for a, b ≥ 0, gives the desired result.
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E.2 Proof of Proposition 4
Let ω, Y ∗, Y † denote a triplet as in (19), hence Y ∗ = Y +

√
αω and Y † = Y − ω/

√
α. Consider

E
[
Var(CBα(g) |Y )

]
=

1

B
E
[
Var
(
‖Y † − g(Y ∗)‖22 − ‖ω‖22/α

∣∣Y )],
where we used the independence of the bootstrap samples across b = 1, . . . , B. We can therefore study the
reducible variance for a single bootstrap draw, and then for the final result, we simply need to divide by B.
To this end, let a = (2/

√
α)〈ω, Y − g(Y ∗)〉, b = ‖Y − g(Y ∗)‖22, and write Eω,Varω,Covω for the expectation,

variance, and covariance operators conditional on Y . Then

Var
(
‖Y † − g(Y ∗)‖22 − ‖ω‖22/α

∣∣Y ) = Var
(
‖Y † − Y + Y − g(Y ∗)‖22 − ‖ω‖22/α

∣∣Y )
= Var

(
‖Y − g(Y ∗)‖22 − (2/

√
α)〈ω, Y − g(Y ∗)〉

∣∣Y )
= Varω(a) + Varω(b)− 2Covω(ab).

The first term in the previous line Varω(a) will end up having the dominant dependence on α, since by the
law of total variance,

E[Varω(b)] = E
[
Varω

(
‖Y − g(Y ∗)‖22

∣∣Y )] ≤ Var(‖Y − g(Y ∗)‖22),

and the right-hand side above is continuous in α over [0, β), by the condition E‖g(Yβ)‖42 <∞ and Lemma 1,
which means E[Varω(b)] ≤ Var(‖Y − g(Y )‖22) +O(α). Thus it remains to study Varω(a). Introducing more
notation, c = (2/

√
α)〈ω, Y − g(Y )〉 and d = (2/

√
α)〈ω, g(Y )− g(Y ∗)〉, observe that

Varω(a) = Varω(c) + Varω(d) + 2Covω(cd).

Once again, the first term here will have the dominant dependence on α, as

Varω(d) ≤ Eω[d2] ≤ 4

α
nσ2Eω‖g(Y )− g(Y ∗)‖22,

and the last factor on the right-hand side, after integrating over Y , satisfies E‖g(Y )− g(Y ∗)‖22 = O(α) from
another application of Lemma 1. Finally,

Varω(c) =
4nσ2

α
‖Y − g(Y )‖22,

and integrating with respect to Y , then dividing by B, gives the desired result in (37).

E.3 Proof of Proposition 5
Observe that (40) equals, for a = [E‖Y − g(Y +

√
αω)‖22]2 and b = [E〈ω, g(Y +

√
αω)〉]2/α,∫ ((

E‖y − g(y +
√
αω)‖22 + (2/

√
α)E

[
〈ω, g(y +

√
αω)〉

])2

− (a+ b)

)
1

(2πσ2)n/2
exp

{
−‖y − θ‖2

2σ2

}
dy.

Abbreviating φθ,σ2In(y) = (2πσ2)−n/2 exp(−‖y − θ‖2/(2σ2)), the integrand above is bounded by

2E‖y − g(y +
√
αω)‖42 φθ,σ2In(y) +

8

α
E
[
〈ω, g(y +

√
αω)〉

]2
φθ,σ2In(y).

Note that the second term is dominated by 2H(y)φθ,σ2In(y), due to (42), which is integrable by assumption
(E[H(Y )] <∞). The first term above is dominated by

4‖y‖22 φθ,σ2In(y) + 4E‖g(y +
√
αω)‖42 φθ,σ2In(y),

which is also integrable by assumption (E‖g(Yβ)‖42 <∞). Using Lebesgue’s dominated convergence theorem
(DCT) and (41) completes the proof.
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F Additional experiments

F.1 Bias
We study the bias empirically, and investigate the tightness of the bound in (34) in Proposition 3. Under the
simulation setup described in Section 5, with s = 5 and SNR = 2, Figure 6 displays the true bias (computed
via Monte Carlo) and (34) each as functions of α, when g is forward stepwise regression estimator at different
steps along its path: k = 3, 10, and 90. We see that, within each panel, the bias decreases approximately
linearly with α, meaning the linear rate of decay in the bound (34) is roughly accurate. However, the slope in
the bound is too large, and loosest when g is defined by the smallest number of steps along the path. This is
consistent with the fact that bound (34) is based on applying the inequality Cor(‖θ − g(Yt)‖22, ‖Yt − θ‖22) ≤ 1
to the integrand in (32). This inequality is generally tightest when g(Yt) = Yt, which occurs at k = 100 steps
(overfitting), and loosest at the beginning of the path.

k = 3 k = 10 k = 90

0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100

0.0

0.2

0.4

0.6

α

Bias
Bound

Figure 6: Comparison of the true bias and the bound in (34) for forward stepwise regression with k = 3, 10,
and 90 steps. The simulation setup is as in Section 5 with s = 5 and SNR = 2.

F.2 Reducible variance
Now we examine the reducible variance empirically, and compare the bound in (37) in Proposition 4. We
again use the simulation setup from Section 5, with s = 5 and SNR = 2, with Figure 7 displays contour plots
of the true reducible variance (computed via Monte Carlo) and the dominant term in (37) as functions of
B and α, when g is the lasso estimator with λ = 0.31. The two panels appear qualitatively quite similar,
confirming that the dominant term in (37) indeed captures the right dependence of the reducible variance on
B,α. (Note that each panel is given its own color scale, which means that any potential looseness in the
constant multiplying 1/(Bα) in the bound (37) is not being reflected.)

F.3 Irreducible variance
We study the behavior of the irreducible variance and its components empirically. Following (40), observe
that we can write

IVar(CBα(g)) = Var
(
E
[
‖Y − g(Y +

√
αω)‖22

∣∣Y ])︸ ︷︷ ︸
IVar1

+ Var

(
2√
α
E
[
〈ω, g(Y +

√
αω)〉

∣∣Y ])︸ ︷︷ ︸
IVar2

+

2Cov

(
E
[
‖Y − g(Y +

√
αω)‖22

∣∣Y ], 2√
α
E
[
〈ω, g(Y +

√
αω)〉

∣∣Y ])︸ ︷︷ ︸
Cov1,2

.
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Figure 7: Comparison of the true reducible variance and the bound in (37) for the lasso with λ = 0.31. The
simulation setup is as in Section 5 with s = 5 and SNR = 2.

We can similarly define analogous components for IVar1, IVar2,Cov1,2 for IVar(BYα(g)) in (44). Note that
between the CB and BY estimators, IVar2 is shared (equal), but IVar1 and Cov1,2 are different: where BY
uses the original training error ‖Y − g(Y )‖22, CB substitutes the conditional expectation of the noise-added
training error E[‖Y − g(Y +

√
αω)‖22 |Y ].

Figure 8 plots these three components of the irreducible variance for BY and CB (computed via Monte
Carlo), under the same simulation setup as that from Figure 2. The figure also plots the reducible variance
for reference. We can see that the main contributor to the large variance exhibited by BY in comparison to
CB in Figure 2 is in fact the first component of the irreducible variance IVar1. This is intuitive, because for
an unstable function g (such as the one in the current simulation), the observed training error can have a
high degree of variability, but taking a conditional expectation over a noise-adding process acts as a kind of
regularization, reducing this variability greatly.
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0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

25

50

75

3

4

5

6

20

30

40

50

60

70

−30

−25

−20

−15

α

V
ar

ia
nc

e

BY CB

Figure 8: Comparison of the irreducible variance, broken down into its three main components, and also the
reducible varaince, for the BY and CB estimators, under the same simulation setup as that in Figure 2.
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F.4 Model selection
Below we report the results of repeating the experiment in Section 5.3 over 10 draws of synthetic noise, to
create 10 noisy images. For each such noisy image, we compute the CB and SURE risk curves and calculate
the minimizing values of λ. Figure 9 displays a histogram of these selected λ values, from each method. We
can see that CB often selects λ values which are tightly coupled around those selected by SURE, suggesting
some degree of stability in model selection.
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Figure 9: Histogram of the minimizing values of λ for the CB (at α ∈ {0.1, 0.3, 0.5}) and SURE curves, over
10 repetitions of the simulation setup that generated Figure 4.
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