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Abstract
Changepoint detection methods are used in many areas of science and engineer-
ing, for example, in the analysis of copy number variation data to detect abnor-
malities in copy numbers along the genome. Despite the broad array of avail-
able tools, methodology for quantifying our uncertainty in the strength (or the
presence) of given changepoints post-selection are lacking. Post-selection infer-
ence offers a framework to fill this gap, but the most straightforward applica-
tion of these methods results in low-powered hypothesis tests and leaves open
several important questions about practical usability. In this work, we carefully
tailor post-selection inference methods toward changepoint detection, focusing
on copy number variation data. To accomplish this, we study commonly used
changepoint algorithms: binary segmentation, as well as two of its most popular
variants, wild and circular, and the fused lasso. We implement some of the lat-
est developments in post-selection inference theory, mainly auxiliary random-
ization. This improves the power, which requires implementations of Markov
chainMonte Carlo algorithms (importance sampling and hit-and-run sampling)
to carry out our tests. We also provide recommendations for improving practi-
cal useability, detailed simulations, and example analyses on array comparative
genomic hybridization as well as sequencing data.
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1 INTRODUCTION

Changepoint detection algorithms identify changes in data
distribution along a sequence of observations and are com-
monly used in copy number variation (CNV) analyses that
detect deviations in the copy number in any region along
the genome (Zhang, 2010). Specifically, in this article, we
study the canonical changepoint model, where changes
occur only in the mean. Let the vector 𝒀 = (𝑌1, … , 𝑌𝑛) ∈

ℝ𝑛 be a data vector with independent Gaussian entries,

𝑌𝑖 ∼  (𝜃𝑖, 𝜎
2), 𝑖 = 1, … , 𝑛, (1)

where the unknown mean vector 𝜽 ∈ ℝ𝑛 forms a piece-
wise constant sequence. That is, for locations 1 ≤ 𝑏1 <

⋯ < 𝑏𝑡 ≤ 𝑛 − 1,

𝜃𝑏𝑗+1 = ⋯ = 𝜃𝑏𝑗+1
, 𝑗 = 0,… , 𝑡,
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where, for convenience, we write 𝑏0 = 0 and 𝑏𝑡+1 = 𝑛. We
call 𝑏1, … , 𝑏𝑡 changepoint locations of 𝜽. Given such mod-
els, changepoint detection algorithms typically focus on
estimating the number of changepoints 𝑡 (possibly none),
as well as the locations 𝑏1, … , 𝑏𝑡, from a single vector 𝒀.
This includes binary segmentation (BS) and its many vari-
ants common in the literature, such as wild binary seg-
mentation (WBS; Fryzlewicz, 2014) and circular binary seg-
mentation (CBS; Olshen et al., 2004). Loosely speaking,
these algorithms estimate the changepoint locations by
scanning the entire vector 𝑌 and finding locations where
the empirical means to the left and right segments are
well separated. Despite the large number of theoretical
results that formalize the point-wise estimation perfor-
mance of these algorithms (see Lin et al., 2017 and ref-
erences within), there have been much fewer works that
focus on computing valid p-values that quantify the sig-
nificance of such changepoints. Having valid p-values can
be greatly beneficial for filtering changepoints in an auto-
mated fashion, where only statistically significant change-
points are kept for potential downstream analyses. As we
show later in this section, this methodological gap can be
problematic for CNV analyses since naive hypothesis tests
can inflate the Type-I error, leading to undesirable filtering
procedures. Hence, in this article, we leverage the recent
developments in post-selection inference (Tibshirani et al.,
2018) to develop an downstream algorithm to compute
p-values within this framework for the aforementioned
changepoint algorithms. By developing valid downstream
inferential tools, we strengthen commonly used change-
point detection algorithms in CNV analyses by enabling
a principled way to filter changepoints in an automated
fashion.
We provide a high-level summary of the post-selection

inference applied to changepoint model (1). This serves
both as an overview of the post-selection framework
and also highlights the algorithmic challenges we
resolve in article. The machinery that we build off
is developed in works like Fithian et al. (2014, 2015)
and Tian and Taylor (2018), whose results we rely
on.
Basic inference procedure. The basic inference pro-

cedure we consider is as follows.

(1) Given data 𝒀, apply a changepoint algorithm to detect
some fixed number of changepoints 𝑘. Denote the esti-
mated changepoint locations by 𝑏1, … , 𝑏𝑘, and their
respective changepoint directions (whether the esti-
mated change in mean was positive or negative) by
𝑑1, … , 𝑑𝑘 ∈ {−1, 1}. Let 𝑰1, … , 𝑰𝑘+1 denote the parti-
tion of {1, … , 𝑛} formed by 𝒃1∶𝑘. The specifics of the
changepoint algorithms that we consider are given in
Section 2.1.

(2) Form contrast vectors 𝒗1, … , 𝒗𝑘 ∈ ℝ𝑛, defined so that
for an arbitrary 𝒚 ∈ ℝ𝑛,

𝒗𝑇
𝑗
𝒚 = 𝑑𝑗 ⋅

⎧⎪⎨⎪⎩
1|𝑰𝑗+1|
⎛⎜⎜⎝
∑

𝑖∈𝑰𝑗+1

𝒚𝑖

⎞⎟⎟⎠ −
1|𝑰𝑗|
⎛⎜⎜⎝
∑
𝑖∈𝑰𝑗

𝒚𝑖

⎞⎟⎟⎠
⎫⎪⎬⎪⎭

, (2)

for 𝑗 = 1,… , 𝑘, where |𝑰𝑗| denotes the cardinality
of the set 𝑰𝑗 . Hence, 𝒗𝑇

𝑗
𝒀 represents the difference

between the sample means of segments to right and
left of 𝑏𝑗 ,

(3) For each 𝑗 = 1,… , 𝑘, we test the hypothesis 𝐻0 ∶

𝒗𝑇
𝑗
𝜽 = 0 by rejecting for large values of a statistic

𝑇(𝒀, 𝒗𝑗), which is computed based on knowledge of
the changepoint algorithm that produced 𝒃1∶𝑘 in Step
1, the desired contrast vector (2) formed in Step 2, and
the value of𝜎2. Each statistic yields a p-value under the
null (assuming the model (1)). The details of 𝑇(𝒀, 𝒗𝑗)

are given in Sections 2.2 and 3.
(4) Optionally, we can use the Bonferroni correction by

multiplying the p-values by 𝑘, to account formultiplic-
ity.

It is worth mentioning that several variants of this basic
procedure are possible. For example, 𝜎2 can either be esti-
mated from an alternative dataset or left unspecified; the
number of changepoints 𝑘 in Step 1 can be estimated
from data; alternative contrast vectors to (2) in Step 2 may
be used to measure more localized mean changes. We
dedicate the following sections to highlight the novelties
of our work within the simplified framework prescribed
above and defer discussions of such variants to the Web
Appendix. Additionally, though not covered in our article,
the p-values from our tests can be inverted to form confi-
dence intervals for population contrasts 𝒗𝑇

𝑗
𝜽 for 𝑗 = 1,… , 𝑘

(Tibshirani et al., 2018).
Contributions Our article has two primary contri-

butions. First, we specialize the existing post-selection
inference framework for CNV analyses in order to filter
estimated changepoints and show their versatility on
array-comparative genomic hybridization and sequencing
data (Section 4). We prove results to facilitate concrete
algorithms and provide extensive guidelines and variants
that can be helpful for researchers. Second, we develop
newmethodologies to improve the power of our inferential
tools and verify this improvement by simulation.

1.1 CNV background and motivating
analysis

To motivate the necessity for valid inferential tools in
changepoint detection, we present a motivating CNV



HYUN et al. 3

F IGURE 1 (Left): aCGH data from the 14th chromosome of fibroblast cell line GM01750, from Snijders et al. (2001). The x-axis denotes the
relative index of the genome position, and the y-axis denotes the measured log2 copy number ratio after a suitable preprocessing, with a dotted
line denoting 0 for reference. The bold vertical lines denote the locations A and B from running WBS for two steps (corresponding to 𝑏1 and
𝑏2). (Right): The p-values using classical (naive) t-tests, saturated model tests, and selected model tests, at each location A and B. The ground
truth is also given, as determined by karyotyping. The saturated model test used an estimated noise level 𝜎2 from the entire 23-chromosome
dataset. The selected model test was performed in the unknown 𝜎2 setting. Specifically, we test the null hypothesis 𝐻0 ∶ 𝒗𝑇

𝑗
𝜽 = 0, for 𝑗 = 1, 2,

where the contrast vectors are as defined in (2). We see that both saturated and selected model tests correcting determine only location A to be
associated with a true CNV

analysis on array comparative genomic hybridization
(aCGH) data. Broadly speaking, CNV analyses investigate
the structural variation of the genome where the total
copy number of particular large regions in a chromosome
deviate from two, the expected copy number—one from
each parental cell. This type of variation has been impli-
cated with tumor progression, and therefore many studies
use CNV analyses to identify which regions of the genome
to specifically investigate in future analyses (see works
like Zhang, 2010). Toward this end, aCGH data is one of
many types of data frequently collected to study CNV.
This type of data is collected by microarrays, where the
log2 copy number ratio between case and control cells
along different regions along the genomes is measured
by probes. However, since these measurements are often
quite noisy, changepoint detection algorithms need to be
used on aCGH data for effective detection of regions of
CNV. The data in this motivating analysis originate from
Snijders et al. (2001), which studies the CNV of fibroblast
cell lines and is a common benchmark dataset for many
changepoint detection algorithms, such as Olshen et al.
(2004) and Duy et al. (2020).
Figure 1 illustrates how traditional inference tools can

lead to invalid scientific conclusions and previews the
results of the post-selection inferential tools we develop in
this article. Here, we use a two-step WBS to estimate two
locations 𝑏1 and 𝑏2 that segment the measured log2 ratios.
Naively wemight run t-tests for equality of means between
the left and right neighboring segments of each estimated
locations with the null hypothesis 𝐻0 ∶ 𝒗𝑇

𝑗
𝜽 = 0, for

𝑗 = 1, 2 using the contrast vectors defined in (2). How-
ever, this would deem both changepoint locations as

statistically significant, but an external karotyping dataset
(from Snijders et al., 2001) reveals that only one of the esti-
mated locations is associated with a true CNV. At a high
level, the t-test’s erroneously small p-value arise sinceWBS
detects specific changepoint locations where the empirical
means to its left and right are well-separated, making
the t-tests’ null-hypotheses incorrect. To overcome this
problem, we adapt the post-selection inference framework
to the changepoint setting. As we will discuss in detail, our
inferential tools can be done using either saturated model
and a selected model on the mean vector 𝜽. Moreover,
using either such models leads to correctly deeming only
one of the estimated changepoints as significant, as shown
in Figure 1. We return to this dataset in Section 4.
We emphasize that while thismotivating analysis is only

for a single chromosome on one cell line, CNV analyses
typically investigate the entire genome across many cell
lines. Hence, an inflation in Type-I error can have pro-
found effect in aggregate. Our inferential tools are well
suited for these situations, as they can be used in an auto-
mated fashion as away to filter out estimated changepoints
in CNV analyses in a statistically principled fashion.

1.2 Related work

The most common variant of post-selection inference is
sample splitting, as discussed in Fithian et al. (2014). In our
setting, this can be performed by dividing every odd and
even index of 𝒚 into two separate vectors, then applying
BS or its variants on one vector, and using t-tests on the
other. Since the data used to estimate the changepoints
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are independent of the data used for inference, this pro-
cedure yields valid p-values. However, as we will demon-
strate empirically in Section 3, sample splitting reduces the
test’s power. Hence, in this article, we are interested in
post-selection inferential tools that avoid sample splitting.
We mention additional works that use post-selection

inference tools for changepoint detection. Most relevantly,
Hyun et al. (2018) develop postinference tools for the gen-
eralized lasso (a generalization of the fused lasso), which
can also be used for inference in the changepoint setting
as well. However, those tools do not directly work for the
variants of BS considered in this article and we addition-
ally investigate methods to improve our tools’ statistical
power. Also, while writing this article, we became aware
of the independent contributions in Duy et al. (2020),
which appeared after the initial release of this article and
develops variants that further improve our tools’ statisti-
cal power. We remark that these notions of improved sta-
tistical power in this work are demonstrated mainly with
empirical evidence. To the best of our knowledge, Azaïs
et al. (2018)’s article is the only article that proves the power
of post-selection inference methods, but its theoretical set-
ting is not applicable for most changepoint analyses we
encounter in practice. Aside from these articles, there is
little focus on valid postdetection inference methods in
changepoint analysis. On the other hand, there is a large
literature on inference for fixed hypotheses in changepoint
problems; we refer to works like Jandhyala et al. (2013).

2 PRELIMINARIES

2.1 Review: Changepoint algorithms

Belowwe describe the changepoint algorithms thatwewill
study in this article. We will focus on formulations that
run the algorithm for a given number of steps 𝑘. In what
follows, we use the notation 𝒚𝑎∶𝑏 = (𝑦𝑎, 𝑦𝑎+1, … , 𝑦𝑏) and
𝒚𝑎∶𝑏 = (𝑏 − 𝑎 + 1)−1∑𝑏

𝑖=𝑎
𝑦𝑖 for a vector 𝒚. Similarly, for a

set 𝑰, 𝑦𝐼 = |𝑰|−1∑
𝑖∈𝐼

𝑦𝑖 .

2.1.1 Binary segmentation

Given a data vector 𝒚 ∈ ℝ𝑛, the 𝑘-step BS algorithm (see
Fryzlewicz, 2014 and refers within) sequentially splits the
data based on the cumulative sum (CUSUM) statistics,
defined below. At a step 𝓁 = 1,… , 𝑘, let 𝒃1∶(𝓁−1) be the
changepoints estimated so far, and let 𝑰𝑗 , 𝑗 = 1,… , 𝓁 be the
partition of {1, … , 𝑛} induced by 𝒃1∶(𝓁−1). Throughout this
article, we use the convention that for 𝓁 = 1, 𝑰1 = {1, … , 𝑛}.
Intervals of length 1 are discarded. Let 𝑠𝑗 and 𝑒𝑗 be the start

and end indices of 𝑰𝑗 . The next changepoint 𝑏𝓁 and max-
imizing interval �̂�𝓁 are chosen to maximize the absolute
CUSUM statistic,

{
�̂�𝓁, 𝑏𝓁

}
= argmax

𝑗∈{1,…,𝓁−1}
𝑏∈{𝑠𝑗,…,𝑒𝑗−1}

|||𝒈𝑇
(𝑠𝑗,𝑏,𝑒𝑗)

𝒚
|||,

where 𝒈𝑇
(𝑠,𝑏,𝑒)

𝒚 =

√√√√ 1
1|𝑒−𝑏| + 1|𝑏+1−𝑠|

(
𝑦(𝑏+1)∶𝑒 − 𝑦𝑠∶𝑏

)
.

(3)

Additionally, the direction 𝑑𝓁 of the new changepoint is
calculated by the sign of the maximizing absolute CUSUM
statistic, 𝑑𝓁 = sign(𝒈𝑇

(𝑠𝑗,𝑏𝓁,𝑒𝑗)
𝒚) for 𝑗 = �̂�𝓁+1.

2.1.2 Wild binary segmentation

The 𝑘-stepWBS algorithm (Fryzlewicz, 2014) is amodifica-
tion of BS that calculates CUSUM statistics over randomly
drawn segments of the data. Denote by𝒘 = {𝒘1,… ,𝒘𝐵} =

{(𝑠1, … , 𝑒1), … , (𝑠𝐵, … , 𝑒𝐵)} a set of 𝐵 uniformly randomly
drawn intervals with 1 ≤ 𝑠𝑖 < 𝑒𝑖 ≤ 𝑛, 𝑖 = 1, … , 𝐵. At a step
𝓁 = 1,… , 𝑘, let 𝐽𝓁 to be the index set of the intervals in 𝒘

which do not intersect with the changepoints 𝒃1∶(𝓁−1) esti-
mated so far. The next changepoint 𝑏𝓁 and themaximizing
interval �̂�𝓁 are obtained by

{
�̂�𝓁, 𝑏𝓁

}
= argmax

𝑗∈𝐽𝓁
𝑏∈{𝑠𝑗,…,𝑒𝑗−1}

|||𝒈𝑇
(𝑠𝑗,𝑏,𝑒𝑗)

𝒚
|||,

where 𝒈𝑇
(𝑠,𝑏,𝑒)

𝒚 is defined in (3). Similar to BS, the direc-
tion of the changepoint 𝑑𝓁 is defined by the sign of the
maximizing absolute CUSUM statistic. Fryzlewicz (2014)
shows that the theoretical guarantees for WBS is strictly
better than that for BS. However, while both can estimate
the true changepoints asymptotically in a theoretic sense,
both are prone to mistakes with finite data. This necessi-
tates the need to develop valid inferential tools to prune
the estimated changepoints.
We also consider CBS and the comparisons to the fused

lasso (FL) in this article, but defer their discussions toWeb
Appendix C for brevity.

2.2 Review: Post-selection inference

We briefly review post-selection inference as developed
in Fithian et al. (2014) and related work, adapted for
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changepoint problems. For clarity, we notationally dis-
tinguish between a random vector 𝒀 distributed as in (1),
and 𝒚obs, a single data vector we observe for changepoint
analysis. When a changepoint algorithm—such as BS,
WBS, or CBS —is applied to the data 𝒚obs, it selects a
particular changepoint model𝑀(𝒚obs). The specific forms
of such models are described in Section 3.1; for now, we
may loosely think of𝑀(𝒚obs) as the changepoint locations
and directions estimated by the algorithm on 𝒚obs, the
data at hand. Post-selection inference revolves around the
selective distribution, that is, the law of

𝒗𝑇𝒀 | (𝑀(𝒀) = 𝑀(𝒚obs), 𝑞(𝒀) = 𝑞(𝒚obs)), (4)

under the null hypothesis 𝐻0 ∶ 𝒗𝑇𝜽 = 0, for any vector 𝒗

that is a measurable function of 𝑀(𝒚obs), such as in (2).
Here, 𝑞(𝒀) is a vector of sufficient statistic of nuisance
parameters that need to be conditioned on in order to
tractably compute inferences based on (4). The explicit
form of 𝑞(𝒀) differs based on the assumptions imposed
on 𝜽 under the null model. Broadly, there are two classes
of null models we may study: saturated and selected
models (Fithian et al., 2014). As shown in the literature,
computationally, in either null models, it is important for
the selection event {𝒚 ∶ 𝑀(𝒚) = 𝑀(𝒚obs)} be polyhedral.
This is described in detail in Section 3.1, where we show
that this holds for BS, WBS, and CBS.

2.2.1 Saturated model

The saturated model assumes that 𝒀 is distributed as in (1)
with known error variance 𝜎2 and assumes nothing about
the mean vector 𝜽. We set 𝑞(𝒀) = Π⟂

𝒗𝒀, the projection of
𝒀 onto the hyperplane orthogonal to 𝒗. The selective dis-
tribution (4) then becomes the law of

𝒗𝑇𝒀 | (𝑀(𝒀) = 𝑀(𝒚obs), Π⟂
𝒗𝒀 = Π⟂

𝒗𝒚obs

)
. (5)

2.2.2 Selected model

The selected model again assumes that 𝑌 follows (1), but
additionally assumes that the mean vector 𝜽 is piecewise
constant with changepoints at the sorted estimated loca-
tions 𝒄1∶𝑘 = 𝒄1∶𝑘(𝒚obs), assuming we have run our change-
point algorithm for 𝑘 steps. That is, letting 𝑠𝑗 and 𝑒𝑗 denote
the start and end index of interval 𝐼𝑗 , we assume

𝜃𝑠𝑗 = ⋯ = 𝜃𝑒𝑗 , 𝑗 ∈ {1, … , 𝑘 + 1}.

Under this assumption, the law of 𝒀 becomes a (𝑘 + 1)-
parameter Gaussian distribution. Additionally, with the

contrast vector 𝒗𝑗 defined as in (2), for any fixed 𝑗 =

1,… , 𝑘 + 1, the quantity 𝒗𝑇
𝑗
𝜽 of interest is simply the dif-

ference between two of the parameters in this distribution.
Specifically, let 𝑗 = {1, … , 𝑘 + 1}∖{𝑗, 𝑗 + 1}. Assuming 𝜎2

is known, the sufficient statistics 𝑞(𝒀) are then the sample
averages of the appropriate data segments, and the selec-
tive distribution (4) becomes the law of

(
𝑌𝑰𝑗+1

− 𝑌𝑰𝑗

) |||
(
𝑀(𝒀) = 𝑀(𝒚obs), 𝑌𝑰𝑗∪𝑰𝑗+1

=
(
𝑦obs

)
𝑰𝑗∪𝑰𝑗+1

, 𝑌𝑰𝓁 =
(
𝑦obs

)
𝑰𝓁
for 𝓁 ∈ 𝑗

)
. (6)

The appeal of the selected model is that we can properly
treat 𝜎2 as unknown; in this case, we must only addition-
ally condition on the Euclidean norm of 𝑦obs to account for
this nuisance parameter, and the selective distribution (4)
becomes the law of

(
𝑌𝑰𝑗+1

− 𝑌𝑰𝑗

) |||
(
𝑀(𝒀) = 𝑀(𝒚obs), 𝑌𝑰𝑗∪𝑰𝑗+1

=
(
𝑦obs

)
𝑰𝑗∪𝑰𝑗+1

, 𝑌𝑰𝓁 =
(
𝑦obs

)
𝑰𝓁
for 𝓁 ∈ 𝑗, ‖𝒀‖2

= ‖𝒚obs‖2). (7)

3 INFERENCE FOR CHANGEPOINT
ALGORITHMS

We describe our contributions that enable post-selection
inference for changepoint analyses, beginning with the
form of model selection events. We then describe compu-
tational details for saturated and selected model tests and
auxiliary randomization.

3.1 Polyhedral selection events

We show that, for each of the BS and WBS algorithms,
there is a parameterization for their models such that
event {𝒚 ∶ 𝑀(𝒚) = 𝑀(𝒚obs)} is a polyhedron of the form
{𝒚 ∶ 𝚪𝒚 ≥ 𝟎}, for a matrix 𝚪 ∈ ℝ𝑚×𝑛 that depends on
𝑀(𝒚obs), where we interpret the inequality 𝚪𝒚 ≥ 𝟎 com-
ponentwise. Throughout the description of the polyhedra
for each algorithm, we display the number of rows in 𝚪

since it loosely denotes how “complex” each model selec-
tion event is. Overall, for a fixed 𝑘, the number of rows
in the 𝚪 matrix for BS is linear in 𝑛, and 𝑂(𝐵𝑝) for WBS
using intervals of length 𝑝. This number can grow faster
than linear in 𝑛 if 𝐵 ≥ 𝑛, which is recommended in prac-
tice (Fryzlewicz, 2014). All the proofs are provided in Web
Appendix H.
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3.1.1 Selection event for BS

We define the model for the 𝑘-step BS estimator as

𝑀BS
1∶𝑘

(𝒚obs) =
{
𝒃1∶𝑘(𝒚obs), 𝒅1∶𝑘(𝒚obs)

}
,

where 𝒃1∶𝑘(𝒚obs) and 𝒅1∶𝑘(𝒚obs) are the changepoint loca-
tions and directions when the algorithm is run on 𝒚obs, as
described in Section 2.1.

Proposition 1. Given any fixed 𝑘 ≥ 1 and 𝒃1∶𝑘, 𝒅1∶𝑘 , we
can explicitly construct 𝚪 where

{
𝒚 ∶ 𝑀BS

1∶𝑘
(𝒚) = {𝒃1∶𝑘, 𝒅1∶𝑘}

}
= {𝒚 ∶ 𝚪𝒚 ≥ 𝟎},

where 𝚪 has 2
∑𝑘

𝓁=1
(𝑛 − 𝓁 − 1) rows.

3.1.2 Selection event for WBS

We define the model of the 𝑘-step WBS estimator as

𝑀WBS
1∶𝑘

(𝒚obs, 𝒘) =
{
𝒃1∶𝑘(𝒚obs), 𝒅1∶𝑘(𝒚obs), 𝒋1∶𝑘(𝒚obs)

}
,

where 𝒘 is the set of 𝐵 intervals that the algorithm uses,
𝒃1∶𝑘(𝒚obs) and 𝒅1∶𝑘(𝒚obs) are the changepoint locations
and directions, and 𝒋1∶𝑘(𝒚obs) are the maximizing inter-
vals. Note that unlike BS, themaximizing intervals 𝒋1∶𝑘 are
part of WBS’s model.

Proposition 2. Given any fixed 𝑘 ≥ 1 and
{𝒘, 𝒃1∶𝑘, 𝒅1∶𝑘, 𝒋1∶𝑘}, we can explicitly construct 𝚪 where{

𝒚 ∶ 𝑀WBS
1∶𝑘

(𝒚,𝒘) = {𝒃1∶𝑘, 𝒅1∶𝑘, 𝒋1∶𝑘}
}

=
{
𝒚 ∶ 𝚪𝒚 ≥ 𝟎

}
.

The number of rows in 𝚪 will vary depending on the con-
figuration of𝒘 and 𝒃1∶𝑘 , but if each of the 𝐵 intervals in𝑤

has length 𝑝, it will be at most 2
∑𝑘

𝓁=1
((𝐵 − 𝓁) ⋅ (𝑝 − 1) +

(𝑝 − 2)).

In Web Appendix C, we additionally state the analo-
gous results for the CBS model, as well as review the
results for the FLmodel as derived in Hyun et al. (2018) for
comparison.

3.2 Computation of p-values

Given a precise description of the polyhedral selection
event {𝒚 ∶ 𝑀(𝒚) = 𝑀(𝒚obs)}, we can describe the meth-
ods to compute the p-value, that is the tail probability of
the selective distributions described in Section 2.2.Without

loss of generality, all of our descriptions will be specialized
to testing the null hypothesis of 𝐻0 ∶ 𝒗𝑇𝜽 = 0 against the
one-sided alternative 𝐻1 ∶ 𝒗𝑇𝜽 > 0. For saturated model
tests, this exact calculation has been developed in previ-
ous works and we review it as it is relevant to our contri-
butions on increasing its power. For selected model tests,
we develop a new hit-and-run sampler. We emphasize,
as stated in works like Fithian et al. (2014), the following
methods provide p-values that are exactly uniformly dis-
tributed under the null hypothesis with respect to 𝑛, unlike
those from t-tests.

3.2.1 Saturated model tests: Exact formulae

As shown in Tibshirani et al. (2018) and related work,
the saturated selective distribution (5) has a particularly
computationally convenient distribution when 𝒀 is Gaus-
sian and the model selection event {𝒚 ∶ 𝑀(𝒚) = 𝑀(𝒚obs)}

is a polyhedral set in 𝒚. In this case, the law of (5)
is a truncated Gaussian (TG), whose truncation limits
depend only on Π⟂

𝒗𝒚obs and can be computed explic-
itly. Its tail probability can be computed in closed form
(without Monte Carlo sampling). That is, the probabil-
ity that 𝒗𝑇𝒀 ≥ 𝒗𝑇𝒚obs under the law of (5) is exactly
equal to

{
Φ(up∕𝜏) − Φ(𝒗𝑇𝒚obs∕𝜏)

}
∕
{
Φ(up∕𝜏) − Φ(lo∕𝜏)} (8)

where Φ(⋅) represents the standard Gaussian cumulative
distribution function (CDF), 𝜏 = 𝜎2‖𝒗‖22, 𝝆 = 𝚪𝒗∕‖𝒗‖22
and

lo = 𝒗𝑇𝒚obs − min
𝑗∶𝜌𝑗>0

(𝚪𝒚obs)𝑗∕𝜌𝑗, and

up = 𝒗𝑇𝒚obs − max
𝑗∶𝜌𝑗<0

(𝚪𝒚obs)𝑗∕𝜌𝑗. (9)

The statistic in (8) is commonly referred as the TG statistic.
Since this statistic is a pivot and lies between [0,1], it is the
p-value used for the saturated model test.

3.2.2 Selected model tests: hit-and-run
sampling

To compute the p-value for selected model tests, Fithian
et al. (2015) proposed a hit-and-run strategy for sampling
from the distribution for the known 𝜎2 setting (6). This
was implemented by the authors, andwe briefly review the
details in Web Appendix D. For the unknown 𝜎2 setting,
Fithian et al. (2014) developed an importance sampling
strategy for sampling the distribution (7). However, we
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develop an alternative and intuitive hit-and-run strategy
can be adapted to the unknown 𝜎2 setting and implement
this as a new algorithm, explained next.
Given a changepoint 𝑗 ∈ {1, … , 𝑘}, observe that we can

design a segment test contrast 𝒗 where sampling from (7)
is equivalent to sampling uniformly from the set

{
𝒗𝑇𝒀 ∶ 𝑀(𝒀) = 𝑀(𝒚obs), ‖𝒀‖2 = ‖𝒚obs‖2, 𝑌𝑰𝑗∪𝑰𝑗+1

=
(
𝑦obs

)
𝑰𝑗∪𝑰𝑗+1

, 𝑌𝑰𝓁 =
(
𝑦obs

)
𝑰𝓁
for 𝓁 ∈ 𝑗

}
. (10)

Note that the above set no longer depends on 𝜽 or 𝜎2.
This is because we conditioned all the relevant sufficient
statistics under the selected model. Our hit-and-run sam-
pler then sequentially draws samples 𝒗𝑇𝒀 from the above
set. For brevity, the explicit algorithm is deferred to Web
AppendixD and leverages explicit formulas computing the
intersection of two-dimensional circles with polytopes.

3.3 Randomization and marginalization

We apply the ideas of auxiliary randomization in Tian
and Taylor (2018) to improve the power of post-selection
inference for changepoint algorithms. We investigate two
specific forms of randomization—randomization over
additive noise or over random intervals—specialized for
saturated models. We note that similar randomization of
selected model inferences is also possible but is doubly
computationally burdensome.

3.3.1 Marginalization over additive noise

Tian and Taylor (2018) shows that performing inference
based on the selected model 𝑀(𝒚obs + 𝒘obs) where 𝒘obs

is additive noise and then marginalizing over 𝑾 leads to
improved power. Here, 𝒘obs is a realization of a random
component𝑾 sampled from (𝟎, 𝜎2

add𝑰𝑛), where𝜎
2
add > 0

is set by the user. Fithian et al. (2014) provide a mathemat-
ical framework for pursuing such randomization, stating
that less conditioning results in an increase in Fisher infor-
mation. For additive noise, the abovemodel selection event
is

{𝒚 ∶ 𝚪(𝒚 + 𝒘obs) ≥ 𝟎} = {𝒚 ∶ 𝚪𝒚 ≥ −𝚪𝒘obs}.

This suggests the following idea of using existing machin-
ery to formulate the polyhedron formed by the model
selection event based on perturbed data 𝒚obs + 𝒘obs.
Porting the ideas of Tian and Taylor (2018) to our set-

ting, to test the one-sided null hypothesis 𝐻0 ∶ 𝒗𝑇𝜽 = 0,

we want to compute the following tail probability of the
marginalized selective distribution:

𝑇(𝒚obs, 𝒗) = ℙ
(
𝒗𝑇𝒀 ≥ 𝒗𝑇𝒚obs

||| (𝑀(𝒀 + 𝑾)

= 𝑀(𝒚obs + 𝑾), Π⟂
𝒗𝒀 = Π⟂

𝒗𝒚obs
) )

. (11)

It is hard to directly compute this. However, the formulas
in (8) and (9) give us exact formulas to compute the non-
marginalized tail probabilities,

𝑇(𝒚obs, 𝒗,𝒘obs) = ℙ
(
𝒗𝑇𝒀 ≥ 𝒗𝑇𝒚obs

||| (𝑀(𝒀 + 𝑾)

= 𝑀(𝒚obs + 𝑾), Π⟂
𝒗𝒀 = Π⟂

𝒗𝒚obs, = 𝑾 = 𝒘obs
) )

.

The following proposition shows that we can compute
𝑇(𝒚obs, 𝒗) by reweighting instances of 𝑇(𝒚obs, 𝒗,𝒘obs)

via importance sampling. Here, let 𝐸1 = 𝟙[𝑀(𝒀 + 𝑾) =

𝑀(𝒚obs + 𝑾)] and 𝐸2 = 𝟙[Π⟂
𝒗𝒀 = Π⟂

𝒗𝒚obs].

Proposition 3. Let Ω denote the support of the random
component 𝑾. If the distribution of 𝑾 is independent of
the random event 𝐸2, (11) can be exactly computed as

𝑇(𝒚obs, 𝒗) = ∫
Ω

𝑇(𝒚obs, 𝒗,𝒘obs) ⋅ 𝑎(𝒘obs) 𝑑𝑃𝑾(𝒘obs)

=
∫
Ω

Φ
(up∕𝜏) − Φ

(
𝒗𝑇𝒚obs∕𝜏

)
𝑑𝑃𝑾(𝒘obs)

∫
Ω

Φ
(up∕𝜏) − Φ(lo∕𝜏) 𝑑𝑃𝑾(𝒘obs)

.

(12)

where the weighting factor is 𝑎(𝒘obs) = ℙ(𝑾 =

𝒘obs|𝐸1, 𝐸2)∕ℙ(𝑾 = 𝒘obs).

The first equality in (12) demonstrates the reweight-
ing of 𝑇(𝒚obs, 𝒗,𝒘obs), but the second equality gives a
sampling strategy where we approximate the integrals.
Specifically, we sample 𝑇 different instances of 𝒘obs and
compute 𝑘(𝒘obs) and 𝑔(𝒘obs), denoting the integrand
of the last term’s numerator and denominator in (12),
respectively. Then the approximate for the tail probability
(12) is the ratio between the summation of all the instances
of 𝑘(𝒘obs) and of all instances of 𝑔(𝒘obs). (Observe that the
calculations of up and lo now involve𝒘obs.) For brevity,
we defer the explicit algorithm to Web Appendix D.

3.3.2 Marginalization over WBS intervals

In contrast to the above setting where𝑾 represents Gaus-
sian noise, in WBS described in Section 2.1, 𝑊 represents
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F IGURE 2 Simulation results displaying the empirical power for plain saturated model test (red dashed), additive noise marginalized
saturated model test (green dashed), and selected model test with unknown 𝜎2 (blue dashed), and t-test for equality of mean after sample
splitting (black solid), performed after a two-step BS. Here, we generate Gaussian data where 𝜽 has two true changepoints, and 𝛿 (the x-axis)
parameterizes the signal (i.e., the difference between the piecewise constant segments). A larger 𝛿 means an easier simulation setting. We try
more than 250 trials at each value of 𝛿. (Left): Conditional power across all four methods, defined as the number of correctly detected and
rejected changepoints instances divided by the number of corrected detected changepoints. (Middle): Detection probability for the BS, defined
as the number of corrected detected changepoints divided by total number of trials. (Right): Unconditional power, defined by multiplying the
conditional power curve and its relevant detection probability curve. Together, we see selected model tests and marginalized saturated model
tests have higher unconditional power for larger 𝛿 than sample splitting and plain saturated model tests. More details behind the simulation
are given in Web Appendix E. Note: this figure appears in color in the electronic version of this article, and any mention of color refers to that
version

the set of 𝐵 randomly drawn intervals. Observe that Propo-
sition 3 still applies to this setting, where 𝑀(𝒚obs + 𝒘obs)

is now replaced with 𝑀(𝒚obs,𝒘obs), as described in Sec-
tion 3.1. However, unlike the additive noise setting, the
maximizing intervals 𝒋1∶𝑘 in the model 𝑀(𝒚obs,𝒘obs) are
embedded in the construction of the matrix 𝚪 represent-
ing the polyhedra. This prevents a naive sampling of𝐵 new
intervals. To overcome this, let {𝑾�̂�1

, … ,𝑾�̂�𝑘
} be the max-

imizing intervals. We sample a new set of all other inter-
vals,𝑊𝓁 for 𝓁 ∈ {1, … , 𝐵}∖{̂𝑗1, … , �̂�𝑘}. Specifically, for each
of such intervals 𝑾𝓁 = (𝑠𝓁, … , 𝑒𝓁), the indices 𝑠𝓁 and 𝑒𝓁
are sampled uniformly between 1 to 𝑛where 𝑠𝓁 < 𝑒𝓁. After
all 𝐵 − 𝑘 intervals are resampled, a check is performed to
ensure that {𝑾�̂�1

, … ,𝑾�̂�𝑘
} are still the maximizing inter-

vals whenWBS is applied again to 𝒚obs. The full algorithm
is also deferred to Web Appendix D.

3.4 Simulation results

We provide a brief overview of simulation-based results
that demonstrate the utility of our inferential tools, high-
lighting that our selected model tests and marginalized
saturated model tests empirically higher power than plain
saturated model tests and t-tests based on sample splitting,
described in Section 1.2. In these simulations, we generate
Gaussian data with 𝜽 having two changepoints with vary-

ing signal sizes and try different testing procedures based
on two-step BS.We then compute the unconditional power
of each test, defined as how often a test successfully detects
the location of the true changepoint and then successfully
rejects the null hypothesis. We make two observations
from our results (Figure 2). First, the marginalized sat-
urated model tests have substantially higher power over
their plain counterparts, verifying the theoretical intu-
itions in Tian and Taylor (2018). Second, sample splitting
leads to a lower unconditional power compared to our
inferential tools primarily because sample splitting uses
only half the data to detect changepoints, leading to a
lower detection probability. Another competing method
is the post-selection inference tools for the 1d fused lasso
developed in Hyun et al. (2018). For brevity, we defer
extensive simulations showing uniform null p-values, and
those comparing the power among these methods, as well
as additional details and discussions, to Web Appendix E.

4 COPY NUMBER VARIATION
APPLICATION

In this section, we apply our post-selection inference
tools to study their empirical performance on both the
aCGH data from Snijders et al. (2001) (introduced in
Section 1) as well as sequencing data from Botton et al.
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F IGURE 3 Pre-cut changepoint inference using saturated model tests for 4-step WBS marginalized over random intervals conducted
on four cell lines across all 23 chromosomes, from Snijders et al. (2001). Data points are colored in two alternating tones, to visually depict
the chromosomal boundaries. The x-axis denotes the relative index of the genome position while the y-axis denotes the measured log2 copy
number. For each cell line, the letters A through D denote the estimated changepoints, 𝑐1 through 𝑐4 respectively. The bolded gray (or red)
horizontal lines denote changepoints that were rejected (or not rejected) under the null hypothesis𝐻0 ∶ 𝒗𝑇𝜽 = 0 at a Type-I error control level
𝛼 = 0.05 after Bonferroni-correction. (Top left): The analysis for the cell line GM02948 with no significant changepoints. This matches external
karotyping results, marking a trisomy (i.e., increase in copy number) of the entire chromosome 13, meaning there are no CNVs within any
chromosome. (Top right): The analysis for the cell line GM05296 with 4 significant changepoints, all at chromosome 10 and 11. This matches
external karotyping results, marking a trisomy al chromosome 10 and a monosomy (i.e., decrease in copy number) at chromosome 11. (Bottom
left): The analysis for the cell line GM01524 with 3 significant changepoints, at chromosome 6 and 9. The external karotyping results only reveal
that the CNV at chromosome 6 is true (i.e., 6q15 to 6q25). (Bottom right): The analysis for the cell line GM01750 with 2 significant changepoints,
at chromosome 9 and 14. This matches external karotyping results, marking trisomies at chromosome 9 and 14. Note: this figure appears in
color in the electronic version of this article, and any mention of color refers to that version

(2013). Both datasets are specifically chosen since there
are scientifically meaningful ways to quantify whether or
not our inference tools were successful. Specifically, we
first demonstrate in Section 4.1 that our inferential tools
can be used for filtering changepoints by comparing our
results applied on the aCGH data to external karotyping
results. Then in Section 4.2, we show that we can adapt our
inferential tools to handle heavy-tailed noise appearing in
CNV analyses by demonstrating that p-values under the
null hypothesis based on pseudo-real datasets are correctly
distributed as uniform. Finally in Section 4.3, we show
that while sequencing data (a newer technology based on
counting DNA fragments) has technical variability that
can differ dramatically from aCGH data (an older technol-
ogy based onmeasuring light intensities), by preprocessing
the sequencing data appropriately, our inferential tools
shown to work for aCGH data can yield similar results
on sequencing data. Together, these empirical results
demonstrate that our inferential tools can be reliably

used for automated filtering of changepoints for CNV
analyses.

4.1 Analysis on Snijders dataset

We first extend our analysis of the Snijders dataset from
Section 1 by detecting and inferring about CNVs across
the entire genome of different cell lines. These datasets
are ideal because a ground truth—external karotyping
results—exists from the original study, which we compare
our inferential results against. These cell lines originate
from fibroblast cells and contain over 2000 probemeasure-
ments across all 23 chromosomes.
In our analysis, we use a four-step WBS and perform

marginalized saturated model tests across the genome on
each of the four cell lines (GM02948, GM05296, GM01524,
and GM01750), shown in Figure 3. We precut at chromo-
some boundaries since the ordering of chromosomes 1–23
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F IGURE 4 (A) Bootstrapped residuals added to the artificially constructed mean, generated from chromosome 9 in GM01750. (B): QQ
plot of residuals. The remaining 2 panels show the p-values of saturated model tests under three different noise models, Gaussian (black),
bootstrapped residuals (red) and Laplacian (green). (C): QQ-plot of p-values derived from plain saturated model tests. Exactly valid null p-
values would follow the theoretical 𝑈(0, 1) distribution (i.e., valid Type-I control) while optimistic (superuniform) p-values would lie above
the diagonal (i.e., invalid Type-I control). (D): QQ-plot of p-values derived from our modified bootstrap substitution method that involves
bootstrapping 𝒚 − 𝜽 instead of 𝒚 − �̄�. In Figures B-D, the X axis shows expected quantiles, and Y axis shows theoretical quantiles. Note: this
figure appears in color in the electronic version of this article, and any mention of color refers to that version

is essentially arbitrary, meaning we initialize WBS with
changepoints at the boundaries between chromosomes,
but do not consider these as estimated changepoints. We
test at a significance level 𝛼 = 0.05 after the Bonferroni
correction. This is described in Web Appendix B. We pro-
vide additional details of our analyses in Web Appendix G.
Our results, shown in Figure 3, demonstrate that while

WBS estimates changepoints at various locations across
the genome, the significant changepoints determined by
our inferential tools largely agree with external karotyp-
ing results. For example, in GM02948, external karotyping
results show there is no CNV that occurs within a chromo-
some and, likewise, our inferential results filtered out all
four estimated changepoints. Likewise, in GM05296 and
GM01750, external karotyping match exactly with which
changepoints were deemed as significant, and the remain-
ing changepoints were filtered out. In GM01524, however,

external karotyping results only validates the changepoints
we estimated at chromosome 6. The analysis on these four
cell lines demonstrates that our inferential tools can be
used effectively to filter the changepoints across a wide
range of scenarios.

4.2 Follow-up analysis on Snijders
dataset for impact of heavy tails

While our inferential tools are designed for Gaussian data,
we demonstrate that they can be adapted to handle heavy-
tailed data by bootstrapping the residuals instead of explic-
itly calculating the tail probabilities. For example, we can
observe the heavy-tailed nature in the Snijders dataset
by focusing on chromosome 9 in GM01750 (Figure 4).
A QQ plot of the residuals 𝒓 (computed by taking the
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F IGURE 5 Changepoint inference using saturated model tests for five-step WBS marginalized over random intervals conducted over
various chromosomes. In all the panels, the letters A through E denote the estimated changepoints, 𝑐1 through 𝑐4, respectively. The bolded
gray (or red) horizontal lines denote changepoints that were rejected (or not rejected) under the null hypothesis. The x-axis denotes the relative
index of the genome position (normalized to be between 0 and 1), while the y-axis denotes the measured log2 copy number. (Top two panels):
Analyses for chromosome 5 using sequencing data on the top and aCGH data on the bottom, where a significant changepoint around location
0.25 is shown (A and C, respectively). However, in the aCGH analysis, changepoint E is deemed significant, which does not have a counterpart
in the sequencing analysis. (Bottom two panels): Similar analysis but for chromosome 10, where changepoints A and B are marked significant
between both data sources. These changepoints around location 0.3 is validated by FISH results (Talevich et al., 2016). Note: This figure appears
in color in the electronic version of this article, and any mention of color refers to that version

difference between the observation and themean of its cor-
responding segment) suggests that the noise has heavier
tails than a Gaussian (Figure 4(B)) and are closer in dis-
tribution to a Laplacian. Hence, we design a study based
on pseduo-real datasets with heavy tails derived from
this chromosome to investigate whether or not we can

obtain uniform p-values under the null hypothesis in this
setting.
To design this numerical study,we use the following pro-

cedure to generate pseudo-real datasets. Using the model
𝒚 = 𝜽 + 𝝐 , we add the noise variable 𝜖 in three different
ways:
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(1) Gaussian noise 𝝐 ∼  (𝟎, 𝜎2𝑰𝑛),
(2) Laplace noise 𝝐 ∼ Laplace(𝟎, 𝜎∕

√
2 ⋅ 𝑰𝑛), and

(3) Bootstrapped residuals, 𝝐 = 𝑏(𝒓), where 𝑏(⋅) samples
the residuals 𝒓 with replacement.

To simplify this study, we focus on the behavior of plain
saturated model tests after a three-step BS across all three
types of noises under the null hypothesis𝐻0 ∶ 𝒗𝑇𝜽 = 0.
The empirical distribution of the p-values under the

null hypothesis under the three different noise models are
shown in Figure 4(C). Specifically, while the plain sat-
urated model test yield valid Type-I error control under
Gaussian noise, its Type-I error control under Laplacian
noise and bootstrapped residuals is slightly inflated. We
introduce the following variant of our inferential tools to
resolve this inflation.
Our variant is a modification of the bootstrap substitu-

tion method originally proposed in Tibshirani et al. (2018).
Here, we approximate the law of 𝒗𝑇𝒀 under the null
hypothesis 𝐻0 ∶ 𝒗𝑇𝜽 = 0 with the bootstrapped distribu-
tion of 𝒗𝑇(𝒀 − 𝜽). Specifically, we consider bootstrapping
the residuals, 𝒓 = 𝒚 − 𝜽, where 𝜽 is a piecewise constant
estimate of 𝜽. Here, we use a 𝑘-step BS model to estimate
𝜽, where we choose 𝑘 using twofold cross validation from
a twofold split of the data 𝒚 into odd and even indices.
Finally, we compute the p-value using Equation (8), but
use the empirical CDF with respect to the bootstrapped
values 𝒗𝑇𝒓 instead of the Gaussian CDF Φ(⋅). For our
dataset, while this procedure is not valid in general and
should be used with caution, these potential downsides do
not seem to come to fruition in practice. Importantly, for
our analysis derived from chromosome 9 in GM01750, the
resulting p-values using this bootstrapped variant under
any of the three noise models are convincingly uniform
(Figure 4(D)). We provide results in Web Appendix G.

4.3 Analysis on Botton dataset

While the above analysis were focused on aCGH data,
we now show that our inferential tools can also be used
in sequencing data used to study CNV if appropriately
preprocessed. This is important to verify, as the technical
noise of sequencing data without suitable preprocessing
is vastly different from the technical noise of microarray
data. Specifically, we investigate our inferential tools’
performance on sequencing data collected in Botton et al.
(2013), which was preprocessed using CNVkit (Talevich
et al., 2016), a recent codebase designed to analyze CNV
from sequencing data. This sequencing data is derived
from the C0902 melanoma cell line and has over 27,000
measurements across the entire genome. We choose this
dataset in particular since we also have an external aCGH
dataset of the same cell line, with comparable locations

along the genome. Hence, we can see whether or not our
inferential tools behave similarly between sequencing and
aCGH data. We defer our preprocessing details performed
by CNVkit to Web Appendix G.
The results, shown in Figure 5, demonstrate that while

the estimated changepoints based on aCGH or sequencing
data can differ dramatically, the significant changepoints
determined by our inferential tools are largely the same.
Specifically, we focus on chromosomes 5 and 10 and apply
a five-stepWBS followed by marginalized saturated model
tests. In chromosome 5, the changepoint around location
0.25 is deemed significant in both aCGH and sequenc-
ing data, and many of the other estimated changepoints
that disagree between both data sources are filtered out.
In chromosome 10, the changepoints around location 0.3
is deemed significant in both aCGH and sequencing data,
and in this case, Talevich et al. (2016) perform fluorescence
in situ hybridization (FISH) experiments that additionally
reveal there is a true CNV at this location. Overall, we note
that since these two data sources are different, we should
not expect the significant changepoints to exactly match in
general. However, as we have demonstrated, our inferen-
tial tools filter changepoints in a way that is largely stable
across multiple data sources.

5 CONCLUSION

In this article, we have developed methods to perform
valid post-selection inference for changepoint algorithms
and applied them to CNV analyses. Through simulations,
we have shown our inferential tools have higher power
than competing methods. Through our applications on
aCGH and sequencing data, we have shown that our
inferential tools are beneficial for filtering changepoints.
However, changepoint detection is a rapidly evolving field,
and this article provides a blueprint on how to perform
post-selection inference for newer methods.
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