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Abstract

Recently, Tibshirani et al. (2016) proposed a method for making inferences about parameters
defined by model selection, in a typical regression setting with normally distributed errors. Here,
we study the large sample properties of this method, without assuming normality. We prove that
the test statistic of [Tibshirani et al.| (2016) is asymptotically valid, as the number of samples n
grows and the dimension d of the regression problem stays fixed. Our asymptotic result holds uni-
formly over a wide class of nonnormal error distributions. We also propose an efficient bootstrap
version of this test that is provably (asymptotically) conservative, and in practice, often delivers
shorter intervals than those from the original normality-based approach. Finally, we prove that
the test statistic of |Tibshirani et al.|(2016) does not enjoy uniform validity in a high-dimensional
setting, when the dimension d is allowed grow.

1 Introduction

There has been a recent surge of work on conducting formally valid inference in a regression setting
after a model selection event has occurred, see Berk et al.| (2013), Lockhart et al.[|(2014), Tibshirani
et al.| (2016), Lee et al.| (2016), Fithian et al.| (2014), Bachoc et al.| (2014), just to name a few. Our
interest in this paper stems in particular from the work of [Tibshirani et al. (2016), who presented a
method to produce valid p-values and confidence intervals for adaptively fitted coefficients from any
given step of a sequential regression procedure like forward stepwise regression (FS), least angle
regression (LAR), or the lasso (the lasso is meant to be thought of as tracing out a sequence of models
along its solution path, as the penalty parameter descends from 1 = oo to A =0). These authors use
a statistic that is carefully crafted to be pivotal after conditioning on the model selection event. This
idea is not specific to the sequential regression setting, and is an example of a broader framework
that we might call selective pivotal inference, applicable in many other settings, as in, e.g., Taylor
et al.| (2016)), [Lee et al.|(2016), Lee & Taylor| (2014), Loftus & Taylor (2014), Reid et al. (2017), |Choi
et al.|(2014), Fithian et al.|(2014), [Hyun et al.| (2016).

A key to the methodology in Tibshirani et al.|(2016) (and much of the work in selective pivotal
inference) is to the assumption of normality of the errors. To fix notation, consider the regression
of a response Y € R” on predictor variables X1,...,Xy € R?, stacked together as columns of a matrix
X € R**¢, We will treat the predictors X are fixed (nonrandom), and assume the model

Yi=9i+€i, 1=1,...,n, (1)

where 6 € R” is an unknown mean parameter of interest. [Tibshirani et al.| (2016) assume that the
errors €i,...,6, are i.i.d. N(0,02), where the error variance o2 > 0 is known. An advantage of their



approach is that it does not require 6 to be an exact linear combination of the predictors X1,...,X4,
and makes no assumptions about the correlations among these predictors. But as far as the finite-
sample guarantees are concerned, normality of the errors is crucial. In this work, we examine the
properties of the test statistic proposed in|Tibshirani et al.|(2016)—hereafter, the truncated Gaussian
(TG) statistic—without using an assumption about normal errors. We only assume that €1,...,¢, are
i.i.d. from a distribution with mean zero and essentially no other restrictions.

A high-level description of the selective pivotal inference framework for sequential regression is
as follows (details are provided in Section[2). F'S, LAR, or the lasso is run for some number of steps
k, and a model is selected, call it M. For F'S and LAR, this model will always have £ active variables,
and for the lasso, it will have at most %k, as variables can be added to or deleted from the active set
at each step. We specify a linear contrast of the mean v”'0 of interest, e.g., one giving the coefficient
of a variable of interest in the model M at step &, in the regression of 0 onto the active variables. By
assuming normal errors in (I), and examining the distribution of v7Y conditional on having selected
model M, which we denote by M(Y) = M, we can construct a confidence interval C, satisfying

[P’(vTeeCa

]T/I\(Y):M):l—a,

for a given a €[0,1]. The interpretation: if we were to repeatedly draw Y from (1) and run FS, LAR,
or the lasso for % steps, and only pay attention to cases in which we selected model M, then among
these cases, the constructed intervals Cq = Co(Y; M) contain v”'0 with frequency tending to 1 — a.
The above is a conditional perspective of the selective pivotal inference framework for FS, LAR,
and lasso. An unconditional or marginal point of view is also possible, which we now describe. For
each possible selected model M, a constrast vector vy is specified, and the contrast v{,IH is considered
when model M is selected, M(Y)= M. To be concrete, we can again think of a setup such that 017",10
gives the coefficient of a variable in the model M at step &, in the projection of 8 onto the active set.
Confidence intervals are then constructed in exactly the same manner as above (without change),
and conditional coverage over all models M implies the following unconditional property for C,,

P(U%Z(Y)H € Ca) =1-a.

The interpretation is different: if we were to repeatedly draw Y from and run FS, LAR, or lasso
for & steps, and construct confidence intervals C, = Ca(Y;M\ (Y)), then these intervals contain their
respective targets vL 0 with frequency approaching 1 — a. Notice that, by construction, the target
itself may change each time we draw Y, though it is the same for all Y that give rise to the same
selected model. In terms of the setting for regression contrasts described above, each time we draw Y’
and carry out the inferential procedure, the interval C, covers the coefficient of a possibly different
variable in the active model, in the projection of 6 onto the active variables. Figure 1| demonstrates

this point.

1.1 Uniform convergence

When making asymptotic inferential guarantees, as we do in this paper, it is important to be clear
about the type of guarantee. Here we review the concepts of uniform convergence and validity. Let
&1,...,&n € RS be random vectors with joint distribution (¢1,...,¢,) ~ Fy,, where F,, € P, and P, is a
class of distributions. For example, we could have ¢1,...,¢, € R® i.i.d. from F, and the class P,, could
contain product distributions of the form F,, = F x ... x F' (n times); our notation allows for a more
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Figure 1: An example of conditional and unconditional coverage for one step of FS (the variables are normal-
ized, and this is equivalent to one step of LAR, or lasso). Here n =20 and d = 3, and a response Y was drawn
100 times from a model as in with i.i.d. N(0,02) errors. The different colors denote different active models
that were selected after one step, where an active model is a variable-sign pair, namely, the variable achieving
the largest absolute inner product with Y, and the sign of this inner product. Across the 100 repetitions, the
circles denote a target to be covered, and the segments are 90% confidence intervals. E.g, the color green corre-
sponds to the model +Xo, so in repetitions 1, 3, 11, 12, etc., Xg Y was largest among all absolute inner products
of variables with Y, and the green segments denote 90% confidence intervals designed to cover the contrast X 2T 6.
Similarly, red corresponds to the model —X1, and blue to +X3. Dotted segments indicate that the given interval
does not cover its target. The empirical coverage among green intervals: 21/21, among red intervals: 61/70,
and among blue intervals: 8/9. Hence in each case, the empirical coverage is close to the nominal 90% level.
Further, in total, i.e., unconditionally, the empirical coverage is 90/ 100, right at the nominal 90% level.

general setup than this one. Let W,, = T',(¢4,...,¢&,) for a statistic T, and W ~ G, where W,,, W € RY.
We will say that W,,, converges uniformly in distribution to W, over P,, provided that
lim sup sup |lF>Fn(Wn <x)-P(W < x)| =0. (2)
n=00 p eP, xeRY
(The above inequalities, as in W,, <x and W < x, are meant to be interpreted componentwise; we are
also implicitly assuming that the limiting distribution G is continuous, otherwise the above inner
supremum should be restricted to continuity points x of G.) This is much stronger than the notion of
pointwise convergence in distribution, which only requires that
lim sup |Pg, (W, <x)-P(W <x)| =0, 3)
=00 yeRa
for a particular sequence of distributions F,,, n =1,2,3,....

A recent article by [Kasy (2015) emphasizes the importance of uniformity in asymptotic approxi-
mations. This author points out that a uniform version of the continuous mapping theorem follows
directly from a standard proof of the continuous mapping theorem (e.g., see Theorem 2.3 in van der
Vaart| (1998)).

Lemma 1. Suppose that W, converges uniformly in distribution to W, with respect to the class P,.
Let ¢ :R? — R be a map that is continuous on a set D, such that P(W € D) = 1. Then w(W,,) converges
uniformly in distribution to w(W) with respect to Pj,.



Kasy| (2015) also remarks that the central limit theorem for triangular arrays, specifically the
Lindeberg-Feller central limit theorem (e.g., Proposition 2.27 in |van der Vaart|(1998)) naturally ex-
tends to the uniform case. The logic is, roughly speaking: uniform convergence in (2)) is equivalent to
pointwise convergence over all sequences of distributions F,,, n =1,2,3,..., and triangular arrays, by
design, can have a different distribution assigned to each row. Therefore if the Lindeberg condition
holds for any possible sequence, then so does the convergence to normality.

Lemma 2. Let ¢4,...,¢, € RY be a triangular array of independent random vectors, with joint distri-
bution F,,. Assume &1,...,&, have mean zero and finite variance. Also assume that for any sequence
F,eP,, n=12.3,..., we have

n
lim Y Ep, (1613 HIEil2 = €}) =0, for all €0,
i=1

and .
lim i:ZICOVFn(Ei) =3,
where X does not depend on the sequence F,, n =1,2,3,.... Then W,, = Z?Zl &; converges in distribution

to W ~ N(0,X), uniformly with respect to Pp,.

In our work, a motivating reason for the study of uniform convergence is the associated property
of uniform validity of asymptotic confidence intervals. That is, if W,, = W, (1) depends on a parameter
1= uFy) of the distribution F,, but W does not, then we can consider any (1 — a) confidence set Cp, 4
built from a (1 — a) probability rectangle R, of W,

Cn,oc ={u:Wp(u) € Ry},
and the uniform convergence of W, to W, really just by rearranging its definition in (2), implies

lim sup sup |[P’pn (H(F,,) € Cn,a) —(1- a)| - 0. 4)
=0 p eP, acl0,1]

Meanwhile, pointwise convergence as in (3)) only implies

lim sup |Pr, (4(Fy)€Cra)-(1- )| =0, (5)
N0 gef0,1]

for a particular sequence F,, n =1,2,3,.... For a confidence set satisfying (), and a given tolerance

€ >0, there exists a sample size n(e) such that the coverage is guaranteed to be at least 1 — a —¢, for

n = n(e), no matter the underlying distribution (over the class of distributions in question). Note that

this is not necessarily true for a pointwise confidence set as in (5), as the required sample size here

could depend on the particular distribution under consideration.

1.2 Summary of main results

An overview of our main contributions is as follows.

1. We establish that TG statistics for typical inferences along the F'S, LAR, and lasso paths only
depend on the data (X,Y) through X7 X and \/LEX TY (Lemmas[3}[4] and[5]in Section[3), which
is important since these two quantities have asymptotic limits in a standard low-dimensional
asymptotic setup.



2. Placing mild constraints on the mean and error distribution in (1), and treating the dimension
d as fixed, we prove that the TG test statistic is asymptotically pivotal, converging to U(0,1)
(the standard uniform distribution), when evaluated at the true population value for its pivot
argument. We show that this holds uniformly over a wide class of distributions for the errors,
without any real restrictions on the predictors X (first part of Theorem [7]in Section [4).

3. The resulting confidence intervals are therefore asymptotically uniformly valid, over the same
class of distributions (second part of Theorem [7]in Section [4).

4. The above asymptotic results assume that the error variance o2 is known, so for 62 unknown,
we propose a plug-in approach that replaces o2 in the TG statistic with a simple estimate, and
alternatively, an efficient bootstrap approach. Both allow for conservative asymptotic inference
(Theorem [11]in Section [5).

5. We present detailed numerical experiments that support the asymptotic validity of the TG p-
values and confidence intervals for inference in low-dimensional regression problems that have
nonnormal errors (Section [6). Our experiments reveal that the plug-in and bootstrap versions
also show good performance, and the bootstrap method can often deliver substantially shorter
intervals than those based directly on the TG statistic.

6. Our experiments also also suggest that the TG test statistic (and plug-in, bootstrap variants)
may be asymptotically valid in even broader settings not covered by our theory, e.g., problems
with heteroskedastic errors and (some) high-dimensional problems.

7. We prove that TG statistic does not exhibit a general uniform convergence to U(0,1) when the
dimension d is allowed to increase (Theorem [12]in Section [7).

1.3 Related work

A recent paper by Tian & Taylor|(2017) is very related to our work here. These authors examine the
asymptotic distribution of the TG statistic under nonnormal errors. Their main result proves that
the TG statistic is asymptotically pivotal, under some restrictions on the model selection events in
question. We view their work as providing a complementary perspective to our own: they consider a
setting where the dimension d grows, but place strong regularity conditions on the selected models;
we adopt a more basic setting with d fixed, and prove more broad uniformly valid convergence results
for the TG pivot, free of regularity conditions.

In a sequence of papers, Leeb & Potscher| (2003|2006, 2008) prove that in a classical regression
setting, it is impossible to find the distribution of a post-selection estimator of the underlying coeffi-
cients, even asymptotically. Specifically, they prove for an estimate ﬁ of some underlying coefficient
vector By, any quantity of the form @, = \/ﬁA(E — Po), for a linear transform A, cannot be used for
inference after model selection. Though @, can be made to be pivotal or at least asymptotically piv-
otal (once A is chosen once appropriately), this is no longer true in the presence of selection, even if
the dimension d is fixed and the sample size n approaches co. Furthermore, they show that there is
no uniformly consistent estimate of the distribution of @, (either conditionally or unconditionally),
which makes @, unsuitable for inference. This fact is essentially a manifestation of the well-known
Hodges phenomenon. The selective pivotal inference framework, and hence our paper, circumvents
this problem as we do not claim (nor attempt) to estimate the distribution of @,, and instead make
inferences using an entirely different pivot that is constructed via a careful conditioning scheme.



1.4 Notation

As our paper considers an asymptotic regime, with the number of samples n growing, we will often
use a subscript n to mark the dependence of various quantities on the sample size. An exception is
our notation for the predictors, response, and mean, which we will always denote by X,Y ,6, respec-
tively. Though these quantities will (of course) vary with n, our notation hides this dependence for
simplicity.

When it comes to probability statements involving Y, drawn from (1)), we will write P F@=u(+) to
denote the probability operator under a mean vector 6 such that f(6) = u. With a subscript omitted,
as in P(+), it is implicit that the probability is taken under 6. Also, we will generally write y (lower-
case) for an arbitrary response vector, and Y (uppercase) for a random response vector drawn from
(). This is intended to distinguish statements that hold for an arbitrary y, and statements that hold
for a random Y with a certain distribution. Lastly, we will denote M the model selection procedure
associated with the regression algorithm under consideration (FS, LAR, or lasso), and we will treat
this as a mapping from R” to the space of models, so that M (y) is a fixed quantity, representing the
model selected when the response is the fixed vector y, and M(Y) is a random variable, represent-
ing the model selected when the response is the random vector Y. Similar notation will be used for
related quantities.

2 Selective inference

In this section, we review the selective pivotal inference framework for sequential regression proce-
dures. We present interpretations for the inferences from both conditional and unconditional per-
spectives, in Sections and respectively. The other subsections provide the necessary details
for understanding the framework, beginning with the selection events encountered along the FS,
LAR, and lasso paths.

2.1 Model selection

Consider forward stepwise regression (FS), least angle regression (LAR), or the lasso, run for a num-
ber of steps k, where % is arbitrary (but treated as fixed throughout this paper). Such a procedure
defines a partition of the sample space, R” = Upre r 13y, with elements

My ={y:M(y)=M}, Me M. (6)

Here M( y) denotes the selected model from the given k-step procedure, run on y, and M is the space
of possible models. Calling M(Y) a selected model may be bit of an abuse of common nomenclature,
because, as we will see, M (y) will describe more than just a set of selected variables at the point y.
In fact, one can think of M (y) as a representation of the decisions made by the algorithm across its &
steps. For F'S, we define I/VI\(y) = {(Ag(y),§g(y)) :¢=1,...,k}, comprised of two things:

1. a sequence of active sets Ag(y), ¢ =1,... k, denoting the variables that are given nonzero
coefficients, at each of the % steps;

2. a sequence of sign vectors Sy(y), £ =1,...,k, denoting the signs of nonzero coefficients, at each
of the % steps.



The active sets are nested across steps, Kl(y) c Az( y) S Ag(y) c..., as FS selects one variable to add
to the active set at each step. However, the sign vectors §1(y),52(y),S3(y),... are not, since these are
determined by least squares on the active variables at each step. Hence, as defined, the number of
possible models M (y) after k steps of FS is

IMi=d-(d=1)---(d -k +1)-2-22...2% = 0(d*2F").

Moreover, the corresponding partition elements I1y;, M € M in (6)) are all convex cones. The proof of
this fact is not difficult, and requires only a slight modification of the arguments in |Tibshirani et al.|
(2016), given in Appendix [A 1] for completeness. The result is easily seen for & = 1: after one step of
FS, assuming without a loss of generality that X1,...,X; have unit norm, we can express, e.g.,

{y:(A1,5:0)) =, D} = {y: X]y=+XT y, j=2,...,d}
d
=N{y: & -X)Ty=0n{y: X1 +X,)Ty=0},
J=2

the right-hand side above being an intersection of half-spaces passing through zero, and therefore a
convex cone. As we enumerate the possible choices for (A1(y),s1(y)), these cones form a partition of
R". Figure [2| shows an illustration.

-3 -2 -1 0 1 2 3

Figure 2: An example of the model selection partition from one step of FS (the variables are normalized, and
this is equivalent to one step of LAR, or lasso). Here n =2 and d = 3. The colors indicate the regions of the
sample space R? for which different models—pairs of active variables and signs—are selected, so that, e.g., the
red region contains points in R? that are maximally aligned with X 1.

For LAR and the lasso, we need to modify the definition of the selected model M(y) in order for
the resulting partition elements in (6) to be convex cones. We add an “extra” bit of model information



and define M(y) = {(A(y),5(y),I4(y)): £ =1,...,k}, where I,(y) is a list of variables that play a special
role in the construction of the LAR or lasso active set at the ¢th step, but that a user would not
typically pay attention to. In truth, the latter quantity is only a detail that is included so that ITj,,
M € M are convex cones (without it, the partition elements would each be a union of cones), and so
we do not describe it here. Furthermore, it does not affect our treatment of inference in what follows,
and for this reason, we will largely ignore the minor differences in model selection events between
FS, LAR, and lasso hereafter.

The description of I, ¢(y), ¢=1,...,k, and the proof that the partition elements ITy;, M € M are
cones for LAR and lasso, mirrors that in [Tibshirani et al.|(2016), and is again given in Appendix[A.T]
Like FS, the active sets from LAR are nested, A 1y c Az(y) c §3(y) C..., since one variable is added
to the active set at each step. But for the lasso, this is not necessarily true, as in this case variables
can be either added or deleted at each step.

2.2 Inference after selection

We review the selective pivotal inference approach for hypothesis testing after model selection with
FS, LAR, or the lasso. The technical details of the TG statistic are deferred to the next two subsec-
tions, as they are not needed to understand how the method is used. The null hypotheses we consider
are of the form Hy:vT6 = 0. An important special case occurs when the linear contrast v76 gives
a normalized coefficient in the regression of 6 onto a subset of the variables in X. To be specific, in
this case v = X4(X; Xa) "e;/(eT(X3Xa) "e))"?, for a subset A =({1,...,d}, where we let X4 € R4
denote the submatrix of X Whose columns correspond to elements of A (with X, TX 4 assumed to be
invertible for the chosen subset), and we write e for the jth standard basis vector This gives

eTXTXx,) 1XTo
oTo=2AT4 TAT _5a), %

\/ e?(ngXA)‘lej

and therefore Hy :vT0 = 0 is a test for the significance of the jth normalized coefficient in the linear
projection of 0 onto X 4, written as ;(A) for short. (Though the normalization in the denominator is
irrelevant for this significance test, it acts as a key scaling factor for the asymptotics in Section [4])
The idea of using a projection parameter for inference, §;(A), has also appeared in, e.g., Berk et al.
(2013), Wasserman| (2014), Lee et al.|(2016). Here is now a summary of the testing framework.

¢ For each possible model M € M, and any v € R” and p € R, a TG statistic T'(-; M, v, u) is defined
(see (10), in the next subsection), whose domain is the partition element I13;. This can be used
as follows. if Y is drawn from (), and lands in the partition element Iy, for model M, then the
statistic T(Y ; M, v, 1) provides us with a test for the hypothesis Ho : v’ = p.

¢ A concrete case to keep in mind, denoting M = {(As,s¢): ¢ =1,...,k}, is a choice of v such that
vTo=p i(Ay), in the notation of (7). This is the jth normalized coefficient in the regression of 6
onto the active variables X4, for an active set A, at some step /=1,... k.

e Assume i.i.d. N(0,02) errors in (I). Under the null hypothesis, the TG statistic has a standard
uniform distribution, over draws of Y that land in I13,. Mathematically, this is the property

Purg—y( TV M 0,0 < t‘M\(Y) =M)=t, 8)



for all ¢ € [0,1]. The probability above is taken over an arbitrary mean parameter 6 for which
vl = u (in fact, the TG statistic is constructed so that the law of T(Y; M, v, u)| MY)=M only
depends on 6 through v76, so this is unambiguous). In order for (8) to hold, of course, v and u
cannot be random, i.e., they cannot depend on Y, though they can be functions of M.

* Thus T(Y;M,v,u) serves as a valid p-value (with exact finite sample size) for testing the null
hypothesis Hy : v70 = , conditional on M(Y) = M.

* A confidence interval is obtained by inverting the test in (8). Given a desired confidence level
1-a, we define C, to be the set of all values u such that a/2 < T(Y;M,v,u) <1—a/2. Then, by
construction, the property in (8) (which we reiterate, assumes i.i.d. N(0,02) errors) translates
into

P(UTH €eCqy

A’I(Y)zM) —1-a. 9)

The interpretation of the above statement is straightforward: the random interval C, contains
the fixed parameter v with probability 1 — a, conditional on M(Y) = M.

2.3 The truncated Gaussian pivot

We now describe the truncated Gaussian (TG) pivotal quantity in detail. As defined in Section [2.] if
we write M(y) for the selected model from the given algorithm (F'S, LAR, or lasso), run for £ steps on
y, then Iy ={y : M(y) = M} is a convex cone, for any fixed achievable model M. Hence

My ={y: M(y)=M}={y:Qpuy=0},

for a fixed matrix @js (here the inequality is meant to be interpreted componentwise). Now to define
the pivot T'(-; M, v, u) for testing Hy : v76 = p, several preliminary quantities must be introduced:

v . .
:—QM , a(y;M,v)=va— min (QMy)l, and b(y;M,v):va— max (QMy)l.
”ng wi>0  w; iw;<0  w;

The TG pivot is then defined by

(b(y;M,v)—u)_(D(va—M)

allvll allvll
T(y;M,v,p) = : (10)
' g (b(y;M,v)—u)_(D(a(y;M,v)—ﬂ)
allvllz allvllz

This has the following property, as stated in (8): when Y is drawn from (@) with i.i.d. N(0,02) errors,
and vT0 = U, the pivot T'(Y ; M, v, u) is uniformly distributed conditional on M(Y)= M. See Lemmas 1
and 2 in Tibshirani et al.|(2016)) for a proof of this result.

2.4 P-values and confidence intervals

For the null hypothesis Hy : vT0 =0, we have seen from (8) that 7T(Y;M,v,0) acts as a proper (condi-
tional) p-value. But as defined in (10), the statistic T(Y ; M,v,0) is implicitly aligned to have power
against the one-sided alternative hypothesis Hi :v70 > 0. Therefore, when seeking to test the signif-
icance of, say, the jth coefficient in the projected linear model of 8 on X,,, we will actually choose v
so that

vT0 =(s0); Bj(Ap), (11



where recall (s/); = sign(ef(XZ;[X Az)_lXZ;[ y) is the sign of the jth coefficient in the regression of y
onto the set A, of active variables, for y € ITjs. This orients the test in a meaningful direction: v76 >0
is now the hypothesis that the jth coefficient in the projection of @ onto X4, is nonzero, and shares the
same sign as the jth coefficient in the projection of y onto X4,, over y € Iljs; that is, with the above
choice of v, the p-value T'(Y; M,v,0) is designed to be small when the jth coefficient in the projection
of Y on X4, corresponds to a projected population effect that is both large and of the same sign as
this computed coefficient. Beyond the current subsection, we will not be explicit about the sign factor
in when discussing such contrasts (i.e., those giving regression coefficients in a projected linear
model for 8), but it is implicitly understood when computing one-sided p-values.

A statistic aligned to have power against the two-sided alternative Hi : vT60 # 0 is simply given
by 2min{T(Y;M,v,0),1-T(Y;M,v,0)}. For purely testing purposes, we find the one-sided p-values
discussed above to be more natural, and hence these will serve as our default. On the other hand,
for constructing confidence intervals, we prefer to invert the two-sided statistics, since these lead to
two-sided intervals. As

2min{T(Y;M,v,n), 1-TY;M,v,p}za < a/2<TY;M,v,u)<1-a/2,

the previously described confidence interval in (9) is just given by inverting the two-sided pivot.
To summarize: the default in this work, as with [Tibshirani et al.[|(2016), is to consider one-sided
hypothesis tests, but two-sided intervals. These are just two slightly different uses of the same pivot.

2.5 Inference after selection, revisited

We have portrayed selective pivotal inference, in sequential regression procedures, as a method for
producing conditional p-values and intervals. An unconditional interpretation of this framework is
also possible, which we describe here.

* For each model M € M, a contrast vector vy € R” and pivot value uys € R are identified, so that
the hypothesis Ho s : v%}@ = uys is to be tested whenever y € 1y, i.e., whenever M\(y) =M. A
TG statistic 7(-;V,U) is then defined, whose domain is the entire sample space R”. Here we
write V ={vpy : M € M} and U = {uyp; : M € M} to denote the collection of contrast vectors and
pivot values, respectively, across partition elements—we will also refer to these as catalogs.
This unconditional TG statistic is defined by

7-('7V5U) = Z T(';M,UM’I'LM)IHM(')’
MeM
where 1y7,,(-) denotes the indicator function for the partition element Iy (and T'(-; M, v, ppr)
is as before, defined in (10)). The unconditional statistic can be used as follows: if a response Y

is drawn from (I), then we can form 7(Y;V,U) = T(Y;M\(Y), vﬂ(y)’”ﬁ(y)) to test the hypothesis
Hy: v%(y)@ = Uiy )

* A concrete case to keep in mind is when V assigns a contrast vector vjs to each model M, such
that 0{49 =B, (Agy,), in the notation of (7), where M ={(A¢,s,): ¢ =1,...,k} as usual. This is
the jpsth normalized coefficient from projecting 6 onto X4 o the active variables at step £j;.

e Assume that the errors in (@) are i.i.d. N(0,02). Then under the proper hypothesis, by summing
up the conditional property in (8) across partition elements, we have

Pyro_y T3V, ) <t) =t, (12)
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for all ¢ € [0,1]. The assertion above holds for a parameter 6 such that V70 = U, which we use
as shorthand for 017;46 = upy for all M € M. Note that this full specification, across all M € M,
is critical in order to apply the relevant null probability within each partition element (giving
rise to the equality in (I2)).

¢ Therefore 7 (Y;V,U) serves as a valid p-value (with exact finite sample size)—but for testing
what null hypothesis? Formally, it is attached to Hy : V76 = U, an exhaustive specification of
9 uu, over all M € M, but in truth, 7(Y;V,U) carries no information about models other
than the selected one, M (Y). For this reason, we actually consider 7 (Y;V,U) to be a p-value for
the random null hypothesis Hy : UM\(Y)H M3zy)- This is made more precise through confidence
intervals.

* A confidence interval is obtained by inverting the test in (I2). But the TG statistic at Y,

T;V,U)= Y. T(;M,op, im0, (V) = T(Y;: MY, 05704 By
MeM

only depends on U through pz7y,. Thus, given a desired confidence level 1-a, let us define D
to be the set of U such that a/2<T(Y;V,U) <1-a/2, and C, to be the set of K35y such that
a/2<TY; M), Uity Mary)) = 1— a/2. Then we can see that

UeD, — Ky € Ca,

so the confidence interval is effectively infinite with respect to the values uys, M # M(Y), and
inverting the test in yields

( ob 0 ca) 1-a. (13)

The above expression says that the random interval C, traps the random parameter vL 6

M)
with probability 1 — «, and thus, this supports the interpretation of Hy: UM\(Y)H Kizy) @s the
null hypothesis underlying the unconditional TG statistic.

Remark 1. The pivotal property in (I2) is derived under the distributional assumption that V76 =
U,ie.,v MH uyr for all M € M, which may seem unnatural, as the catalog U of pivot value can be
large (e g., on the order of d* after % steps of F'S), and so this is condition on possibly many contrasts
of 8. However, it is worth emphasizing that the unconditional testing property in (12) is really only
useful in that it allows us to formulate the unconditional confidence interval property in (13), which
is a more natural statement about coverage of a single (random) parameter. When viewing selective
inference from an unconditional perspective, we find it more natural to place the focus on confidence
intervals rather than hypothesis testing; in many ways, we find the former the more natural of the
two perspectives, unconditionally. Tibshirani et al. (2016) in fact suggest separate nomenclature for
the unconditional case, referring to the property in (13) as that of a selection interval (rather than
confidence interval), to emphasize that this interval covers a moving target.

3 The master statistic

Given a response y and predictors X, our description thus far of the selected model M(y), statistics
T(y;M,v,u) and T (y;V,U), etc., has ignored the role of X. This was done for simplicity. The theory
to come in Section [4] will consider X to be nonrandom, but asymptotically X must (of course) grow

11



with n, and so it will help to be precise about the dependence of the selected model and statistics on
X. We will denote these quantities by M(X,y), T(X,y;M,v,u), and T(X,y;V,U) to emphasize this

dependence. We define
1

1or T
Qp = (;X X’ﬁX y),
a d(d + 3)/2-dimensional quantity that we will call the master statistic. As its name might suggest,
this plays an important role: all normalized coefficients from regressing y onto subsets of the vari-
ables X can be written in terms of Q2,,. That is, for an arbitrary set A {1,...,p}, the jth normalized

coefficient from the regression of y onto X4 is

(ej."XgXA)-Ing eI n(XFXA) =Xy

Vel (XTX ) e, \/ejn(ngA)—lej

which only depends on (X, y) through €,,. The same dependence is true, it turns out, for the selected
models from FS, LAR, and the lasso. We defer the proof of the next lemma, as with all proofs in this
paper, until the appendix.

Lemma 3. For each of the FS, LAR, and lasso procedures run for k steps on data (X, y), the selected
model M (X,y) only depends on (X ,y) through Q, = ( XTx, fX Ty, the master statistic.

In more detail, for any fixed M € M, the matrix QM(X) such that M(X, y)=M — QuX)y=0
can be written as Q y(X) = PM(nXTX) \/lﬁXT, where Py depends only on nXTX. Hence

_ 1 1
MX, ) =M — PM(;XTX) ﬁXTy > 0.

This lemma asserts that the master statistic governs model selection, as performed by FS, LAR,
and the lasso. It is also central to TG pivot for these procedures. Denoting M = M(X, y), the statistic
T(X,y;M,v,u) in only depends on (X, y) through three quantities:

Ty QuX)v
lvlle”  lvllg

, and Q@u(X)y.

The third quantity is always a function of Q,, by Lemma [3| When v is chosen so that v”y is a nor-
malized coefficient in the regression of y onto a subset of the variables in X, the first two quantities
are also functions of 0,,. Thus, in this case, the TG pivot only depends on (X, y) through the master
statistic 2,,; in fact, it is continuous at any point such that %X TX is nonsingular and y does not lie
on the boundary of a model selection event.

Lemma 4. Fix any model M € M, and suppose that v is chosen so that v!y is a normalized coefficient
from projecting y onto a subset of the variables in X. Then the TG statistic only depends on (X,y) by
means of 0, so that we may write

1 1
T3 Mo, =y XTX,—=XTy)

Further, the function vy is continuous at any point (S,z) such that S is nonsingular and Py(S)z > 0.

Finally, we show that the conditional pivotal property of the TG statistic in can be phrased
entirely in terms of the master statistic.

12



Lemma 5. Assume the conditions of Lemmald] and additionally that 'Y is drawn from (I). Construct
the master statistic 0, = (%X Tx, \FX TY). Then there is a function g such that

vT0 = g(E(Q,)).

Thus if the errors in (1) are i.i.d. N(0,02), then the conditional pivotal property @) of the TG statistic
can be reexpressed as

Pg(E(Qn))=,u(WM(Qn) <t ( MX,Y)= M) —t,
for all t€[0,1].

Equipped with the last two lemmas, asymptotic theory for the TG test, when d is fixed, is not far
off. Under weak conditions on the data model in (I), the central limit theorem tells us that \le Ty
converges weakly to a normal random variable. With 1X TX converging to a deterministic matrix,
the continuous mapping theorem will then provide the approprlate asymptotic limit for the statistic
TX,y;M,v,u) = wM(%XTX, \FXTY) This is made more precise next.

4 Asymptotic theory

Here we treat the dimension d as fixed, and consider the limiting distribution of the TG statistic as
n — oo. (See Section for the case when d grows.) Throughout, the matrix X € R"*9 will be treated
as nonrandom, and we consider a sequence of predictor matrices satisfying two conditions:

1
lim —~XTX =73, (14)
n—oo n
for a nonsingular matrix T € R**¢ and
lim max Ixillz _ 0 (15)
n—oo i=1,..n \/n ’

where x; € R%, i = 1,...,n denote the rows of X. These are not strong conditions.

4.1 A nonparametric family of distributions

We specify the class of distributions that we will be working with for Y in (I). Let 02 > 0 be a fixed,
known constant. First we define a set of error distributions

E= {F : f xdF(x) =0, f x?dF(x) = 02}.

The first moment condition in the above definition is needed to make the model identifiable, and the
second condition is used for simplicity. Aside from these moment conditions, the class £ contains a
small neighborhood (say, as measured in the total variation metric) around essentially every element.
Thus, modulo the moment assumptions, £ is strongly nonparametric in the sense of [Donohol (1988).
Given p € R, let F; denote the distribution of p+ 6, where 6 ~ F, and given 0 = (01,...,0,) € R", let
F,(0)=Fy, x...,xFg, . Now we define a class of distributions

Po(0) = {Fn(B):Fgl x...xFy, :FES}. (16)
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In words, assigning a distribution Y ~ F,(0) means that Y in drawn from the model (I), with mean
0 € R", and errors €1, ...,€, i.i.d. from an arbitrary centered distribution F with variance o2.

As n grows, we allow the underlying mean 6 to change, but we place a restriction on this param-
eter so that it has an appropriate asymptotic limit. Specifically, we consider a class O of sequences of
mean parameters such that - =X T9 has an asymptotic limit lying in some compact set, with uniform
convergence to this limit. Formally, write (in a slight abuse of notation) 6 € ® to denote a sequence of
mean parameters in 0, and let E(®) denote the set of limit points of { \/ﬁX T9:0 € ®}. Then, for some

constant B > 0, we require of the class O,

E@®©)c[-B,Bl%, and lim sup sup
n—oo nEE(@) %XTH—’U

1
—XTH—n’ =0. a7
n

We emphasize once again that 6 € R” and X € R™*? will both vary with n, i.e., we can think of 6 and
the columns of X as triangular arrays, but our notation suppresses this dependence for simplicity.

4.2 Uniform convergence results

We begin with a result on the uniform convergence of (the random part of) the master statistic to a
normal distribution, both marginally and conditionally.

Lemma 6. Assume that X has asymptotic covariance matrix X, as in (14), and satisfies the normal-
ization condition in (A5). Let Y ~ F,(0) € P, (9) this class as defined in (16), for a sequence of mean
parameters 0 € ©, as defined in (7). Denote LxTp— nasn—oo. Then Z, = LxTy converges in
distribution to Z ~ N(n,02X), uniformly over ?g(e) and uniformly over all 0 € ©. rfll"hat is,

lim sup sup sup |[F’(Z <x)-P(Z< x)| =0

=% 9e@ F,(0)eP,(0) xeRd
Further, given a sequence of matrices A, € RI%4 p = 1,2,3,... with A, — A as n — oo, such that the
set {z: Az =0} has nonempty interior, Z,|A,Z, = 0 converges in distribution to Z|AZ = 0, uniformly
over P, (0), and uniformly over all 0 € ©.

This lemma, combined with Lemmas [4] and [5| of the last section, leads us to uniform asymptotic
theory for the TG test. We remind the reader that k&, the number of steps, is to be considered fixed in
the next result (as it is throughout the paper).

Theorem 7. Assume the conditions of Lemma [6] Suppose FS, LAR, or the lasso is run for k steps on
(X,Y). Below we describe the conditional and unconditional asymptotic results separately.

(a, Markovic) Fix any model M € M. Let v be a vector such that v’ 0 gives a normalized coefficient in
the projection of 6 onto some subset of the variables in X, and let y be an arbitrary pivot value. Then
under vT0 = U, the conditional TG statistic T(X,Y ;M,v,u)] MX ,Y) =M converges in distribution to
W ~U(0,1), uniformly over P,(0), and over 0 € ®. That is,

lim sup sup sup
=% geO F,(0)eP,(0) tc[0,1]

Pyro—u(TX,Y; M,v,u)st|ﬂ(X,Y)=M)—t‘ =0.

Moreover, if we define C, o to be the set of | such that a/2<T(X,Y;M,v,u) <1-a/2, then C, 4 is an
asymptotically uniformly valid confidence interval for vT6. That is,

PT@ #(U HECna

MX,Y)= )—(1—a) -

lim sup sup sup
=0 9e@ F,(0)eP,(0) acl0,1]
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(b) Let V = {vy : M € M} be a catalog of vectors such that each vﬁ@ yields a normalized coefficient in
the projection of 0 onto a subset of the variables in X, for M € M, and U = {uy; : M € M} be a catalog
of pivot values. Then under VIO = U, the same results as in part (a) hold marginally. That is,

lim sup sup  sup ‘PngzU(T(X,Y;V,U) < t) - t’ =0.
"7 0e® F,(0)eP,(0) tel0,1]

and for C,, 4 defined to be the set of y such that a/2 < T(X,Y;M\(X,Y), Virx Y),,u) <1-al/?,

. T
RS 0e6 Fn(es)ggnw) ail[%fn ’P(UM(X e Cn’a) “ a)’ =0
Remark 2. An initial version of this work contained only the unconditional result in part (b) of the
theorem. Jelena Markovic pointed out that the conditional result in part (a) should also be possible,
and thus this conditional result should also be attributed to her. Between the initial and the current
version of this paper, in addition to revising Theorem 7, we have also revised Theorems|11|and|[12|to
include the appropriate conditional results.

5 Unknown o2 and the bootstrap

The results of the previous section assumed that the error variance o2 in the model was known.
Here we consider two strategies when o2 is unknown. The first plugs a (rather naive) estimate of o2
into the usual TG statistic. The second is a computationally efficient bootstrap method. Both, as we
will show, yield asymptotically conservative p-values. (In practice, the bootstrap often gives shorter
confidence intervals than those based on the TG pivot; see Section[6])

5.1 A simple plug-in approach

Given a model M € M, contrast vector v, and pivot value y, consider the TG statistic T(X,Y; M, v, w).
Let us abbreviate
ay=aX,Y;M,v), and by =b(X,Y;M,v),

where the latter two functions are as defined in Section [2.3] In this notation, we can succinctly write
the TG statistic as N r
by — v'Y -
*(Siete) * et
alvllz alvllz

By — P
(D( M u)_q)(aM u)
ollvlig olvllg

When o2 is unknown, we propose a simple plug-in approach that replaces o with ¢sy, where

TX,Y;M,v,u)= . (18)

9 _1& 12
SY:_Zlyi_Yl )
ni;=

the sample variance of Y (here Y = Z?:l Y,;/n denotes the sample mean), and ¢ > 1 is a fixed constant.
To be explicit, we consider the modified TG statistic

{eorios) [z

TX,Y:M,v,) = cgyllvllz nyllvllz ' (19)
q)( M—M)_q)( aM—#)
csyllvlle csyllvlle
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The scaling factor c facilitates our theoretical study of the above plug-in statistic, and practically, we
have found that ignoring it (i.e., setting ¢ = 1) works perfectly well, though a choice of, say, ¢ = 1.0001
seems to have a minor effect anyway.

When the mean 6 of Y is nonzero, the sample variance s% is generally too large as an estimate of
o2. As we will show, the modified statistic in thus yields asymptotically conservative p-values.
Residual based estimates of 02 are not as useful in our setting because they depend more heavily on
the linearity of the underlying regression model, and they suffer practically when d is close to n (see
also the discussion at the start of Section [6).

5.2 An efficient bootstrap approach

As an alternative to the plug-in method of the last subsection, we investigate a highly efficient boot-
strap scheme that does not rely on knowledge of o2. Our general framework so far treats X as fixed,
and for our bootstrap strategy to respect this assumption, we cannot use, say, the pairs bootstrap,
and must perform sampling with respect to Y only. The residual bootstrap is ruled out since we do
not assume that the mean 6 follows a linear model in X. This leaves us to consider simple bootstrap
sampling of the components of Y. This is somewhat nonstandard, as the components of Y in (1) are
not i.i.d., but it provides a mechanism for provably conservative asymptotic inference, and it is what
makes our approach so computationally efficient.

GivenY =(Yy,...,Y,) drawn from the model in (@), let Y* = (Y',...,Y,’) denote a bootstrap sample
of Y. We will denote by P, the conditional distribution of Y* on Y, and E, the associated expectation
operator. That is, P.(Y * € A) is shorthand for P(Y* € A|Y'), and similarly for E.. Using the notation
of the last subsection (notation for & M,EM), and assuming without a loss of generality that ||v]g =1,
let us motivate our bootstrap proposal by expressing the TG statistic as

T(X,Y;M,v,u) = u»(zw >0"TY |Gy < Z,, 02 < bu, Y),

where the probability on the right-hand side is taken with Y (and thus @z, bar) treated as fixed, and
with Z,, ;2 denoting a N(y, 0?) random variable. The main idea is now to approximate the truncated
normal distribution underlying the TG statistic with an appropriate one from bootstrap samples,
P(ZW >0"Y |Gy < Z,, 02 < bu, Y) ~P, (UT(Y* YD +p= 'Y Gy <ot T +pus ZM).

Recall Y = er.‘zl Yi/n is the sample mean of Y, so E.wTY*) =0T (Y1) (with Te R® denoting the vector
of all 1s), and we have shifted v7Y * so that the resulting quantity v” (Y * =Y 1) + ¢ mimics a normal
variable with mean u. The right-hand side above very nearly defines our bootstrap version of the TG
statistic, except that for technical reasons, we must make two small modifications. In particular, we
define the bootstrap TG statistic as

P.(07TY <col(V* YD +p<by)+6,

— — , (20)
P.(@y <coT(Y* =YD +p<by)+6,

T*(X,Y;M,v,p) =

where ¢ > 1 is a constant as before, and 6,, = }/n_l/ 4 for a small constant Y > 0. Again, we have found

that ignoring the scaling factor ¢ (i.e., setting ¢ = 1) works just fine in practice, though a choice like
¢ =1.0001 does not cause major differences anyway. On the contrary, a nonzero choice of the padding
factor like 6, = 10™4n" does play an important practical role, since the bootstrap probabilities in
the numerator and denominator in (20) can sometimes be zero.
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Lastly, it is worth emphasizing that practical estimation of the bootstrap probabilities appearing
in is quite an easy computational task, because the regression procedure in question, be it F'S,
LAR, or the lasso, need not be rerun beyond its initial run on the observed Y. After this initial run,
we can just save the realized quantities & M,BM, and then draw, say, B = 1000 bootstrap samples Y *
in order to estimate the probabilities in (20). This is not at all computationally expensive. Moreover,
to estimate (20) over multiple trial values of u (so that we can invert these bootstrap p-values for a
bootstrap confidence interval), only a single common set of bootstrap samples is needed, since we can
just shift v7Y* appropriately for each bootstrap sample Y *.

5.3 Asymptotic theory for unknown o?

Treating the dimension d as fixed, we will assume the previous limiting conditions (14), on the
matrix X, and additionally, that

1 n
~ Y llx; 15 = O). (21)
i=1

Note that already implies that %Zizl [l2c; |I§ — tr(X), and the above is a little stronger, though it
is still not a strong condition by any means. For example, it is satisfied when max;_1__, llx;ll2 = O(1).
These conditions on X imply important scaling properties for our usual choices of contrast vectors.

Lemma 8. Assume that X satisfies (T4), @5), @I). If v is any vector such that v 0 gives a normalized
regression coefficient from projecting 0 onto some subset of the variables in X, then

||v||§=0(%).

We specify assumptions on the distribution of Y in that are similar to (but slightly stronger
than) those in Section For constants 02,7,x >0, we define a set of error distributions

&= {F : f xdF(x)=0, f x2dF(x) = o2, f B3dF(x) <, f x*dF(x) < K}.
We also define a class of distributions
7?,’1(0):{1%(9):1%1 x..xFg :Fes’}. (22)

where as before, F,, denotes the distribution of 1+ 8, for 6 ~ F. We define a class ©' of sequences of
mean parameters that satisfies, as before,

E@)<[-B,Bl%, and lim sup sup
"0 neE(©) LXTg—n

1
—XTH—n' =0, (23)
n

for a constant B > 0, where recall E(0’) denotes the set of limit points in ©’; also, for each 0 € @', at
each n, we require

EZ 0; -01° <R, (24)
i=1

for constants S,R > 0, where 6= Z?:lei/n. Note that the assumptions Y ~ F,,(0), with F,,(0) € P;,(0)
and 0 € @, are not much stronger than our assumptions in Section we require the existence of
two more moments for the error distribution, and place an additional weak condition on the growth
of (components of) 8. These conditions are sufficient to prove the following helpful lemma.

12 —
s2==Y10;-0><S, and rj =
niz1

n

12
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Lemma 9. Assume that X satisfies (14), (15). Let Y ~ F,,(0) € P} (0), where this class is as defined in
@2), and let 0 € ©, where this class is as in 23), (24). Then for any fixed M € M, and ¢ > 1,

lim sup sup [P’(ch = U|M\(X,Y) :M) =
=% 9e@ F,(0)eP!(6)

In words, the event {csy = g} has probability tending to 1 conditional on MX,Y)=M, uniformly over
P! (0), and over 6 € ©'. Furthermore, denoting the sample third moment of Y as

1z —
== Z Y -YP?,
n :
we have that for any 6 > 0, there exists C > 0 such that for sufficiently large n,

sup  sup
0€0' F,(0)eP.(0)

—>C‘M(X Y)= )_6,
SY

In words, ri’,/s3Y = Op(1) conditional on ]W(X,Y) = M, uniformly over P, (), and over 0 € ©'.

The last two lemmas allow us to tie the distribution function of our bootstrap contrast to that of
a normal random variable.

Lemma 10. Assume that X sattsﬁes 15), @21). Let Y ~ F,,(0) € P} (0), as defined in 22), and let
0 € @', as defined in 23), 24). Let M € ./\/l, and let v be such that UTQ gives a normalzzed regression
coefficient from projecting 9 onto a subset of the variables in X. Then for any 6 > 0, there exists C >0
such that sufficiently large n,

sup sup [P|sup |[|:D*(UT(Y* ~YND<t)-P(syZ=<t|Y)|= < ’M\(X,Y)zM) <4,
0€0' F,(0)cP,©) \ teR vn

where we use Z ~ N(0,1) for a standard normal random variate. In words, sup,cg |P.@T(Y* =Y 1) <t)—
P(syZ < t|Y)| = Op(1/y/n) conditional on M(X,Y) = M, uniformly over P}(0), and over 6 € ©'.

We are now ready to present uniform asymptotic results for the plug-in and bootstrap TG statis-
tics. We remind the reader the number of steps % is treated as fixed below (as it is throughout).

Theorem 11. Assume the conditions of Lemma Suppose FS, LAR, or the lasso is run for k steps
on (X,Y). Then under vT0 =0, the conditional plug-in TG statistic T(X,Y;M,U,O)IZW(X,Y) =M and
conditional bootstrap TG statistic T*(X,Y;M,v,0)|M(X,Y) =M are each asymptotically larger than
U(0,1) in distribution, uniformly over P;(0), and over 0 € ®. That is,

lim sup sup  sup [u» ro- O(T(X,Y;M,U,O)st|117(X,Y):M)
N0 ge@ F,(0)eP. () tel0,1]

and

lim sup sup  sup [[P 1o O(T*(X,Y;M,U,O) st|1’v_T(X,Y)=M) —t] -

=00 9e@ F,(0)eP.(9) tel0,1] +
where x, = max{x,0} denotes the positive part of x. Further, given any catalog V = {up : M € M} of
vectors such that each vﬁ@ yields a normalized coefficient in the projection of 0 onto a subset of the
variables in X, for M € M, the same results hold marginally under V76 = 0.
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Remark 3. For simplicity, we analyzed the plug-in and bootstrap statistics simultaneously. Conse-
quently, the conditions assumed to prove asymptotic properties of the plug-in approach are stronger
than what we would need if we were to study this method on its own, but there are not major differ-
ences in these conditions.

Theorem [11|establishes that the plug-in and bootstrap versions of the TG statistic are asymptot-
ically conservative when viewed as p-values under v70 = 0. If we look more broadly at the distribu-
tion of these test statistics under v76 = y, for an arbitrary value of , then a technical barrier arises.
For each statistic, our proof of its asymptotic conservativeness leverages the fact that the truncated
Gaussian survival function decreases (in a pointwise sense), as its underlying variance parameter
decreases. To extend these results to the case of an arbitrary pivot value y, we would need the analo-
gous fact to hold when we replace the survival function of the Gaussian variate csy Z + u truncated to
@y, EM], with that of ¢Z + u tuncated to [a}y, EM], on the event {csy = g}. Yet, without the guarantee
that ajs = u (which clearly cannot always be true, for an arbitrary value of u), it is no longer the case
that decreasing the variance from czsg, to 02 always decreases the survival functions of these two
truncated Gaussians; see Appendix This means that confidence intervals given by directly in-
verting either the plug-in or bootstrap TG statistic do not have provably correct asymptotic coverage
properties, under the current analysis.

From the arguments in the proof of Theorem we can construct one-sided confidence intervals
with conservative asymptotic coverage, by forcing them to include a3;. We do not pursue the details
here, as we have found that these one-sided intervals are practically too wide to be of interest.

Importantly, the plug-in and bootstrap TG statistics often display excellent empirical properties,
as we will show in the next section. A more refined analysis is needed to establish asymptotic unifor-
mity for the distribution of these statistics under v”6 = y. Such asymptotic uniformity, for arbitrary
1, would lead to asymptotic coverage guarantees for confidence intervals produced by inverting these
statistics, and we leave this extension to future work.

6 Examples

We present empirical examples that support the theory developed in the previous sections, and also
suggest that there is much room to refine and expand our current set of results. The first two subsec-
tions examine a low-dimensional problem setting that is covered by our theory. The last two look at
substantial departures from this theoretical framework, the heteroskedastic and high-dimensional
settings, respectively. In all examples, the LAR algorithm was used for variable selection and asso-
ciated inferences; results with the F'S and lasso paths were roughly similar. Also, in all examples,
where not explicitly stated otherwise, the computed p-values are a test of whether the target popu-
lation value is 0.

It may be worth discussing two potentially common reactions to our experimental setups, espe-
cially for the low-dimensional problems described in the next subsections. First, our plug-in statistic
uses s%, as an estimate for 02; why not use an estimate from the full least squares model of Y on
X, since this would be less conservative? While experiments (not shown) confirm that this works in
low-dimensional regression problems, such an estimate becomes anti-conservative as the number of
variables grows (particularly, irrelevant ones), and is obviously not applicable in high-dimensional
problems. Therefore, we stick with the simple estimate s%,, as this is always applicable and always
conservative.
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Second, to determine variable significance in a low-dimensional problem, one could of course fit a
full regression model and inspect the resulting p-values and confidence intervals. These p-values and
intervals could even be Bonferonni-adjusted to account for selection. Of course, this strategy would
not be possible for a high-dimensional problem, but if the number of predictors is small enough, then
it may work perfectly fine. So when should one use more complex tools for post-selection inference?
This is an important question, deserving of study, but it is not the topic of this paper. The examples
that follow are intended to portray the robustness of the selective pivotal inference method against
nonnormal error distributions; they are not meant to represent the ideal statistical practice in any
given scenario.

6.1 P-value examples

We begin by studying a low-dimensional setting with n = 50 and d = 10. We defined predictors X €
R?0*10 by drawing the columns independently according to the following mixture distribution: with
equal probability, a column was filled with i.i.d. entries from N(0,1), Bern(0.5), or SN(0,1,5), where
SN(0,1,5) denotes the skew normal distribution (O’Hagan & Leonard||1976) with shape parameter
equal to 5. We then scaled the columns of X to have unit norm. The underlying mean was defined
as 0 = X Bo, where fg € R0 has its first 2 components equal to —4 and 4, and the rest set to 0. Over
500 repetitions, we drew a response Y € R from (3), with i.i.d. errors, and 4 different choices for the
error distribution: normal, Laplace, uniform, and skew normal. In each case, we centered the error
distribution, and we scaled it to have variance 02 = 1 (for the skew normal distribution, we used a
shape parameter 5). Every 10 repetitions, the predictor matrix X was regenerated according to the
prescription described above.

Figure [3a displays QQ plots of p-values for testing the significance of the variable entered into
the active model, across 3 steps of LAR. (The QQ plots compare the p-values to a standard uniform
distribution.) The p-values were computed using the TG statistic with o2 = 1, the plug-in TG statistic
with s%, as its estimate for o2, and the bootstrap TG statistic with 50,000 bootstrap samples used
to approximate the probabilities in the numerator and denominator of (20), and padding factor 6, =
104n~V4. (The scaling factor was ignored, i.e., set to ¢ = 1, for the plug-in and bootstrap statistics.)
In steps 1 and 2, the p-values are restricted to repetitions in which a correct variable selection was
made—i.e., variable 1 or 2 was entered into the active LAR model. In step 3, the p-values are from
repetitions in which an incorrect variable selection was made—i.e., one of variables 3 through 10
was entered into the active model. Since the underlying signal was fairly strong and the predictors
uncorrelated, such selections happened the majority of the time; specifically, the p-values displayed
for steps 1, 2, and 3 comprise approximately 95%, 85%, and 87% of the 500 repetitions, respectively.
The p-values in steps 1 and 2 show reasonable power, for all 3 statistics (T'G, plug-in, and bootstrap
types), and all 4 error distributions. Also, the p-values in step 3 are uniform, as desired, again for
all statistics and all error distributions. Though the guarantees (for uniform null p-values) are only
asymptotic for the Laplace, uniform, and skew normal error distributions, such asymptotic behavior
appears to kick in quite early for these distributions, as the sample size here is only n = 50. Further,
the QQ plots reveal that the p-values for the nonnormal error distributions are not really any farther
from uniform than they are in the normal case. This is somewhat remarkable, recalling that the p-
values are, by construction, exactly uniform under normal errors.

Figure|3b|inspects the TG statistic and plug-in and bootstrap variants, when the pivot value p is
set to the true population value. That is, we set = v70 in computing the statistics in (I8), (I9), and
(20), in each data instance and each step of LAR. The figure collects the p-values across all 3 steps

20



Expected

Expected

Expected

Expected

0.4 0.6 0.8 1.0

0.2

0.0

10

0.8

0.2 0.4

0.0

0.2 0.4 0.6

0.0

1.0

08

0.6

0.4

Normal errors

Step 1, p-values

Laplace errors

Uniform errors

Skewed normal errors

° ° °
N S e | S " .
EBETE ’W W:]
w_%f‘ /% B wo 8255 ’/"
- @ @ @ |
S /f S / S
4 - @ | - @ | / - o |
o o o o 8 o
o o 1%
@ @ @
o o (=3
X < X < X <
1 w o 7 w o 7 w o 7
B > TG S A - TG S o TG S > TG
° TG plug-in ° TG plug-in o TG plug-in ° TG plug-in
i ° Bootstrap o | ° Bootstrap o | < Bootstrap o | o Bootstrap
T T T T T T < T T T T T T ° T T T T T T ° T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Observed Observed Observed Observed
Step 2, p-values
Normal errors Laplace errors Uniform errors Skewed normal errors
° ° °
i o0 07 - 7 5 P - 7 7 °
o M . P g W
i @ | / @ | o |
s S S
- T @ | T 9 | T 9 |
Q o 2 o 9 (=]
3] 5] 3]
@ [ [
8 <3 <3
x < X < X <
’ w o 7 w o 7 w o 7
B o TG S 1 o TG S o TG S o TG
o TG plug-in o TG plug=in o TG plug=in o TG plug-in
B o Bootstrap o | o Bootstrap o | o Bootstrap o | o Bootstrap
T T T T T T < T T T T T T © T T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observed Observed Observed Observed
Step 3, p-values
Normal errors Laplace errors Uniform errors Skewed normal errors
- | e e
= = S
4 @ | o _| o |
s S S
| o © | o © | o e |
9 o 8 (=] 9 (=]
5] 5] 5]
Q [ [
Qo [=3 (=}
2 < 2 < g <
1 w o 7 w o 7 w o 7
b o TG B o TG B o TG B ° TG
o TG plug-in o TG plug=in o TG plug-in o TG plug-in
i o Bootstrap o | o Bootstrap o | o Bootstrap o | o Bootstrap
T T T T T T ° T T T T T T ° T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observed Observed Observed Observed
(a) P-values are shown, after each of 3 steps of LAR.
All steps, pivotal statistics
Normal errors Laplace errors Uniform errors Skewed normal errors
N o e o
S S o
4 @ | o _| o |
s s S
| o © | o © | o © |
Q o 9 (=] g_‘) (=]
5] 3] 5]
Q [ [
o [=3 (=3
g < 2 < 2 <
7 u s a s [
B > TG S o TG 39 o TG g A o TG
o TG plug-in ° TG plug-in o TG plug-in o TG plug-in
| o Bootstrap o | ° Bootstrap o | o Bootstrap o | o Bootstrap
T T T T T T ° T T T T T T © T T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observed Observed Observed Observed

(b) Pivotal statistics are shown, aggregated over all 3 steps of LAR.

Figure 3: A simulation setup with n =50 and d = 10, and a mean 0 = X By, where By has 2 nonzero components.



of LAR, for each of the 4 error distribution types. According to our theory, the distribution of the TG
pivotal statistics here should be asymptotically uniform. This is clearly supported by the QQ plots.
Interestingly, both plug-in and bootstrap pivotal statistics also appear uniform in the QQ plots, and
yet, this is not a case handled by our asymptotic theory: recall, Theorem [1|fixes the pivot value u to
be 0 (as, otherwise, technical difficulties are encountered in its proof). This gives empirical evidence
to the idea that a more refined analysis could extend Theorem [11]to the broader setting (of arbitrary
pivot values) handled by Theorem 7| Moreover, it suggests that inverting the plug-in and bootstrap
TG statistics should yield intervals with proper coverage, which is verified in the next subsection.
Lastly, we repeated all experiments in this subsection with the predictors X € R5°*10 generated
in such a way to induce a (population) correlation of 0.5 between all pairs of predictor variables. The
results are quite similar to those shown in Figure[3] and are hence deferred to Appendix[A.12]

6.2 Confidence interval examples

We stay in same setting as the last subsection, so that n =50, d = 10, and 6 = X ¢ for a coefficient
vector By with its first 2 components equal to —4 and 4, and the rest equal to 0. We invert the TG,
plug-in TG, and bootstrap TG statistics to obtain 90% confidence intervals at each LAR step. See Ta-
ble[1|for a numerical summary. “Coverage” refers to the average fraction of intervals that contained
their respective targets over the 500 repetitions, “power” is the average fraction of intervals that
excluded zero, and “width” is the median interval width. These are all recorded in an unconditional
sense, i.e., no screening of repetitions was performed based on the variables that were selected across
the 3 steps of LAR (the conditional coverages however, were quite similar). From the table, we can
see that all 3 methods lead to accurate coverage (around 90%) in all cases. We can further see that
the intervals from the bootstrap TG statistic are shorter than those from the plug-in TG statistic in
all cases, and considerably shorter than both the plug-in and original TG statistics in steps 2 and 3.
The power from the bootstrap TG intervals is generally better than that from the plug-in TG inter-
vals; also, it is on par with the power from the original TG statistic in step 1, but somewhat worse
in step 2. Recall that the original TG statistic uses knowledge of the error variance (¢ = 1) but the
bootstrap and plug-in variants do not.

Step 1 Step 2 Step 3

Coverage Power Width || Coverage Power Width || Coverage Power Width

TG 0.914 0.508 5.622 0.890 0.520 10.309 0.910 0.114 25.155

N | Plug-in 0.928 0.378 7.561 0.914 0.404 15.774 0.918 0.100 34.642
Boot 0.932 0.528 5477 0.916 0.424 17.856 0.930 0.090 9.141

TG 0.904 0.568 5.193 0.926 0.536 11.153 0.912 0.118 26.393

L | Plug-in 0944 0410 7.271 0.930 0.440 14.859 0.904 0.120 36.206
Boot 0.944 0.566 5.429 0.944 0454  7.892 0.924 0.108 9.273

TG 0.912 0.538 5.153 0.902 0.504 12.347 0.894 0.128 26.451

U | Plug-in 0.928 0.396 7.284 0.910 0.390 17.497 0.886 0.126 39.299
Boot 0.924 0.540 5.453 0.910 0.422  17.808 0.892 0.118 8.913

TG 0.892 0.540 5.346 0.878 0.504 10.876 0.906 0.116 26.592

S | Plug-in 0.940 0402 7.210 0.896 0.380 15.687 0.910 0.106 38.965
Boot 0.936 0.520 5.477 0.912 0.394  8.060 0.918 0.102  9.057

Table 1: Summary statistics for 90% confidence intervals constructed in the problem setting of Figure E] The 4
blocks of rows correspond to the 4 types of noise: normal, Laplace, uniform, and skew normal, respectively. The
standard errors are about 0.01, 0.02, and 0.42 for the coverage, power, and width statistics, respectively.
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It is a bit surprising that the bootstrap intervals can be shorter but still have worse power than
the original TG intervals. This is easier to understand once the intervals are visualized, as done in
Figurel4l The figure shows 100 sample intervals from the first LAR step, under normally distributed
errors. Sample intervals from the other error models are shown in Appendix We see that the
bootstrap TG intervals are indeed shorter, but compared to the original TG intervals, they are more
symmetric around the target population values. The original TG intervals, being more asymmetric,
are often shorter on the side (of the target value) facing 0, and this results in better power.

Again, we repeated the experiments here with the predictors X € R59*10 generated to have pair-
wise correlation 0.5. Comparisons can be drawn between the results in a manner that roughly paral-
lels the discussions following Table [1; however, on an absolute scale, all methods display a decrease
in power across the board (as correlated predictors clearly make the problem more difficult). Details

are provided in Appendix

6.3 Heteroskedastic errors

In the same setup as in Sections and with n =50, d = 10, and the predictors X and mean 6
generated in the same manner, we consider a heteroskedastic model for Y by drawing eg, i=1,...,n
i.i.d. from the given distribution—normal, Laplace, uniform, or skew normal—and then taking the
errors to be ¢; = Uié‘;, 1=1,...,n, where 0? =10]x; IIE, i=1,...,n (and where x; e R?, i = 1,...,n denote
the rows of X.) The spread of error variances ended up being fairly substantial, from about 0.3 to
5.5. The original TG statistic was computed with o2 = %Z?zl 0’? as a surrogate for the common error
variance; the plug-in and bootstrap variants were computed as usual. For brevity, we only plot the
pivotal statistics, aggregated over 3 steps of LAR, in Figure 5| (This is analogous to what is shown in
Figure [3b] for the homoskedastic case. P-values at steps 1, 2, and 3, not shown, end up being similar
to those in Figure but the power from all methods is generally lower, due to the heteroskedastic
errors.) As we can see, the pivotal statistics in the figure look very close to uniformly distributed, as
desired. This is especially encouraging because the current problem setup lies outside of the scope
of our asymptotic theory (which assumes a constant error variance), and it suggests that our theory
could possibly be extended to accomodate errors with an (unknown) nonconstant variance structure.

6.4 High-dimensional examples

Finally, we consider a high-dimensional regime with n = 50 and d = 1000 predictors. The matrix X €
RP0*1000 a5 generated according to the same recipe as before: each column, with equal probability,
was assigned i.i.d. entries from N(0,1), Bern(0.5), or SN(0,1,5), and then scaled to have unit norm.
The mean was defined as 0 = X 8y, where Bo € R1%% has its first 2 components equal to -4 and 4,
and the rest 0. Over 500 repetitions, a response Y € R% was generated by adding normal, Laplace,
uniform, or skew normal noise to 0, with an error variance of o2 = 1 (and every 10 repetitions, the
predictor matrix X was regenerated). Figure [6] plots the pivotal statistics aggregated over the first
3 steps of LAR. (This is as in Figure [3b|for the low-dimensional case. P-values from the first 3 LAR
steps are omitted for brevity, and are roughly similar to those in Figure except that they display
less power, due to the high-dimensionality.) The pivotal statistics here look quite close to uniform, as
desired, and this is again encouraging, especially given that the current high-dimensional case lies
outside of the scope of our theory (which assumes that d is fixed). Further work on high-dimensional
asymptotic theory should be pursued (see also Tian & Taylor|(2017)), though, as we show in the next
section, there is no hope for a uniform convergence result in high dimensions that holds as generally
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Figure 6: A simulation setup with n =50 and d = 1000. Shown are the pivotal statistics over 3 LAR steps.
as the one we established in Theorem [7] for low dimensions.

7 A negative result in high dimensions

We prove that the TG statistic fails to converge to a uniform distribution, under the null hypothesis,
in a data model that has nonnormal errors and is high-dimensional, but otherwise represents a fairly
standard setting: the “many means” setting. We write the observation model as

Yij=pj+eij, i=1,....m,j=1,....d, (25)

where we interpret i = 1,...,m as replications, and j = 1,...,d as dimensions. In total there are hence
n = md observations. Denote .
— 1
Yi==)> Y, j=1....d.
mi=
We will analyze the TG statistic, when selection is performed based on the largest of I?jl, j=1,...,d,
and inference is then performed on the corresponding mean parameter. A straightforward change of
notation will translate the above into a regression problem, with an orthogonal design X € R**¢, but
we stick with the many means formulation of the problem for simplicity.
We assume that the errorse¢;;,i=1,...,m,j=1,...,din are i.i.d. from the following mixture:

n-N(-B,1)+(1-2n)-N(0,1)+n-N(B,1). (26)
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The mixing proportion 7 and mean shift B will both scale with d. Moreover, they will be chosen so
that (for each d) the error variance is

0?=1+27B%=2.
As mentioned, we will consider model selection events of the form

MY)=(j,s) < sY; >max 1Y .
J

We note that this is exactly the same selection event as that from the first step of F'S, LAR, or lasso
paths, when run on the regression version of this problem with orthogonal design X. It is not hard
to check that the TG statistic for conditionally testing u; = 0, given that M(Y) =(j,s), is

1_®(Ms?j)
T(Y;j,s,0) = v2 SR 27
1_®(maXz¢j \/ﬁIYzI)
V2

As per the spirit of our paper, we can also view this statistic unconditionally; for this it is helpful to
define W1 =Y 1],...,Wg =Y 4l, and denote by W(3) = ... = W(y) the order statistics. Then from (27), we
can see that the unconditional TG statistic for testing the selected mean being 0 is

o 22
2
TY;0)=— ——. (28)
1_q)(\/mW(2))
V2

The framework underlying the TG statistic tells us that if the errors in are i.i.d. N(0,2), then for
any fixed model (J,s), the pivot T(Y';j,s,0) is uniformly distributed conditional on M(Y)=( J,s). Fur-
ther, if W(1) and W9 are the largest and second largest absolute values of centered normal random
variables (each with variance 2/m), then the unconditional pivot 7(Y;0) is again uniform. But when
W), W) are large, and are defined by the order statistics of nonnormal random variates, the statistic
T (Y ;0)—which in this case is defined by the extreme tail behavior of the normal distribution—could
be nonuniform. The next theorem asserts that such nonuniformity does indeed happen asymptoti-
cally if we choose the mixture distribution in appropriately.

Theorem 12. Assume the observation model 25), where the errors are all drawn i.i.d. from (26). Let
d and m scale in such a manner that (logd)/m — oco. Further, let

1/m
1 dl/m
== B=1\—
d (d) ’ 2’

so that the error variance is fixed at 02 = 2. Then under the global null hypothesis, i = 0, the uncon-
ditional TG statistic T (Y;0) in does not converge in distribution to U(0,1). In particular, on an
event whose limiting probability is at least 1/e, the statistic T (Y ;0) converges to 0.

Further, the same results hold conditionally on any selected model. That is, for any fixed (j,s), the
conditional TG statistic T(Y;j,s,O)I]/W\(Y) =(J,s) does not converge in distribution to U(0,1), and on
an event with limiting probability (conditional on MY)= (J,s)) at least 1/e, it converges to 0.
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Figure 7: The left plot shows a QQ plot of TG p-values, computed over 500 repetitions from the many means
setup exactly as described in Theorem with d =50,000 and m = 2. We can see that the p-values are clearly
nonuniform, and 34% of the p-values are 0 (up to computer precision), close to the theoretically predicted pro-
portion of 1/e. The right plot shows p-values from the same model, but having reversed the roles of d and m (we
also had to cap 7 at 1/2); we can see that the p-values are essentially uniform.

Remark 4. The assumed condition (logd)/m — oo requires the dimension d to diverge to oo, but not
necessarily the number of replications m, though it clearly allows m to diverge at a sufficiently slow
rate. On the other hand, if d were fixed and m diverged to oo, then the result of the theorem would no
longer be true, and the limiting distribution of the TG p-value would revert to U(0,1). (To be careful,
here we would have cap the mixing probability 7 at 1/2 in order for the mixture to make sense, since
the current definition of 7 diverges with d fixed and m tending to co.) In fact, this is ensured by our
low-dimensional result in Theorem [7} after reformulating the many means problem in appropriate
regression notation, all of the conditions of Theorem [7| are met by our current setup when d is fixed.
This is supported by the simulation in Figure

Remark 5. The precise scaling (logd)/m — oo is chosen since this implies 7 = (1/d)Y™ — 0, i.e., the
extreme mixture components N(—B,1) and N(B,1) each have probability tending to 0, an intuitively
reasonable property for the error distribution. But we note that this scaling is not important for any
other reason, and the proof would still remain correct if d/m — co.

Remark 6. In Theorem 3 of Tian & Taylor|(2017), the authors show that the TG statistic converges
in distribution to a standard uniform random variable, in a high-dimensional problem setting, with
some restrictions on the sequences of selection events that are allowed. One might ask what part of
our high-dimensional setup here violates their conditions, because both results obviously cannot be
true simultaneously. As far as we can tell, the issue lies in the role of §,, in Assumption 1 of Tian &
Taylor] (2017). Namely, as we have defined the error distribution in (26), the value of §, needed to
certify the third condition Assumption 1 of their work is too small for the main assumption in their
Theorem 3 to hold. Hence Theorem 3 of Tian & Taylor|(2017) does not apply to our current setup.
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8 Discussion

We have studied the selective pivotal inference framework, with a focus on forward stepwise regres-
sion (F'S), least angle regression (LAR), and the lasso, in regression problems with nonnormal errors.
We have shown that the truncated Gaussian (TG) pivot is asymptotically robust in low-dimensional
settings to departures from normality, in that it converges to a U(0, 1) distribution (its pivotal distri-
bution under normality), and does so uniformly over a broad class of nonnormal error distributions.
When the error variance o2 is unknown, we have proposed plug-in and bootstrap versions of the TG
statistic, both of which yield provably conservative asymptotic p-values.

Our numerical experiments revealed that the statistics under theoretical investigation generally
display excellent finite-sample performance, for highly nonnormal error distributions. These experi-
ments also revealed findings not predicted by our theory: (i) the bootstrap TG statistic often produces
shorter confidence intervals than those based on the plug-in TG statistic, and even the TG statistic
that relies on the error variance 02; and (ii) all three TG statistics show strong empirical properties
well-outside of the classic homoskedastic, fixed d regression setting that we presumed theoretically.

However, as we have clearly demonstrated, one should not hope for a convergence result in high
dimensions that is as general as the result obtained in low dimensions. In a relatively simple many
means problem, we showed the nonconvergence of the TG statistic to U(0,1) as d — oo, whereas in
the same problem but with d fixed, the TG statistic converges to its usual U(0, 1) limit.

There is still much left to do in terms of understanding the behavior of selective pivotal inference
tools that are constructed to have exact finite-sample guarantees under normality, like the TG statis-
tic of Tibshirani et al./(2016), when applied in high-dimensional regression settings with nonnormal
data. When the pivot, the central cog of this framework, is constructed under the assumption of nor-
mality, this creates robustness issues that are especially worrisome in high dimensions. Appendix
[A.16|provides a high-level discussion of some of these issues; a more detailed study will be the subject
of future research.
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A Appendix

A.1 Convex cones for FS, LAR, lasso

We describe a modification of the conic conditioning set in |Tibshirani et al.|(2016) for F'S. Our version
is different in that we additionally condition on the sign of every active coefficient at every step, rather
than just the coefficient of the variable to enter the model at each step. The modifications needed for
the LAR and lasso conditioning sets, made on top of the sets for LAR and lasso given in [Tibshirani
et al.|(2016), will follow similarly to that described for F'S, and hence we omit the details.

After k F'S steps, we can always represent a sequence of active sets A4(y), £ =1,...,k by a sorted
list of variables [71(y), ..., r()] that were chosen to enter the model at each step. Unfortunately, the
same cannot be done for a sequence of active signs §,(y), £ =1,...,k, because these do not obey such
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a nested structure. We will write 5,(y) = [5¢,1(y),...5¢,¢(y)] for the signs of coefficients corresponding
to the variables [71(y), ..., ¢(»)], at the £th step.

Now we characterize the event that Ag(y) =Ay, 5¢(y)=sy, for ¢ =1,...,k, using induction. At
step ¢ = 1, we have that j1(y) = j1 and §1(y) = s; if and only if

s1X ] y/IX;, 152 =X ] y/IX;13 for all j # 1,

or, rearranged, r
(51X, /11X, 12+ X;/1X;12)" y =0 forall j # jy,

a set of 2(d — 1) linear inequalities in y. Assume that we have represented the event that A y)=Ay
and §,(y) = sy, for £ =1,...,k—1, by a collection of linear inequalities in y. Then to represent J(y) = jx
and 53(y) = [sg,1,...,5¢%,], we must only append to this collection of inequalities. The former subevent
71(y) = j is characterized by

)T

(sk,kak/”Xjk”%ijzj/”)?j”g r=0 forall j#j1,...,Jk,

where X j is the residual from regressing X; onto X4, ,, and r is the residual from regression y onto
X4, ,- By expressing X ; = ij_lX jandr= Pik_lX j» where ij_l projects onto the orthocomplement
of the column space of X4, ,, we can rewrite the above constraints as

T . . .
(sexPy, Xj/IPx, Xjl5+Py X;/Py X;13) y=0 forall j#ji,...,jk

a set of 2(d — k) linear inequalities in y. Meanwhile, the subevent 53(y) =[s,1,...,5%,] can be char-
acterized by % inequalities expressed in block form,

diag(s1,1,...,554) (X Xa,) ' X y=0.

This completes the proof.

A.2 Proof of Lemma[3

We prove the result for F'S; the results for the LAR and lasso paths follows similarly, by inspecting
the form of the linear inequalities that determine their selection events.

Consider the first F'S step as described in Appendix Multiplying through by /n, we see that
an equivalent set of inequalities that characterize the selection event j1(y) = j1, §1(y) = s1 is

T T
n Xy n Xy

15T E—
XTX;, vn  XTX; Vn

=0 forall j#j;.

This is clearly of the desired form Pl(%X Tx) \%X Ty =0, for a matrix P1( %X TX) dependent only on
%X TX. At the kth stgp of F'S, there are two sets of inequalities to be examined: one that describes
the variable to enter j(y) = ji, and the second that describes the active signs §3(y) =[s3 1,...,Sk].
The first set, multiplying through by /7, is

nXﬁXAkq(XAZLlXAk,I)_l X};y . n’X}rXAkfl(XALIXAk,l)_l XTy

Sk.k + =0
X7 Xa Xy Xa, )7UXL Xy, VR XTXa, Xy X, )XY X VR

fOI' al]-j#jl,-"ajka
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while the second set, again multiplying through by /7, is

T
: 194,Y
dlag(sl,l,...,sk,k)n(ngXAk) 12

=0.
These inequalities are clearly all summarized by Pk(%X Tx) \/AEX Ty >0, where Pk(%X TX)is a ma-
trix that depends only on %X TX . This completes the proof.

A.3 Proof of Lemmal

Under the conditions of the lemma, the TG pivot for fixed M in (8) depends only on X,y through the
master statistic, because, as explained above the lemma, the only dependence in the pivot on X,y is
through the quantities vT y/|[vll2, (Qu(X)v)|lvl2, @u(X)y, and each of these is in turn a function of
the master statistic (2,,. Moreover, we may reexpress the TG statistic in as
1vTy 1 vT 1vTy 1 vT
o(A11XTX, LXTy) - (f(2XTX, LXTy))

TX,y;M,v,p) = ;
(1 XTX, =XTy) - O(fs(:XTX, =XTy))

for some functions f1, f2, f3, or more succinctly, as T(X,y; M,v,u) = wM(%XTX, inXTy), where

D(£1(S,2)) — ®(f2(8,2))
D(£1(S,2)) - ®(f3(S,2))

Note that the quantities ol ylvle, @u(X)v)|vle, @ym(X)y depend smoothly on the master statistic
Q, = (%X Tx, inX T y) at any point such that %X TX is nonsingular. This implies f1, fo, f3 are smooth
functions of (S,z) at any point such that S is nonsingular. Lastly, for all S,z such that P»;(S)z > 0,
we have f1(S,z) > f3(S, z), and thus the denominator of ¢3;(S,z) is positive. This proves the desired
continuity result on .

wm(S,2) =

A4 Proof of Lemmal5l

For the master statistic Q,, = (%XTX, inXTY), note that E(Q2,) = (%XTX, %LXTB). As v is assumed
to be chosen such that v is a normalized regression coefficient from the projection of 8 onto some
subset of the columns in X, we may assume without a loss of generality that v7 6 is as in (7) for some
A,j. Then, we see that we must only define

eT(San) 124
g(S,2)= 2

\/ eJT(SA,A)‘lej

where we use S4 4 to denote the submatrix of S with rows in A and columns in A, and z4 to denote
the subvector of z with entries in A.

A.5 Proof of Lemma

Define Zo, =Y ;¢;, where ¢; = \/iﬁxiei, x; is the ithrow of X, and ¢; =Y; —0;, for i =1,...,n. Note
that (¢4,...,&,) ~ F,(0), with independent, mean zero components. We compute

n 0_2 n 02
2 Covie=—3 xx! = —XTX,
i=1

i=1 n
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which converges to 02X as n — oo, by assumption. Further, for any § > 0, consider

Y E(16ii3 10612 201) = 3" It E[ed-1] e 2 o)
i=1 i=1

n

We seek to show that this converges to 0 as n — oco. As %Z?zl llxc; II§ — tr(X), it suffices to show that
the maximum of the above expectations (in the summands) converges to 0, which is implied by the
assumption that max;=1__, llx;ll2/v/n — 0. As the above arguments did not depend on the sequence
F,(0),n=1,2,3,..., we have verified the Lindeberg-Feller conditions uniformly, and hence the uni-
form Lindeberg-Feller central limit theorem, Lemma |2, implies that Z , converges in distribution
to Zo ~ N(0,02X), uniformly over P,(0).

Now consider Z, = -=X"Y = Zo , + =X 6. Writing ® and ¢ for the standard normal CDF and

. vn v
density,

sup  sup sup |[P>(Zn <x)-P(Z < x)|
0€0 F,(0)eP,(6) xeRd

= sup sup sup
0€® F,(0)eP,(0) xcRd

1
P(Zo,n sx— EXTQ) -P(Z <x)

1
<sup sup sup |P(Zo, <x)-P(Zo<x)| + sup |Dx-n)- cp(x - —XTH)‘

0€® F,(0)eP,(0) xeR? x€R? vn
1
<sup sup sup |P(Zp,=<x)-P(Zy<x)| + —xTo- 17‘¢(0),
0€0 F,(0)eP,(0) xeR? vn
a b

where the second line is due to the triangle inequality, and the third line is due to the simple bound
|®P(x—t)—D(x—3s)| = If;__st ¢d(u)dul < |t —s|p(0), for any x,s,¢. Note that @ — 0 by the argument at the
start of this proof, and & — 0 by assumption in (I7). This shows that Z, converges in distribution to
Z ~ N(n,02%), uniformly over P, (), and over 0 € ©.

Lastly, we establish the conditional result. By repeating the same arguments as above, the uni-
form Lindeberg-Feller central limit theorem and condition imply that (Z,,A,Z,) converges to
(Z,AZ), uniformly over P,(0), and over 0 € ®. Thus, along sequence F,,(0) € P,(0), n =1,2,3,... with
0 € ©, observe
PZ,<x,A,Z,=0) P(Z<x,AZ=0)

PA,Z,20)  PAZ=z0)

at a rate that does not depend on the sequence in question. This is true because the numerator and
denominator each converge to their normal probability counterparts, and the denominator remains
bounded away from zero since {z : Az = 0} has nonempty interior, and the set of limits of inX T9 was
assumed compact, in (I7). Since x was arbitrary, and the distribution of Z|AZ > 0 is continuous, we
have (e.g., Lemma 2.11 in van der Vaart|(1998))

PZ,<x|A,Z,=0)=

sup |P(Z, <x|ApZ,=20)-P(Z<x|AZ =0)|— 0.

xeRY

And as the sequence F,,(0) € P,(0), n=1,2,3,... with 0 € © was arbitrary, we have shown the desired
uniform convergence.
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A.6 Proof of Theorem [7]

We begin with the proof of part (a). Let Z, = =XTY and Z ~ N(1,0%%). Also, let A, = Py (s 1xTXx)
and A =Py(Z). Recall that A,Z,, =0 < M({Y) M, by Lemma 3] Also, Z,|A,Z, =0 converges
weakly to Z|AZ = 0, uniformly over P,(6) and over 0 € ©, by Lemma 6] As ,llX TX — 3 deterministi-
cally, we also have that Q,, = (%X TxX.Z,) converges uniformly in distribution to Q = (X, 2).
The choice of v as specified in the theorem is now important for two reasons. First, by Lemma
we can express
TX,Y;M,v,u) =y (Qy),

for a function ;7. Second, by Lemma we can express v’ 0 = g(E(Q,)) for a function g. Neither
nor g depend on n, and the distribution in question is that of v ,(Q,)|A,Z, =0 under g(E(Q2,)) = u
The function ¥, is continuous at any point (S, z) such that S is nonsingular and Az > 0; recalling the
assumed nonsingularity of X, it is therefore continuous on a set of full probability under the limiting
distribution £(Q|AZ = 0). By the uniform continuous mapping theorem, Lemmal[1] y/(Q,)|A,Z, =
0 converges uniformly to w(Q)|AZ = 0, which is distributed as U(0,1) when g(E(Q2)) = u by the pivotal
property of the TG statistic under normality, as in (8). The proof of uniform validity of TG confidence
intervals is just a rearrangement of the uniform asymptotic pivotal statement.
The proof of part (b) follows from the expansion

TX,Y;V,U)= Y TX,Y;M,vp,um) UMX,Y)=M).
MeM

As the number possible models | M| is finite, we can simply apply the asymptotic pivotal result from
part (a) to each M € M to establish the asymptotic pivotal property of 7(X,Y;V,U). The confidence
interval result is again just a rearrangement of this pivotal property.

A.7 Proof of Lemma

By assumption, the vector v can be written as

Xa(XTXp) e

,/eJT(X};XA)‘lej

V=

for some A, j. We compute
o2 Y IXaX X ) e
vlls =
3 |e§'(X£XA)—lej|3/2
T X X an(XIX ) e 8

IeJTn(XiXA)_lejl3/2

The denominator converges to Ie?(Z A, A)_le j|3/ 2 by (14). The numerator satisfies

1 &2 12
— Y1 X; anXTx e <— Y 112 - 1nX T X ) e 112,
ns/zi;ll i,A ANA ]| n n;l L||2 l AA J”Z

~ RN v

~ ~
a b

where a is bounded by and b converges to [[(Z4.4) te j||§ by (14). This completes the proof.
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A.8 Proof of Lemma

We start by proving the result about the event {csy = g}. First let us study its asymptotic probability
marginally. Consider

1
E(s3)=— Z[E|€l+9 -€e-0|?

3

i=1
12 L, 1 _, 2 o
==Y Ee; e+ =Y 16; -012+ =Y E(e; —€)0; -6
n 1Iel I niﬂll | niZI(l €)(0; -0)
n-1 o o
= +
- o” + sy,

where €=3" , ¢;/n. Hence

IP(ch < 0) = P(czs% 2[E(s%,) <g?- cz[E(s%,))
4Var(sY)
(cz[E(s )—02)2’

where in the last line we used Chebyshev’s inequality. Recalling that ¢2 > 1, we have the lower bound
(c2[E(s%,) —02)?220.999(c2 — 1)204, for n large enough. Therefore, to show P(csy =) — 1, it is enough
to show that Var(s%,) — 0 as n — oo, uniformly. For this, we will use the simple inequality

m
Var(Wi+...+W,,)<m Z Var(W;), (29)
i=1
which follows from the fact that 2Cov(W;,W;) < Var(W;) + Var(W;). We will also invoke Rosenthal’s
inequality (Rosenthal|1970), which for independent W1,..., W,,, having mean zero and E|W; |’ < co for
i=1,...,m, states that

m t m m t/2
E[) W, SCtmaX{ Y EIW; [, (Z[EW?) } (30)
i=1 i=1 i=1
for a constant C; > 0 only depending on ¢. Hence, observe that
1& _ =9
Var(sY)—Var —Z|€i+6i—e—9|

niz
12 2 —

=V (—Z|€l+0 9| +€ __Z(€i+9i_9)€)
ni;= ni;=
1 —

=V (— Y Iel+0i—9l2—52)
n

~.

A

p

oY)

n]
—_—
S|~ T
u[\’J:H

le; +0; — 0] )+2Var(€2),

~ " —
a b

r
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where in the last line we used (29). We consider a, b individually. We have

2 n n _ n _
a= ﬁVar(ZE? + Z |0; —9|2 +ZZ€i(9i —9))
A i=1 i=1

=1

<8 var[ Y 2|+ Bvar( 3 es0, -0
= ar Zei +ﬁ ar Zei( i—0)
i=1 i=1

6 12
<—x+ —0233 —0,
n n

where the second line again used (29), and the third used our assumptions on the error distribution
n (22), and on 0 in (24). We also have

n 4

D€

i=1

b=—E

< —C4max{n1< n2o% —
nt

where the second line used Rosenthal’s inequality (30). This implies Var(s%,) <a+b — 0, uniformly
over P/ (), and over € @'.

We have therefore shown P(csy = ¢) — 1, uniformly over P}, (), and over 6 € @'. To see that the
same result holds conditional on M(X ,Y)=M, take any sequence F,(0) € P,(0), n=1,2,3,... where
0 € ©, and note that

P(csy =0,A,Z, =0)
PA,Z,=0)
- PA,Z,=0)—P(csy <o)
PA,Z,=0)
P(AZ=0)-0
T TP@Az=z0

P(ch > a|zT/T(X,Y) - M) _

where we have borrowed the notation and the normal convergence result P(A,Z, = 0) - P(AZ = 0)
from the proof of Lemma [5| The rate of convergence in the last line does not depend on the sequence
in consideration, because of the uniform convergence of A,Z, to AZ, and the fact the denominator
is bounded away from zero, since the set of limits of lnX T is assumed to be compact, in 23). And
as F,(0) e P,(0), n=1,2,3,... with 0 € ©® was arbitrary, this completes the proof of the first part of
the lemma.

For the second part, on the boundedness of r%,/s?,, consider that for any C >0 we have
3
IP(—3Y ‘M(X Y)= )> Py <o’Cre, s} = 0%/ | MX,Y) = M)
Sy

> 1—IP’(rY > g3C/c? |M(X,Y) - M) —[F"(s:;’, <3/ |A7(X,Y) - M).

The last term here satisfies IP(s <d3/c3 | M(X,Y)=M)— 0, umformly, by what we showed above. It
suffices to prove that, for any § > 0, there exists C > 0 such that IP(r > e3C/o® | M(X, Y) M) <6 for
large enough n, uniformly. By Markov’s inequality, this will be true as long as [E(rY M X,Y)=M)is
uniformly bounded. To this end, we will use the simple inequality,

la + bl <2l + 2B, 31
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and compute

E(rd| M, )= M) =

;|,_.
]

—_—
L=
)
+
D

_M)

i=
2° 3..3
< —E|Y le; €| M(X,Y)=M|+2%
n =1
2_ < _ 6r(1=3 | 77 _ 3.3
< Z M |+2°E|[el’ | M(X,Y)=M|+2°r;,
n :
26
5261M+—303max{nrM,n2/3013VI}+ rg, (32)
n

where the second and third lines used (31), and the last line used Rosenthal’s inequality (30), along
with the abbreviations
- M).

1 1 3
M= —[E( Y leil
no\;=1

Once again using A, Z, =20 < MX ,Y)=M and the uniform convergence P(A,Z, =0) — P(AZ = 0)
from Lemma [5] we have for large enough n,

1 n
—M), and o3, = ;[E(Z lei?

=1

[E|e1|3 < T T

S PA,Z,20) PAZ=0)2  p2’

where we have used the upper bound on the third moment of the error distribution in (22), and we
have used a lower bound P(AZ = 0) > p > 0 that holds uniformly over all § € @', due to the assumed
compactness of the set of limits of inX Tg, in (23). Thus we have shown that 737 is uniformly upper
bounded. Similar arguments show that o is uniformly upper bounded. As rg < R by assumption in
(24), we see from that [E(r?{, |M(X,Y)=M)is uniformly upper bounded. This completes the proof
of the second part, and the lemma.

A.9 Proof of Lemma

Let us write _
oT(Y*-Y1)
Sy

= Z $i
i=1

where ¢1,...,¢, are independent with mean zero and Z?:lVar*(cf ;)= 1. By Theorem 3.7 of |Chen et al.
(2011),

sup |P.(
teR

1t
In

n
<t)-P(Z=<t|Y)| leZlE*IﬁiIS.
1=

But the right-hand side is precisely

$ 3 ’"?fz 3
10) E.lé1° = 10— llvlls.
i=1 sy

Lemmas|8/and @] imply that this is Op(1/4/n) conditional on MX ,Y) =M, uniformly over P}, (), and
over 0 € ©', giving the result.
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A.10 Proof of Theorem [11]

First, we prove the result for the plug-in statistic. Denoting Z ~ N(0,1), we have
T(X,Y;M,v,00=P(csyZ>0"Y |Gu < csyZ <bu, Y )

Consider the event {csy = ¢}, which has probability approaching 1 conditional on M(X,Y) = M, uni-
formly over P}, (0), and over 0 € ®, by Lemma @ On this event, by the monotonicity of the truncated
Gaussian survival function in its variance parameter, shown in Appendix we can replace csy
by o, and this cannot increase the value of the statistic. (To verify that the result in Appendix[A.1]]
can indeed be applied, notice that @7 = 0, i.e., the left endpoint of the interval is at least the mean of
the truncated Gaussian, which follows from the fact that v”Y = 0 by design.) Thus we can write

T(X,Y;M,v,0) = IP’(UZ > Ty | Gu<oZ<by, Y) +E,,
where P(E,, <0|M(X,Y)=M)— 0, uniformly over P (0), and over 6 € ©'. Hence, for any ¢ € [0, 1],
PUTQZO(T(X,Y;M, v,0)< ¢ | MX,Y)= M) < [F’UTHZO(T(X,Y;M,U,O) <t |A7(X,Y) - M) +o(1),

where the o(1) remainder term above is uniform over ¢ € [0, 1], over P, (6), and over 6 € ©'. Applying
part (a) of Theorem [7| proves the conditional result for the plug-in statistic.
Next, we turn to the bootstrap result, whose proof'is a little more involved. Define a function

Po(z<col(Y*-Y 1) <by)+5,
P.(@y < coT(¥Y* =YD <by)+5,

G*(2) = ay <z<by}.

Lemma [10|implies that we can write

[F"(z S03yZ55M|Y)+En+6n

G*(2)= =
P(fiM < CSYZSbM|Y) +E;1 +d,

-1{aM <z< BM},

where |E,|,|E! | = Op(1/y/n) conditional on MX ,Y)=M, uniformly over z € R, over P, (), and over
0 € @'. (Note that ¢ in the above can be absorbed into the role of ¢ in the lemma.) Dividing through
by the quantity P(@y <csyZ <bpy|Y)+d,, we have
Plz<csyZ<by|Y)+6, E,
P(@MSCSYZSEM|Y)+5n P(&MSCSYZSEM|Y)+6n
E,
P(&M <csyZ < bMiY) +d,

G*(z)= -1{@MSZSZ7\M}

1+

> (UZzz‘c?MsaZsBM,Y)-l{aMSZSBM}+en,

where |e,| = op(1) conditional on ]/W\(X,Y) = M, uniformly over z € R, over P),(0), and over 0 € @, but
the precise value of e,, may differ from line to line. Above, in the second line, we used E,/6, = op(1)
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conditional on M(X ,Y) =M, uniformly, and similarly for E; in the third line, we used the fact that
(p+0)(qg+0)=p/q for 0< p < q and 6§ =0, in the last line, we have used, as before, the monotonicity
of the truncated Gaussian survival function in its underlying variance parameter, and the fact that
P(csy =0 IZ/M\(X,Y) = M) — 1, uniformly.

Rewriting the result in the last display, we have

sup
zeR

< lenl,

G*(z)—IP(aZzz|&MsaZsEM,Y)-l{ciMs,stM}

where x_ = max{0, —x} denotes the negative part of x. In particular, at z = vTY, this implies

T"(X,Y;M,v,0)-T(X,Y;M,v,0)

< lenl.

Finally, this means that we can write, at an arbitrary level ¢ € [0, 1],

Puro—o(T*(X,Y;M,0,0) < t(zTI(X,Y) = M) =Pyrg_oT(X,Y;M,v,0) <t~ E},

MX,Y)=M),

where (E))_ = op(1) conditional on M(X,Y)=M, uniformly over ¢ € [0, 1], over P (0), and over 0 € ©'.
Therefore

Pyro—o(T*(X,Y;M,0,0) <t | M(X,Y) = M) < Pyrg_o(T(X,Y; M,0,0) <t | M(X,Y)=M|+o(1),

where the o(1) term above is uniform over ¢ € [0,1], over P, (0), and over 6 € ©'. Applying part (a) of
Theorem [7| proves the conditional result for bootstrap statistic.
The unconditional results for two modified TG statistics hold simply by marginalization.

A.11 Monotonicity of the truncated Gaussian distribution in o2

Define
—l[a,b] D(b/o) - D(x/o)

F At s
00> = G /o)~ Dlalo)’

the survival function for a normal random variable Z ~ N(0, 02), truncated to lie in an interval [a, b],

where a = 0. We will show, following the proof of a similar monotonicity result in Lemma A.1 of |Lee

et al.| (2016), that for any 0 < 02 < 02,

Fos () <Fga(x) for all € [a,b].

To emphasize, the above property is only true when the interval [a, b] lies to the right of 0. Without
this restriction, the survival function will not be monotone increasing in o2 (if [, b] contains 0, then
it will generally be nonmonotone, and if [a, b] lies to the left of 0, then it will actually be monotone
decreasmg)

Over 02 > 0, the family of distributions Fo Uz forms an exponential family with natural parameter
1/02, as it is just a family of Gaussian distributions with the carrier measure changed. Therefore, it
has a monotone likelihood ratio in its sufﬁc1ent statistic —x2, i.e., if we denote by f la, b] the truncated
Gaussian density function, and we fix 01 < 02, anda<xy<xg< b then

f[a b](x ) f[a b](x )
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Hence
Foea @ [l < £l £ o),

0,0% 0,05 0,0% 0,05

Integrating with respect to x1 over [a,x), for some x < x9, we obtain

-=la,b] —la,b]
FYo) (1-F g (0) < (1-Fpe ) £5 .

0,01 O,cr2
Now integrating with respect to x2, over (x,b], we obtain

—la,bl —la,b] —la,b] —la,bl
Foop ) (1-Fgon (0) < (1-F g @) Foas (0.

Rearranging gives the result.

A.12 P-value examples for correlated predictors

Here we investigate the consequences of using correlated predictors in the simulation setup of Sec-
tion[6.1] We constructed a preliminary matrix X € R50*10 45 hefore: each column was drawn indepen-
dently to have either i.i.d. N(0,1), Bern(0.5), or SN(0,1,5) entries, with equal probability. We then
took as our predictor matrix X’ = X212, where X € R19*10 has all diagonal entries equal to 1 and all
off-diagonal entries equal to 0.5 (and V2 is its symmetric square root). We scaled the columns of X’
to have unit norm. The rest of the setup is then just as in Section|6.1

Figure [8| shows the results, in the same format as Figure [3; p-values for LAR steps 1, 2, and 3,
and pivotal statistics aggregated over LAR steps, from 500 repetitions. The p-values at steps 1 and
2 were restricted to repetitions in which either variable 1 or 2 were selected (now comprising about
70% and 60% of the repetitions, respectively); the p-values at step 3 were restricted to repetitions in
which one of variables 3 through 10 was selected (comprising about 80% of the repetitions). Similar
to the display in Figure|3| we see power in the p-values from steps 1 and 2, albeit less power than in
the uncorrelated case, and uniform p-values in step 3, as well as uniform pivotal statistics.

A.13 Confidence intervals for uniform, Laplace, and skew normal noise
Figures [9] through [1I] show sample confidence intervals for the problem setting of Section when
the error distribution is uniform, Laplace, and skew normal, respectively.

A.14 Confidence interval summary statistics for correlated predictors

Table 2| gives summary statistics of confidence intervals obtained by inverting the original TG, plug-
in TG, and bootstrap TG statistics, as in Table1{of Section but for the correlated predictors setup
described in Section[A. 12

A.15 Proof of Theorem 12

Let us denote by N; the number of observations in the jth column of the data array Y;;, i =1,...,m,
Jj=1,...,d that are drawn from the N(B, 1) mixture component. Similarly, let N J’ denote the number
of observations in the jth column drawn from the N(0, 1) mixture component. Then we will define E
to be the event

E:{For some j=1,...,d, we have N;=m andN}zm—Zﬂmd for all[;éj}.

38



Expected

Expected

Expected

Expected

0.4 0.6 0.8 1.0

0.2

0.0

10

0.8

0.2 0.4

0.0

0.2 0.4 0.6

0.0

1.0

08

0.6

0.4

Normal errors

Step 1, p-values

Laplace errors

Uniform errors

Skewed normal errors

- o o ] o
S S S
- @ @ @ |
s S S
- =l © | o © | =3 © |
o o o o 8 o
o o 1%
@ @ @
o o (=3
X < X < X <
1 w o 7 w o 7 w o 7
B > TG S A - TG S o TG S > TG
° TG plug-in ° TG plug-in o TG plug-in ° TG plug-in
i ° Bootstrap o | ° Bootstrap o | < Bootstrap o | o Bootstrap
T T T T T T < T T T T T T ° T T T T T T ° T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Observed Observed Observed Observed
Step 2, p-values
Normal errors Laplace errors Uniform errors Skewed normal errors
i o o o
S S /,‘- <
- © ] < @ |
s S S
- T @ | T 9 | T 9 |
Q o Q o Q (=]
° ° 51
@ [ [
8 <3 <3
x < X < X <
’ w o 7 w o 7 w o 7
B o TG S 1 o TG S o TG S o TG
o TG plug-in o TG plug=in o TG plug=in o TG plug-in
B o Bootstrap o | o Bootstrap o | o Bootstrap o | o Bootstrap
T T T T T T < T T T T T T © T T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observed Observed Observed Observed
Step 3, p-values
Normal errors Laplace errors Uniform errors Skewed normal errors
- | e e
= = S
| @ | o | @ |
s S S
- T @ | T @ | T <@ |
Q o Q (=] Q (=]
° © ©
Q [ [
Qo [=3 (=}
2 < 2 < g <
1 w o 7 w o 7 w o 7
B o TG S o TG 39 o TG S A o TG
o TG plug-in o TG plug=in o TG plug-in o TG plug-in
i o Bootstrap o | o Bootstrap o | o Bootstrap o | o Bootstrap
T T T T T T ° T T T T T T ° T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observed Observed Observed Observed
(a) P-values are shown, after each of 3 steps of LAR.
All steps, pivotal statistics
Normal errors Laplace errors Uniform errors Skewed normal errors
N o e o
S S o
| o | w | o |
s s S
| o © | o © | o © |
Q o Q (=] Q (=]
° ° ©
Q [ [
o [=3 (=3
g < 2 < 2 <
7 u s a s [
B > TG S o TG 39 o TG g A o TG
o TG plug-in ° TG plug-in o TG plug-in o TG plug-in
| o Bootstrap o | ° Bootstrap o o Bootstrap o | o Bootstrap
T T T T T T ° T T T T T T © T T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Observed Observed Observed Observed

(b) Pivotal statistics are shown, aggregated over all 3 steps of LAR.

Figure 8: QQ plots as in Figure @ but in a setup where the predictor variables have pairwise correlation 0.5.
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Step 1 Step 2 Step 3

Coverage Power Width || Coverage Power Width || Coverage Power Width

TG 0.908 0.220 6.907 0.920 0.244 25.960 0.904 0.110 55.614

N | Plug-in 0.926 0.186 8.186 0.922 0.210 30.113 0.908 0.106 66.083
Boot 0.924 0.192 4973 0.916 0.254  8.745 0.914 0.116 10.667

TG 0.912 0.264 6.510 0.886 0.290 23.668 0.894 0.126 54.351

L | Plug-in 0.928 0.182 7.341 0.894 0.264 26.841 0.894 0.130 60.831
Boot 0934 0.176 5.117 0.916 0.294  8.769 0.884 0.148 10.583

TG 0.910 0.226 6.826 0.898 0.262 25.371 0.920 0.106 52.786

U | Plug-in 0.926 0.154 8.192 0.906 0.200 29.211 0.922 0.098 63.915
Boot 0.918 0.172 4.949 0.886 0.280  8.817 0.910 0.122 10.474

TG 0.904 0.240 6.479 0.910 0.262 24.502 0.892 0.136 56.700

S | Plug-in 0.912 0.174 7.717 0.920 0.218 28.979 0.894 0.120 68.143
Boot 0.908 0.192 4973 0.904 0.254  8.697 0.896 0.122 10.486

Table 2: Summary statistics for 90% confidence intervals, as in Table but in a modified problem setting such
that the predictor variables have pairwise correlation 0.5. The standard errors are roughly 0.01, 0.02, and 0.87
for the coverage, power, and width statistics, respectively.

In words, E is the event that exactly one column has all of its observations drawn from N(B, 1), and
each of the rest of the d — 1 columns have at least m —2nmd observations from N(0,1). We calculate

P(E) = dn"™P(N} = m —2wmd)* "

= (1 ~P(Nj+N7= 27tmd))d_l

> (1—1)(1_1
B d

— 1/e,

where in the second line we used that dz™ =1 by construction, and introduced the notation N ; for
the number of observations in column j that are drawn from the N(—B, 1) mixture component; in the
third line we used Markov’s inequality.

On the event E, intersected with an event whose probability tends to one, we have W1), W(g) — oo,
and furthermore

\/EW(D = \/EB +Zo= \/EB/Q,
\/%W(z) = 2nm3/2dB + {nafi( L ZJ' = 4nm3/2dB,
Jj=1,...d—

where Zy,Z1,...,Z4-1 denote standard normals. We note that the ultimate bounds on the right-hand
sides in the two lines above are extremely loose, but will suffice for our purposes. Hence using Mills’
ratio, we can bound the TG statistic on the event in consideration by

(mW(%)_mW(zm))W(z)(l N 2 )

4 Way mWw?2

T(Y;0) <exp ( -
(2)

(mW(zl) B mW(2z)) )

<2 -
exp( 1
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Figure 12: The left plot shows two densities p,q, in black and red; the right shows their tail functions Hp,,H,
(in corresponding colors).

for sufficiently large d. But on this same event we have that
1
2 2 2 2242
mW(D - mW(2) =mB (Z —167°m*°d ),

and it is straightforward to check that the right-hand side of the bound above diverges to co, given
our assumptions on m,d,n,B. Therefore, we have shown that on an event whose probability tends
to at least 1/e, the TG statistic converges to 0.

As for the conditional result, notice that for any model (j,s), we have by symmetry (under u =0)
P(T(Y;j,s,0)<t|M(Y)=(j,s)=P(T(Y;0) <), as well as P(E | M(Y) = (j,s)) = P(E). Hence the condi-
tional TG statistic T'(Y;j,s,0)| M(Y)=( J,s) itself cannot be asymptotically uniform, and converges to
0 on a event whose limiting probability is at least 1/e, conditional on MY)=( J,s).

A.16 Some thoughts on instability in high dimensions

The TG statistic is defined by the ratio of normal tail probabilities. If the dimension d is large (in
which case we are searching through a large space of models), or there are some large effects, then
we often find ourselves evaluating the pivot far into the tails. The point of evaluation is given by a
linear function of the data, which should itself converge to a Gaussian distribution (at least when d
is finite). But even a small amount of non-Gaussianity is magnified when we are in the tails. To see

this, consider the function
H(t) = ft(z}p(z)dz.
[ p(z)dz

The left plot in Figure[12|shows two densities p and ¢ which are nearly indistinguishable. The right
plot shows their corresponding tail functions H, and H,. Even though p and g are close, we see that
H), and H, are quite different. The message is that any inferential method that depends heavily on
extreme tail behavior could be unreliable.

Perhaps more visually striking is a plot of the TG statistic, when viewed as a function of y (for
X fixed). This is shown in Figure where the statistic is used to test u =0, and we used the same
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setup—thus the same model selection partition elements, and even matching colors—as in Figure
Here n = 2, so it is possible to fully visualize the TG statistic as a function of y € R?. This function
is not well-behaved at the boundaries between partition elements corresponding to different model
selection events. Technically, this function is continuous on the interior of each partition element,
which permits an application of the (uniform) continuous mapping theorem when d is fixed. But the
derivatives at the boundaries are infinite and, especially in high-dimensional problem settings, there
is a nonnegligible probability of being near a boundary. Thus a small perturbation to the data could
have a dramatic effect on the value of the pivot.
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