The Law of Averages

The Expected Value \&

The Standard Error

Where Are We

 Going?-Sums of random numbers

\qquad
\qquad
\qquad
-The law of averages
-Box models for generating random numbers
\qquad
-Sums of draws: the Expected Value \qquad
-Standard error of a sum: the square root law
-Normal curve approximation to sum \qquad
\qquad

Which bet would you choose?

- 10 heads on 20 tosses or 50 heads on 100 tosses?
- Between 8 and 12 heads in 20 tosses or between 48 and 52 on 100 tosses?
- Between 40-60\% heads on
 20 tosses or 40-60\% heads on 100 tosses?

Binomial Probabilities: Number of Heads in Tossing a Coin

100 Tries, $\mathrm{p}=.5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Law of Averages \qquad

As the number of tosses increases, the fraction of heads tends to a constant.
Number of heads = half the number of tosses

> + chance error

The chance error does not tend to zero, but the chance error divided by the number of tosses does.
\qquad

If you throw a fair coin 5 times, every sequence is equally likely. HTHTH has the same chance as HHHHH. Same holds for 20, 100 tosses, etc. How then can the average be predictable?

When the number of tosses is large, most of

these sequences have about half heads and
\qquad
\qquad
\qquad
\qquad
\qquad half tails.

Choices: toss a fair coin 100 times or 1000 times?

- You win if there are more than 60% heads.
- You win if there are fewer than 55% heads.
- You win if get exactly half heads.
- You win if between 45% and 55% are heads.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Part ?
Tu which we are
intraduced ta bax and
ticket madels

Box Models for Chance Processes: \qquad Tossing a Coin

The number of heads equals the sum of the values of the tickets you draw from this box

Box Models for Chance Processes: Roulette

Wheel has 18 red, 18 black, and 2 green slots. You can bet on black or red, a specific number, or several other choices. When betting on black or red you either win or lose $\$ 1$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

18 black tickets \qquad
\qquad
\qquad
\qquad
\qquad total winning is the sum of the
\qquad
\qquad

Bet on a Number:

$$
00,0,1,2, \ldots, 36
$$

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

California Lottery: Win and

Spin

135,000,000 tickets Buy a ticket for \$1
Prize Number of Tickets

10,800,000 8,100,000 3,240,000 540,000 54,000
27,000
6,073 1,350 $\begin{array}{r}150 \\ \hline\end{array}$

All the rest are tickets with -\$1
 16

Part 3
In which the Expected Value appears
\qquad

The Expected Value

What would you expect the sum to be if you drew 100 tickets from this box?

How many 5's would you expect?
How many 1's would you expect?

How many 5's would you expect?
How many 1's would you expect?

Average
ticket value

EV for 100
draws
The EV of the sum of draws equals the number of draws times the box average

A More Mathematical Approach

X is a random number. $P(X=1)=3 / 4 ; P(X=5)=1 / 4$
"Expected value of X " $=E(X)=$ sum of all possible values of X, weighted by their probabilities:

$$
\begin{aligned}
E(X) & =1 \times P(X=1)+5 \times P(X=5) \\
& =1 \times \frac{3}{4}+5 \times \frac{1}{4}=2
\end{aligned}
$$

The expected value of the sum of n realizations of X is $n E(X)$
\qquad
\qquad
\qquad
\qquad
\qquad

$$
21
$$

The Expected Value: Betting on Black 100 Times in Roulette

$\$ 1$
18 black tickets
$-\$ 1$
18 red tickets
$-\$ 1$

Bet on a Number:
00,0,1,2,..,36

${ }^{23}$

```
$$35 -$1 -$1 -$1 
llllll
-$1 -$1 etc...
```

Box average $=$

In 100 draws you expect to lose
Your expected losses are the same for both ways of playing.
${ }_{2} 4$

Prize	Number of Tickets
\$1	10,800,000
\$2	8,100,000
\$5	3,240,000
\$50	54,000
\$100	27,000
\$500	6,073
\$1000	1,350
\$10,000	150
Your winning equals the prize value minus $\$ 1$. So the values of the tickets equals the prize values minus $\$ 1$. The rest of the $135,000,000$ tickets have value $-\$ 1$.	
Box Average $=-\$.56$	
In 100 draws you would expect to lose \$56	
${ }^{25}$	

Box Models for Counts: The Number of Times Do You Draw a

Box Average =
If you draw 20 times, you expect \qquad
\qquad
\qquad

Box Models for Counts: The Number \qquad of Times Do You Draw a

Box Average =
? A gambling house offers the following game. A letter is drawn at random from the sentence

WIN OR YOU PAY US
If the letter comes from the word "WIN" you win \$1. If it comes from the word "PAY" you pay $\$ 1$. Otherwise you pay nothing. How much money do you expect to have after playing 40 times?

Tickets and their values:

Box Average:

Expected value:
About how far off of this are you likely to be? That's the next question
${ }^{28}$

Part 4

Wherin the Standard Error
is introduced

Sum $=$ Expected Value + Chance Error

How big do we expect the chance error to be? Will define the Standard Error (SE) of the sum.

How does its size depend on the values of the tickets in the box?

How does its size depend on the number of draws?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sum $=$ Expected Value + Chance Error \qquad
The Standard Error (SE) is a measure of how big the chance error is likely to be.

The Square Root Law: the standard error of the sum of draws is

```
    number of draws x (SD of the box)
```


Average of $\mathrm{Box}=2$
SD of Box $=.8$

| 4 | 4 Draws (SE $=$ | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sums | 9 | 10 | 6 | 7 | 10 | 10 | 8 | 8 | 10 | 9 |
| Chance Errors | 1 | 2 | -2 | -1 | 2 | 2 | 0 | 0 | 2 | 1 |

\qquad
\qquad
\qquad
Sums $\quad \begin{array}{llllllllll}32 & 30 & 36 & 34 & 25 & 29 & 33 & 26 & 34 & 33\end{array}$ Chance Errors $0 \begin{array}{llllllllll} & -2 & 4 & 2 & -7 & -3 & 1 & -6 & 2 & 1\end{array}$

$$
64 \text { Draws (SE = }
$$

Sums \qquad Chance Errors 11 | | 6 | -2 | 0 | -2 | -3 | -6 | 8 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Conditions for the Square Root Law to Hold

- The draws are all from the same box.
- The draws are independent (with replacement).

A gambling house offers the following game. A letter is drawn at random from the sentence

WIN OR YOU PAY US

If the letter comes from the word "WIN" you win \$1. If it comes from the word "PAY" you pay \$1. Otherwise you pay nothing. How much money do you expect to have after playing 40 times?
Tickets and their values:
Box Average:
Expected value:
About how far off of this are you likely to be?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notation and Terminology

X : a random number, or "random variable"
$\mathrm{x}_{1} \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$: a list of the values that X can take on. These are the numbers on the tickets in the box.
$\mathrm{p}\left(\mathrm{x}_{1}\right), \mathrm{p}\left(\mathrm{x}_{2}\right), \ldots, \mathrm{p}\left(\mathrm{x}_{\mathrm{n}}\right)$: the probabilities of taking on those values.
$\mathrm{E}(\mathrm{X})=\mathrm{x}_{1} \mathrm{p}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{p}\left(\mathrm{x}_{2}\right)+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{n}}\right)$
The expected value of X. Often denoted by μ
$E(X)=\mu$
$\operatorname{Kar}(X)=\left(x_{1}-\mu\right)^{2} p\left(x_{1}\right)+\left(x_{2}-\mu\right)^{2} p\left(x_{2}\right)+\ldots+\left(x_{n}-\mu\right)^{2} p\left(x_{n}\right)=\sigma^{2}$

The variance of X

The standard deviation of X is the square root of the variance. Usually denoted by σ

Suppose you have n independent realizations of this \qquad random variable, like n draws from a box with replacement. Their sum is
$\mathrm{S}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots \mathrm{X}_{\mathrm{n}}$
S is also a random variable
The expected value of S is

$$
\mathrm{E}(\mathrm{~S})=\mathrm{n} \mu
$$

The variance of S is

$$
\operatorname{Var}(\mathrm{S})=\mathrm{n} \sigma^{2}
$$

The SE (also called SD) of S is the square root of the variance

$$
38
$$

Viewed from this more mathematical perspective, the device of "tickets in a box" enables us to compute the expected value and standard deviation of a random number by representing it as the value of a ticket drawn from the box.

In a more traditional development, we would have defined the expectation, variance, and standard deviation of a "random variable" (a random number) and then prove facts about the sum of independent random variables.
\qquad
\qquad
\qquad
\qquad
\qquad

Roulette: Betting on Black

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Roulette: Betting on a Number
Box contains 1 ticket worth $\$ 35$ and 37 tickets worth -\$1
Box Average = -. 0526
Box SD = \$5.75
Draw 100 times
Expected value of sum =
SE of sum of $=$

Chance error $=$ sum - expected value

Sums: $\begin{array}{llllll}-64 & 8 & -28 & -100 & -28\end{array}$
Errors: -58.74 13.26 -22.74 $-94.74 \quad-22.74$

SE's for Counts: The Number of \qquad Times You Draw a
\qquad

Box Average $=1 / 4$
Special Formula for SD of a 0-1 box:
$\sqrt{\text { (fraction of 1's) } \times \text { (fraction of 0's) }}$ \qquad
For this box, $S D=\sqrt{(1 / 4) \times(3 / 4)}=.87$

Box Average = 1/4 Box SD $=.87$
Suppose you draw 100 times
How many $\underset{\sim}{\sim}$ would you expect?
What is the SE of the number of \hat{N} ?
Would you be surprised by 30 ? By 70 ?
\qquad
\qquad
\qquad
\qquad
\qquad ${ }^{43}$ \qquad

Shortcut for a box with only two values: a and b

SD of box is
$|a-b| \sqrt{(\text { fraction of } a) \times(\text { fraction of } b)}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

A multiple choice exam has 100 questions. Each question has 5 possible answers, one of which is correct. Four points are given for the right answer and a point is taken off for the wrong answer.
A student guesses randomly for each question. The student expects to score \qquad give or take \qquad .

What's the box model: $\begin{array}{llllll}4 & -1 & -1 & -1 & -1\end{array}$
\square

Box average:

Box SD:
\qquad
\qquad

100 draws. A student guesses randomly for each question. The student expects to score ?? give or take ??
\qquad

Investment Diversification

Option 1: Invest $\$ 1000$ in each of ten companies. Lose $\$ 100$ with chance .40 and gain $\$ 100$ with chance .60 .
Option 2: Invest $\$ 100$ in each of 100 companies. For each one, lose $\$ 10$ with chance .4 and gain $\$ 10$ with chance .6. Returns are independent.

Which is better? \qquad
\qquad
\qquad

Option 1: Invest $\$ 1000$ in each of 10 companies. For each one, lose $\$ 100$ with chance .4 and gain $\$ 100$ with chance .6. Returns are independent.

Consider 10 draws from a box with 40% of tickets worth
\qquad $-\$ 100$ and 60% of tickets worth $+\$ 100$.

Option 2: Invest $\$ 100$ in each of 100 companies. For each one, lose $\$ 10$ with chance .4 and gain $\$ 10$ with chance .6. Returns are independent.

Consider 100 draws from a box with 40% of tickets worth - $\$ 10$ and 60% of tickets worth $+\$ 10$
The blessings of diversification. The track records of 13 emerging stock markets throagh June 1994. The data are in percentages per month.

$$
50
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Box Model Demo

\qquad
\qquad
\qquad
\qquad
\qquad

Part 5
 We look back at the
 landscape we have traversed

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Where Have We Been?

-The law of averages: As the number of draws from
\qquad a box increases, their average value tends to the expected value (the box average).
-The expected value of the sum of the draws equals the number of draws times the box average.
-Sum = Expected Value + Chance Error
-The chance error of a sum does not tend to 0 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-The standard error is a measure of how big the
\qquad chance error is likely to be.
-The square root law: the standard error of a sum is
\qquad the square root of the number of draws times the SD of the box.
-Special rule for the SD of a box that only has two numbers in it:
(big \# - small \#) $x \sqrt{\text { frac big \# } x \text { frac small \# }}$

Review Problem: Constructing Boxes

Throw a die 100 times. How can you make a box to find EV and SE for:

The number of times an even number comes up.

The number of times a number 5 or larger comes up.

Draw with replacement from a deck of cards. \qquad
What is the box for the number of face cards?
? A jar contains a penny, a nickel, a dime, and a quarter. If you draw 100 coins with replacement you can expect to have about \qquad plus or minus \qquad or so.

Box: tickets with values 1, 5, 10, 25

Box average:

? A gambling game works in the following way: a box has two white balls and four red balls and a ball is chosen at random from the box. You can bet $\$ 1$ on the ball being either white or it being red. If you are wrong, you lose your $\$ 1$. If you bet on white and you are right, you win $\$ 2$ (you get your $\$ 1$ back plus $\$ 2$). If you bet on red and you are right, you win $\$ 0.50$. Show your work in answering the following:
(a) Which strategy gives you the larger average winning over a large number of plays? Circle one:

Bet on white. Bet on red Both the same Can't tell
(b) Which strategy gives the better chance of coming out ahead by more than $\$ 1$ over a large number of plays? Circle one:

Bet on white. Bet on red ${ }_{58}$ Both the same Can't tell

Bet on White

Bet on Red

$$
\sqrt{--}
$$

(a) Which strategy gives you the larger average winning over a large number of plays? Circle one:

Bet on white. Bet on red Both the same Can't tell
(b) Which strategy gives the better chance of coming out ahead by more than $\$ 1$ over a large number of plays? Circle one:
Bet on white. Bet on red ${ }_{59} \quad$ Both the same Can't tell

