Homework 1

- 1. Give two examples of a 3×3 projection matrices that project onto one and two dimensional subspaces (thus four examples in all). Identify the subspaces.
- 2. Let **X** be a random *n*-vector and let **Y** be a random vector with $Y_1 = X_1$, $Y_i = X_i X_{i-1}$, i = 1, 2, ..., n. Use matrix methods to solve the following:
 - (a) If the X_i are independent random variables, find the covariance matrix of **Y**.
 - (b) If the Y_i are independent random variables, find the covariance matrix of **X**.
- 3. Let X_1, X_2, \ldots, X_n be independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Let

$$Q = \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$

Use matrix methods to find E(Q) and show that Q/2(n-1) is an unbiased estimate of σ^2 .