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A Discussion on Practical Considerations
with Sparse Regression Methodologies
Owais Sarwar, Benjamin Sauk and Nikolaos V. Sahinidis

Abstract. Sparse linear regression is a vast field and there are many different
algorithms available to build models. Two new papers published in Statisti-
cal Science study the comparative performance of several sparse regression
methodologies, including the lasso and subset selection. Comprehensive em-
pirical analyses allow the researchers to demonstrate the relative merits of
each estimator and provide guidance to practitioners. In this discussion, we
summarize and compare the two studies and we examine points of agreement
and divergence, aiming to provide clarity and value to users. The authors have
started a highly constructive dialogue, our goal is to continue it.
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INTRODUCTION

Research in sparse linear regression has covered con-
siderable ground in recent decades. Trevor Hastie, Robert
Tibshirani, and Ryan Tibshirani’s Best Subset, Forward
Stepwise, or Lasso? Analysis and Recommendations
Based on Extensive Comparisons and Dimitri Bertsimas,
Jean Pauphilet, Bart van Parys’ Sparse Regression: Scal-
able Algorithms and Empirical Performance are impor-
tant additions to the conversations in linear model selec-
tion.

Over two centuries have passed since Gauss and Leg-
endre laid the foundations for the Ordinary Least Squares
(OLS) method that is central to linear regression [25].
Since then, the success of OLS in the field has been tem-
pered only by its limitations when the amount of regres-
sion variables becomes large. When there are many vari-
ables, OLS leads to over-fit models with poor accuracy
and poor interpretability. As a consequence, statisticians
have concentrated their attention on methods that build
models with only a small subset of the total regression
variables, that is, sparse estimators [15].
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In the 1960s, Hocking and Leslie [18] wrote about us-
ing forward selection to select from a few dozen regres-
sion variables, not a challenging task even for the com-
puters of the time. Finding an optimal subset however
was much harder—Furnival and Wilson’s 1974 Leaps
and Bounds algorithm struggled with these size problems
[13]. Following the work of Hoel and Kennard [19], ridge
regression became popular in the 1970s and 1980s for re-
ducing the variance of the OLS estimators, but unfortu-
nately doing so without inducing sparsity. In the 1990s,
work by Breiman on the nonnegative garrote [4] ulti-
mately inspired Tibshirani’s sparse, efficient and ultra-
popular lasso methodology [26]. The lasso allows for si-
multaneous coefficient shrinkage to reduce variance, and
variable selection by setting many coefficients to zero. In
the quarter century since, numerous refinements of the
lasso have been proposed [22, 30, 32, 33], nonconvex
penalties were developed [11, 21, 31], and other alterna-
tives [5, 23] including, recently, best subset selection [1,
7] have gained attention. Today, regression problems with
millions of variables are within the reach of the average
user.

These established regression methods largely come
with a body of theoretical and experimental analyses to
guide development and practice. Nevertheless, most of
these analyses are narrow and few studies extensively
compare the empirical performance of estimators at a
macro-level (an exception, [29]). As Bertsimas et al. note,
“the profusion of research . . . might have caused con-
fusion and provided little guidance to practitioners.” We
compare how these two recent studies endeavour to de-
liver us from this incertitude. Although Bertsimas et al.
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also examine classification, we will only focus on regres-
sion.

Before discussing the papers, we commend both groups
for making the code for their research available open-
source. Hastie et al. go notably further by distributing the
code for not only their regression methods, but also for
the scripts used to run their actual simulations.

COMPARING REGRESSION METHODS

Both papers compare the performance of multiple pop-
ular regression algorithms on synthetic data generated ac-
cording to a linear model with variable constant Gaussian
error in the response. While both sets of authors consider
firmly-entrenched l1-based regression methods against
their l0-based (or generally nonconvex) alternatives, the
conclusions they reach are not completely aligned. Al-
though these studies share some similarities, in this sec-
tion we examine some substantial differences between
them. While a detailed accounting here is not practical,
we highlight the difference in the estimators compared,
scale of the problems considered, and the differing nature
of experiments conducted. A thorough summary of the
experimental setups is provided for reference in Table 1,
in the caption of which we explain notation that will be
referenced later.

We also discuss some conclusions and perspectives on
regression articulated in the two papers, including on
the predictive power of the various methods, the spar-
sity advantage of subset selection and the other lasso-
alternatives, and the practical philosophy behind choos-
ing between regression methods. A broader summary of
the authors’ main points is provided for convenience in
Table 2.

For our computations, we use the ncvreg pack-
age,1 L0Learn package2 and code provided by the
authors.3,4,5 Our scripts are available online.6

Extensive Comparisons and Sparse Regression,
Side-by-Side

It is important to understand how these studies differ to
appreciate and contextualize their conclusions, and to find
guidance for further research.

Estimators considered, convex and noncovex. Both
studies highlight l1/lasso-based and subset selection re-
gression. While Hastie et al. study the ordinary lasso,
Bertsimas et al. choose to use the related elastic net (ENet)
[33] which, theoretically, should improve upon the lasso’s

1R: https://cran.r-project.org/web/packages/ncvreg/index.html
2R: https://cran.r-project.org/web/packages/L0Learn/index.html
3R: https://github.com/ryantibs/best-subset/
4Julia: https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
5Julia: https://github.com/jeanpauphilet/SubsetSelection.jl
6https://github.com/osarwar/stsdiscussion2020

performance in high-dimensional, highly-correlated data
while maintaining a similar (if slightly lower) level of
sparsity. While there are differences between the two,
they are likely not significant enough to change the au-
thors’ conclusions about the comparative performance of
l1 regression and subset selection.

Both groups of authors consider both optimal and ap-
proximate versions of the cardinality-constrained ver-
sion of subset selection. Hastie et al. look at the un-
regularized versions (i.e., with no shrinkage penalties)
whereas the optimal combinatorial integer optimization
(CIO) method of Bertsimas et al. [2] and the correspond-
ing Boolean relaxation (SS) [24] approximation, intro-
duce an l2-regularization penalty in the objective function
that should improve the performance in the high-noise
regime. Subset selection will be discussed further later.

Each paper also considers alternatives. Hastie et al. ex-
amine the relaxed lasso (rlasso) while Bertsimas et al.
discuss prominent nonconvex-estimators MCP [31] and
SCAD [11]. Bertsimas et al. demonstrate that the lasso, in
general, selects more irrelevant variables than the alterna-
tives. As the authors note, this is not surprising because
a wide-body of theoretical and empirical results span-
ning the past two-decades has demonstrated the limita-
tions of the lasso—and of convex penalties in general—
in high dimensions even in “friendly” designs (e.g., re-
cently, [6]). We see this, too, in Hastie et al. where the
lasso is by far the least sparse method. These limita-
tions have prompted the development of the MCP/SCAD
(along with other nonconvex regularizers, e.g., bridge re-
gression [12]) and lasso-modifications such as the relaxed
lasso. Bertsimas et al. conclude that the “best approaches
. . . combine a convex and nonconvex component.” While
that statement is sufficiently general as to admit multi-
ple interpretations, it seems to be more intuitively the
case for approaches where regression is done in a sin-
gle stage. Consider that a two-stage approach that does
not require minimization of a nonconvex function, the re-
laxed lasso (which performs variable selection and shrink-
age in two separate steps), was the “overall winner” in
the studies by Hastie et al. It would be informative to
analyze its performance within the framework of Bertsi-
mas et al. To this end, we reproduce the “Medium noise,
High correlation” setting in Bertsimas et al. 7 and plot re-
sults in Figure 1. These experiments were actualized be-
cause the authors have provided open-source implemen-
tations.

While our results for MCP are slightly different than
those from Figures 6–7 in Bertsimas et al. (in particular,

7Where (p, ktrue,SNR, ρ,MIC) = (104,50,1,0.7, true). Validation
is performed on a separate dataset of size n. For practical reasons, we
use data directly from Sparse Regression Figures 6–7 to plot CIO and
SS Accuracy/FPR. Results are averaged over 10 trials.

https://cran.r-project.org/web/packages/ncvreg/index.html
https://cran.r-project.org/web/packages/L0Learn/index.html
https://github.com/ryantibs/best-subset/
https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
https://github.com/jeanpauphilet/SubsetSelection.jl
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TABLE 1
Summary of comparison frameworks for both papers. We retain the notation of the two papers discussed; here, p, n,
ktrue and SNR refer to, respectively, the total number of regressors considered, the number of data points, the true

number of regressors in the model, and the signal-to-noise ratio

Feature Hastie et al. Bertsimas et al.

Estimators Lasso [26]
Relaxed Lasso (rlasso) [22]
Forward Stepwise Selection
(FS) [18]
Best Subset MIO (BSS) [1]
(cardinality-constrained)
In supplement:
L0Learn [16]
(unregularized and
l1-regularized)
SparseNet [21]

Lasso/ENet [33]
MCP [31]
SCAD [11]
Best Subset CIO (CIO) [2]
(cardinality-constrained,
l2-regularized)
Boolean Relaxation of Best Subset
(SS) [24]
(cardinality-constrained,
l2-regularized)

p 10, 100, 103

n > p and p > n

2 × 104, 104, 2 × 103

p > n

n 50 (p = 103)
100 (p = {10,103})
500 (p = 102)

500-thousands

ktrue 5 (p = {10,102,103})
10 (p = 103)

10 (p = 2 × 104, SNR = 0.05)
50 (p = 104, SNR = 1)
100 (p = 2 × 104, SNR = 6)

Sparsity structure 4 patterns
1 considers weak sparsity

Random

Correlation Toeplitz: predictor covariance
�i,j = ρ|i−j |
ρ = {0,0.3,0.7}

Toeplitz, ρ = {0.2,0.7}
(Mutual Incoherence Condition (MIC)
true)
“Hard” structure (MIC fails) [20]

SNR 0.05–6 (logarithmic scale) 0.05, 1, 6

Metrics Relative (to Bayes) Test Error
Proportion of Variance
Explained (PVE)
Number Nonzeros
F-score (harmonic avg. of
precision and recall)

Accuracy
(% true regressors recovered)
False Positive Rate (FPR)
Test Mean Squared Error (MSE)

Experiments Evaluated test metrics across
range of data settings after
fitting each estimator
using cross validation.

Looked at both correlation structures.
When MIC holds, looked at high
and low correlation level.
Fixed support size k = ktrue;
evaluated Accuracy, FPR, and
MSE for 3 (p, k,SNR) settings
with asymptotically increasing n.
Cross-validated support size k;
evaluated MSE with fixed
(p, k,SNR, n); evaluated Accuracy and
FPR with for 3 (p, k,SNR) settings
with asymptotically increasing n.

the FPR is worse here for large n; likely there is an im-
plementation difference), even compared to their data the
relaxed lasso appears to be superior to MCP in this set-

ting. The cardinality-constrained estimators CIO/SS have
a lower FPR, but the relaxed lasso is competitive with SS
and has greater Accuracy than both.
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TABLE 2
Summary of major conclusions from both studies. Clarifying notes added parenthetically. See Table 1 caption for notation

Method Hastie et al. Bertsimas et al.

Lasso Lasso more accurate (in terms of error) in low SNR range,
best subset more accurate in high SNR.

(In terms of variable selection, when p > n the lasso is
inferior to subset methods.)

Lasso has the lowest Accuracy and highest FPR of all
methods across settings. When MIC does not hold, this
difference is large. When noise is large, lasso competes
with other methods.

(Above conclusions mainly from setting where k = ktrue.
When support is cross-validated, Lasso is most Accurate
but highest FPR.)

Subset selection Best Subset Selection does not perform much better than
Forward Selection, and is much less tractable.

L0Learn1 (unregularized) and L0Learn2 (l1-regularized)
do not improve much over BSS/FS. (In our view,
L0Learn2 is better than L0Learn1, and does improve over
other subset methods.)

Both subset selection estimators more Accurate (at
k = ktrue) and have a much lower FPR than alternatives.
SS heuristic almost as good as optimal algorithm.

l2-regularization greatly improves performance in noisy
settings.

Still expensive, but affordable for many problems.

Alternatives The relaxed lasso generally outperforms all other
methods.

Nonconvex SparseNet is also good overall but not quite as
good as relaxed lasso.

Nonconvex penaltizers (esp. MCP) preferable to the lasso
in terms of test error and variable selection but MCP has
higher FPR than subset methods.

Meta BSS not inherent “holy grail” of regression. Different
methods consider different sets of bias-variance trade-offs
(depending on problem). Favored set depends on problem
class.

Regression problems are very noisy. Practical simulations
consider “low” SNR values that faithfully capture range
of maximal PVE achievable by linear regression model.

Ultimately, all methods similar in PVE. This is
meaningful because PVE is a critical, intuitive metric.
Therefore, the most convenient methods should be
preferred.

Lasso popular due to performance, but also efficiency and
accessibility.

Robustness and sparsity are different but equally
important objectives. Ideal estimators combine robustness
of convex penalizers with sparsity of nonconvex methods.

Variable selection (sparsity) is critical and FPR is as
important as Accuracy. Higher compute times can be
justified for more interpretable models.

In practice, subset selection is limited in some
time-sensitive applications. Lasso/ENet could be used for
dimensionality reduction followed by subset methods.

Experimental design. Bertsimas et al. devote consider-
able effort to simulations that fix the size of the support
to equal the size of the true support and evaluate the rel-
ative asymptotic performance of the estimators as n is in-
creased. While this approach is important to mirror the
set-up and conclusions of important theoretical work on
the lasso, it somewhat exaggerates the lasso’s relative de-
ficiencies by implying that the number of true positives
the lasso will identify (which they quantify using “Accu-
racy”) is much lower than in actuality.

In their own words, the authors of Sparse Regression
intend to analyze the estimators “with an eye toward prac-
ticality.” In our view, they achieve this goal more directly
in simulations where the support is chosen by cross val-
idation. Here, Bertsimas et al. show that the lasso recov-
ers more of the true support than the other methods (even

when the Mutual Incoherence Condition does not hold,
as shown in their Supplemental Information). Still their
important conclusion regarding the lasso’s high false pos-
itive rate remains.

Problem dimension and sparsity. The most obvious
difference between the two studies is the scale of the
problems and the true sparsity level. While Hastie et al.
considered problems with at most 103 regressors, Bert-
simas et al. simulated problems up to on the order of
104. Compare two problem configurations with SNR = 1
and (p,n, ktrue) = (103,50,5) from Hastie et al. (Fig-
ure A.3.4) and (104,500,50) from Bertsimas (Figures 6–
7), with identical linear scaling in these three quan-
tities. At roughly similar correlation level, one would
obtain comparable results in terms of variable selec-
tion (i.e., where lasso is superior to the nonconvex al-
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FIG. 1. Relaxed lasso performance compared with the lasso and nonconvex alternatives. For lasso and MCP, we used the default options from the
R implementations. For rlasso, the nlambda option was set to 50, with 10 interpolation points each. Data for CIO/SS is taken from Bertsimas et al.
“Accuracy %” refers to the percentage of the true regressors identified, “FPR %” refers to the false positive rate (i.e., the percentage of regressors
chosen that are erroneously included), and “RMSE” refers to the root mean square prediction error on a test set of data size n.

ternatives). It is when the amount of data available,
relative to the other two quantities, is increased that
the variable selection quality of the nonconvex meth-
ods significantly surpasses that of the lasso (although
in the case of Hastie et al., the relevant setting in Fig-
ure A.4.4 (103,100,10) preserves the one of the ra-
tios by doubling ktrue with n, so the comparison is not
exact).

Naturally, this raises questions about the relative influ-
ence of the scaling of (p,n, ktrue) on each estimator. In-
deed, there is research that studies the importance of this
scaling for support recovery in certain regression settings
including in the case of the lasso (e.g., [10, 14, 27, 28]).
In Bertsimas and Van Pary’s work on CIO, they empiri-
cally demonstrate the advantage of subset selection over
the lasso specifically with reference to these “phase tran-
sitions” in variable selection [2]. Still, there is room in this
area for empirical comparisons of estimators with scaling
in mind, for example, to put performance across problem
configurations on a somewhat standardized basis and pro-
vide clarity for practitioners as to which scalings favor
which estimators.

The Best Subset Selector: Performance and
Practicality

In step with recent advances in combinatorial optimiza-
tion, (best) subset selection has gained renewed interest.
There are several variations of the problem that can be
solved: optimal or approximate, subset-size penalized or
cardinality-constrained, regularized or unregularized, etc.
Still, they are clearly members of the same family of esti-
mators and are worth considering together.

Works from 2014–2015 by Cozad et al. [7] and Bert-
simas et al. [1] focus on using integer programming to

find optimal solutions to the penalized and cardinality-
constrained, respectively, versions of the best subset prob-
lem. However, these algorithms are computationally in-
tensive and, as mentioned by Hastie et al. and others [9],
forward stepwise selection finds very good approximate
solutions at a fraction of the computational cost.

As noted, shrinkage improves the best subset solu-
tion. As demonstrated in Spare Regression, Bertsimas
et al. have made large algorithmic advances in opti-
mal cardinality-constrained, l2-penalized best subset se-
lection; achieving order(s) of magnitude speedups from
prior implementations. While tractability is a situational
judgement, they argue that their CIO method is afford-
able for many problems. In Figure 2 of Spare Regres-
sion, they show that the cardinality-constrained solutions
for CIO/SS can be found within times one or two orders
of magnitude of the lasso as implemented in the package
glmnet. However, this appears to be comparing the time
needed to find a single cardinality-constrained solution set
to the full solution path for glmnet. For CIO/SS, the sub-
set size k is set to equal ktrue, which results in a hard opti-
mization problem because p and ktrue are large. The value
for γ , also critical for computational time, is seemingly
chosen to correspond to an “appropriate” value given the
noise level. However, in general application, a wide range
of possibilities must be accounted for, demanding a wide
range of hyperparameters be examined. In our view, find-
ing a “reasonable”—size solution path across the two hy-
perparameters γ , k is still computationally challenging
for large-scale problems.8 Then we need to consider K-
fold cross validation. The approximate, SS algorithm is

8For CIO, for example, Bertsimas et al. note that they set a time
limit of 60 s per γ , k. Assuming for the problem setting of Figures 1–2,
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FIG. 2. Performance of various subset selection alternatives (dashed lines are used for unregularized methods). For forward-selection, the max-
imum number of steps was set to 100. For L0Learn, we set (nLambda,nGamma) = (50,10) and used the slower but stronger CDPSI algorithm.
Data for CIO/SS is taken from Bertsimas et al. “Accuracy %” refers to the percentage of the true regressors identified, “FPR %” refers to the false
positive rate (i.e., the percentage of regressors chosen that are erroneously included), and “RMSE” refers to the root mean square prediction error
on a test set of data size n.

roughly an order of magnitude faster than CIO but still
comparatively quite expensive.9 For many cases, this cost
is likely acceptable. For very large problems with thou-
sands of regressors, many practitioners simply cannot af-
ford it.

Bertsimas et al. argue that the superior performance of
CIO and SS “speaks in favor of formulations that explic-
itly constrain the number of features” instead of induc-
ing sparsity via regularization. To test this claim briefly,
we compare these cardinality-constrained methods with
the highly-scalable L0Learn [16]. L0Learn approximately
solves the objective-penalized l0-regularization problem
with an optional l1 or l2 penalty (indicated as L0L1Learn/
L0L2Learn). We note that the same authors, with Saab,
published an algorithm called L0BnB that solves the op-
timal version of this (l0 + l2)-penalized problem, along
with a Python-implementation10

 [17]. We do not con-
sider L0BnB here because the implementation is currently
in the prototype stage. We use the same experimental
setting7 as in Figure 1. The results of our comparison are
shown in Figure 2.

The regularized versions of the subset selection algo-
rithms out-perform plain L0Learn and FS. This is partic-
ularly true when the amount of data is low. Once a thresh-
old amount of data is reached, the unregularized L0Learn

training is done over 100 values of k and 10 values of γ , it is reasonable
to expect > 8 h of training time (charitably assuming that the average
run time is 30 s; in reality the time limit of 60 s will be reached a
majority of the time.)

9Please see the Supplemental Information for Bertsimas et al. for a
detailed analysis of computational time; particularly, Figure B.1.

10https://github.com/alisaab/l0bnb

and FS algorithms exhibit similar performance in variable
selection to their regularized counterparts. Despite this,
lack of shrinkage in the coefficients ensure that test error
remains larger than for the regularized L0Learn. Overall,
the regularized L0Learn solutions exceed the performance
of cardinality-constrained algorithms while being signifi-
cantly faster and more convenient. Average time for each
algorithm is plotted in Figure 3.

How do Practitioners Actually Choose Regression
Methods?

It is important to understand how practitioners actu-
ally select an estimator to guide comparative research.
In practice, convenience is the most important factor for
the average modeler who is considering various methods.
Accessibility of fast implementations that are also func-
tionally labor-saving (e.g., by giving full solution paths,
cross-validating, etc.) is paramount for the adoption of
any estimator. If a user cannot quickly find an implemen-
tation for a new algorithm online, they will just use an
established method. Although it may be best practice to
test multiple algorithms or implement the intelligent com-
bination strategy that Bertsimas et al. suggest (where the
lasso is used for dimensionality reduction, and subset se-
lection for feature-selection), it is hard to envision a sce-
nario where that becomes ubiquitous unless there is code
that provides that functionality “under one hood.”

More sophisticated modelers may then consider prob-
lem dimensions in (p,n). Although most users will lean
heavily on the sparsity bet, some domain-educated mod-
elers may have an intuition for ktrue and will consider
information regarding that scaling, as well. Hastie et al.
note that the proportions of variance explained by the

https://github.com/alisaab/l0bnb
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FIG. 3. Training times likely to be seen by practitioners. Times include cross validation on separate data set of size n. For lasso and MCP,
we used the default options from the R implementations. For rlasso, the “nlambda” option was set to 50, with 10 interpolation points each. For
forward-selection, the maximum number of steps was set to 100. For L0Learn, we set (nLambda,nGamma) = (50,10) and used the slower but
stronger CDPSI algorithm.

considered estimators do not differ much, meaning that
it “makes sense overall to favor the methods that are easy
to compute.” However, Bertsimas et al. would likely jus-
tifiably argue that, even if there is no obvious reason to
assume a priori that one estimator would have a higher
PVE (or lower test error) than another, those who value
model conciseness may prefer l0-methods when the scal-
ing seems appropriate.

Even more advanced users may have some expectations
of sparsity structure, correlation structure, and noise that
will guide them toward particular, or even specialized, es-
timators. Users may also desire to account for constraints
on the response surface, which model-building algorithms
like [8] can enforce explicitly.

CONCLUSIONS

Hastie et al. emphasize that they are not trying to de-
termine the “best variable selector” or identify the “best
prediction algorithm.” Indeed, even if it was possible to
define and agree upon what qualities make a regression
algorithm “best,” in a noisy and nonlinear world, it is im-
possible to speak in absolutes.

But if the ultimate goal of statistics is to create value,
then even if we cannot pin-down the idea of “best,” we
must certainly be able to point in its general direction.
Both Bertsimas et al. and Hastie et al. inexorably point
toward methods that they think are favorable in particular
settings. Their work taken together provides useful intu-
ition about when to apply which methods, and where we
can improve and learn more.

So, let us again step into the mind of an average user.
Given only a data set, and assuming that we value conve-
nience, how should we go about building a model?

If our priority is predictive or explanatory performance,
it seems most natural to “favor the methods that are easy
to compute” and start with the lasso/ENet using the glm-
net11 package, which is very powerful, fast and avail-
able in multiple languages. It would also make sense to
benchmark against a sparser estimator, for which MCP
(via ncvreg1 [3]) is a trusted choice that is efficient and
convenient. Suppose that the MCP solution is apprecia-
bly sparser than the model from glmnet. Then, even if
this sparser model does not lower test error, we might still
prefer a more interpretable solution. To this end, rlasso3

shows robust performance and sparsity. We can expect
more sparsity with a modest increase in computational
time12 by performing regularized subset selection using
L0Learn as implemented in the L0Learn2 package, con-
figured with the added l1/l2-penalty and solved using the
stronger CDPSI algorithmic option.

If our priority is sparsity, as Bertsimas et al. argue, non-
convex methods achieve just that without necessarily sac-
rificing predictive power. As mentioned, MCP and rlasso
are fast and accessible, but subset-selection via regular-
ized L0Learn will provide users (who can afford the po-

11R: https://cran.r-project.org/web/packages/glmnet/index.html,
Python: https://github.com/bbalasub1/glmnet_python, MATLAB:
https://web.stanford.edu/~hastie/glmnet_matlab/download.html

12Importantly, Hazimeh et al. [16] report that the faster algorithm
(“Algorithm 1”) achieved notable speedups of 25–300% over glm-
net and ncvreg for very large instances and performed compara-
tively well on real problems. We did not test this algorithm because
we wanted to maximize the regression performance metrics and, in
[16], the more intensive CDPSI algorithm performed substantially bet-
ter than Algorithm 1 on synthetic data. Still, we acknowledge that
L0Learn with the (default) Algorithm 1 may potentially be the most
convenient option and preferable to other methods.

https://cran.r-project.org/web/packages/glmnet/index.html
https://github.com/bbalasub1/glmnet_python
https://web.stanford.edu/~hastie/glmnet_matlab/download.html
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tential extra cost12) confidence that they are approaching
the current limits of achievable sparsity. In the most gen-
eral case, we would not turn to the cardinality-constrained
estimators CIO/SS, as implemented in the Subset-
SelectionCIO.jl4 and SubsetSelection.jl5

packages, because of the relatively demanding compu-
tational time needed and lack of seamless hyperparame-
ter selection and tuning that methods like L0Learn pro-
vide (by calculating hyperparameter-paths from the data).
We would also avoid unregularized subset-selection algo-
rithms like forward-selection, BSS, or the corresponding
configuration in L0Learn because of their poor perfor-
mance on noisy data.

It is impossible to give broad advice for all conceiv-
able situations and the experiments in this paper and the
two discussed can only capture a portion of the range of
problem configurations. There is still progress to be made
in translating experimental results into specific prescrip-
tions. We invite readers to expand upon the ideas pre-
sented in the studies highlighted here and share their re-
sults as part of a continuing discussion.
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