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Supplementary Materials

A Appendix summary

The code to perform estimation as well as saturated model tests are in https://github.

com/robohyun66/binseginf, while the code to perform selected model tests are addition-

ally in https://github.com/linnyKos/selectiveModel. The datasets in this article were

obtained from the following places: for the Snijder analysis (Section 4.1), we used the

data directly from the GLAD Bioconductor package (https://www.bioconductor.org/

packages/release/bioc/html/GLAD.html), and for the Botton analysis (Section 4.3), we

used the aCGH data directly from the CNVkit example GitHub package (https://github.

com/etal/cnvkit-examples) while we preprocessed the BAM files in the same package

using the CNVkit software (https://github.com/etal/cnvkit) to obtain the sequencing

data, using the steps outlined in the CNVkit example package.

The following is a brief summary of the supporting information.

Appendix B contains a concise summary of the all the practicalities and extensions of our

inferential tools mentioned in the main text. Appendix C reviews circular binary segmenta-

tion (CBS) and fused lasso (FL) and provides analogous results of the polyhedron (which is

novel for CBS, and is a review of existing results from Hyun et al. (2018) for FL). Appendix

D contains the algorithmic details for the selected model test sampler in the known and

unknown σ2 setting, as well as details for the marginalized variants of the saturated model

tests. Appendix E contains numerous simulations results and details, including more details

of our simulation demonstrating that our inferential tools has more unconditional power

than sample splitting in Section 3.4. Appendix F contains a description of the procedure to

choose k adaptively and its corresponding simulation results. Appendix G contains additional

results on our CNV applications. Appendix H contains the proofs to our theoretical results.

https://github.com/robohyun66/binseginf
https://github.com/robohyun66/binseginf
https://github.com/linnyKos/selectiveModel
https://www.bioconductor.org/packages/release/bioc/html/GLAD.html
https://www.bioconductor.org/packages/release/bioc/html/GLAD.html
https://github.com/etal/cnvkit-examples
https://github.com/etal/cnvkit-examples
https://github.com/etal/cnvkit
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B Practicalities and extensions

The sections in the main text formalize the mechanisms to perform post-selective inference

with respect to the basic procedure highlighted in Section 1. However, as we’ve alluded to in

the main text, especially in the applications in Section 4, there are many choices and variants

the researcher can choose from which can affect the results in practice. To ease researchers

into using our inferential tools, we summarize all the combination of choices mentioned in

this work that the user faces based on the methods developed in the above sections and their

practical impact.

B.1 Practical considerations. There are some practical choices that the user needs to

make when implementing the procedure. Here, we summarize these choice, as alluded to in

Section 1.

• Algorithm (BS, WBS, CBS and FL): FL and BS have similar mechansims, but BS

has a simpler mechanism and a less complex selection event, potentially giving higher

post-selection conditional power. CBS is specialized for pairs of changepoints, and WBS

specializes in localized changepoint detection compared to BS, but both have higher

computational burden due to their more complex polyhedra.

• Conditioning (Plain or marginalized): Marginalizing over a source of randomness yields

tests with higher power than plain inference, but at two costs: increased computational

burden due to MCMC sampling being required, and worsened detection ability when using

additive noise marginalization. Also, the marginalized p-values are subject to the sampling

randomness, and the number of trials T needed to reduce the p-values’ intrinsic variability

scales with σ2
add.

• Number of estimated changepoints k (Fixed or data-driven): As currently de-

scribed in Section 2.1, we described methods to find a fixed number of changepoints k.

However, we can adopt stopping rules from Hyun et al. (2018) to adaptively choose k.
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This increases the complexity of the polyhedra compared to those in Section 3.1, leading

to lower statistical power than its fixed-k counterpart. This is shown in Appendix F.

• Assumed null model (Saturated or selected): As mentioned in Section 2.2, selected

model tests are valid under a stricter set of assumptions but often yield higher power.

Computationally, saturated model tests are often simpler to perform than selected model

tests due to the closed form expression of the tail probability.

• Error variance σ2 (Known or unknown): Saturated model tests require σ2 to be

known. In practice, we need to estimate it in-sample from a reasonable changepoint mean

fitted to the same data, or estimated out-of-sample on left-out data. Selected model tests

have the advantage of not requiring knowledge of σ2, but require a larger computational

burden, as mentioned in Section 3.2.

B.2 Extensions. As mentioned in Hyun et al. (2018), there are many practically-motivated

extensions to the baseline procedure mentioned in Section 1 to either improve power or

interpretability. We highlight these below. All of these extensions will still give proper Type-

I error control under the appropriate null hypotheses.

• Designing linear contrasts: The user can make many types of contrast vectors v to

fit their analysis, in addition to the segment test contrasts (2), as long as it measurable

with respect to M(yobs). One example is the spike test from (Hyun et al., 2018) of single

location mean changes. For CNV analysis, it could be useful to test regions between an

adjacent pair of changepoints away from the immediately surrounding regions. Also, a

step-sign plot (a plot that shows the locations and direction of the changepoints, but not

their magnitude) can help the user design contrasts (Hyun et al., 2018).

• Post-processing the estimated changepoints (Decluttering and screening): Mul-

tiple detected changepoints too close to one another can hurt the power of segment tests.

Post-processing the estimated changepoints based on decluttering (Hyun et al., 2018) or
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screening (Lin et al., 2017) so the new set of changepoints are well-separated can lead to

contrasts that yield higher power. We show empirical evidence of this improving power of

the fused lasso, in Appendix E.7.

• Pre-cutting: We can also modify all the algorithms in Section 2.1 to start with an initial

existing set of changepoints. This is useful in CGH analyses, when it is not meaningful to

consider segments that start in one chromosome and end in another. By pooling information

in this manner from separate chromosomal regions, the pre-cut analysis is an improvement

over conducting separate analyses in individual chromosomes.

C Circular binary segmentation and fused lasso

Below, we review circular binary segmentation (CBS) and fused lasso (FL), as well as the

analogous results for their respective polyhedra Γ. To clarify, our results for CBS are novel,

but our results for FL are taken directly from Hyun et al. (2018). We also include more

discussion between all four methods – BS, WBS, CBS and FL.

We additionally note that all the algorithms we mention in our article is sometimes written

differently in other changepoint work. Specifically, these algorithms (BS, WBS, and CBS)

are sometimes described in the literature as recursively running until internally calculated

statistics do not exceed a given threshold level τ . The reason that we choose to instead

describe them as running until k steps is two-fold. First, we feel it is easier for a user to

specify a priori a reasonable number of steps k, versus a threshold level τ . Second, we can

use the method in Hyun et al. (2018) to adaptively choose the number of steps k and still

perform valid inferences.

C.1 Methods. The following descriptions are a continuation of the discussions in Sec-

tion 2.1.

Circular binary segmentation (CBS). The k-step CBS algorithm (Olshen et al.,

2004) specializes in detecting pairs of changepoints that have alternating directions. At a
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step ` = 1, . . . , k, let â1:(`−1), b̂1:(`−1) be the changepoints estimated so far (with the pair aj,

bj estimated at step j), and let Ij, j = 1, . . . , 2`+1 be the associated partition of {1, . . . , n}.

Intervals of length 2 are discarded. Let sj and ej denote the start and end index of Ij. The

next changepoint pair â` and b̂`, and the maximizing interval index ĵ`, are found by{
ĵ`, â`, b̂`

}
= argmax

j∈{1,...,2(`−1)+1)}
a,b∈{sj ,...,ej−1} : a<b

∣∣gT(sj ,a,b,ej)y∣∣ where (1)

gT(s,a,b,e)y =

√
1

1
|b−a| + 1

|e−s−b+a|

(
y(a+1):b − y{s:a}∪{(b+1):e}

)
. (2)

As before, the new changepoint direction d̂` is defined based on the sign of the (modified)

CUSUM statistic, d̂` = sign(gT(sj ,a`+1,b`+1,ej)
y) for j = ĵ`+1(y).

Fused lasso (FL). The fused lasso estimator is defined by solving the convex optimiza-

tion problem,

min
θ∈Rn

n∑
i=1

(yi − θi)2 + λ
n−1∑
i=1

|θi − θi+1|, (3)

for a tuning parameter λ > 0. The fused lasso can be seen as a k-step algorithm by sweeping

the tuning parameter from λ =∞ down to λ = 0. Then, at given values of λ (called knots),

the FL estimator sequentially introduces an additional changepoint into the solution of (3).

See Hyun et al. (2018) for a more in-depth description.

C.2 Polyhedral selection events for CBS and FL. The following descriptions are a con-

tinuation of the discussions in Section 3.1. We prove the polyhedral selection event for CBS

below, as well as review the existing result about the polyhedral selection event for FL.

Selection event for CBS. We define the model for the k-step CBS estimator as

MCBS
1:k (yobs) =

{
â1:k(yobs), b̂1:k(yobs), d̂1:k(yobs)

}
,

where now â1:k(yobs) and b̂1:k(yobs) are the pairs of estimated changepoint locations, and

d̂1:k(yobs) are the changepoint directions, as described in Section 2.1.

Proposition 1: Given any fixed k > 1 and {a1:k, b1:k,d1:k}, we can explicitly construct
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Γ where {
y : MCBS

1:k (y,w) = {a1:k, b1:k,d1:k}
}

=
{
y : Γy > 0

}
.

Let I
(`)
j denote the jth interval of B(`) intervals remaining for an intermediate step ` ∈

{1, . . . , k}, and let C(x, 2) =
(
x
2

)
. Then Γ has a number of rows equal to

2
k∑
`=1

{ B(`)∑
j=1

C(|I(`)j | − 1, 2)− 1
}
.

Selection events for FL, and a brief comparison. The model for the k-step FL

estimator is

MFL
1:k (yobs) =

{
b̂1:k(yobs), d̂1:k(yobs), R̂1:k(yobs)

}
,

where b̂1:k(y) and d̂1:k(y) are changepoint locations and directions, and R̂`(y) ∈ Rn−` for

` = 1, . . . , k whose elements represent signs of a certain statistic hi(y) calculated at location

i in competition for maximization with b̂` at step `. These statistics hi(y) are weighted mean

differences at location i and are analogous to CUSUM statistics in BS. Hyun et al. (2018)

makes this representation more explicit, proving that for any fixed k > 1 and b1:k,d1:k,R1:k,

we can explicitly construct Γ such that{
y : MFL

1:k (y) = {b1:k,d1:k,R1:k}
}

= {y : Γy > 0},

where Γ has the same number of rows as a k-step BS event.

D Additional algorithmic details

In this section, we describe additional algorithmic details for selected model tests (from

Section 3.2) and marginalized saturated tests (from Section 3.3).

D.1 Selected model tests, hit-and-run sampling for known σ2. The following is the hit-

and-run sampler to estimate the tail probability of the law of (5). This is for the known σ2

setting, which differs from the setting described in the main text in Section 3.2. This was

briefly described in Fithian et al. (2015) but the authors have later implemented it in ways not
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originally described in the above works to make it more efficient. We do not claim novelty

for the following algorithm, but simply state it for completion. The original code can be

found the repository https://github.com/selective-inference, and we reimplemented

it to suite our coding framework and simulation setup.

We specialize our description to test the null hypothesis H0 : vTj θ = 0 against the one-

sided alternative H1 : vTj θ > 0. There are some notation to clarify prior to describing the

algorithm. Let vj ∈ Rn denote the vector such that

vTj y = yIj+1
− yIj .

Let A ∈ Rk×n denote the matrix such that the last k equations in the above display are

satisfied if and only if AY = Ayobs. Based on Section 3.1, observe that our goal reduces to

sampling from the n-dimensional distribution

Y ∼ N (0, σ2In), conditioned on ΓY > 0, AY = Ayobs. (4)

where In is the n × n identity matrix. (Observe that we can set the mean of the above

Gaussian distribution to any vector θ as long as θ satisfies the null hypothesis. We choose

θ = 0 for convenience here.)

The first stage of the algorithm removes the nullspace ofA in the following sense. Construct

any matrix B ∈ Rn×n such that it has full rank and the last k rows are equal to A. Then,

consider the following n-dimensional distribution.

Y ′ ∼ N (0, σ2BTB), conditioned on ΓB−1Y ′ > 0, (Y ′)(n−k+1):n = Ayobs. (5)

Note thatB−1Y ′ has the same law as (8). Observe that the above distribution is a conditional

Gaussian, meaning we can remove the last conditioning event. Towards that end, let Γ′′

denote the first n− k columns of the matrix ΓB−1, and let u′′ denote the last k columns of

ΓB−1 left-multiplying Ayobs. Also, consider the following partitioning of the matrix BTB,

σ2 ·BTB =

B11 B12

BT
12 B22

 ,

https://github.com/selective-inference
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where B11 is a (n − k) × (n − k) submatrix, B12 is a (n − k) × k submatrix, and B22 is a

k × k submatrix. Then, consider the following n− k-dimensional distribution.

Y ′′ ∼ N
(
B12B

−1
22 (Ayobs), B11 −B12B

−1
22B

T
12

)
, conditioned on Γ′′Y ′′ > −u′′. (6)

Note that Y ′′ has the same law as the first n− k coordinates of (5).

The next stage of the algorithm whitens the above distribution so its covariance is the

identity. Let µ′′ and Σ′′ denote the mean and variance of the unconditional form of the

above distribution (6). Let Θ be the matrix such that ΘΣ′′ΘT = In. This must exist since

Σ′′ is positive definite. Consider the following n− k dimensional distribution,

Z ∼ N (0, In), conditioned on Γ′′Θ−1Z > −u′′ − Γ′′µ′′. (7)

Note that Θ−1Z +µ′′ has the same law as (6). Hence, we have constructed linear mappings

F and G between (8) and (7) such that F (Y )
d
= Z, and G(Z)

d
= Y (i.e., have the same

distribution).

In order to set up a hit-and-run sampler, generate p unit vectors g1, . . . , gp. (The choice

of p is arbitrary, and the specific method of generating these p vectors is also arbitrary.)

Our hit-and-run sampler will move in the linear directions dictated by g1, . . . , gp. We are

now ready to describe the hit-and-run sampler in Algorithm 1, which leverages many of the

same calculations in (8) and (9) (from Section 3.2). The similarity arises since conditional

slices of a multivariate Gaussian still yield Gaussian distributions (loosely speaking), and

Π⊥gi(Z + gi) = Π⊥giZ (by definition of projections).

The computational efficiency of Algorithm 1 comes from the fact that very few multipli-

cation operations need to be done with the polyhedron matrix Γ′′Θ−1, a potentially huge

matrix. U and ρ1, . . . ,ρp (each vectors of the same length to be defined in the algorithm

below) carry all the information needed about polyhedron throughout the entire procedure

of generating M samples.
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Algorithm 1: MCMC hit-and-run algorithm for selected model test with known σ2

Choose a number M of iterations.

Set z(0) = F (yobs), as described in the text.

Generate p unit directions g1, . . . , gp, each vector of length n.

Compute U = Γ′′Θ−1z(0) + u′′ + Γ′′µ′′, which represents the “slack” of each

constraint.

Compute the p vectors, ρi = Γ′′Θ−1gi for i ∈ {1, . . . , p}.

for m ∈ {1, . . . ,M} do

Select an index i uniformly from 1 to p.

Compute the truncation bounds

Vlo = gTi z
(m−1) − min

j:(ρi)j>0
Uj/(ρi)j, and Vup = gTi z

(m−1) − max
j:(ρi)j<0

Uj/(ρi)j.

Sample α(m) from a Gaussian with mean gTi z
(m−1) and variance 1, truncated to lie

between Vlo and Vup.

Form the next sample

z(m) = z(m−1) +α(m)gi, and y(m) = G(z(m)).

Update the slack variable,

U ← U +α(m)ρi.

Return the approximate for the tail probability of (6),
∑M

m=1 1[vTy(m) > vTyobs]/M.

D.2 Selected model tests, hit-and-run sampling for unknown σ2. Below in Algorithm 2,

we explicitly describe the hit-and-run sampler we developed to perform selected model tests

for unknown σ2, described in Section 3.2. Similar to the previous subsection, for notational

convenience, observe that the last k constraints in (10) can be rewritten asAY = Ay(obs) for

some matrix A ∈ Rk×n. Recall that our goal in this setting is to sample from the distribution

Y ∼ N (0, In), conditioned on ΓY > 0, AY = Ayobs, ‖Y ‖2 = ‖yobs‖2. (8)
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Similar to the above subsection, observe that the mean vector θ of the Gaussian distribution

is arbitrary as long as the null hypothesis is satisfied (and hence we denote θ = 0 for

convenience) and the covariance matrix Σ of the Gaussian distribution is also arbitrary

as long as it is a diagonal matrix since we are conditioning on the event ‖Y ‖2 = ‖yobs‖2

(and hence we denote Σ = In for convenience). As described in the paper, since we are

conditioning on all the sufficient statistics under the null hypothesis, sampling from the

above distribution is equivalent to sampling uniformly from the set

{
Y : ΓY > 0, AY = Ayobs, ‖Y ‖2 = ‖yobs‖2

}
,

which is the goal of the hit-and-run sampler below.

Algorithm 2: MCMC hit-and-run algorithm for selected model test with unknown

σ2

Choose a number M of iterations and set y(0) = yobs.

for m ∈ {1, . . . ,M} do

Uniformly sample two unit vectors s and t in the nullspace of A.

Compute the set I ⊆ [−π/2, π/2] that intersects the set{
y : y = y(m−1) + r(ω) sin(ω) · s+ r(ω) cos(ω) · t for any ω ∈ [−π/2, π/2]

}
,

for the radius function r(ω) = −2(y(m−1))T (sin(ω) · s+ cos(ω) · t), with the

polyhedral set implied by model selection event,{
y : Γy > 0

}
.

Uniformly sample ω(m) from I and form the next sample

y(m) = y(m−1) + r(ω(m)) sin(ω(m)) · s+ r(ω) cos(ω(m)) · t.
Return the approximate for the tail probability of (7),

∑M
m=1 1[vTy(m) > vTyobs]/M.

Observe that the set I in each iteration of the above algorithm can be a disjoint set of

closed intervals in [−π/2, π/2].
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D.3 Marginalization over additive noise or over WBS intervals. In this section, we ex-

plicitly describe the algorithms to perform marginalized saturated model tests developed in

Section 3.3. The two methods, marginalization over additive noise or over WBS intervals,

are strikingly similar. In this section, we use the notation in Section 3.3, where

k(wobs) = Φ
(
Vup/τ

)
− Φ

(
vTyobs/τ

)
g(wobs) = Φ

(
Vup/τ

)
− Φ

(
Vlo/τ

)
,

and in this marginalized setting,

Vlo = vT
(
yobs +wobs

)
− min

j:ρj>0

{
Γ(yobs +wobs

}
j
/ρj,

Vup = vT
(
yobs +wobs

)
− max

j:ρj<0

{
Γ(yobs +wobs)

}
j
/ρj,

and τ = σ2‖v‖22 and ρ = Γv/‖v‖22.

First, in Algorithm 3, we describe the saturated model tests, marginalized over additive

noise.

Algorithm 3: Marginalizing over additive noise

Choose a number T of trials.

for t ∈ {1, . . . , T} do

Sample the additive noise wj from N (0, σ2
addIn).

Compute k(wt) and g(wt).

Return the approximate for the tail probability (12),
∑T

t=1 k(wt)/
∑T

t=1 g(wt).

Next, in Algorithm 4, describe the saturated model tests, marginalized over WBS intervals.
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Algorithm 4: Marginalizing over random intervals

Choose a number T of trials.

for t ∈ {1, . . . , T} do

Sample the non-maximizing intervals w` = (s`, . . . , e`) for ` ∈ {1, . . . , B}\{ĵ1:k}

where s`, e` are uniformly drawn from 1 to n and s` < e`.

Check to see that {ĵ1:k} are still the indices of the maximizing intervals. If not,

return to the previous step.

Compute k(wt) and g(wt).

Return the approximate for the tail probability (12),
∑T

t=1 k(wt)/
∑T

t=1 g(wt).

E Simulations

In this section, we show simulation examples to demonstrate properties of the segmentation

post-selection inference tools presented in the current article.

E.1 Data generating process. Let the mean θ consist of two alternating-direction change-

points of size δ in the middle as in (9), chosen to be a realistic example of mutation phenomena

as observed in aCGH datasets (Snijders et al., 2001). Specifically, let the sample size be set

to be n = 200, chosen to be in the scale of the chromosomal data. Then, we model this using

the equation below,

Middle mutation: for i ∈ 1, . . . , n : yi ∼ N (θi, 1), θi =


δ if 101 6 i 6 140

0 if otherwise,

(9)

for the signal size δ ∈ {0, 0.25, 0.5, 1, 2, 4} with noise level σ2 = 1.

E.2 Methodology. In the following simulations, we consider the following four estimators

(BS, WBS, CBS and FL), each run for two steps. We perform saturated model tests on

each estimator, but only perform selected model tests on BS and FL for simplicity, for both

known and unknown noise parameter σ2. We use the basis procedure outlined in Section 1

with a significance level of α = 0.05. Throughout the entire simulation suite, the empirical
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standard deviation in each of the power curves and detection probabilities is less than 0.02.

For each method, for each signal-to-noise size δ, we run more than 250 trials.

E.3 Type-I error control verification. First, we examine all our statistical inferences under

the global null where θ = 0 to demonstrate their validity – uniformity of null p-values, or

type I error control. Specifically, any simulations from the no-signal regime δ = 0 from

the middle mutation (9) can be used. When there is no signal, the null scenario vTθ = 0

is always true so we expect all p-value to be uniformly distributed between 0 and 1. We

verify this expected behavior in Figure 7. We notice that the methods that require MCMC

(marginalized saturated and selected model tests) requires more trials to converge towards

the uniform distribution compared to their counterparts that have exact calculations.

[Figure 1 about here.]

E.4 Calculating power. After verifying that our inferential tools have valid Type-I control,

we now want to investigate their power – how often they correctly deem an estimated

changepoint as significant when it is near a true changepoint. Since the tests are performed

only when a changepoint is selected, it is necessary to separate the detection ability of the

estimator from power of the test. To this end, we define the following quantities,

Conditional power =
# correctly detected & rejected

# correctly detected
(10)

Detection probability =
# correctly detected

# tests conducted
(11)

Unconditional power = Detection× Conditional power (12)

The overall power of an inference tool can only be assessed by examining the conditional

and unconditional power together. We consider a detection to be correct if it is within ±2

of the true changepoint locations.
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E.5 Power comparison across signal sizes δ. For saturated model tests, we perform

additive-noise inferences using Gaussian N (0, σ2
add) with σadd = 0.2 for BS, FL, and CBS.

For WBS, we employ the randomization scheme as described in Section 3.3 with B = n.

With the metrics in (11)-(12), we examine the performance of the four methods. The solid

lines in Figure 8 show the “plain” method where model selection based on M(yobs). The

dotted lines show the marginalized counterparts where the model selection is M(yobs,W ),

margnialized over W .

We see in Figure 8 that WBS and CBS have higher conditional and unconditional power

than BS. This is expected since the former two are more adept for localized change-points

of alternating directions. FL noticeably under-performs in power compared to segmentation

methods. This is partially caused by FL’s detection behavior, and can be explained by exam-

ining alternative measures of detection and improved with post-processing. This investigation

is deferred to Appendix E.7. The marginalized versions of each algorithm have noticeably

improved power, but almost unnoticeably worse detection than their non-randomized, plain

versions (middle panel of Figure 8). Combined, in terms of unconditional power, marginalized

inferences clearly dominate their plain counterparts.

Selected model inference simulations are shown in Figure 9. Surprisingly, there is an almost

inconceivable drop in power from unknown σ2 to known σ2. Compared to the saturated model

tests in Figure 8, there is smaller power gap between FL and BS. Also, selected model tests

appear to have higher power than saturated model tests. In general however, it is hard to

compare the power of saturated and selected models due to the clear difference in model

assumptions.

[Figure 2 about here.]

[Figure 3 about here.]
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E.6 More details about sample splitting. Here, we discuss the details used to generate

Figure 2. As mentioned in the main text, sample splitting is another valid inference technique.

After splitting the dataset in half based on even and odd indices, we run a changepoint

algorithm on one dataset and conduct classical one-sided t-test on the other. This is the

most comparable test, as it does not assume σ2 is known and conducts a one-sided test of

the null H0 : vTθ = 0. Instead of ±2 slack used for calculating detection in post-selective

inference (dotted and dashed lines), ±1 was used for sample splitting inference (solid line).

The loss in detection accuracy in the middle panel of Figure 2 shows the downside of halving

data size for detection. Unconditional power for marginalized saturated model tests and

selected model tests are noticeably higher than the other two.

We note that the results in Figure 2 were based on approximate detection. This choice of

approximate detection is somewhat arbitrary, and it is informative to see if the results would

change if we considered only exact detection. We can see from Figure 10 that randomized

TG p-values have comparable power with sample splitting inferences, among tests that are

regarding exactly the right changepoints.

[Figure 4 about here.]

E.7 Power comparison using unique detection. FL was appeared to have a large drop

in power compared to segmentation algorithms. In addition to these three measures shown

in Appendix E.4, for multiple changepoint problems like middle mutations it is useful to

measure performance using an alternative measure of detection called unique detection. This

is useful because some algorithms – mainly FL, but to also BS to some extent, primarily

in later steps – admit “clumps” of nearby points. If this clumped detection pattern occurs

in early steps, the algorithm requires more steps than others to fully admit the correct

changepoints. In this case, detection alone is not an adequate metric, and unique detection
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can be used in place.

Unique detection probability =
#changepoints which were approximately detected

#number of true changepoints.
(13)

In plain words, unique detection is measuring how many of the true changepoint locations

have been approximately recovered.

We present a simple case study. In addition to a 2-step FL, imagine using a 3-step FL, but

with post-processing. For post-processing, declutter by centroid clustering with maximum

distance of 2, and test the k0 < 3 changepoints, pitting the resulting segment test p-values

against 0.05/k0. A 2-step FL’s detection does not reach 1 even at high signals (δ = 4) because

of the aforementioned clumped detection behavior. The resulting segment tests are also not

powerful, since the segment test contrast vectors consist of left and right segments which

do not closely resemble true underlying piecewise constant segments in the data. However,

when detection is replaced with unique detection, two things are noticeable. First, decluttered

FL’s detection performance is noticeably improved when going from 2 to 3 steps. Also, when

unconditional power is calculated using unique detection, BS does not have as large of an

advantage over the the several variants of fused lasso. This is shown in Figure 11. We see

from the right figure (compared to the left) that the a “decluttered” version of 2- or 3-step

FL has much closer unconditional power to BS.

[Figure 5 about here.]

E.8 Power comparison with different mean shape. The synthetic mean discussed here

consists of a single upward changepoint piece-wise constant mean, as shown in (14) and

Figure 12 (right). This is chosen to be another realistic example of the mutation phenomenon

as observed in aCGH datasets from Snijders et al. (2001), in addition to the case shown in

the main text. We focus on the duplication mutation scenario, but the results apply similarly

to deletions. As before, the sample size n = 200 was chosen to be in the scale of the data

length in a typical aCGH dataset in a single chromosome. For saturated model tests, WBS



Post-selection inference for changepoint detection 17

no longer outperforms BS in power. This is expected since there is only a single changepoint

not accompanied by opposing-direction changepoints.

Edge mutation: yi ∼ N (θi, 1), θi =


δ if 161 6 i 6 200

0 if otherwise

(14)

[Figure 6 about here.]

[Figure 7 about here.]

F Model size selection using information criteria – choosing k adaptively

Throughout the article we assume that the number of algorithm steps k is fixed. Hyun

et al. (2018) introduces a stopping rule based on information criteria (IC) which can be

characterized as a polyhedral selection event. The IC for the sequence of models M1:`, for

` = 1, . . . , n− 1 is

J(M1:`) = ‖y − ŷM1:`(y)
‖22 + p

(
M1:`(y)

)
. (15)

We omit the dependency on y when obvious. We use the BIC complexity penalty p(Mk) =

σ2 · k · log(n) for this article. Also define S`(y) = sign
(
J(M1:`)− J(M1:(`−1))

)
to be the sign

of the difference in IC between step `− 1 and `. This is a +1 for a rise and −1 for a decline.

A data-dependent stopping rule k̂ is defined as

k̂(y) = min{k : Sk(y) = Sk+1(y) = . . . = Sk+q(y) = 1} (16)

which is a local minimization of IC, defined as the first time q consecutive rises occur. As

discussed in Hyun et al. (2018), q = 2 is a reasonable choice for the changepoint detection. To

carry out valid post-selective inference, we condition on the selection event 1[S1:(k+q)(y) =

S1:(k+q)(yobs)], which is enough to determine k̂. A k-step model for k chosen by (16) can

be understood to be M1:k̂(Y ) = M1:k(yobs). The corresponding selection event PM
1:k̂

is with

the additional halfspaces, as outlined in Hyun et al. (2018). Simulations in Figure 14 show
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that introducing IC stopping is valid, by controlled type-I error, but comes at the cost of

considerable power loss.

[Figure 8 about here.]

G Additional results to CNV analyses in Section 4

G.1 Additional details to Snijders analysis in Section 4.1. In this section, we provide

additional details associated with results in Section 4.1. As part of the preprocessing, we also

remove single outliers which are at least three standard deviations away from its surrounding

points. Afterwards, we set σ2 for all the saturated model tests in that section for a particular

cell line by computing the empirical variance after fitting a pre-cut 10-step WBS across said

cell line.

G.2 Additional details and results to follow-up analysis of Snijders dataset in Section 4.2.

In this section, we provide additional details and results associated with the heavy-tail study

performed in Section 4.2. Throughout all the simulations in that section, we set σ2 for all

the saturated model tests by computing the empirical variance after fitting a pre-cut 10-step

WBS across the entire cell line GM01750.

We had mentioned the bootstrap substitution method proposed by Tibshirani et al. (2018)

in Section 4.2, and we contrast the performance of our bootstrapped variant (shown in

Figure 4D) to the variant originally proposed in Tibshirani et al. (2018). First, let β denote

θ, the grand mean of θ (i.e., a 0-changepoint model). Then, the main idea in Tibshirani et al.

(2018) is to approximate the law of vTY used to construct the TG statistic (8) with the

bootstrapped distribution of vT (Y −β) by bootstrapping the residuals, y− y ·1n. Here, the

empirical grand mean y ·1n represents the simplest model with no changepoints for a length-

n vector. While this estimate will usually ensure the resulting p-values has valid Type-I error

control, we see that it produces overly conservative p-values in practice if there exist any
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changepoints (Figure 15). Hence, as mentioned in Section 4.2, we suggest researchers to use

the bootstrapping variant we proposed over the original method in Tibshirani et al. (2018),

since it yields more powerful p-values and does not seem to violate the Type-I error control

in practice.

[Figure 9 about here.]

G.3 Additional details of Botton analysis in Section 4.3. In this section, we provide addi-

tional details associated with the results in Section 4.3. The data for these analyses originated

from https://github.com/etal/cnvkit-examples, the GitHub repository associated with

Talevich et al. (2016). In our experience, our inferential tools work well on sequencing data

as long as it is appropriately preprocessed. Specifically, we preprocessed our sequencing

data using CNVkit according to the scripts within the CNVkit GitHub repository, which

converts the BAM file containing the counts into the desired log2 copy number ratio, and

applies sophisticated processing to correct for coverage biases. We then additionally filtered

out outliers based on whether or not a particular data point lied outside of 1.5 times the

interquantile range (IQR) of the median within a local window. This is done, as suggested

by the documentation to the CNVkit pipeline. Since the resulting aCGH data is originally

more than 7 times the length of the sequencing data (in terms of the number of probes

used), we performed a down-sampling on the aCGH data by averaging each non-overlapping

consecutive set of log2 values from 7 probes into one log2 value. This ensured that the

number of samples for each chromosome was roughly comparable between sequencing and

aCGH datasets. To use our inferential tools, we set σ2 for all analyses on sequencing data by

computing the standard deviation of the residuals after fitting a 5-step WBS model on each

chromosome aside from chromosome 5 and 10. Similarly, we set σ2 for all analyses on aCGH

data by computing the standard deviation of the residuals after fitting a 0-changepoint model

on each chromosome aside from chromosome 5 and 10. We used a 0-changepoint model for

https://github.com/etal/cnvkit-examples
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the aCGH data since our diagnostics (similar to those done in Section 4.2) showed that

the results were slightly heavy-tailed. Hence, as discussed in Appendix G.2, by fitting a

0-changepoint model, this empirically retains the Type-I error control at the cost of more

conservative inference.

H Proofs of results

H.1 Proof of Proposition 1, (BS).

Proof. When k = 1, 2(n− 2) linear inequalities characterize the single changepoint model

{b1, d1}:

d1 · gT(1,b1,n)y > gT(1,b,n)y, and d1 · gT(1,b1,n)y > −gT(1,b,n)y, b ∈ {1, . . . , n− 1}\{b1}.

Now by induction, assume we have constructed a polyhedral representation of the selection

event up through step k−1. All that remains is to characterize the kth estimated changepoint

and direction {bk, dk} by inequalities that are linear in y. This can be done with 2(n−k−1)

inequalities. To see this, assume without a loss of generality that the maximizing interval is

jk = k; then {bk, dk} must satisfy the 2(|Ik| − 2) inequalities

dk · gT(sk,bk,ek)y > gT(sk,b,ek)y and dk · gT(sk,bk,ek)y > −gT(sk,b,ek)y, b ∈ {sk, . . . , ek − 1}\{bk}.

For each interval I`, for ` = 1, . . . , k − 1, we also have 2(|I`| − 1) inequalities

dk · gT(sk,bk,ek)y > gT(s`,b,e`)y and dk · gT(sk,bk,ek)y > −gT(s`,b,e`)y, b ∈ {s`, . . . , e` − 1}.

The last two displays together completely determine {bk, dk}, and as
∑k

`=1 |I`| = n, we get

our desired total of 2(n− k − 1) inequalities.

H.2 Proof of Proposition 2, (WBS).

Proof. The construction of Γ is basically the same as that for BS in Proposition 1; the

only difference is that, at step k, the inequalities defining the new rows of Γ are based on the

intervals wjk and w`, ` ∈ Jk\{jk}, instead of Ijk and I`, ` 6= jk, respectively. To compute the
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upper bound on the number of rows m, observe that in step ` ∈ {1, . . . , k}, there are at most

B − ` + 1 intervals remaining. Among these, the interval jk contributes p − 2 inequalities,

and the remaining B − ` intervals contributes p− 1 inequalities.

H.3 Proof of Proposition 1, (CBS).

Proof. The proof follows similarly to the proof of Proposition 1. Observe that for any

k′ < k, the model MCBS
1:k′ (yobs) is strictly contained in the model MCBS

1:k (yobs). Hence, we can

proceed using induction, and let bi for i ∈ {1, . . . , k} denote b̂i for simplicity, and do the

same for ai, di and ji. Let C(x, 2) =
(
x
2

)
for simplicity as well.

For k = 1, the following 2 · (C(n − 1, 2) − 1) inequalities characterize the selection of the

changepoint model {a1, b1, d1},

d1 · gT(1,a1,b1,n)y > gT(1,r,t,n)y, and d1 · gT(1,a1,b1,n)y > −gT(1,r,t,n)y,

for all r, t ∈ {1, . . . , n− 1} where r < t, r 6= a1 and t 6= b1.

By induction, assume we have constructed the polyhedra for the model, MCBS
1:(k−1)(yobs) =

{a1:(k−1), b1:(k−1),d1:(k−1)}. To construct MCBS
1:k (yobs), all that remains is to characterize the

kth parameters {ak, bk, dk}. To do this, assume that jk corresponds with the interval Ik

having the form {sk, . . . , ek}. Within this interval, we form the first 2 · (C(|Ijk | − 1, 2)− 1)

inequalities of the form,

dk · gT(sk,ak,bk,ek)y > gT(sk,r,t,ek)y and dk · gT(sk,ak,bk,ek)y > −gT(sk,r,t,ek)y

for all r, t ∈ {sk, . . . , ek − 1} where r < t and r 6= ak and t 6= bk. The remaining inequalities

originate from the remaining intervals. For each interval I`, for ` ∈ {1, . . . , 2k− 1}\{jk}, let

I` have the form {s`, . . . , e`}. We form the next 2 · C(|I`| − 1, 2) inequalities of the form

dk · gT(sk,ak,bk,ek)y > gT(s`,r,t,e`)y and dk · gT(sk,ak,bk,ek)y > −gT(s`,r,t,e`)y

for all r, t ∈ {s`, . . . , e` − 1} where r < t.

H.4 Proof of Proposition 3, (Marginalization).
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Proof. For concreteness, we write the proof where W represents additive noise, but the

proof generalizes to the setting where W represents random intervals easily. First write

T (yobs,v) as an integral over the joint density of W and Y ,

T (yobs,v) = P (vTY > vTyobs|M(Y +W ) = M(yobs +W ),Π⊥vY = Π⊥v yobs)

=

∫
1(vTy > vTyobs)fW ,Y |E1,E2(w,y)dwdy. (17)

Then the joint density fW ,Y |E1,E2(w,y) partitions into two components, whose latter com-

ponent (a probability mass function) can be rewritten using Bayes rule. For convenience,

denote g(w) = P(E1|W = w, E2).

fW ,Y |E1,E2(w,y)dydw = fY |W=w,E1,E2(y) · fW |E1,E2(w) dy dw

= fY |W=w,E1,E2(y) ·
P(E1|W = w, E2)fW |E2(w)

P(E1|E2)
dy dw

= fY |W=w,E1,E2(y) · g(w)fW (w)∫
g(w′)fW (w′)dw′

dy dw,

where we used the independence between W and E2 in the last equality. With this, T (yobs,v)

from (17) becomes:

T (yobs,v) =

∫
1(vTy > vTyobs) · g(w) ·

fW |E2(w)∫
g(w′)fW (w′)dw′

· fY |W=w,E1,E2(y) dy dw.

Now, rearranging, we get:

T (yobs,v) =

∫ {∫
1(vTy > vTyobs) · fY |W=w,E1,E2(y)dy

}
︸ ︷︷ ︸

T (yobs,v,w)

g(w)∫
g(w′)fW (w′)dw′︸ ︷︷ ︸

a(w)

fW (w)dw

=

∫
T (yobs,v,w)a(w) fW (w) dw. (18)

This proves the first equality in Proposition 3. To show what the weighting factor a(w)

equals, observe that by applying Bayes rule to the numerator of a(wobs), and rearranging:

a(w) =
g(w)∫

g(w′)fW (w′) dw′
=

P(E1|E2,W = w)

P (E1|E2)
=

P(W = w|E1, E2)

P(W = w|E2)

=
P(W = w|E1, E2)

P(W = w)
.

Finally, to show the second equality in Proposition 3, observe that we can also represent
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a(w) as

a(w) =
g(w)

E[g(w)]
(19)

by definition, where the denominator is the expectation taken with respect to the random

variable W . Leveraging the geometric theorems in works like Tibshirani et al. (2018), it can

be shown that

g(w) = P
(
M(Y +W ) = M(yobs +W ) | Π⊥vY = Π⊥v yobs

)
= Φ(Vup/τ)− Φ(Vlo/τ). (20)

Also from the same references as well as stated in Section 3.3, we know that

T (yobs,v,w) =
Φ(Vup/τ)− Φ(vTyobs/τ)

Φ(Vup/τ)− Φ(Vlo/τ)
(21)

Putting (19), (20) and (21) together into (18), we complete the proof by obtaining

T (yobs,v) =

∫
T (yobs,v,w)g(w)fW (w)dw∫

g(w)fW (w)dw
=

∫
Φ(Vup/τ)− Φ(vTyobs/τ)fW (w)dw∫

Φ(Vup/τ)− Φ(Vlo/τ)fW (w)dw
.
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Figure 6: All plots showing the p-values of various statistical inferences under the global null. (Left): Saturated
model tests, specifically BS (black), WBS (blue), CBS (red) and FL (green). (Middle): Marginalized variants of the left
plot. (Right): Selected model tests, specifically BS (black) and FL (green), either with unknown σ2 (solid) or known
σ2 (dashed). Note: this figure appears in color in the electronic version of this article, and any mention of color refers
to that version.
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Figure 7: Data was simulated from two settings over signal size δ ∈ (0, 4) with n = 200 data points. Several
two-step algorithms (WBS, SBS, CBS, FL) were applied, and post-selection segment test inference was conducted on
the resulting two detected changepoints from each method. The dotted lines are the marginalized versions of each test.
Note: this figure appears in color in the electronic version of this article, and any mention of color refers to that
version.
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Figure 8: Setup similar to Figure 8 but for selected model tests. Only BS (black) and FL (green) are shown. but
the selected model test is applied to both known (dashed line) and unknown noise parameter σ2 (solid line). Note: this
figure appears in color in the electronic version of this article, and any mention of color refers to that version.
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Figure 9: The same setup as in Figure 2 but with exact detection. Note: this figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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Figure 11: (Left) Example of simulated Gaussian data for middle mutation as defined in (9) with δ = 4, with data
length n = 200 and noise level σ = 1. The possible mean vectors θ for δ = 0, 1, 2 are also shown. (Right) Analogous
to the left figure, but representing edge mutations defined in (14). Note: this figure appears in color in the electronic
version of this article, and any mention of color refers to that version.



Post-selection inference for changepoint detection 31

po
w

er
s.

m
at

.li
st

[[1
]]

0

0.
25 0.

5 1 2 4

0.
2

0.
4

0.
6

0.
8

1.
0

BS
FL
WBS

Conditional Power

Case 2:
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Figure 12: Same setup as Figure 8 but for edge-mutation data. Note: this figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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Figure 13: Similar setup as Figure 8. In the middle-mutation data example from (9). IC-stopped BS inference (bold
line) is compared to a fixed 2-step BS inference (thin line). We can see that the power and detection are considerably
lower. The average number of steps taken per each δ on x-axis ticks are 1.34, 1.86, 3.02, 3.64, 3.77, 3.72, respectively.



Post-selection inference for changepoint detection 33

QQ plot of the residuals:
Bootstrapping variant
(Tibshirani et. al, 2018)

Figure 14: QQ-plot of p-values derived from the bootstrap substitution method developed in Tibshirani et al.
(2018). These results are presented in a similar fashion to Figure 4 C and D. Note: this figure appears in color in the
electronic version of this article, and any mention of color refers to that version.
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