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Rejoinder: Best Subset, Forward Stepwise or
Lasso? Analysis and Recommendations
Based on Extensive Comparisons
Trevor Hastie, Robert Tibshirani and Ryan J. Tibshirani

With two papers under discussion, our task in this
rejoinder is somewhat unusual in that we have been
asked not to comment directly on the paper by Bertsimas,
Pauphilet and Van Parys (BPV). We would like to con-
gratulate BPV, however, for making impressive computa-
tional advances in best subsets (BS) and related problems.

There is a great deal of interesting material in the dis-
cussions, and these provide excellent background and per-
spectives on the sparse regression problem. Our rejoinder
will be brief and will touch on some common themes that
were expressed by this distinguished group of scientists.

• Sarwar, Sauk and Sahinidis (SSS) give an impres-
sive detailed summary of the setups and conclusions
from both papers. George gives a nice history of how
these two papers evolved and a detailed overview of
the findings from both papers. He mentions promising
Bayesian alternatives, for example, “spike and slab”
methods. The big question is whether they can be made
computationally scalable. For example, Johndrow, Oren-
stein and Bhattacharya (2020) present some exciting
work in the direction of scalability.

• Generally, the discussants agree that the lasso tends to
work better in low SNR settings, while BS excels with
high SNR ones. Importantly, in our paper we go be-
yond the lasso, and study a simple form of the relaxed
lasso, while in their paper, BPV generalize BS to an
�0 + �2 penalty. Both generalizations result in methods
that work well across a broader SNR spectrum; BPV’s
combined penalty also leads to a considerable speedup
of the BS algorithm, while the relaxed lasso extension
in our paper adds very little cost to the computation of
the lasso.

Trevor Hastie is Professor, Departments of Statistics and
Biomedical Data Science, Stanford University, Stanford,
California 94305, USA (e-mail: hastie@stanford.edu). Robert
Tibshirani is Professor, Departments of Statistics and
Biomedical Data Science, Stanford University, Stanford,
California 94305, USA (e-mail: tibs@stanford.edu). Ryan J.
Tibshirani is Associate Professor, Departments of Statistics
and Machine Learning, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15217, USA (e-mail:
ryantibs@cmu.edu).

• Mazumder argues that high SNR problems do exist in
some areas of business, signal processing and image
classification. We acknowledge this, but point out that
in many high SNR settings (such as image classifica-
tion), linear models would rarely be used, and nonlinear
adaptive methods such as gradient boosting and neural
networks would probably be preferred. He also makes
the important point that when p � n, (e.g., n = 20 and
p = 1000) and the SNR is 6, the achieved PVE (test set
proportion of variance explained) by the lasso is only
about 0.02. This is despite the fact that the population
PVE is 6/(6 + 1) ≈ 0.86. This underlines the fact that
SNR does not fully capture the difficulty of a super-
vised learning problem.

• Mazumder also discusses his own “regularized subsets”
proposal (Hazimeh and Mazumder, 2018) which adds
an �1 or �2 regularizer to the BS problem. This ap-
pears to be the same or similar to the BPV proposal,
but seems to not have been mentioned by these other
authors or other discussants.

• SSS comment on the �0 +�2 speedup in the BPV paper,
pushing back against the claim by BPV that their result-
ing procedure is within one or two orders of magnitude
as fast as the lasso via glmnet. SSS say that “this ap-
pears to be comparing the time needed to find a single
cardinality-constrained solution set to the full solution
path for glmnet”. We agree: if you multiply the “1
or 2 orders of magnitude” by the 100 values along the
path, the difference becomes more like 3 or 4 orders of
magnitude.

• Chen, Taeb and Buhlmann (CTB) give a very nice sur-
vey of subset selection techniques, and enrich this se-
ries by introducing several other ways to judge the
different methods. CTB wondered why we had not
considered the adaptive lasso (Zou, 2006), along with
the relaxed lasso, since it also pushes the solution to-
ward a less-regularized alternative. This is a reason-
able suggestion, but unlike the relaxed lasso, the adap-
tive lasso does not provide a full continuum of less-
regularized estimates from the lasso to least squares.
In the same vein, we did not include “SparseNet”
(Mazumder, Friedman and Hastie, 2011) in the main
comparisons in our paper (though it is included in the
supplement) which is even more closely aligned with

625

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/20-STS733REJ
https://doi.org/10.1214/19-STS701
https://doi.org/10.1214/19-STS733
https://www.imstat.org
mailto:hastie@stanford.edu
mailto:tibs@stanford.edu
mailto:ryantibs@cmu.edu


626 T. HASTIE, R. TIBSHIRANI AND R. J. TIBSHIRANI

FIG. 1. Figure 3 of Chen, Taeb and Buhlmann, with the relaxed lasso used in place of the lasso.

methods in between �1 and �0. As we mention in our
Introduction, there is a long list of potential competi-
tors. We chose just four methods: �0 and �1, forward
stepwise (FS) which has a long history as an easy alter-
native to �0, and the relaxed lasso for its ease of imple-
mentation.

• We strongly agree with SSS about the importance
of software to provide functionality for different ap-
proaches “under one hood.” Since the initial submis-
sion of our paper, we released version 4.0 of glm-
net, adding functionality for the relaxed lasso. It in-
cludes a relax=TRUE option in the call, which trig-
gers the additional computation of the relaxed fits, and
cv.glmnet will then choose both λ and γ . The soft-
ware also allows for any GLM family via the alter-
native family=family() specification, which ex-
tends this methodology to a much broader scope of
problems.

Using this new package, we reran CTB’s Figure 3
on feature stability, using the relaxed lasso in place of
the usual lasso. We see in Figure 1 that the relaxed lasso
significantly reduces the number of false positives com-
pared to the lasso, while maintaining the superiority
over best subsets in selecting the true variables in the
low SNR regime.

• Figure 3 of SSS’s discussion seems to show that the
relaxed lasso slows down considerably beyond about
n = 1500 in their setup. However, we would like to
point out that this speed comparison is misleading, as
different methods consider different model sizes—this
being just a function of the range of tuning parameters

used in this example. In particular, in the dense part of
its solution path, the relaxed lasso considers models of
size approaching n (in this example, 2000, while SSS
limited forward-selection to a maximum of 100 steps
(variables). Thus, while both methods are computing
least squares fits, they are done on very different num-
bers of variables, and thus not comparable.

• Finally, we note that some of the discussants had trou-
ble exactly reproducing some of the BPV results ex-
actly. It was for this reason that we provided a public
GitHub repo https://github.com/ryantibs/best-subset,
with fully reproducible R code for all of our examples.
We encourage all authors to do this in the future.

We would like to thank the Editors of Statistical Science
and the discussants for their considerable efforts. Hope-
fully, these papers and discussions represent, in total, a
useful contribution toward a topic that is a central one in
statistical practice.
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