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Best Subset, Forward Stepwise or Lasso?
Analysis and Recommendations Based on
Extensive Comparisons1

Trevor Hastie, Robert Tibshirani and Ryan Tibshirani

Abstract. In exciting recent work, Bertsimas, King and Mazumder (Ann.
Statist. 44 (2016) 813–852) showed that the classical best subset selection
problem in regression modeling can be formulated as a mixed integer op-
timization (MIO) problem. Using recent advances in MIO algorithms, they
demonstrated that best subset selection can now be solved at much larger
problem sizes than what was thought possible in the statistics community.
They presented empirical comparisons of best subset with other popular vari-
able selection procedures, in particular, the lasso and forward stepwise selec-
tion. Surprisingly (to us), their simulations suggested that best subset consis-
tently outperformed both methods in terms of prediction accuracy. Here, we
present an expanded set of simulations to shed more light on these compar-
isons. The summary is roughly as follows:

• neither best subset nor the lasso uniformly dominate the other, with best
subset generally performing better in very high signal-to-noise (SNR) ratio
regimes, and the lasso better in low SNR regimes;

• for a large proportion of the settings considered, best subset and forward
stepwise perform similarly, but in certain cases in the high SNR regime,
best subset performs better;

• forward stepwise and best subsets tend to yield sparser models (when tuned
on a validation set), especially in the high SNR regime;

• the relaxed lasso (actually, a simplified version of the original relaxed es-
timator defined in Meinshausen (Comput. Statist. Data Anal. 52 (2007)
374–393)) is the overall winner, performing just about as well as the lasso
in low SNR scenarios, and nearly as well as best subset in high SNR sce-
narios.
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1. INTRODUCTION

Best subset selection, forward stepwise selection and
the lasso are popular methods for selection and esti-
mation of the parameters in a linear model. The first
two are classical methods in statistics, dating back to
at least Beale, Kendall and Mann (1967), Hocking and
Leslie (1967) for best subset selection (hereafter “best
subset”) and Efroymson (1966), Draper and Smith (1966)
for forward stepwise selection (hereafter “forward step-
wise”); the lasso is (relatively speaking) more recent,
due to Tibshirani (1996), Chen, Donoho and Saunders
(1998).

Given a response vector Y ∈ Rn, predictor matrix X ∈
Rn×p and a subset size k between 0 and min{n,p}, best
subset finds the k predictors that produces the best fit
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in terms of squared error, solving the nonconvex prob-
lem

(1.1) minimize
β∈Rp

‖Y − Xβ‖2
2 subject to ‖β‖0 ≤ k,

where ‖β‖0 = ∑p
i=1 1{βi �= 0} is the �0 norm of β . (Here

and throughout, for notational simplicity, we omit the in-
tercept term from the regression model.)

Forward stepwise is less ambitious: starting with the
empty model, it iteratively adds the variable that best im-
proves the fit. It hence yields a subset of each size k =
0,1, . . . ,min{n,p}, but none of these are generally glob-
ally optimal in the sense of (1.1) (except the first two, and
the last if n > p). Formally, the procedure starts with an
empty active set A0 = {0}, and for k = 1, . . . ,min{n,p},
selects the variable indexed by

jk = argmin
j /∈Ak−1

‖Y − PAk−1∪{jk}Y‖2
2

= argmax
j /∈Ak−1

XT
j P ⊥

Ak−1
Y

‖P ⊥
Ak−1

Xj‖2

(1.2)

that leads to the lowest squared error when added to Ak−1,
or equivalently, such that Xjk

, achieves the maximum ab-
solute correlation with Y , after we project out the contri-
butions from XAk−1 .1 A note on notation: here, we write
XS ∈ Rn×|S| for the submatrix of X whose columns are
indexed by a set S (and when S = {j}, we simply use Xj ).
We also write PS for the projection matrix onto the col-
umn span of XS , and P ⊥

S = I −PS for the projection onto
the orthocomplement. At the end of step k of the proce-
dure, the active set is updated, Ak = Ak−1 ∪ {jk}, and the
forward stepwise estimator of the regression coefficients
is defined by the least squares fit onto XAk

. With careful
implementation, the computational cost of forward step-
wise is equivalent to a single least-squares fit on min{n,p}
variables; see Section 2.5.

The lasso solves a convex relaxation of (1.1) where we
replace the �0 norm by the �1 norm,

(1.3) minimize
β∈Rp

‖Y − Xβ‖2
2 subject to ‖β‖1 ≤ t,

where ‖β‖1 = ∑p
i=1 |βi |, and t ≥ 0 is a tuning parameter.

By convex duality, the above problem is equivalent to the
more common (and more easily solved) penalized form

(1.4) minimize
β∈Rp

‖Y − Xβ‖2
2 + λ‖β‖1,

where now λ ≥ 0 is a tuning parameter. This is the form
that we focus on in this paper.

The lasso problem (1.4) is convex (and highly struc-
tured) and there is by now a sizeable literature in statistics,

1Other ways of defining the variable jk that “best improves the fit”
are possible, but the entry criterion is (1.2) is the standard one in statis-
tics.

machine learning and optimization dedicated to efficient
algorithms for this problem. On the other hand, the best
subset problem (1.1) is nonconvex and is known to be NP-
hard (Natarajan, 1995). The accepted view in statistics for
many years has been that this problem is not solveable be-
yond (say) p in the mid-30s, this view being shaped by the
available software for best subset (e.g., in the R language,
the leaps package implements a branch-and-bound al-
gorithm for best subset of Furnival and Wilson, 1974).

For a much more detailed introduction to best subset,
forward stepwise and the lasso, see Chapter 3 of Hastie,
Tibshirani and Friedman (2009).

1.1 An Exciting New Development

Recently, Bertsimas, King and Mazumder (2016) pre-
sented a mixed integer optimization (MIO) formulation
for the best subset problem (1.1). This allows one to
use highly optimized MIO solvers, like Gurobi (based
on branch-and-cut methods, hybrids of branch-and-bound
and cutting plane algorithms), to solve (1.1). Using these
MIO solvers, problems with p in the hundreds and even
thousands are not out of reach, and this presents us
with exciting new ground on which to perform empirical
comparisons. Simulation studies in Bertsimas, King and
Mazumder (2016) demonstrated that best subset generally
gives superior prediction accuracy compared to forward
stepwise and the lasso, over a variety of problem setups.

In what follows, we replicate and expand these sim-
ulations to shed more light on such comparisons. For
convenience, we created an R package bestsubset
for optimizing the best subset problem using the Gurobi
MIO solver (after this problem has been translated into
a mixed integer quadratic program as in Bertsimas, King
and Mazumder, 2016). This package, as well as R code for
reproducing all of the results in this paper, are available at
https://github.com/ryantibs/best-subset/.

1.2 Other Estimators

Many other sparse estimators for regression could
be considered, for example, �1-penalized alternatives to
the lasso, like the Dantzig selector (Candes and Tao,
2007) and square-root lasso (Belloni, Chernozhukov and
Wang, 2011); greedy alternatives to the forward step-
wise algorithm, like matching pursuit (Zhang, 1993)
and orthogonal matching pursuit (Davis, Mallat and
Zhang, 1994); nonconvex-penalized methods, such as
SCAD (Fan and Li, 2001), MC+ (Zhang, 2010) and
SparseNet (Mazumder, Friedman and Hastie, 2011); hy-
brid lasso/stepwise approaches like FLASH (Radchenko
and James, 2011); and many others.

It would be interesting to include all of these estima-
tors in our comparisons, though that would make for a
huge simulation suite and would dilute the comparisons
between best subset, forward stepwise, and the lasso that

https://github.com/ryantibs/best-subset/
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we would like to highlight. Roughly speaking, we would
expect the Dantzig selector and square-root lasso to per-
form similarly to the lasso; the matching pursuit vari-
ants to perform similarly to forward stepwise; and the
nonconvex-penalized methods to perform somewhere in
between the lasso and best subset. (It is worth noting that
our R package is structured in such a way to make fur-
ther simulations and comparisons straightforward. We in-
vite interested readers to use it to perform comparisons to
other methods.) Indeed, in the Supplementary Appendix
(Hastie, Tibshirani and Tibshirani, 2020) we include com-
parisons with three additional methods.

1.3 What This Paper Is About

We need to make clear the focus of this paper. This pa-
per is not about:

• What is the best prediction algorithm?
• What is the best variable selector?
• Empirically validating theory for �0 and �1 penalties.

Rather, this paper is about:

The relative merits of the three (arguably) most
canonical forms for sparse estimation in a lin-
ear model: �0, �1 and forward stepwise selec-
tion.

2. PRELIMINARY DISCUSSION

2.1 Is Best Subset the Holy Grail?

Various researchers throughout the years have viewed
best subset as the “holy grail” of estimators for sparse
modeling in regression, suggesting (perhaps implicitly)
that it should be used whenever possible, and that other
methods for sparse regression—such as forward step-
wise and the lasso—should be seen as approximations or
heuristics, used only out of necessity when best subset is
not computable. However, as we will demonstrate in the
simulations that follow, this is not the case. Different pro-
cedures have different operating characteristics, that is,
give rise to different bias-variance tradeoffs as we vary
their respective tuning parameters. In fact, depending on
the problem setting, the bias-variance tradeoff provided
by best subset may be more or less useful than the trade-
off provided by the lasso.

As a brief interlude, let us inspect the “noiseless” ver-
sions of the best subset and lasso optimization problems.
Suppose we observe n examples of a linear system with
p > n unknown parameters Y = Xβ . This system is un-
derdetermined, and we wish to learn the parameter β .
Since there are in general infinitely many solutions, one
approach is to seek the sparsest:

(2.1) minimize
β∈Rp

‖β‖0 subject to Xβ = Y.

Since this problem is nonconvex and in general NP hard,
we might solve instead the �1 relaxation:

(2.2) minimize
β∈Rp

‖β‖1 subject to Xβ = Y.

If our goal is truly to seek the sparsest solution to Y = Xβ ,
then problem (2.1) produces it, and we may rightly view
problem (2.2) as a heuristic. Indeed, much of the litera-
ture on compressed sensing (in which (2.1) and (2.2) have
been intensely studied) uses this language. However, one
must not be careful to blindly carry this mindset over to
the “noisy” setting, which is the traditional and most prac-
tical setting for statistical estimation, and that studied in
this paper. When there is observational noise, the bias and
variance of an estimator play big roles (the bias-variance
tradeoff appears), and whether �0- or �1-regularization de-
livers a “better” estimator is a subtle question.

Generally speaking, the lasso and best subset differ in
terms of their “aggressiveness” in selecting and estimat-
ing the coefficients in a linear model, with the lasso being
less aggressive than best subset; forward stepwise lands
somewhere in the middle. There are various ways to make
this vague but intuitive comparison more explicit. For ex-
ample:

• forward stepwise can be seen as a “locally optimal” ver-
sion of best subset, updating the active set by one vari-
able at each step, instead of reoptimizing over all possi-
ble subsets of a given size; in turn, the lasso can be seen
as a more “democratic” version of forward stepwise,
updating the coefficients so as to maintain equal abso-
lute correlation of all active variables with the residual
(Efron et al., 2004);

• the lasso applies shrinkage to its nonzero estimated co-
efficients (e.g., see (2.5)) but forward stepwise and best
subset do not, and simply perform least squares on their
respective active sets;

• thanks to such shrinkage, the fitted values from the
lasso (for any fixed λ ≥ 0) are continuous functions
of y (Zou, Hastie and Tibshirani, 2007, Tibshirani and
Taylor, 2012), whereas the fitted values from forward
stepwise and best subset (for fixed k ≥ 1) jump discon-
tinuously as y moves across a decision boundary for
the active set;

• again thanks to shrinkage, the effective degrees of
freedom of the lasso (at any fixed λ ≥ 0) is equal
to the expected number of selected variables (Zou,
Hastie and Tibshirani, 2007, Tibshirani and Taylor,
2012), whereas the degrees of freedom of both for-
ward stepwise and best subset can greatly exceed k

at any given step k ≥ 1 (Kaufman and Rosset, 2014,
Janson, Fithian and Hastie, 2015). Effective degrees of
freedom is a useful measure of complexity, especially
for models that are fit adaptively. Figure 1 uses effec-
tive degrees of freedom to contrast the aggressiveness
of the three methods.
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FIG. 1. Effective degrees of freedom
∑n

i=1 Cov(Yi , Ŷi )/σ
2 for the lasso, forward stepwise and best subset, in a problem setup with n = 70 and

p = 30 (computed via Monte Carlo evaluation of the covariance with 500 replications). The setup had an SNR of 0.7, predictor correlation level of
0.35 and the coefficients followed the beta-type 2 pattern with s = 5; see Section 3.1 for details. Note that the lasso degrees of freedom equals the
(expected) number of nonzero coefficients, whereas that of forward stepwise and best subset exceeds the number of nonzero coefficients.

When the signal-to-noise ratio (SNR) is low, and also
depending on other factors like the correlations between
predictor variables, the more aggressive best subset and
forward stepwise methods can already have quite high
variance at the start of their model paths (i.e., for small
step numbers k). Even after optimizing over the tuning
parameter k (using say, an external validation set or an
oracle which reveals the true risk), we can arrive at an es-
timator with unwanted variance and worse accuracy than
a properly-tuned lasso estimator. On the other hand, for
high SNR values, and other configurations for the correla-
tions between predictors, etc., the story can be completely
flipped and the shrinkage applied by the lasso estimator
can result in unwanted bias and worse accuracy than best
subset and forward stepwise. See Figure 2 for empirical
evidence.

This is a simple point, but is worth emphasizing:

Different procedures bring us from the high-
bias to the high-variance ends of the tradeoff
along different model paths; and these paths
are affected by aspects of the problem setting,
like the SNR and predictor correlations, in dif-
ferent ways. For some classes of problems,
some procedures admit more fruitful paths,
and for other classes, other procedures ad-
mit more fruitful paths. For example, neither

best subset nor the lasso dominates the other,
across all problem settings.

2.2 What Is a Realistic Signal-to-Noise Ratio?

In their simulation studies, Bertsimas, King and Mazu-
mder (2016) considered SNRs in the range of about 2 to 8
in their low-dimensional cases, and about 3 to 10 in their
high-dimensional cases. Is this a realistic range that one
encounters in practice? In our view, the proportion of vari-
ance explained (PVE) can help to answer this question.

Let (x0, y0) ∈ Rp × R be a pair of predictor and re-
sponse variables, and define f (x0) = E(y0|x0) and ε0 =
y0 − f (x0), so that we may express the relationship be-
tween x0, y0 as

y0 = f (x0) + ε0.

The signal-to-noise ratio (SNR) in this model is defined
as

SNR = Var(f (x0))

Var(ε0)
.

The proportion of variance explained (PVE) by a candi-
date prediction function g is defined as

(2.3) PVE(g) = 1 − E(y0 − g(x0))
2

Var(y0)
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FIG. 2. Relative risk (risk divided by null risk) for the lasso, forward stepwise and best subset, for two different setups. The results were averaged
over 20 repetitions, and the bars denote one standard error. The setup for the left panel is identical to that used in Figure 1. The setup for the right
panel used an SNR (signal-to-noise ratio) of 2 and predictor correlation level 0. Note that in the left panel, the lasso is more accurate than forward
stepwise selection and best subset selection (when all methods are optimally-tuned), and in the right panel, the opposite is true.

(it is 1 minus the proportion of unexplained variance). Of
course, this is maximized when we take g to be the mean
function f itself, in which case

(2.4) PVE(f ) = 1 − Var(ε0)

Var(y0)
= SNR

1 + SNR
.

In the second equality, we have assumed independence of
x0 and ε0, so Var(y0) = Var(f (x0)) + Var(ε0). As the op-
timal prediction function is f , it sets the gold-standard of
SNR/(1 + SNR) for the PVE, so we should always ex-
pect to see the attained PVE be less than SNR/(1 + SNR)

and greater than 0 (otherwise we could simply replace our
prediction function by g = 0).

We illustrate using a simulation with n = 200 and p =
100. The predictor correlation level was set to zero and the
coefficients followed the beta-type 2 pattern with s = 5;

FIG. 3. PVE (proportion of variance explained) of the lasso in a sim-
ulation setup with n = 200 and p = 100, as the SNR varies from 0.05
to 6 (more details are provided in the text). The red curve is the popu-
lation PVE, the maximum achievable PVE at any given SNR value. We
see that SNRs above 2 give PVEs roughly above 0.6, which seems to us
to be rare in many practical applications.

see Section 3.1 for details. We varied the SNR in the sim-
ulation from 0.05 to 6 in 20 equally spaced values. We
computed the lasso over 50 values of the tuning param-
eter λ, and selected the tuning parameter by optimizing
prediction error on a separate validation set of size n. Fig-
ure 3 shows the PVE of the tuned lasso estimator, aver-
aged over 20 repetitions from this simulation setup. Also
shown is the maximal population PVE (2.4). We see that
a SNR of 1.0 corresponds to a PVE of about 0.45 (with
a maximum of 0.5), while a SNR as low as 0.25 yields a
PVE of 0.1 (with a maximum of 0.2). In our experience,
a PVE of 0.5 is rare for noisy observational data, and 0.2
may be more typical. A PVE of 0.86, corresponding to a
SNR of 6, is unheard of. With financial returns data, ex-
plaining even 2% of the variance (PVE of 0.02) would be
considered huge, and the corresponding prediction func-
tion could lead to considerable profits if used in a trad-
ing scheme. Therefore, based on these observations, we
examine a wider range of SNRs in our simulations, com-
pared to the SNRs studied in Bertsimas, King and Mazu-
mder (2016).

2.3 A (Simplified) Relaxed Lasso

In addition to the lasso estimator, we consider a sim-
plified version of the relaxed lasso estimator as originally
defined by Meinshausen (2007). Let β̂ lasso(λ) denote the
solution in problem (1.4), that is, the lasso estimator at the
tuning parameter value λ ≥ 0. Let Aλ denote its active set,
and let β̂LS

Aλ
denote the least squares coefficients obtained

by regressing of Y on XAλ , the submatrix of active predic-
tors. Finally, let β̂LS(λ) be the full-sized (p-dimensional)
version of the least squares coefficients, padded with ze-
ros to match the zeros of the lasso solution. We consider
the estimator β̂relax(λ, γ )

(2.5) β̂relax(λ, γ ) = γ β̂ lasso(λ) + (1 − γ )β̂LS(λ)
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FIG. 4. Degrees of freedom for the lasso, forward stepwise, best subset and the relaxed lasso with γ = 0.5 and γ = 0. The problem setup is the
same as that in the left panel of Figure 1. Note that the relaxed lasso has an inflated degrees of freedom compared to the lasso and generally has
a larger degrees of freedom than the expected number of nonzero coefficients. But, even when γ = 0, its degrees of freedom is smaller than that of
forward stepwise and best subset throughout their model paths.

with respect to the pair of tuning parameter values λ ≥ 0
and γ ∈ [0,1]. Recall (Tibshirani, 2013) that when the
columns of X are in general position (a weak condition
occurring almost surely for continuously distributed pre-
dictors, regardless of n,p), it holds that:

• the lasso solution is unique;
• the submatrix XAλ of active predictors has full column

rank, thus

β̂LS
Aλ

= (
XT

Aλ
XAλ

)−1
XT

Aλ
Y

is well-defined;
• the lasso solution can be written (over its active set) as

β̂ lasso
Aλ

(λ) = (
XT

Aλ
XAλ

)−1(
XT

Aλ
Y − λs

)
,

where s ∈ {−1,1}|Aλ| contains the signs of the active
lasso coefficients.

Thus, under the general position assumption on X, the
simplified relaxed lasso can be rewritten as

(2.6)

β̂relax
Aλ

(λ, γ ) = (
XT

Aλ
XAλ

)−1
XT

Aλ
Y

− γ λ
(
XT

Aλ
XAλ

)−1
s,

β̂relax−Aλ
(λ, γ ) = 0,

so we see that γ ∈ [0,1] acts as a multiplicative factor
applied directly to the “extra” shrinkage term apparent in

the lasso coefficients. Henceforth, we will drop the word
“simplified” and will just refer to this estimator as the re-
laxed lasso.

The relaxed lasso tries to undo the shrinkage inherent in
the lasso estimator, to a varying degree, depending on γ .
In this sense, we would expect it to be more aggressive
than the lasso, and have a larger effective degrees of free-
dom. However, even in its most aggressive mode, γ = 0,
it is typically less aggressive than both forward stepwise
and best subset, in that it often has a smaller degrees of
freedom than these two. See Figure 4 for an example.

2.4 Some Alternatives to the Bertsimas, King and
Mazumder (2016) Approach for Subset Selection

After the completion of the first version of this pa-
per, two refinements to the MIO approach were pro-
posed in Bertsimas and Van Parys (2020) and Hazimeh
and Mazumder (2018). We tried two methods from the
latter paper (“L0Learn 1” and “L0Learn 2”) and also
“SparseNet” (Mazumder, Friedman and Hastie, 2011) in
our comparisons. SparseNet builds a family of regulariza-
tion paths spanning �1 and �0, using a mixture penalty in-
spired by the elastic net. L0Learn1 and L0Learn2 offered
little improvement over best subset; SparseNet performed
reasonably well, but was generally outperformed by the
relaxed lasso family. Hence we do not include them here
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but provide full results in the Supplementary Appendix
(Hastie, Tibshirani and Tibshirani, 2020).

2.5 Brief Discussion of Computational Costs

Computation of the lasso solution in (1.4) has been a
popular topic of research, and there are by now many ef-
ficient lasso algorithms. In our simulations, we use co-
ordinate descent with warm starts over a sequence of
tuning parameter values λ1 > · · · > λm > 0, as imple-
mented in the glmnet R package (Friedman et al., 2007,
Friedman, Hastie and Tibshirani, 2010). The base code
for this is written in Fortran, and warm starts—plus ad-
ditional tricks like active set optimization and screening
rules (Tibshirani et al., 2012)—make this implementation
highly efficient. For example, for a problem with n = 500
observations and p = 100 variables, glmnet delivers the
lasso solutions across 100 values of λ in less than 0.01
seconds, on a standard laptop computer. The relaxed lasso
in (2.5) comes at only a slight increase in computational
cost, since we must only additionally compute the least
squares coefficients on each active set. We provide an im-
plementation in the bestsubset R package accompa-
nying this paper, which just uses an R wrapper around
glmnet. A future version of glmnet will include the
relaxed lasso. For the same example with n = 500 and
p = 100, computing the relaxed lasso path over 100 val-
ues of λ and 10 values of γ again took less than 0.01 sec-
onds.

For forward stepwise, we implemented our own version
in the bestsubset R package. The core matrix manip-
ulations for this method are written in C, and the rest is
written in R. The forward stepwise path is highly struc-
tured and this greatly aids its computation: at step k, we
have k − 1 active variables included in the model, and we
seek the variable among the remaining p − k + 1 that—
once orthogonalized with respect to the current active set
of variables—achieves the greatest absolute correlation
with Y , as in (1.2). Suppose that we have maintained a
QR decomposition of the active submatrix XAk−1 of pre-
dictors, as well as the orthogonalization of the remaining
p − k − 1 predictors with respect to XAk−1 . We can com-
pute the necessary correlations in O(n(p − k + 1)) op-
erations, update the QR factorization of XAk

in constant
time, and orthogonalize the remaining predictors with re-
spect to the one just included in O(n(p − k)) operations
(refer to the modified Gram–Schmidt algorithm in Golub
and Van Loan, 1996). Hence, the forward stepwise path
can be seen as a certain guided QR decomposition for
computing the least squares coefficients on all p variables
(or, on some subset of n variables when p > n). For the
same example with n = 500 and p = 100, our implemen-
tation computes the forward stepwise path in less than 0.5
seconds.

Best subset (1.1) is the most computationally challeng-
ing, by a large margin. Bertsimas, King and Mazumder

(2016) describe two reformulations of (1.1) as a mixed
integer quadratic program, one that is preferred when
n ≥ p, and the other when p > n, and recommend us-
ing the Gurobi commercial MIO solver (which is free
for academic use). They also describe a proximal gradi-
ent descent method for computing approximate solutions
in (1.1), and recommend using the best output from this
algorithm over many randomly-initialized runs to warm
start the Gurobi solver; see Bertsimas, King and Mazu-
mder (2016) for details. We have implemented the method
of these authors, which transforms the best subset prob-
lem into one of two MIO formulations depending on the
relative sizes of n and p, uses proximal gradient to com-
pute a warm start, and then calls Gurobi through its R
interface—in our accompanying R package bestsub-
set.

Gurobi uses branch-and-cut techniques (a combina-
tion of branch-and-bound and cutting plane methods),
along with many other sophisticated optimization tools,
for MIO problems. Compared to the pure branch-and-
bound method from the leaps R package, its speed can
be impressive: for example, in one run with n = 500 and
p = 100, it returned the best subset solution of size k = 8
in about 3 minutes (brute-force search for this problem
would need to have looked at about 186 billion candi-
dates). But for most problems of this size (n = 500 and
p = 100) it has been our experience that Gurobi typically
requires 1 hour or longer to complete its optimization. It
can often be the case that Gurobi has found the solution
in less than 3 minutes, though it takes much longer to cer-
tify its optimality. For our simulations in the next section,
we used a time limit of 30 minutes for Gurobi to optimize
the best subset problem (1.1) at any particular value of
the subset size k (once the time limit has been reached,
the solver returns its best iterate). For more discussion on
this choice and its implications, see Section 3.2. We note
that this corresponds to a computational cost for “regu-
lar” practical usage of 30 minutes per value of k: if we
wanted to use 10-fold cross-validation to choose between
the subset sizes k = 0, . . . ,50, then we are facing 250
hours (> 10 days) of computation time.

3. SIMULATIONS

3.1 Setup

We present simulations, basically following the simula-
tion setup of Bertsimas, King and Mazumder (2016), ex-
cept that we consider a wider range of SNR values. Given
n,p (problem dimensions), s (sparsity level), beta-type
(pattern of sparsity), ρ (predictor correlation level) and ν

(SNR level), our process can be described as follows:

(i) we define coefficients β0 ∈ Rp according to s and
the beta-type, as described below;
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(ii) we draw the rows of the predictor matrix X ∈
Rn×p i.i.d. from Np(0,
), where 
 ∈ Rp×p has entry

(i, j) equal to ρ|i−j |;
(iii) we draw the response vector Y ∈ Rn from

Nn(Xβ0, σ
2I ), with σ 2 defined to meet the desired SNR

level, that is, σ 2 = βT
0 
β0/ν;

(iv) we run the lasso, relaxed lasso, forward stepwise,
and best subset on the data X,Y , each over a wide range
of tuning parameter values; for each method, we choose
the tuning parameter by minimizing prediction error on
a validation set X̃ ∈ Rn×p, Ỹ ∈ Rn that is generated inde-
pendently of and identically to X,Y , as in steps (ii)–(iii)
above;

(v) we record several metrics of interest, as specified
below;

(vi) we repeat steps (ii)–(v) a total of 10 times, and av-
erage the results.

Below we describe some aspects of the simulation process
in more detail.

Coefficients. We considered four settings for the coeffi-
cients β0 ∈ Rp:

• beta-type 1: β0 has s components equal to 1, occurring
at (roughly) equally-spaced indices between 1 and p,
and the rest equal to 0;

• beta-type 2: β0 has its first s components equal to 1,
and the rest equal to 0;

• beta-type 3: β0 has its first s components taking
nonzero values equally-spaced between 10 and 0.5, and
the rest equal to 0;

• beta-type 5: β0 has its first s components equal to 1,
and the rest decaying exponentially to 0, specifically,
β0i = 0.5i−s , for i = s + 1, . . . , p.

The first three types were studied in Bertsimas, King and
Mazumder (2016). They also defined a fourth type that we
did not include here, as we found it yielded basically the
same results as beta-type 3. The last type above is new:
we included it to investigate the effects of weak sparsity
and call it beta-type 5, to avoid confusion.

Evaluation metrics. Let x0 ∈ Rp denote test predictor
values drawn from Np(0,
) (as in the rows of the train-
ing predictor matrix X) and let y0 ∈ R denote its associ-
ated response value drawn from N(xT

0 β0, σ
2). Also, let β̂

denote estimated coefficients from one of the regression
procedures. We considered the following evaluation met-
rics:

• Relative risk: this is the accuracy metric studied in
Bertsimas, King and Mazumder (2016)2, defined as

RR(β̂) = E(xT
0 β̂ − xT

0 β0)
2

E(xT
0 β0)2

= (β̂ − β0)
T 
(β̂ − β0)

βT
0 
β0

.

The expectations here and below are taken over the test
point (x0, y0), with all training data and validation data
and thus β̂) held fixed. A perfect score is 0 (if β̂ = β0)
and the null score is 1 (if β̂ = 0).

• Relative test error: this measures the expected test error
relative to the Bayes error rate,

RTE(β̂) = E(y0 − xT
0 β̂)2

σ 2

= (β̂ − β0)
T 
(β̂ − β0) + σ 2

σ 2 .

A perfect score is 1 and the null score is(
βT

0 
β0 + σ 2)
/σ 2 = SNR + 1.

• Proportion of variance explained: as defined in Sec-
tion 2.2, this is,

PVE(β̂) = 1 − E(y0 − xT
0 β̂)2

Var(y0)

= 1 − (β̂ − β0)
T 
(β̂ − β0) + σ 2

βT
0 
β0 + σ 2

.

A perfect score is SNR/(1 + SNR) and the null score
is 0.

• Number of nonzeros: unlike the previous two metrics
which measure predictive accuracy, this metric simply
records the number of nonzero estimated coefficients,
‖β̂‖0 = ∑p

i=1 1{β̂i �= 0}, which we compare with the
true value.

• F -score: this measures the accuracy of the support re-
covery:

F-score =
(

recall−1 + precision−1

2

)−1
,

where in statistical terminology, recall is the sensitivity
(true positive rate) and precision is the positive predic-
tive value. An F-score of 1 predicts perfectly.

A few notes are in order. For brevity, we do not in-
clude relative risk (RR) in any of our plots here, though

2Actually, these authors used an “in-sample” version of this met-
ric defined as ‖Xβ̂ − Xβ0‖2

2/‖Xβ̂‖2
2, whereas our definition is “out-

of-sample”, with an expectation over the new test predictor value x0
taking the place of the sample average over the training values xi ,
i = 1, . . . , n.
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it is included in the Supplementary Material (Hastie, Tib-
shirani and Tibshirani, 2020). Also, we mention that the
prediction-based metrics above (RR, RTE, PVE) do not
depend on the assumption of linearity of E(y|x), which
reflects the broader practical relevancy of these metrics
(compared to F-score).

Configurations. We considered the following four prob-
lem settings:

Setting n p s

Low 100 10 5
Medium 500 100 5
High-5 50 1000 5
High-10 100 1000 10

In each setting, we considered ten values for the SNR
ranging from 0.05 to 6 on a log scale, namely

SNR 0.05 0.09 0.14 0.25 0.42 0.71 1.22 2.07 3.52 6.00

PVE 0.05 0.08 0.12 0.20 0.30 0.42 0.55 0.67 0.78 0.86

(Note that although these values are focused on the
smaller SNR values, they are more evenly spread out on
the PVE scale, which we have also provided for conve-
nience.) In each setting, we also considered three values
for the predictor correlation level ρ, namely 0, 0.35 and
0.7.

Tuning of procedures. In the low setting, the lasso was
tuned over 50 values of λ ranging from λmax = ‖XT Y‖∞
to a small fraction of λmax on a log scale, as per the default
in glmnet, and the relaxed lasso was tuned over the same
50 values of λ, and 10 values of γ equally spaced from 1
to 0 (hence a total of 500 tuning parameter values). Also
in the low setting, forward stepwise and best subset were
tuned over steps k = 0, . . . ,10. In all other problem set-
tings (medium, high-5, and high-10), the lasso was tuned
over 100 values of λ, the relaxed lasso was tuned over the
same 100 values of λ and 10 values of γ (hence 1000 tun-
ing parameter values total), and forward stepwise and best
subset were tuned over steps k = 0, . . . ,50. In all cases,
tuning was performed by minimizing prediction error on
an external validation set of size n, which we note ap-
proximately matches the precision of leave-one-out cross-
validation.

3.2 Time Budget for Gurobi

As mentioned in Section 2.5, for each problem instance
and subset size k, we used a time limit of 30 minutes for
Gurobi to optimize the best subset problem. In compari-
son, Bertsimas, King and Mazumder (2016) used 15 min-
utes (per problem per k) for problems with p = 100 as
in our medium setup, and 66 minutes (per problem per k)
for problems with p ≥ 1000 as in our high-5 and high-10
setups. Their simulations however were not as extensive,
as they looked at fewer combinations of beta-types, SNR
levels and correlation levels.

TABLE 1
Time in seconds for one path of solutions for best subset (BS), forward
stepwise (FS), the lasso and relaxed lasso (RLasso). The times were
averaged over 10 repetitions, and all SNR and predictor correlation

levels in the given setting

Setting n p s BS FS Lasso RLasso

Low 100 10 5 0.313 0.003 0.002 0.002
Medium 500 100 5 76.8 hr 0.890 0.013 0.154
High-5 50 100 5 44.2 hr 0.123 0.014 0.159
High-10 100 1000 10 61.7 hr 0.254 0.024 0.158

The MIO solver in the medium setting will often ar-
rive at the best subset solution in less than 30 minutes,
but it can take much longer to certify its optimality3 (usu-
ally over 1 hour, in absence of extra speedup tricks as
described in Bertsimas, King and Mazumder, 2016). For
practical reasons, we have kept the 30 minute budget per
problem instance per subset size. Note that this amounts
to 1500 minutes per path of 50 solutions, 15,000 minutes
or 250 hours per set of 10 repetitions, and in total 7500
hours or 312.5 days for any given setting, once we go
through the 10 SNR levels and 3 correlation levels. For-
tunately, we had access to a large cluster where we could
reduce this time by a factor of about 50.

3.3 Results: Computation Time

In Table 1, we report the time in seconds taken by each
method to compute one path of solutions, averaged over
10 repetitions and all SNR and predictor correlation levels
in the given setting. All timings were recorded on a Linux
cluster. As explained above, the lasso path consisted of
50 tuning parameter values in the low setting and 100 in
all other settings, the relaxed lasso path consisted of 500
tuning parameter values in the low setting and 1000 in all
other settings, and the forward stepwise and best subset
paths each consisted of min{p,50} tuning parameter val-
ues.

We can see that the lasso and relaxed lasso are very
fast, requiring less than 25 milliseconds in every case. for-
ward stepwise is also fast, though not quite as fast as the
lasso (some of the differences here might be due to the
fact that our forward stepwise algorithm is implemented
partly in R). Moreover, it should be noted that when n and
p is large, and one wants to explore models with a size-
able number of variables (we limited our search to models
of size 50), forward stepwise has to plod through its path
one variable at a time, but the lasso can make jumps over
subset sizes bigger than one by varying λ and leveraging
warm starts.

3Gurobi constructs a sequence of lower and upper bounds on the
criterion in (1.1); typically the lower bounds come from convex re-
laxations and the upper bounds from the current iterates, and it is the
lower bounds that take so long to converge.
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FIG. 5. RTE, PVE, number of nonzero coefficients and F-score as functions of SNR, in the low setting with n = 100, p = 10 and s = 5.

Recall, the MIO solver for best subset was allowed 30
minutes per subset size k, or 1500 minutes for a path of
50 subset sizes. As the times in Table 1 suggest, the max-
imum allotted time was not reached in all instances, and
the MIO solver managed to verify optimality of some so-
lutions along the path. In the medium setting, on aver-
age 17.55 of the 50 solutions were verified as being opti-
mal. In the high-5 and high-10 settings, only 1.61 of the
50 were verified on average (note this count includes the
subset of size 1, which is trivial). These measures may be
pessimistic, as Gurobi may have found high-quality ap-
proximate solutions or even exact solutions but was just
not able to verify them in time; see the discussion in the
above subsection.

3.4 Results: Accuracy Metrics

Here, we display a slice of the accuracy results, focus-
ing for concreteness on the case in which the predictor
correlation level is ρ = 0.35, and the population coeffi-
cients follow the beta-type 2 pattern. The only exception
is in Figure 8, where we show the results for beta-type 1
setting. In a Supplementary Appendix (Hastie, Tibshirani

and Tibshirani, 2020), we display the full set of results,
over the whole simulation design.

Figure 5 plots the relative test error, PVE, number of
nonzero coefficients and F-score as functions of the SNR
level, for the low setting. Figures 6 and 7, show the same
for the medium and high-5 settings, respectively. Fig-
ure 8 shows the results for high-5 and a different parame-
ter setting—beta-type 1, chosen because it represents the
only scenario where best subset seems to show an ad-
vantage. Each panel in the figures shows the average of
a given metric over 10 repetitions, for the four methods in
question, and vertical bars denote one standard error. In
the relative test error plots, the dotted curve denotes the
performance of the null model (null score); in the PVE
plots, it denotes the performance of the true model (per-
fect score); in the number of nonzero plots, it marks the
true support size s.

The low and medium settings, Figures 5 and 6, yield
somewhat similar results. In the relative test error and
PVE plots (top left and top right panels), we see that best
subset and forward stepwise lag behind the lasso and re-
laxed lasso in terms of accuracy for low SNR levels; as
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FIG. 6. RTE, PVE, number of nonzero coefficients and F-score as functions of SNR, in the medium setting with n = 500, p = 100 and s = 5.

the SNR increases, we see in the PVE plot that all four
methods converge to nearly perfect accuracy. The rela-
tive test error plot (top left panel) magnifies the differ-
ences between the methods. For low SNR levels, we see
that the lasso outperforms the more aggressive best subset
and forward stepwise methods, but for high SNR levels,
it is outperformed by the latter two methods. The criti-
cal transition point—the SNR value at which their rela-
tive test error curves cross—is different for the low and
medium settings: for the low setting, it is around 1.22,
and for the medium setting, it is earlier, around 0.42. The
relaxed lasso, meanwhile, is competitive across all SNR
levels: at low SNR levels, it matches the performance of
the lasso, and at high SNR levels, it matches that of best
subset and forward stepwise. It is able to do so by prop-
erly tuning the amount of shrinkage (via its parameter γ )
on the validation set. Lastly, the number of nonzero es-
timated coefficients from the four methods (bottom left
panel) is also revealing. The lasso consistently delivers
much denser solutions; essentially, to optimize prediction
error on the validation set, it is forced to do so, as the

sparser solutions along its path entail too much shrinkage.
The relaxed lasso does not suffer from this issue, again
thanks to its ability to unshrink (move γ away from 1);
it delivers solutions that are just as sparse as those from
best subset and forward stepwise, except at the low SNR
range.

In the high-5 setting of Figure 7, the methods behave
quite differently. The PVEs delivered by all methods are
close to zero for low SNR values. We see that there is
no strong reason, based on relative test error, PVE or F-
score, to favor best subset or forward stepwise over the
lasso. However unlike the lasso, best subset and forward
stepwise yield the correct null model in this setting, a de-
sirable property. At low SNR levels, best subset and for-
ward stepwise often have worse accuracy metrics (and
certainly more erratic metrics); at high SNR levels, these
procedures do not show much of an advantage. The re-
laxed lasso again performs the best overall, with a no-
ticeable gap in performance at the high SNR levels. As
is confirmed by the number of nonzero coefficients plots,
the lasso and best subset/forward stepwise achieve sim-
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FIG. 7. RTE, PVE, number of nonzero coefficients and F-score as functions of SNR, in the high-5 setting with n = 50, p = 1000 and s = 5.

ilar accuracy in the high SNR range using two opposite
strategies: the former uses high-bias and low-variance es-
timates, and the latter uses low-bias and high-variance es-
timates. The relaxed lasso is most accurate by striking a
favorable balance between these two polar regimes.

We note however that there is one setting—Figure 8—
where best subset is the winner (high-5, beta-type 1).
When the SNR is above about 1.5, it shows clear gains
over other methods. Recall that the beta type-1 setting has
its non-zero coefficients on an equally-spaced grid from 1
to p. We postulate that the lasso (and relaxed lasso) have
trouble in this case because the irrepresentability condi-
tion for the lasso does not hold (at least when the feature
correlation is greater than zero). We note that this advan-
tage for best subset does not carry over, empirically, to the
high-10 setting. The details are given in the Supplemen-
tary Appendix (Hastie, Tibshirani and Tibshirani, 2020).

3.5 Summary of Results

As mentioned above, the results from our entire sim-
ulation suite can be found the Supplementary Material

(Hastie, Tibshirani and Tibshirani, 2020). Here is a high-
level summary:

• Forward stepwise and best subset perform quite simi-
larly throughout (with the former being much faster),
although in some high SNR settings, best subset does
perform better. This does not agree with the results for
forward stepwise in Bertsimas, King and Mazumder
(2016), where it performed quite poorly in compari-
son. In talking with the authors of that paper, we have
learned that this was due to the fact that forward step-
wise in their study was tuned using AIC, rather than a
separate validation set. So, when put on equal footing
and allowed to select its tuning parameter using val-
idation data just as the other methods, we see that it
performs quite comparably.

• The lasso gives better accuracy results than the best
subset in the low SNR range and worse accuracy than
the best subset in the high SNR range. The SNR tran-
sition point varies depending on the problem dimen-
sions (n,p) predictor correlation level (ρ) and beta-
type (1 through 5). For the medium setting, the tran-
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FIG. 8. RTE, PVE, number of nonzero coefficients and F-score as functions of SNR, in the high-5 setting with n = 50, p = 1000 and s = 5.

sition point comes earlier than in the low setting. For
the high-10 setting, the transition point often does not
come at all (before an SNR of 6, which is the maximum
value we considered). For the high-5 setting, this tran-
sition only seems to occur for the beta type-1 model.
As the predictor correlation level increases, the transi-
tion point typically appears later (again, in some cases
it does not come at all, e.g., for beta-type 5 and corre-
lation level ρ = 0.7).

• The relaxed lasso provides overall the top accuracy re-
sults. In nearly all cases (across all SNR levels, and in
all problem configurations), we considered, it performs
as well as or better than all other methods. We con-
clude that it is able to use its auxiliary shrinkage pa-
rameter (γ ) to get the “best of both worlds”: it accepts
the heavy shrinkage from the lasso when such shrink-
age is helpful, and reverses it when it is not.

• The PVE plots remind us that, despite what may seem
like large relative differences, the four methods under
consideration do not have very different absolute per-
formances in this intuitive and important metric. It thus

makes sense overall to favor the methods that are easy
to compute.

• The Gurobi MIO algorithm for best subset was given 30
minutes per problem (i.e., for each subset size). For a
typical grid of 50 subset sizes, this results in around 25
hours of computation. When used within 10-fold CV,
this increases to 250 hours or more than 10 days of
computation. By comparison, all three other methods
take seconds.

4. DISCUSSION

The recent work of Bertsimas, King and Mazumder
(2016) has enabled the first large-scale empirical exam-
inations of best subset. In this paper, we have expanded
and refined the simulations in their work, comparing best
subset to forward stepwise, the lasso and the relaxed
lasso. We have found: (a) forward stepwise and best sub-
set perform similarly throughout, with a few exceptions
in the high SNR scenario; (b) best subset often loses
to the lasso except in the high SNR range; (c) the re-
laxed lasso achieves “the best of both worlds” and per-



592 T. HASTIE, R. TIBSHIRANI AND R. TIBSHIRANI

forms on par with the best method in almost every sce-
nario.

Our R package bestsubset, designed to easily repli-
cate all of the simulations in this work, or forge new
comparisons, is available at https://github.com/ryantibs/
best-subset/.
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