Homework 1

- 1. Give two examples of a 3×3 projection matrices that project onto one and two dimensional subspaces (thus four examples in all). Identify the subspaces.
- 2. Let **X** be a random *n*-vector and let **Y** be a random vector with $Y_1 = X_1, Y_i = X_i X_{i-1}, i = 1, 2, ..., n$. Use matrix methods to solve the following:
 - (a) If the X_i are independent random variables, find the covariance matrix of **Y**.

 $\Sigma_{XX} = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_n^2)$ and Y = AX where $a_{ij} = 1$ if i = j, $a_{ij} = -1$ if i = j - 1 and 0 otherwise. (I also gave credit if it was assumed that $\Sigma_{XX} = \sigma^2 I$.) That is, A is a lower triangular matrix with the diagonal equal to 1 and the next lower diagonal equal to -1. $\Sigma_{YY} = \sigma^2 A \Sigma_{XX} A^T$ and

$$A\Sigma_{XX}A^{T} = \begin{pmatrix} \sigma_{1}^{2} & -\sigma_{1}^{2} & 0 & 0 & \dots & 0\\ -\sigma_{1}^{2} & \sigma_{1}^{2} + \sigma_{2}^{2} & -\sigma_{2}^{2} & 0 & \dots & 0\\ 0 & -\sigma_{2}^{2} & \sigma_{2}^{2} + \sigma_{3}^{2} & -\sigma_{2}^{2} & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \dots & \sigma_{n-1}^{2} + \sigma_{n}^{2} \end{pmatrix}$$

(b) If the Y_i are independent random variables, find the covariance matrix of **X**.

Solve for X in terms of Y to find that $B = A^{-1}$ is a lower triangular matrix of 1's. Then $B\Sigma_{YY}B^T$ has ij element equal to $\sum_{k=1}^{\min(i,j)} \sigma_k^2$.

3. Let X_1, X_2, \ldots, X_n be independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Let

$$Q = \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$

Use matrix methods to find E(Q) and show that Q/2(n-1) is an unbiased estimate of σ^2 .

Express $Q = ||AX||^2 = X^T A^T A X = X^T B X$. A is an $(n-1) \times n$ matrix with $a_{ij} = -1$ if i = j, $a_{ij} = 1$ if i = j - 1 and 0 otherwise. B

is then a $n \times n$ matrix with $b_{11} = b_{nn} = 1$ and $b_{ii} = 2$ otherwise. Thus

$$E(Q(X)) = \mu^2 \mathbf{1}^T B \mathbf{1} + trace(B\Sigma_{XX})$$

= $\mu^2 ||A\mathbf{1}||^2 + \sigma^2 trace(B)$
= $0 + 2(n-1)\sigma^2$