| The Normal Approximation to |
| :--- | :--- |
| Probability Histograms |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dice: Throw a single die \qquad twice

What's the chance of rolling \qquad snake eyes (two single dots)?

No single dots? \qquad
Exactly one single dot?
\qquad

The Probability Histogram:
Area $=$ Probability

\qquad
\qquad
\qquad
\qquad
\qquad
Probability histogram for the number of "ones" in two rolls

Another Example: Bet on Black in Roulette

What's the chance of winning?
How can we find the chance of winning 10 times in 20 tries? 5 times in 20 tries?

Binomial with 20 trials and chance of success $18 / 38$ on each trial. We can calculate the chance of winning 10 times or 5 times from the binomial formula
\qquad
\qquad

Betting on Black in Roulette: probability histogram of the Number of \qquad Blacks in 20 tries

\qquad
\qquad
\qquad
\qquad
\qquad

Equivalent Box Model

This situation is equivalent to drawing 20 times from a box with 18 ones and 20 zeros and adding the values of the draws. Box average $=18 / 38$.
\qquad

Expected number of blacks =
$=$

Standard error of number of blacks
$=$
Shortcut formula
for SD of a box with two values

Roulette: Bet on a Number

What's the chance you win?

What's the chance you win twice in 20 tries?

Use binomial with 20 tries and chance of success $=1 / 38$

Probability histogram for binomial $n=20 \& p=1 / 38$

The equivalent box model: sum of draws from a box with zeros and one.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Normal curve approximation

We will approximate probability histograms by normal curves. \qquad
When we approximated areas of histograms of data by the normal curve we converted to standard \qquad units using the average and the SD of the data.
To approximate areas of probability histograms of \qquad sums, we will convert to standard units using the
\qquad $E V$ of the sum and the SE of the sum.

Normal Curve Approximation to Binomial Probability Histograms

To approximate areas of probability histograms of sums, we will convert to standard units using the EV of the sum and the SE of the sum.

For the binomial:

$$
\begin{aligned}
& E V=n \times p \\
& S E=\sqrt{n} \times \sqrt{p \times(1-p)}
\end{aligned}
$$

Normal curve approximation to
\qquad
binomial: a rule of thumb
$\mathrm{n} \times \mathrm{p}>5$ and $\mathrm{n} \times(1-\mathrm{p})>5$
Examples
$20 \times(18 / 38)=9.5 \quad 20 \times(20 / 38)=11.5$
$20 \times(1 / 38)=.5$
$200 \times(1 / 38)=5.2$
$500 \times(1 / 38)=13$

More binomial histograms

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Between what two points should we find the area under the normal curve?

The normal curve approximation

The area under the normal curve between -.83 and .83 standard units is about .60 , from the table.

The exact answer (using the binomial formula) is . 60 (to two decimal places).

Normal curve approximation without
keeping track of endpoints (the "continuity correction")
Expected Number of Succeses $=10$
SE = 3
Want chance of between 8 and 12.

Area under normal curve within . 66 standard units is 49%. Not as accurate.
Last time we got 60%. Where did the $60 \%-49 \%=11 \%$ go?

Normal Curve Approximation to Chance of 10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Expected Number of Successes $=10$
Standard Error $=3$

From the table, the chance is about 11.9%. That's using the normal curve approximation.
The exact chance is 13%, found from the formula for the binomial probabilities.

When to use the continuity correction?

Rule of thumb: you don't need to use the continuity correction if the SE is greater than 10 or so and you are finding an area over a region that is at least a sizeable fraction of an SE wide.

The Central Limit Theorem

The probability histogram of the sum of a large number of independent draws from a box can be approximated by a normal curve.

To find the approximating normal curve for the sum of the draws you only need to know:

The box average \Rightarrow expected value of sum
The box SD \square standard error of sum
When the number of draws is large, other facts about the box don't matter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using the Normal Curve Approximation

For a large number of draws:
-The chance of getting the EV plus or minus one SE is about 68%
-The chance of getting the EV plus or minus two SE is about 95%

To approximate the chance of being in a given range, express the numbers in standard units and use the normal curve.

How Many is a Large Number?

There is no simple, universal answer. If the histogram of the values of the tickets is not too far \qquad from normal, the number can be small (say 30)
The more the histogram of the tickets in the box differs from a normal curve, the larger the number of draws required in order that the normal curve approximates the probability histogram of the sum.
\qquad
If the box contains rare tickets with very large values, the number will have to be larger. \qquad
"Usually," 100 is large enough.

Examples

Roulette: Betting on Black
1000 Simulations of Sums of 100 Draws

Roulette: Using the Normal Curve

Bet on Black
Box contains 18 tickets $=\$ 1$ and 20 tickets $=-\$ 1$
Box Average $=-.0526$
SD of Box $=.99$
Draw 100 times
Expected value of sum =
SE of sum of =
What's the chance of winning $\$ 5$ or more? Use normal curve to get an approximate answer.

Convert to Standard Units:

\qquad
\qquad
\qquad
Expected Value = ; SE =

From the normal table, the chances are about 15%

What's the Chance You Come Out Ahead?

Expected Value $=-\$ 5.26 ;$ SE $=\$ 9.90$

Δ	Δ
-5.26	0

From the table of the normal curve, the chance is about 29\%.

Is it better to play 100 times for \qquad \$1or 1 time for \$100?

If you play 100 times, your expected winnings are $-\$ 5.26$.
The chance you come out ahead is 29%.
If you play once: the box has 20 tickets with values $-\$ 100$ and 18 tickets with values $\$ 100$. \qquad
Expected winnings =
= \qquad
\qquad
\qquad

If you play 100 times for $\$ 1$ each time, the chance you come out ahead is about 29%.

However, if you play once for $\$ 100$, the chance you come out ahead is

How to gamble if you must: if the odds are against you, play a bold strategy.

\qquad
\qquad
\qquad

Brownian Motion

First observed by Brown in 1827. Theory by Einstein in 1905

Brownian Motion:

 The Movie
A Random Walk

Steps left with probability $1 / 3$, doesn't move with probability $1 / 3$, and steps right with probability $1 / 3$.
Where do you expect him to be after 60 steps? How far away from the starting point will you have to look for him?

Histogram of positions at the ends of 5000 walks each of 60 steps

Box and Ticket Model

\qquad

Position after 60 steps is the sum of 60 draws.

\qquad
\qquad
\qquad
\qquad

Box Average $=0$
Box SD $=.8$
\qquad
Expected Value of Sum =0
Standard Error of Sum =

What's the chance that after 60 steps he is more than 20 steps from where he starts? Use normal curve approximation.

From the table, the chance of more than standard units (in either direction) is about Very small.
(Tricky) Problem: 25 draws are made at random, with replacement, from the following box:

Find, approximately the chance that 1 shows up more times than 2 does in the 25 draws.

We are interested in the number of times a 1 is drawn in 25 draws. What's the box model for this?

EV of sum of draws =

SE of sum of draws =

So the EV of the sum is 10 and the SE is 2.5 and we want to know the chance that the sum is 13 or greater.
Use normal approximation: use continuity correction and convert to standard units.

How many standard units is 12.5 ?

Now from the normal table, the chance of being greater than 1.0 is about $16 . \%$

