Review Question

(10 points) (a) What is the correlation coefficient for the data set below?

(b)If possible, fill in the blanks below so that the correlation will be equal to the correlation for data given in part (a). If this is not possible, explain why not.

Regression Line

Predicting Y from X : If X in standard units is equal to z, the prediction of Y in standard units is $r \times z$
\qquad

Guessing the Regression Line
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The R.M.S. Error

Where are we going?

A claser look at prediction and its errors
-The RMS error
-The relationship of RMS error to the correlation coefficient.
-Residual plots to show patterns of errors.
-The RMS error inside a vertical strip
-Using the normal approximation inside a vertical strip.

Prediction Errors

A Measure of the Size of the
Errors: RMS Error

RMS Error $=\sqrt{\frac{(\text { error) })^{2}+(\text { error })^{2}+\ldots+(\text { error })^{2}}{\text { number of errors }}}$

Interpretation of the RMS Error

- It can be shown algebraically that the residuals have average $=0$. The RMS error is thus their SD.
- The RMS error is a measure of the error around the regression line, in the same sense that the SD is a measure of variability around the mean.
- Rule of thumb: about 68% of the residuals are smaller in magnitude than one RMS error. About 95% are smaller in magnitude than two RMS errors
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RMS Error $=.46$ \square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 Histogram of Residuals RMS Error
\qquad
\qquad
\qquad

Demo

Among all possible lines, the regression line has the smallest RMS error

Predicting MBA GPA

- Using the GMAT, the measure of the size of the errors would be the RMS error $=.46$
- Without knowledge of GMAT, the average would be your best prediction. A measure of the error would be the SD of MBA GPAs. SD $=.49$

So you don't gain much by using the GMAT
\qquad
\qquad
\qquad
\qquad
\qquad

RMS Error, Correlation, the SD of Y: The Picture

X

X

RMS Error, Correlation, and the SD of Y : The Formula

$$
\text { RMS Error }=\sqrt{1-r^{2}} \times S D \text { of } Y
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Chicks and Eggs

Snowy Plover at Point Reyes:

$$
\begin{array}{cc}
\text { egg width: average }=23 \mathrm{~mm} & \mathrm{SD}=.45 \mathrm{~mm} \\
\text { chick weight: average }=6 \mathrm{gm} & \mathrm{SD}=.5 \mathrm{gm} \\
\text { correlation } \mathrm{r}=.75 &
\end{array}
$$

Guess weight. How far are you
likely to be off?
Told egg width. How far \qquad off?
\qquad

Predicting chick weights

RMS error for predicting weight from egg width $=.33 \mathrm{gm}$

About what percent of predictions will be off by more than .33 gm ?

About what percent of predictions will be off by
\qquad
\qquad
\qquad
\qquad
\qquad more than .66 gm ?

Predicting On Base \%: How much does \qquad using 2001 help in predicting 2002?

For both years:
Mean $=.33$
SD $=.04$
correlation $=.63$
\qquad
\qquad
\qquad
\qquad
How big is the error if 2001 not used?
How big if 2001 used? \qquad
\qquad

Residual Plot: Focus on Prediction Errors

Residual = Observed minus Predicted \qquad
\qquad
\qquad
\qquad
\qquad
Scatter Diagram

Residual Plot

Volume and Pressure of a Tank

Volume in kiloliters and pressure in pascals
\qquad

Inside Vertical Strips

The SD in a vertical strip
The normal approximation in a vertical strip

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Terminology

- Homoscedastic: same RMS errors in each vertical strip. Football shaped scatterplots are homoscedastic, and the RMS error in each strip is abqutequal to the overall RMS error.
- Heteroscedastic: differentreMs \qquad errors in vertical strip

$$
[
$$

The Normal Curve Approximation within a Vertical Strip: The Picture \qquad
\qquad
\qquad
\qquad
\qquad
The data in this vertical strip have an average given by the regression line and an SD equal to the RMS error. The normal approximation can be used with this average and SD.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Normal Curve Approximation within a Vertical Strip: Calculations

- Find the average in the strip from the regression line
- The SD within the strip is the RMS error
- Convert to standard units using this mean and SD
- Refer to table of normal curve

Example

Average height of father $=68$ inches; $\quad S D=2.7$
Average height of son $=69$ inches; $\quad S D=2.7$

$$
r=.50
$$

Scatter diagram is football shaped.
Q: What percent of the sons were over 6 feet tall? 6 feet $=72$ inches .

Standard Unit $=$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Average height of father $=68$ inches; $S D=2.7$
Average height of son $=69$ inches; $\quad S D=2.7$

$$
r=.50
$$

Scatter diagram is football shaped.

Q: What percent of the 6 foot fathers had sons over 6 feet tall?

Strategy:

1. Find the average height of sons with 6 foot fathers \qquad
2. Find their SD: The RMS error
3. Find what percent over 6 feet tall by converting to
\qquad standard units and using the normal table.
\qquad

4. Find the average height of the sons from the regression line:

A 6 foot father is

higher than the father average.

So the average in this strip is 71 inches.
2. What is the SD?

$$
\text { RMS Error }=\sqrt{1-r^{2}} \times \mathrm{SD} \text { of } \mathrm{Y}
$$

$$
=\sqrt{1-.5^{2}} \times 2.7
$$

$$
=2.33
$$

So: In the 72 inch father strip the average son \qquad height is 71 inches and the SD is 2.33 .
3. To answer question, "What percent in this strip are over 6 feet tall?" use the normal curve.
\qquad
\qquad
\square
About of the sons of 6 foot fathers are taller than 6 feet. By comparison, only
\qquad 14% of all sons are over 6 feet.
\qquad
\qquad

Practice Problem

If a baseball player's on base percentage is at the $75^{\text {th }}$ percentile of all players in 2001, what is the chance it is better than average in 2002?
\qquad

\qquad
\qquad

Summary

-The residual is the difference between actual value and value predicted from the regression line.
-The RMS error measures the size of the residuals. It's like an SD.
-RMS Error $=\sqrt{1-r^{2}} \times \mathrm{SD}$ of Y
-Residual plots can show patterns of errors
-Homoscedastic: errors have same spread in different vertical strips. Heteroscedastic: they don't
-In a football shaped scatter diagram, the normal approximation can be used within vertical strips. The average in the strip is given by the regression line and the SD by the RMS error.

