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1. INTRODUCTION

I warmly congratulate the authors Hastie, Tibshirani
and Tibshirani (HTT); and Bertsimas, Pauphilet and Van
Parys (BPV) for their excellent contributions and impor-
tant perspectives on sparse regression. Due to space con-
straints, and my greater familiarity with the content and
context of HTT (I have had numerous fruitful discussions
with the authors regarding their work), I will focus my
discussion on the HTT paper.

HTT nicely articulate the relative merits of three canon-
ical estimators in sparse regression: L0, L1 and (forward)-
stepwise selection. I am humbled that a premise of their
work is an article I wrote with Bertsimas and King [4]
(BKM). BKM showed that current Mixed Integer Opti-
mization (MIO) algorithms allow us to compute best sub-
sets solutions for problem instances (p =~ 1000 features)
much larger than a previous benchmark (software for best
subsets in the R package 1eaps) that could only handle
instances with p &~ 30. HTT by extending and refining the
experiments performed by BKM, have helped clarify and
deepen our understanding of LO, L1 and stepwise regres-
sion. They raise several intriguing questions that perhaps
deserve further attention from the wider statistics and op-
timization communities.

In this commentary, I will focus on some of the key
points discussed in HTT, with a bias toward some of the
recent work I have been involved in. There is a large and
rich body of work in high-dimensional statistics and re-
lated optimization techniques that I will not be able to
discuss within the limited scope of my commentary.

2. SPARSE REGRESSION: CONVEX AND DISCRETE
OPTIMIZATION LENSES

Over the past several years, algorithmic research in
sparse statistical learning [12] have been positively influ-
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enced by tools and techniques from continuous optimiza-
tion especially, convex optimization. First- and second-
order methods, path-based algorithms (e.g, LARS) have
led to useful algorithms for the Lasso with various al-
gorithmic operating characteristics. It is worth empha-
sizing that the highly efficient and popular toolkit for
Lasso: glmnet, is not an out-of-the-box implementa-
tion of cyclical coordinate descent—it has been positively
influenced by several years’ of research toward under-
standing the (statistical) structure of Lasso solutions. In-
terestingly, similar continuous optimization methods with
suitable modifications lead to good feasible (i.e., locally
optimal) solutions for nonconvex penalized optimization
problems (e.g., with SCAD, MCP penalties) [11, 12, 19].

Discrete optimization techniques such as forward/
backward stepwise selection are also used to obtain ap-
proximate solutions for best subsets, though their usage is
a bit limited compared to continuous optimization based
methods. There is a stark difference in computational per-
formances and available software: glmnet can usually
handle problems with p 2 10° and n &~ 100 within a sec-
ond, but the well-known R function step only works for
n > p regimes and is far less efficient.

MIO, a field within mathematical optimization, pro-
vides us with a rich set of algorithmic tools that allow
us solve to optimality, a family of structured discrete op-
timization problems: best subsets being one such exam-
ple. The broader message of BKM is that there is enor-
mous potential and value in using MIO methods to design
principled computational tools for sparse learning prob-
lems, often perceived to be computationally infeasible.!
HTT by using MIO-tools concretely demonstrate certain
undesirable and less-understood properties of best sub-
sets. This helps us understand, critique existing estima-
tors and propose improvements. While significant strides
have been made at the intersection of convex optimization

ITo be clear, I do not intend to imply that best subsets is a straight-
forward computational problem that is simple to solve. MIO provides
principled tools that allow us to solve to near-optimality, many inter-
esting problem-instances that are often perceived to be practically im-
possible to compute.
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and sparse statistical learning; research at the crossroads
of convex optimization, MIO and statistics is rather im-
mature in comparison. HTT raise questions that squarely
belong to this intersection.

3. IS BEST SUBSETS THE HOLY GRAIL?

HTT raise an important point regarding whether best
subsets should be considered the gold standard for noisy
data, even if one desires a sparse model with few nonzero
coefficients. Like most statistical estimators, the useful-
ness of best subsets, Lasso or Stepwise depends upon the
context, statistical metric(s) of interest (e.g., prediction,
estimation, variable selection, etc.) and associated bias-
variance trade-offs (even if one were to ignore compu-
tational costs). As HTT point out, no method uniformly
dominates the other, and each method is useful in its own
way. From a methodological standpoint, it is important to
study and create computational tools for all these estima-
tors.

In low signal regimes, HTT observe that best subsets
can lead to poor prediction performance (even after val-
idation tuning)—the corresponding solutions generally
have fewer nonzeros than the underlying truth (assuming
data is generated from a sparse linear model). See also
the work by Mazumder, Radchenko and Dedieu [16] for
related observations. When the signal is low, the Lasso,
which is a relaxation of the best subsets estimator, may
lead to better prediction error due to shrinkage.” The same
shrinkage can hurt Lasso in high signal regimes, when
best subsets is a good estimator and the Lasso does not
yield a good approximation.

Stepwise regression is a well-known greedy heuristic
for best subsets. Depending upon the problem, stepwise
regression may or may not lead to a good approxima-
tion to best subsets. BKM consider Stepwise only for the
n > p setting (they use the R function step which does
not appear to work for p > n); and use AIC-based tuning
resulting it to under-perform compared to best subsets.
HTT’s extended simulations and complementary experi-
ments performed by Hazimeh and Mazumder [13] suggest
that in some high signal-to-noise ratio (SNR) cases (e.g.,
with small n, high feature correlations) best subsets works
better than Stepwise in terms of prediction and variable
selection. In some other cases, their performances appear
to be similar. When the noise is high, Stepwise does not
appear to work as well as the Lasso in terms of prediction,
perhaps due to a lack of shrinkage.

HTT’s observation that Stepwise “searches less” com-
pared to best subsets reminds us of Boosting (e.g., incre-
mental forward stagewise regression, LSBoost) [9, 11],

ZNote that in low-signal regimes, ridge regression may lead to better
prediction than L0, L1 and Stepwise [13, 16] even if the underlying
model is sparse.

which is known to impart algorithmic regularization. In-
terestingly, Boosting algorithms with suitable tuning pa-
rameter choices, may lead to good predictions (compara-
ble to L1) for low signal regimes. Variants of Boosting
can lead to the Lasso solution path, or more aggressive
variants such as matching pursuit or forward stepwise re-
gression. While the notion of algorithmic regularization is
very pertinent in machine learning applications, it is often
perceived to be a bit opaque by some researchers—the es-
timators cannot be generally expressed as the solution to
an optimization criterion like best subsets or the Lasso.

To echo the point raised by HTT: When various re-
searchers view Lasso and Stepwise as heuristics for best
subsets, their implicit goal is to focus on regimes where
best subsets is a statistically useful estimator. This is an
important setting from a methodological viewpoint; and
has been studied in high-dimensional statistics and com-
pressed sensing [19]. In particular, this can provide us
guidance on when the Lasso, Stepwise and best subsets
will be similar and when they might be different.

4. WHAT IS A REALISTIC SIGNAL-TO-NOISE RATIO?

Building on the discussion in HTT (Section 2.2),
I would like to add that while SNR is important, it
should be interpreted along with other problem param-
eters (sample size, number of features, feature correla-
tions, etc.). Taken together, they determine what is the
achieved Proportion of Variance Explained (PVE) by an
estimator—in other words, how difficult is the underly-
ing statistical problem? Consider the example in Figure 3
in HTT (n = 200, p = 100), here a SNR = 6 translates
to a Lasso-PVE =& 0.84 and is quite optimistic as the
authors note. However, if we were to consider n = 20,
p = 1000 instead, then SNR = 6 would correspond to a
Lasso-PVE& 0.02, which has very little predictive power.

To settle ideas, suppose data is generated from a sparse
linear model ¥ = XBp + € (same setup as Section 3 in
HTT). Given an estimator, one may be interested in the
following questions:

(i) Can we do full support recovery?
(i) Can we get a model with estimation error better
than the null model?
(iii) Can we get a model with prediction error better
than the null model?

Along with SNR, we also need to know n, p, s and X to
be able to answer the above points. There may be regimes
where all of (i)—(iii) are possible; a subset of these are pos-
sible, or none are possible (Note that these answers will
also depend upon the estimator under consideration). In
low signal regimes, when only (iii) is possible, it may still
be quite useful to have a sparse model with good predic-
tion performance.



604 R. MAZUMDER

The experiments in HTT and also those in Hazimeh
and Mazumder [13] shed light into the above. Figure 1,
which is adapted from [13], shows a couple of concrete

3 . . . . . .
examples.” Since it may be difficult to predict a priori
how (i)—(iii) might change as a function of the parameters
(SNR, 1, p, s, ¥), it is important to have computational
tools that facilitate our understanding of these questions.

4.1 High SNR is not that uncommon in applications

HTT make an interesting note regarding what SNR val-
ues they have seen in practice:

“In our experience, a PVE of 0.5 is rare for
noisy observational data, and 0.2 may be more
typical. A PVE of 0.86, corresponding to an
SNR of 6, is unheard of! With financial returns
data, explaining even 2% of the variance (PVE
of 0.02) would be considered huge...”

Some of my colleagues at MIT said that these numbers
appear to be somewhat pessimistic in the context of sev-
eral business analytics applications. To be concrete, in
marketing and retail applications, for example, it is not
uncommon to see instances where the PVE (or some
equivalent) is quite high (70 to 90%+). See, for exam-
ple, [3, 7, 10, 18]—all involving real-world applications.

It appears that high SNR problems are also seen in com-
pressed sensing, image processing and spectroscopy ap-
plications.

In modern image classification and natural language
processing tasks—thanks to significant advances in Neu-
ral Networks—we often come across test-accuracies of ~
99%. For example, in a recent work with collaborators
from Google Research [15], we observe high predic-
tive performance on 26 classification benchmarks—in all
these examples, the AUC ranges from 0.73-1.0.

I agree with HTT that in financial applications, if one
uses standard data sources, PVE is usually quite low.
However, there appear to be ways to obtain somewhat
improved predictions using additional or external data
sources. Due to our significantly improved data-collection
capabilities, there is an increasing trend to leverage data
from multiple modalities, alternative sources (e.g., so-
cial media, news, weather, knowledge graphs)—they
may result in improved predictions for certain financial
indicators—see, for example, [1, 6, 21]. This is an in-
sight I gathered from my ongoing collaboration with re-
searchers at IBM (Financial Services, MIT-IBM Watson
Al Lab).

3 did a quick survey of papers from different authors appearing
in the statistics methodology literature: I have seen examples where
SNR is in the high range 25 to 2000+; and also examples with low
SNR = 0.01 — 0.05. In almost all these examples with various choices
of (n, p,s, ¥), atleast (ii) and (iii) seem to be possible using the Lasso.

While I do appreciate HTT’s perspective, it seems that a
wide range of SNR values occur in practice. Moreover, in
many situations, practitioners may not know a priori what
the SNR is for the application at hand. It appears to be
useful to have a suite of tools that are applicable for both
high and low SNR regimes.

5. ESTIMATORS FOR LOW AND HIGH SIGNAL
REGIMES

To obtain an estimator that works well for both high
and low signal regimes, HTT recommend the following
Relaxed Lasso estimator:

(1) Relaxed Lasso: B =y gL 4+ (1 — 5)pLLLS,

where B! is the Lasso estimate (for a certain tuning pa-
rameter A), the nonzero components of ,[§L1*LS are given
by the least squares solution* on the support of ﬁLl, and
y € [0, 1] is a second tuning parameter. This is a modifi-
cation of the original Relaxed Lasso estimator by Mein-
shausen [17].

5.1 Regularized Subset Selection

Mazumder, Radchenko and Dedieu [16] propose” an al-
ternative regularized subset selection procedure or Regu-
larized-Subsets, which is given by the following optimiza-
tion problem:

1
Regularized-Subsets: min —||Y — X,BII%+ ABllg
B 2 —
Shrinkage

()
s.t. |IBllo =k,
[ —

Selection

where, g € {1, 2}. Estimator (2) performs a modifica-
tion to the best subsets criterion, by including an ad-
ditional continuous regularizer (e.g., Lasso or Ridge®).
Regularized-Subsets is designed for both low and high
signal regimes: When the signal is low, the shrinkage
effect of “A||Bll;” attempts to mitigate the overfitting
behavior of best subsets. When the signal is high, the
continuous regularization term has little to no effect on
the estimator; and estimator (2) behaves like best sub-
sets. Criterion (2) allows us to explicitly control the
support-size of 8. Interestingly, the Relaxed Lasso es-
timator of Meinshausen is a feasible solution for Prob-
lem (2) (g = 1) for suitably chosen tuning parame-
ters.

4Assuming this exists, as Lasso solutions from glmnet can have
support sizes larger than n (for n < p settings).

SThis paper appeared on ArXiv a couple of weeks after the HTT
paper was posted.

6Ridge involves the squared L2-norm instead of the L2-norm—we
use the term interchangeably for simplicity.
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FI1G. 1. Figures adapted from [13]. We show recovery probability (proportion of times the full support is recovered across all replications), support
size, prediction error, estimation error (this is the Loo norm of B — Bo). We consider two correlation settings (top and bottom) and vary SNR. True
regression coefficients P are of type “beta-type 1” (as in HTT) with s nonzero coefficients and ¥ is the covariance matrix of X. Here, LOLearn
(LOL2) is Regularized-Subsets (¢ = 2), LOLearn (LO) is LO solution—both computed by LOLeaxrn. The tuning parameters for all these methods
are based on minimizing prediction error on a separate validation set.

Estimator (2) (for ¢ = 2) is also considered in [5]
(see also BPV) where they present a robust optimiza-
tion interpretation for this problem. As discussed in [16],
the Regularized-Subsets estimator bears similarities with

other estimators that have appeared in the statistics litera-

ture.

5.1.1 Experiments. Figure 1 shows performances of
Regularized-Subsets with ¢ = 2 (denoted by LOL2), L0,
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L2, L1, Relaxed Lasso and Stepwise—this is a subset of
the results appearing in [13]. We vary SNR to see how the
estimators fare in terms of prediction, estimation, variable
selection (full support recovery and sparsity). We take two
correlation models for X: (a) X;; = 0.5i=J1 (exponential
correlation) and (b) %;; = 0.4 (constant correlation). We
present a summary of our key findings from these experi-
ments:

e The constant correlation setting is much harder (statis-
tically) compared to the exponential correlation setting.
While full support recovery for the exponential cor-
relation setting occurs around SNR=~ 6, this does not
happen until SNR~100 for the constant correlation set-
ting.

e LO (with no shrinkage) leads to poor predictions
even for moderate values of SNR, so does Stepwise.
Regularized-Subsets (LOL2) appears to mitigate the
poor prediction performance of LO via L2 shrink-
age.

e For both settings, LOL2 seems to deliver better predic-
tive models compared to Relaxed Lasso.

e When SNR is very low: L2 (Ridge) appears to deliver
the best prediction performance. LOL2 is very close,
and leads to much sparser models. Relaxed Lasso may
be sparser than LOL2 but its prediction performance is
slightly worse.

e L0 and LOL2 have an edge over Stepwise in terms
of full support recovery (high SNR). Lasso, Relaxed
Lasso fail to recover the full support in both cases.

e When SNR is very high, all methods have similar pre-
diction error. The main difference is in variable selec-
tion performance.

The empirical findings summarized above help clarify the
points made in Section 4, on how observed PVE relates to
SNR along with other problem parameters (n, p, s, ).

5.1.2 Theory. In [16], we establish statistical proper-
ties of estimator (2), which we denote by ;§q. When the
signal is high, we show that Bq has a prediction error
bound similar to that of best subsets. When the signal is
low, the prediction error of ﬁq is shown to be smaller than
best subsets. We also show that best subsets can have a
smaller prediction error if £ is taken to be smaller than the
true underlying sparsity. However, this error is shown to
be generally worse than that of Bo.

The Relaxed Lasso fit appearing in display (1) can be
computed as a simple by-product of the Lasso solution
path. Computing solutions to (2) is more challenging—
this is addressed in [13, 14, 16]; see also related discus-
sions in BPV. I outline some recent computational ap-
proaches below as they relate to the points raised by HTT.

6. COMPUTATIONAL ADVANCES FOR
REGULARIZED SUBSET SELECTION

HTT rightly note that the computational cost of best
subsets (solved via Gurobi) is substantially larger com-
pared to highly efficient specialized solvers for Lasso and
Stepwise:

“We note that this corresponds to a compu-
tational cost for “regular” practical usage of
30 minutes per value of k: if we wanted to use
10-fold cross-validation to choose between the
subset sizes k =0, ...,50, then we are facing
250 hours (> 10 days) of computation time.”

This raises the question: what LO-method should one
use for “regular” practical usage?

6.1 An algorithm for “regular” practical usage:
LOLearn

Recently, Hazimeh and Mazumder [13] propose
LOLearn to bridge the stark gap in computation times
between Lasso, best subsets and common heuristics for
best subsets.” We consider a family of Regularized-
Subsets problems (in the Lagrangian form):

o1
3)  min 5||Y—Xﬁn%Honﬂuo+xq||ﬂ||q,

where, g € {1,2} and (A9, A,) are tuning parameters.
LOLearn draws inspiration from glmnet; and is avail-
able as an R-package on CRAN. LOLearn is based on
two complementary algorithms:

(i) cyclic coordinate descent for quickly finding (lo-
cal) solutions to Problem (3), and

(ii) algorithms based on local combinatorial search,
which help improve solutions from (i).

In particular, solutions obtained by (ii) cannot be im-
proved by making small changes to their support. Usually,
we observe that (ii) leads to better solutions than (i) when
n is small and/or the features are highly correlated. In par-
ticular, (ii) can offer key improvements over (i) in terms
of variable selection accuracy, at the cost of higher com-
putation times. Our LOLearn toolkit is open-source and
provides useful insights into what types of algorithms lead
to good solutions for regularized subset-selection type
problems. This is an important contrast when compared
to black-box implementations of sophisticated MIO com-
mercial solvers like Gurobi.

TWhile the Stepwise implementation used in HTT works well for
small values of p, it becomes expensive when p & 10° or so. The
heuristics presented in BKM will be faster than Stepwise. Both algo-
rithms however will be considerably slower than solving the Lasso via
glmnet. See [13] for additional details.
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TABLE 1
Table showing runtimes (in secs) to compute a path of 100 solutions for different methods on three different datasets. LOLearn (LOLg), ¢ = 1,2 is
a solution to (3) as obtained by algorithm LOLearn (we do not use local search here, see [13] for details). We show test MSE and corresponding
number of nonzeros (nnz) for the best model obtained via validation-set tuning. Stepwise regression (HTT) will not run on these problems due to
excessive memory requirements. Relaxed Lasso may lead to sparser solutions (at the expense of higher runtimes)

Synthetic Amazon Reviews US Census
(n =200, p = 10°) (n =2500, p =175K) (n =5000, p =56K)
Toolkit Time(s) MSE nnz Time(s) MSE, 2 nnz Time(s) MSE nnz
glmnet (L1) 22.5 4.55 185 49.4 5.11 256 28.7 61.3 222
LOLearn (LOL2) 16.5 4.64 11 31.7 5.18 37 19.6 60.7 15
LOLearn (LOLI) 16.7 5.12 15 29.5 5.20 36 16.7 60.8 11
Stepwise - - - - - - - - -

To give an example of the efficiency of LOLearn, we
present Table 1 (adapted from [13]). Table 1 helps re-
enforce some of the operating characteristics of
Regularized-Subsets: shrinkage is necessary to reduce the
overfitting of pure LO. The predictive performances of
Regularized-Subsets and Lasso are similar, though the
former may lead to higher sparsity. Interestingly, we do
observe runtime improvements over Lasso (glmnet)—
probably because (3) leads to sparser solutions. Note that
LOLearn enables us to obtain the results in Figure 1 in
practical runtimes (the most expensive method in the fig-
ure is Stepwise).

6.2 Global optimal solutions

It may be useful to clarify HTT’s remarks regarding
the long-runtimes of Gurobi’s MIO solver for best sub-
sets. Being a general purpose solver, Gurobi may be slow
compared to specialized algorithms designed for specific
problems (In particular, Gurobi will be generally slower
than glmnet for solving the Lasso problem). More im-
portantly, MIO-solvers attempt to obtain globally opti-
mal solutions via branch-and-bound—making them oper-
ationally very different than Stepwise, which is content in
delivering a good feasible solution. Devising better algo-
rithms with global optimality certificates for Regularized-
Subsets is a formidable challenge, requiring algorithmic
innovations. This point has also been made in BPV.

Fortunately, since the work of BKM, improved algo-
rithms have been proposed for solving a ridge regularized
version of best subsets to optimality. A couple of different
approaches appear in:

(a) Bertsimas and Van Parys [5] (a cutting plane
method using Gurobi) and

(b) Hazimeh, Mazumder and Saab [14] (a stand-alone
tailored nonlinear branch-and-bound algorithm).

A cutting plane method: Bertsimas and Van Parys [5]
present an impressive cutting plane approach that uses

Gurobi to solve a sequence of mixed integer linear prob-
lems; and can solve instances with n & p ~ 103 (these in-
stances usually have low correlations in X and a generous
ridge parameter). See BPV for additional discussions.

A tailored nonlinear branch-and-bound method: In a
different line of work, Hazimeh, Mazumder and Saab [14]
develop a stand-alone solver: LOBnB, written from
scratch, that does not rely on off-the-shelf solvers like
Gurobi. This seems to be the first work where first or-
der methods (we use coordinate descent) are used within
a branch-and-bound framework to solve the sparse re-
gression problem to optimality. In some instances, our
algorithm [14] exhibits speed-ups > 3600x compared to
state-of-the-art MIO methods, in obtaining optimal so-
lutions. The framework of [14] can solve, to optimality, a
real data instance with p ~ 107 with small values of n and
k within a few minutes. This provides encouraging pre-
liminary evidence toward creating scalable discrete opti-
mization solvers, leveraging our current understanding of
first-order convex optimization methods.

An interesting line of work in optimization (see, e.g., [2,
8, 14, 20]) advocates the use of stronger formulations® for
best subsets type problems—these ideas can potentially
lead to improved algorithms and interesting new perspec-
tives for sparse regression in the future.
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