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1. Introduction
In 1970, J. Hájek published a remarkable result on the limiting distribu-

tion of estimates. This was done under the so called LAN conditions which
involve a Euclidean space RI k. For Hájek’s convolution result, the abelian
locally compact group structure of RI k is important. It should also be men-
tioned that, at about the same time, Inagaki (1970) obtained a similar re-
sult but under considerably more restrictive assumptions. Hájek’s proof was
complicated. A simplified proof was soon given by P.J. Bickel. It was not
published separately but appears in the book of G.G. Roussas [1972].

After the publication of Hájek’s paper, Le Cam [1972] offered a different
proof based on properties of limits of experiments and on a convolution result
previously given by C.H. Boll [1955]. Le Cam’s 1972 result applies to certain
locally compact groups. The Gaussian character of the special limit in the
LAN case is noticeably absent. It is replaced by a domination assumption.
However the locally compact nature of the group did not allow direct ex-
tensions to the infinite dimensional set up used in non-parametric statistics.
An extension for that situation was given by Moussatat [1976] and by Mil-
lar [1985]. These authors retained the Gaussian assumption on the special
limit. More recently several authors have proposed alternate proofs of the
convolution theorem. Among them one should mention more particularly D.
Pollard (1990) and A. van der Vaart [1989] and [1991]. In his [1991] paper,
van der Vaart says: “It appears to be unknown whether the Euclidean space
RI m in Theorem 5.1, which plays the role of both sample space and parameter
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space, can be replaced by a more general, infinite dimensional space. In fact,
only results for the situation where V has a Gaussian distribution have been
obtained so far ...”

One of the main purposes of the present paper is to prove a convolution
theorem valid for arbitrary cylinder measures under the sole restriction that
their finite dimensional images satisfy a domination condition.

One should ask whether the domination condition is necessary. That
something is necessary should have been obvious from the statement of
Proposition 10 and example 3 page 269 of Le Cam [1972]. Unfortunately,
it took 20 years for this author to notice the obvious. A description of the
situation is given in Section 5 below.

The problem itself is described in Section 2, which introduces the neces-
sary terminology and notation. For the rest we have followed the pattern of
proof suggested in Le Cam [1972]. It splits the argument into three separate
parts. The first one involves passages to the limit for experiments and for
distributions. It is explained in Section 3. The second part, given in Section
4, is an application of the Markov-Kakutani fixed point theorem. It involves
“almost invariant means” and is responsible for one of the main restrictions
on the groups or semigroups considered here. Part three in Section 5 uses ar-
bitrary locally compact groups, which may or may not have almost invariant
means. It shows that an equivariant transition from measures dominated by
Haar measures to finite signed measures on the group is given by a convolu-
tion. This completes the theorem for the case of locally compact amenable
groups. The combination of parts two and three contains an extension of a
result obtained by C.H. Boll in 1955.

Section 6 gives definitions relative to cylinder measures. Section 7 gives
a proof of a convolution theorem for that situation. Section 8 retrieves from
that theorem the result of Millar [1985] relative to actual countably additive
measures.

We are aware that the pattern of proof used here is not the simplest
available for the Euclidean case. One can obtain simpler proofs as shown by
D. Pollard [1990] and by van der Vaart [1991]. However, our decomposition
in three steps has the merit of showing where the various assumptions, such
as for instance amenability, enter into the picture.

The classical Hájek-Le Cam convolution theorem has many applications.
So does the extension by Millar [1985] even though it is restricted to the
Gaussian case. Applications of theorems similar to that of Boll [1955] have
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been described by E.N. Torgersen [1972] and by Hansen and Torgersen [1974].
See also Bondar and Milnes [1981]. Situations involving cylinder measures
that are not Gaussian occur naturally various contexts. It is hoped that our
theorem will be found to be applicable in some of these situations.

2. Notation and terminology
The situation considered by Hájek [1970] is one in which one has a se-

quence (or net) {En} of experiments En = {Pθ,n; θ ∈ Θ} indexed by a fixed
space Θ. The Pθ,n are probability measures on spaces (Xn,An). For such
sequences, Le Cam [1972] introduced a concept of weak convergence. It can
be shown that if F = {Qθ; θ ∈ Θ} is another experiment on a space (Y ,B)
the En converge weakly to F if and only if for every finite subset J ⊂ Θ
the joint distribution under Pi,n i ∈ J of likelihood ratios dPj,n/dPi,n, j ∈ J ,
converge in the usual sense to corresponding distributions for F . According
to Le Cam [1964], an experiment E = {Pθ; θ ∈ Θ} defines an L-space L(E).
It is the smallest vector space that contains all the Pθ; θ ∈ Θ and has the
following properties: a) if µ and ν belong to L(E) so do their maximum µ∨ν
and their minimum µ ∧ ν; b) the space is closed for the L1-norm (= total
variation); c) if µ ≥ 0 belongs to L(E) so does every finite measure dominated
by µ. One says that L(E) is the band generated by E .

A transition T from a space such as L(E) to another such space, say
L(F), is a positive linear map from L(E) into L(F) such that if µ ∈ L(E)
is positive then its image µT has the same norm as µ, that is ‖µT‖ = ‖µ‖.
Such transitions are often, but not always, representable by Markov kernels
operations so that (µT )(B) =

∫
µ(dx)K(x, B).

If Z is a completely regular topological space and if Γ is the space of
bounded continuous numerical functions on Z we shall call “statistic” avail-
able on En = {Pθ,n; θ ∈ Θ} any transition Tn from L(En) to the dual Γ′ of Γ.
This is a generalization of the concept of randomized transformation from
(Xn,An) to Z. The image Pθ,nTn in Γ′ called the distribution of Tn under
Pθ,n. As element of Γ′ it can be evaluated at each γ ∈ Γ. The evaluation of γ
will be denoted Pθ,nTnγ. Here one can interpret this symbol as the value at γ
of Pθ,nTn or as the value at Tnγ (element of the dual M(En)) of the element
Pθ,n of L(En).

One says that the Pθ,nTn converge in distribution if Pθ,nTnγ converges to
a limit for all γ ∈ Γ.
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In the situation considered by Hájek [1970] and Le Cam [1972], the space
Θ itself is a topological group. There is a particular sequence {T ∗

n} of “statis-
tics” with values in Θ called distinguished in Le Cam [1972]. It is assumed
that the distributions Pθ,nT ∗

n converge to limits F ∗
θ .

Consider then another sequence {Tn} of Θ valued “statistics” and suppose
that the distributions Pθ,nTn also tend to limits, say Fθ.

The theorem says that under suitable assumptions on the group Θ, on
the family {F ∗

θ ; θ ∈ Θ} and under a “regularity” assumption on the Tn, the
limit Fθ is obtained from F ∗

θ by convoluting it with a probability measure Q.
That is Fθ = Q ∗ F ∗

θ for all θ.
Our task is to elucidate under what conditions the result might be valid.

3. Limits of experiments and limits of distributions
Suppose given a sequence (or net) {En} of experiments En = {Pθ,n; θ ∈

Θ} and corresponding “statistics” Tn with values in the completely regular
space Z. Suppose that En tends to F = {Qθ; θ ∈ Θ} in the weak sense of
experiments. Suppose also that the distributions Pθ,nTn converge to limits Fθ

on Z. Then the family {Fθ : θ ∈ Θ} itself is an experiment, say F ′, indexed
by Θ. According to an observation of Le Cam [1972], the experiment F ′ is
always weaker than F . Specifically, the following is true.

Proposition 1. Let F and F ′ be as described. Then there is a transition A
from L(F) to L(F ′) such that QθA = Fθ for all θ.

Proof. This is contained in Le Cam [1972] but the proof given there is not
entirely convincing. The proof in Le Cam [1986] is complicated. So we shall
use an argument communicated to us by D. Pollard [1990]. Consider a finite
subset J ⊂ Θ and the restriction FJ = {Qj; j ∈ J} of F to J . The weak
convergence of En to F implies the existence of transitions AJ,n from L(FJ) to
L(En,J ) such that ‖QjAJ,n−Pj,n‖ tends to zero for each j ∈ J . Combine this
with the transitions Tn obtaining that ‖QjAJ,nTn−Pj,nTn‖ ≤ ‖QjAJ,n−Pj,n‖
tends to zero. Let BJ,n = AJ,nTn. This is a transition from L(FJ ) to the dual
space Γ′ of our space of continuous functions Such transitions from a compact
set for the weak topology that makes the evaluations PBγ, P ∈ L(F j) γ ∈ Γ
continuous. (See for instance Le Cam [1986], page 8). Take a cluster point

4



BJ the sequence {BJ,n, n = 1, 2...}. Since

QjBJ,nγ − Pj,nTnγ and Pj,nTnγ − Fjγ

all tend to zero, one concludes that QjBJ = Fj for j ∈ J . Now BJ is defined
only on L(FJ) but it can be extended to L(F) itself. Let AJ be a transition
defined on L(F) that extends BJ and consider {AJ} as a net indexed by
finite subsets of Θ. It has at least one weak cluster point, say A and A is
such that QjA = Fj for j ∈ J and all finite J . Therefore QθA = Fθ for all θ.
This concludes the proof of the proposition. 2

Note that it is just claimed that F ′ is weaker than F . It is easy to give
examples where F ′ is strictly weaker than F .

The case when F and F ′ are equivalent is a special one. In Le Cam [1972]
or [1986], a sequence {Tn} such that the two limits F and F ′ are equivalent
is called distinguished. To be distinguished a sequence {Tn} must have some
asymptotic sufficiency properties, but that is not enough. The situation is
described in some detail in Le Cam [1986], Chapter 7, Section 3.

4. An application of the Markov-Kakutani fixed point theorem
Let F = {Qθ; θ ∈ Θ} be an experiment formed by measures Qθ on a

space (X,A). If α is a permutation of the set Θ let θα be the image of θ by
α. It happens fairly often that one has a set, say G, of such permutations
and that F is invariant under the action of each α ∈ G. By this is meant
that the experiment {Qθα : θ ∈ Θ} is equivalent to F itself. Then there are
transitions, say Sα, of L(F) to L(F) such that QθS

α = Qθα. There are also
transitions S

′α such that QθαS
′α = Qθ.

These transitions are not necessarily uniquely defined, but they exist.
Consider also another experiment F ′ = {Fθ : θ ∈ Θ} given by measures on
a space (X′,A′). Suppose that F ′ is also invariant by the action of each
α ∈ G. Then there are transitions R

′α and Rα such that FθR
′α = Fθα and

FθαRα = Fθ.
Let us suppose in addition that F ′ is weaker than F , as happened in

Section 3. Then there are transitions B from L(F) to L(F ′) such that QθB =
Fθ for all θ and, as a consequence QθαB = Fθα. This implies QθS

αB = FθR
′α

and QθS
αBRα = Fθ. Here B maps L(F) into L(F ′) and SαBRα has the

same property. Note that SαBRα may be different from B.
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Assuming selected particular transitions Sα and Rα for each α ∈ G we
shall say that B is invariant under the pairs (Sα, Rα), α ∈ G, if SαBRα = B
for all α ∈ G. Now let B denote the set of all transitions from L(F) to L(F ′)
such that QθB = Fθ for all θ. It can be made into a topological space by
giving it the weakest topology for which the maps B ; µBf , µ ∈ L(F), f
in the dual of L(F ′), are all continuous. A simple observation recorded in
Le Cam [1986], Chapter 8, Section 2, is that for this topology the set B is
a compact convex Hausdorff space. Each map B ; SαBRα is a continuous
map of B into itself.

This is a classic situation for possible application of the Markov-Kakutani
fixed point theorem, however that theorem assumes the existence of almost
invariant means. If those almost invariant means are written to the right
of their argument, their definition can be described as follows: For every
neighborhood V of the origin in the space of continuous linear maps of L(F)
to L(F ′), for every finite subset J ⊂ G and every B0 in B there is a linear
map M whose restriction to B is a continuous mapping of B into itself such
that SαB0MRα − B0M ∈ V for every α ∈ J . This leads to the following
statement.

Proposition 2. Let F and F ′ and B be as described. Assume that for each
α ∈ G a pair (Sα, Rα) has been selected. Assume also that, acting on B, this
system admits right almost invariant means. Then B contains a fixed point.
That is, there is an A ∈ B such that SαARα = A for all α ∈ G.

This follows readily from an argument of Eberlein [1949]. The argument
is reproduced in Le Cam [1986], Chapter 8, Section 2, but Eberlein’s paper
contains many other results.

Note that once the pairs (Sα, Rα) have been selected one can generate
from them a semi-group. The pair (Sα, Rα) followed by (Sβ , Rβ) gives the
pair (SβSα, RαRβ). It is not necessary to assume that the (Sα, Rα) give a
representation (restricted to G) of the group of permutations of Θ, although
that will often be the case.

The system (Sα, Rα) will admit almost invariant means whenever the
semigroup so formed is commutative, or, if it is a group, it is a solvable
group. Another case where not only almost invariant means, but actually
invariant ones exist is when the system (Sα, Rα), α ∈ G is a compact group.

Proposition 2 brings us a step closer to the Hájek-Le Cam convolution
theorem. However note that the invariant A is a map from L(F) to L(F ′).
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These two experiments live in different spaces (X,A) and (X′,A′). Even if
the space (X,A) and (X′,A′) are the same, A need not be a “convolution”
since convolution is not defined in that degree of generality.

We have mentioned above that the transitions Sα may not be uniquely
defined. To see this on a simple example look at n independent variables
X1, X2, . . . , Xn each distributed as N (θ, 1) with θ ∈ RI . Let α be the shift
by the amount α so that, here “θα” means θ + α. A transformation Sα

could be obtained by shifting each coordinate so that xj goes to xj + α. It
could also be obtained by shifting by α the average X̄n of the Xj and then
reconstituting the conditional distribution of X1− X̄n, X2− X̄n, . . . , Xn− X̄n

through randomization. Note that while the coordinate shift has an inverse
operation, the randomization just described does not. Thus what we have
called S

′α is not necessarily an inverse of Sα. There is however a case where
the Sα are necessarily isometries of L(F) onto itself. For this see Le Cam
[1986] Chapter 8, Section 2, Lemma 2.

5. A convolution theorem on groups
In this section we consider an experiment F = {Qθ; θ ∈ Θ} as before.

However it will be assumed that Θ itself is a locally compact group and that
the measures Qθ are probability measures on the group Θ. If α ∈ Θ we shall
let Sα be the right shift by the amount α so that if Qθ is the distribution of
a variable X, the measure QθS

α is the distribution of Xα (or X + α if the
group is abelian and noted additively). Under these circumstances one can
prove the following theorem

Theorem 1. Assume that for each θ and α in Θ the image QθS
α belongs to

the L space L(F). Let A be a transition from L(F) to Radon measures on
Θ. Assume that A commutes with the shifts so that µASα = µSαA for every
µ ∈ L(F).

Assume in addition that all the Qθ are absolutely continuous with respect
to the Haar measure of Θ. Then A is a convolution by a probability measure
m so that µA = m ∗ µ.

This is proved in Le Cam [1986], Chapter 8, Section 3, Proposition 1. In
conjunction with Proposition 2, Section 4 above it contains a result of C.
Boll [1955]. Together with the results of Section 3 and 4, it gives a version of
the Hájek-Le Cam convolution theorem for sequences of statistics {Tn} and
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{T ∗
n} where {T ∗

n} is distinguished and both sequences are “regular” in the
sense that the limiting distributions Fθ and F ∗

θ of {Tn} and T ∗
n are such that

Fθα = FθS
α and F ∗

θα = F ∗
θ Sα. Our result differs from Boll’s mostly by the

fact that we have no separability restriction. This is due to the fact that we
can now use a lifting result of A. and C. Ionescu Tulcea [1967]. Of course
Theorem 1 does not require the existence of almost invariant means, but that
is because we already assume that A commutes with the shifts.

Theorems similar to Theorem 1 above must have been proved long ago in
the mathematical literature, however we have not found an exact analogue.
Bochner and Chandrasekharan [1949] give similar results for operators on
Hilbert space. They also give the theorem for the line and Lebesgue mea-
sure in a remark page 215. (For these references we are indebted to David
Brillinger).

The theorem is often stated by assuming that the family {Qθ} is domi-
nated by a σ-finite measure, instead of the Haar measure. It is easily seen
that a family F = {Qθ : θ ∈ Θ} such that QθS

α ∈ L(F) for all α ∈ Θ
is dominated by the Haar measure whenever it is dominated by a σ-finite
measure. See for instance Torgersen [1972].

By contrast domination by the Haar measure does not imply domination
by a σ-finite measure. For an example consider the additive group of the
real line with the discrete topology. Then Haar measure is the measure that
gives mass unity to each individual point. It is not dominated by a σ-finite
measure and a family {Qθ} obtained by shifting one particular totally atomic
measure is not dominated by a σ-finite measure.

It was observed in Le Cam [1972] and [1986] that the conclusion of Theo-
rem 1 remains valid if one assumes that all the Qθ are discrete, totally atomic,
instead of assuming domination by the Haar measure. This might suggest
that the conclusion of Theorem 1 remains valid if each Qθ consist of a purely
atomic part and a part dominated by the Haar measure. Unfortunately, that
is not the case, as we shall now demonstrate.

Take for Θ the real line RI with its ordinary topology and its Lebesgue
measure λ. Let Q0 = 1

2
(H0 + K0) where H0 is dominated by the Lebesgue

measure and K0 is purely atomic. Let Qθ = Q0S
θ and let F = {Qθ, θ ∈ Θ}.

The space L(F) is a direct sum of two bands, say L0 and L1, where L0 consists
of the purely atomic finite measures and L1 consists of measures dominated
by λ. One can construct an operation A that commutes with the shifts
and is not a convolution operation as follows: Take two distinct probability
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measures, say m0 and m1. Convolute the discrete part of µ ∈ L(F) with
m0 and convolute the absolutely continuous part with m1. This gives an
operation A from L(F) to measures. It does commute with the shifts but
is not representable by a single convolution. The dual of the space L(F)
splits into two parts. It can be represented as follows. Take two separate
copies of the line, say RI 0 and RI 1 and make a direct sum RI 0 ∪ RI 1. An
element of the dual of L(F) can be represented by a pair of functions (f0, f1).
The function f0 is bounded, otherwise arbitrary. It lives on RI 0 and gets
integrated with respect to the discrete measures. The function f1 lives on
RI 1. It is bounded, Lebesgue measurable and get integrated with respect to
the absolutely continuous measures. If one applies the operation A described
above to, say, a bounded uniformly continuous g on the line the image Ag
consists of a pair such as the above (f0, f1).

In the present case one can show that any transition A that commutes
with the shifts is made up by convolution with a pair (m0, m1) of measures
as just described. However one can ask what is the situation more generally?
Here we do not have complete answer. A start toward an answer is as follows.

Let M be the space of all finite Radon measures on the line RI . Let V
be a band in M. Call it stable under shift if µ ∈ V implies µSα ∈ V for all
α ∈ RI . If V1 and V2 are two stable bands, their intersection is also stable.
If V is a stable band, the band formed by measures disjoint from V is also
stable.

Let M = ⊕j V j be a decomposition of M into disjoint bands. For each j,
let mj be a probability measure. Define an operation A by µA =

∑
j mj ∗ µj

where µj is the component of µ in the band V j. This gives a positive linear
map that commutes with shifts and is not a convolution. It is not known
whether all transitions that commute with shifts can be represented in such
a manner, but that appears doubtful. The band of measures dominated
by the Lebesgue measure, L1 and the band L0 of discrete measures have
a special property. They are irreducible. That is they do not contain any
other stable bands except themselves and the trivial band formed by the zero
measure. There are probably other irreducible bands but they have not been
studied. Following a suggestion of Steve Evans it appear possible to obtain
an irreducible band from the Hausdorff measure that gives mass one to the
Cantor set, or to any perfect set that has self similarity properties. A stable
band V is irreducible if and only if for every positive non zero element µ ∈ V
the smallest band containing the set {µSθ; θ ∈ Θ} is V itself.
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It is conceivable that transitions commuting with shifts and defined on
an irreducible band would be given by convolutions. It is conceivable, but it
appears to be unknown whether such transition are given by Markov kernels.

At any rate it is clear that any band that is not irreducible admits many
transitions that commute with shifts but are not convolutions. Such transi-
tions do not seem to possess one of the most interesting properties of convo-
lutions, namely that convolution decreases concentration.

There is a large literature on linear operations that commute with shifts.
See for instance L. Schwartz [1952], Helson [1954] and Brainerd and Edwards
[1966]. However, it does not seem relevant to linear operations defined on
bands that consist of singular measures. Also there is a large literature on
linear maps T such that (µ× ν)T : (µT ) ∗ (νT ) for the convolution operation
∗. However if V is a stable band formed by singular measures, it need not be
closed under convolution. See for instance H. Rubin [1967]. So the problems
are related, but different.

6. Cylinder measures
Let X be a real locally convex space and let C be the family of subspaces

of X that are closed and have finite codimension. For any F ∈ C one can form
the quotient X/F by calling two points x1 and x2 equivalent if x1 − x2 ∈ F .
This quotient X/F is a finite dimensional space. The canonical projection
of X onto X/F will be denoted Π(X,X/F ). In keeping with the notation
of previous sections, we shall let such projections operate on points written
to their left, so that xΠ is the image of the point x by the operation Π.
A similar notational convention will be used for measures. If G is another
element of C such that G ⊂ F there is a canonical map Π(X/G,X/F ) of
X/G onto X/F and

Π(X,X/F ) = Π(X,X/G)Π(X/G,X/F ).

Now consider a collection {µF , F ∈ C} of ordinary finite signed measures
such that µF lives on the finite dimensional quotient X/F .

Such a collection is called a cylindrical measure on X if for any pair (G, F )
of elements of C such that G ⊂ F one has µGΠ(X/G,X/F ) = µF . It is called
a cylindrical probability if the µF are probability measures.

Cylindrical probabilities arise naturally as “distributions” of linear stochas-
tic processes. If Y is the dual of X a linear stochastic process is a map
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y ; 〈y, X〉 from Y to random variables 〈y, X〉 on some probability space
(Ω,A, P ) such that

〈α1y1 + α2y2, X〉 = α1〈y1, X〉 + α2〈y2, X〉

for pairs (y1, y2) of elements of Y and pairs (α1, α2) of scalars. Any finite col-
lection {yj; j ∈ J} of elements of Y gives rise to a finite dimensional random
vector {〈yj, X〉; j ∈ J}. If F ⊂ X is the space on which all the {yj; j ∈ J}
vanish, the vectors {〈yj , x〉; j ∈ J} can be considered as taking values in X/F
and having there a distribution µF . The collection of these µF is a cylindrical
probability. It is a theorem of Bochner [1947] that every cylindrical probabil-
ity on X can be realized as a countably additive probability measure on the
algebraic dual Z of Y. It can also be realized as a finitely additive measure
on the space X itself. For our purposes it will be convenient to consider a
cyclindrical probability as a linear functional on a space D defined as fol-
lows. A real valued function γ defined on X will be called F -unchanged if
γ(x1) = γ(x2) whenever x1 − x2 ∈ F . Let DF be the space of all bounded
uniformly continuous functions that are F -unchanged. Let D be the union
D = ∪F{DF ; F ∈ C}. Let µ = {µF ; F ∈ C} be a cylindrical probability. If
γ ∈ DF and G ⊂ F is another element of C then γ also belongs to DG and
the expectations µF γ and µGγ are the same. Thus µ defines a positive linear
functional on D. Any positive linear functional µ on D such that µ1 = 1
defines a cylinder measure if its restrictions to the spaces DF , F ∈ C are
σ-smooth. Indeed a positive σ-smooth linear functional µ defined on DF

and such that µ1 = 1 extends uniquely to a probability measure on X/F .
More exactly µ has a unique σ-smooth extension to bounded measurable
functions on X/F (Daniell [1918]). The restriction to uniformly continuous
functions will be convenient in the arguments carried out below. Note that
the elements of D extend by continuity to bounded uniformly continuous
functions on the algebraic dual Z of the dual Y of X. Thus there is no need
to make a distinction between cylindrical probabilities on X and cylindrical
probabilities on Z.

If µ and ν are two cylindrical measures on X their convolution µ ∗ ν is
well defined as the collection µ ∗ ν = {µF ∗ νF , F ∈ C}. The convolution
operation is commutative.

All vector spaces used below will be assumed to be locally convex, even
if this is not said explicitly.
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7. A convolution theorem for cylindrical measures
Let P and Q be two cylindrical probabilities on the locally convex space

X. Let Θ = X and let Sθ be the shift by θ so that xSθ = x + θ and
PSθ = L(X + θ) if P = L(X). Let E be the experiment E = {PSθ; θ ∈ Θ}
and let F = {QSθ; θ ∈ Θ}. We shall say that E is projection dominated if for
each F ∈ C the images PSθΠ(X,X/F ) on X/F are dominated by a finite or
σ-finite measure.

Theorem 2. Let P and Q be two cylindrical probabilities on X. Assume
that the experiment E = {PSθ; θ ∈ Θ} is projection dominated. Assume also
that the experiment E is stronger than F = {QSθ; θ ∈ Θ}. Then there is a
cylindrical probability M such that Q is the convolution Q = P ∗ M .
Note. That E is stronger than F , or more informative than F can be taken
to mean that there is a positive linear map K from the L-space L(E) of E to
the L-space L(F) of F such that ‖µ+K‖ = ‖µ+‖ and such that PSθK = QSθ

for all θ. For other definitions of “more informative” see Blackwell [1953].
Actually, according to a referee’s suggestion, one needs to amend Theorem

2 to cover some of the classical results obtained when E is a Gaussian shift
experiment. The formulation involves then two linear spaces X and Y and
a continuous linear map A from X to Y . One has an experiment E given
by cylinder measures Pθ on X and another experiment F given by cylinder
measures Qθ on Y .

Theorem 3. Let E and F be as described. Assume that Pθ = P Sθ and
Qθ = QSθA for all θ ∈ Θ = X . Assume also that E is projection dominated
and stronger than F . Then there is a cylinder measure M on Y such that
Q = (PA) ∗ M .

The proofs of Theorem 2 and Theorem 3 given below depend on the use
of operations called F -shuffles. To define an F -shuffle let fi, i ∈ J be a finite
partition of unity by elements fi of M(E). That is, fi ∈ M(E), fi ≥ 0 and∑

i∈J fi = 1. If µ ∈ L(E) let (µ ◦ fi) be the cylinder measure that has density
fi with respect to µ. (That is if v ∈ M(E) and if fiv denote the usual product
of fi by v in M(E), one has 〈µ ◦ fi, v〉 = 〈µ, fiv〉). For each i ∈ J let βi be
an element of F . The operation that transforms µ into µT =

∑
i(µ ◦ fi)S

i is
a positive linear operation that preserves the mass of positive elements. It
will be called an F -shuffle.

One of the essential properties of F -shuffles is that the image µT and µ
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have exactly the same marginals on X /F . To describe another feature let us
consider two elements F and G of C with G ⊂ F and the quotients X/F and
X /G. One can identify X /F to a subspace, say Y of X /G. This space Y has
in X /G a complement, say Z, namely the subspace of X /G that is mapped
to zero by the projection M(X /G,X /F ). Here we shall use (locally and
temporarily) the notation W for X /G with subspaces Y and Z as described
and call Π the projection of W on Y that cancels Z.

Lemma 1. Let W , Y and Z be as described. Let µ1 and µ2 be two probability
measures on W . Assume that both µi are dominated by the Lebesgue measure
of W . Assume also that their marginals on Y by M are the same. Then for
every ε > 0 there is a Z-shuffle T such that ‖µ1 − µ2T‖ < ε.

Proof. If the dimension of Z is m, let u1, u2, . . . , um be a basis of Z. If
z ∈ Z can be written z =

∑
zjuj let |z| = maxj |zi|.

For every y ∈ Y let µi,y on Z be the conditional distribution of z on Z
for µi. Let v be the common marginal of the µi on Y . The µi,y can also be
taken so they are dominated by the Lebesgue measure of Z. Furthermore,
for every ε > 0, ε < 1/2, there is a b < ∞ such that if B = {z; z ∈ Z, |z| ≤ b}
then

∫
µi,y(Bc)v(dy) ≤ ε2

64
for i = 1, 2. Thus, except for a set A ⊂ Y such

that v(A) ≤ ε
8

one has µi,y(Bc) ≤ ε
8
.

For y ∈ A, replace both µi,y by a probability measure multiple of the
Lebesgue measure restricted to B. For y ∈ Ac replace the µi,y by their
restrictions to B renormalized to be probability measures. This gives new
conditional distributions say µi,y, and

∫ ‖µi,y − µ′
i,y‖v(dy) ≤ ε

8
.

Now take on Z a probability measure ξ carried by a ball {z : |z| ≤ δ}
and having with respect to the Lebesgue measure a density that satisfies a
Lipschitz condition. One can select δ so that if µ′′

i,y = µ′
i,y ∗ ξ then

∫ ‖µ′
i,y −

µ′′
i,y‖v(dy) ≤ ε

8
.

The µ′′
i,y are all carried by the same compact of Z. They have there

Lebesgue densities that satisfy the same Lipschitz condition. So they can be
approximated within ε

8
by a finite number of them, say πr, r = 1, 2, . . . , k0.

Let Ar1,r2 be the set in Y where r1 is the first index such that ‖µ′′
1,y−πr1‖ ≤ ε

8

and r2 is the first index such that ‖µ′′
2,y −πr2‖ ≤ ε

8
. On Ar1,r2 replace the µ1,y

by πr1 and the µ2,y by πr2.
For y ∈ Ar1,r2 consider the distributions πr1 and πr2 on Z. Take an

integer k > 2 and make a partition of Z by cubes whose sides are of the form

13



( js

2k , js+1
2k ], where s = 1, 2, . . . , w indicates the coordinate that is restricted.

For such a cube, say Ch, where h = (j1, . . . , jm) replace the measure πri

restricted to Ch by a measure proportional to the Lebesgue measure on Ch

having the same total norm. This gives new measures π̄ri. Selecting k large
enough one can insure that ‖π̄ri−πri‖ < ε

8
. Now it is clear that one can obtain

π̄r1 from π̄r2 by shifting appropriate slices of the type α(k1, k2)π̄r2I(Ck2) where
α(k1, k2) ∈ [0, 1]. This gives a shuffle T ∗ on Z such that ‖π̄r1 − π̄r2T

∗‖ = 0
and therefore ‖µ1,y−µ2,yT

∗‖ ≤ ε for all y ∈ Y . The result follows by forming
the corresponding Z-shuffle T on the measures carried by W . 2

Now let us return to the experiment E with its spaces L(E) and M(F).
The Z-shuffle of Lemma 1 uses bounded measurable functions defined on
W = X /G. They can be identified to elements of M(E) that are G-unchanged.
The shifts from Z, kernel of the map M(X /G,X /F ) can also be identified
with shifts Sβ for β ∈ F . Thus the result of Lemma 1 can be restated as
follows:

Let µ1 and µ2 be two elements of L(E) that have the same marginals on
X /F . Then for every ε > 0, every G ∈ C, G ⊂ F , there is an F -shuffle T
such that the projections = µi,G on X /G satisfy ‖µ1,G − (µ2T )G‖ < ε.

From this one can deduce the following corollary.

Lemma 2. Let S be the closure pointwise on L(E) × M(E) of the set of
F -shuffles considered as a subset of the set of transitions from L(E) to the
dual of M(E). Let µ1 and µ2 be two elements of L(E) whose marginals on
X /F are identical. Then there is a T ∈ S such that ‖µ1 − µ2T‖ = 0.

Proof. The set S is compact for the topology of pointwise convergence
on (L(E) ×M(E ).

The set of pairs (G, ε) where G ∈ G and where ε > 0 is directed de-
creasingly by the natural inclusion order and the order of the line. For each
(G, ε) Lemma 1 and its reinterpretation gives an F -shuffle TG,ε such that
‖µ1,G − (µ2TG,ε)G‖ < ε.

Take a limit T of these TG,ε along an ultrafilter finer than the tails of our
directed set of (G, ε). This limit will satisfy ‖µ1,G − µ2T )G‖ ≤ ε for every
G ∈ G such that G ⊂ F and every ε > 0. Thus µ1 = µ2T as claimed 2

Note. The limit T of Lemma 2 still maps M(E) into M(E) if it acts on its
right.

We are now ready for the proof of Theorem 3 of which Theorem 2 is a
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special case.
Proof. The Markov-Kakutani fixed point theorem implies the existence

of transition K from L(E) to L(F) such that SθKS−θA = K and PθK = Qθ

for all θ. Select such a K and keep it fixed throughout the rest of the proof.
In the space Y, let H be the family of all closed subspaces of finite co-

dimension. For H ∈ H let ΠH be the canonical map of Y onto Y/H. One
obtains a map x; xAΠH of X into Y/H by applying A first and then ΠH.
Let F (H) = {x : xAΠH = 0} be the kernel of AΠH in X .

Since Y/H is finite dimensional and since A is continuous, F (H) has
finite co-dimension in X and it belongs to the class C.

Let D′
H be the space of numerical functions defined on Y by expressions

of the type y ; (yΠH)ϕ where ϕ is bounded, uniformly continuous on Y/H.
These functions define a subspace of M(F). As such they are mapped by K
(acting on its right) into elements of M(E). Let γ be a positive element of
D′

H and let η = Kγ. If β ∈ F (H) then S−βAγ = γ. Since SβKS−βA = K
this also gives SβKS−βAγ = Kγ, hence Sβη = η for all β ∈ F (H). Now let
T be an F (H)-shuffle on X . Then Tη = η. Indeed let the shuffle be given
by a partition of unity {fj ; j ∈ J} and shifts βj ∈ F (H). If µ ∈ L(E), write
νj for the measure that has density fj with respect to µ. Then µ =

∑
νj and∑

j νjS
βj = µT . Also 〈νjS

βj , η〉 = 〈νj, S
βjη〉 = 〈νj, η〉. So 〈µ, η〉 = 〈µ, T η〉

for all µ ∈ L(E).
The same invariance property holds for any T that is in the set S of

limits of F (H)-Shuffles in Lemma 2, provided that one considers these limits
as maps from M(E) to M(E).

We claim that this implies that for any µ ∈ L(E) the value 〈µ, η〉 depends
only on the marginal µF (H) of µ on X /F (H). Indeed let µ1 and µ2 be two
cylinder probabilities µi ∈ L(E) that have the same marginals on X/F (H).
Then, according to Lemma 2, there is a T ∈ S such that µ1 = µ2T and
therefore 〈µ1, η〉 = 〈µ2, T η〉 = 〈µ2, T η〉 = 〈µ2, η〉. Since η = Kγ with γ ≥ 0
the element η is also positive. The projection of L(E) on X /F (H) is the entire
space L1 of measures dominated by the Lebesgue measure of X /F (H) and
one can identify η to a positive element of the dual M1 of L1. This element
of M1 will still be denoted η to avoid an excess of notational complication.

According to a theorem of A1 and C1 Ionescu Tulcea thee is a positive
linear map ` of M1 to bounded measurable functions on X /F (H) such that
if ϕ ∈ M1 then the equivalence class of `ϕ is ϕ itself. One can select this
lifting ` so that it commutes with shifts on X/F (H).
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The functions elements of the space D′
H originated from the space, say

D̄′
H of bounded uniformly continuous functions on Y/H. This D̄′

H contains
the space KH of continuous functions with compact support on Y/H. For
γ ∈ KH let 〈νH , γ〉 be the evaluation of `K(ΠHν) at zero. In keeping with the
notation where γ ∈ D̄′

H acts on its left, let [0, `K(ΠHγ)] be this evaluation
also called 〈νH , γ〉. This gives a positive linear functional on KH. It admits an
integral representation 〈νH , γ〉 =

∫
[z, γ]νH(dz) where νH is a Radon measure

on Y/H.
One can identify X /F (H) to a subspace of X , written as direct sum of

F (H) and X /F (H). With this identification, one can apply the shifts Sθ to
measures and functions on X /F (H).

Of course, for θ ∈ F (H) the shift Sθ on X/F (H) is the identity map.
With this notation rewrite the relation SθKS−θA = K as SθK = KSθA

and evaluate `K(ΠHγ) at x ∈ X /F (H). One obtains [x, `K(ΠHγ)] =
[0, Sx`K(ΠHγ)] = [0, `KSxA(ΠHγ)] =

∫
[xAΠH + z, γ]νH(dz). Then, if µ ∈

L(E) has marginal µF (H) on X /F (H) and if γ ∈ KH, one can write µK(ΠHγ) =∫ {∫
[xAΠH + z, γ]νH(dz)}µF (H)(dx). In other words, for γ ∈ KH the value

µK(ΠHγ) is obtained by integrating γ with respect to the convolution of νH

by the image of µ by the map ΠF (H)AΠH. This is true for γ ∈ KH but it
remains true for instance for γ ∈ D̄′

H . Indeed K considered as map from
M(F) to M(E) is continuous for the weak topologies w[M(F), L(F)] and
w[M(E), L(E)] and KH is dense in D̄′

H .
To proceed it is convenient to look at the convolution operation so ob-

tained as a map sending D′
H into DF (H). Now take two spaces Hi, i = 1, 2,

Hi ∈ H and H1 ⊂ H2. We get two convolutions maps, by measures νHi.
However, since K is fixed and since D′

H2
⊂ D′

H1
the measure νH2 must be the

restriction of νH1 to D′
H2

. Hence the νH, H ∈ H define a cylinder measure
M on Y and the convolution relations can be summarized in the formula
µKϕ = 〈(µA) ∗M, ϕ〉. This completes the proof of Theorem 3 and therefore
also of Theorem 2. 2

Remark 1. We have used the lifting theorem of A. and C. Ionescu Tulcea
[1967]. Its full force is not needed. It would have been sufficient to use what
is called a linear lifting that commutes with shifts. For the finite dimensional
spaces X /F (H) such linear liftings are easy to obtain. A proof was given by
Dieudonné [1951]. It is reproduced in LeCam [1986] page 126. For the
situation considered here there are many other methods used to convert
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“almost invariance” to “invariance”. See Boll [1955] or Berk and Bickel
[1968].

Remark 2. One of the immediate consequences of Theorem 3 is that the
experiment F = {Qθ : θ ∈ Θ}, weaker than E = {Pθ; θ ∈ Θ} is also weaker
than the experiment EA = {PθA; θ ∈ Θ} obtained by mapping the Pθ to Y
by the linear map A.

One can state this as follows.

Corollary. Lt E = {Pθ; θ ∈ Θ} be projection dominated and given by cylin-
der measures on X = Θ. Let B1 be a continuous linear map to a vector space
(locally convex) Z and let B2 be a continuous linear map from Z to Y. Let
A = B1B2 be the resulting map from X to Y. On Y, let F = {QSθA; θ ∈ Θ}.

Suppose that Pθ = PSθ on X and that E is stronger than F . Then the
experiment G = {PθB1; θ ∈ Θ} is also stronger than F and there is a cylinder
measure M on Y such that Q = [(PB1)B2] ∗ M .

In particular continuous linear maps preserve the order of experiments
that are obtained by shifting one cylinder measure if the stronger one is
projection dominated.

Remark 3. The cylinder measure M obtained in the proof of Theorem 3 is
well defined only because we selected a particular K such that SθKS−θA =
K. Generally there may be several M such that Q = (PA) ∗ M . This is so
even on the line: Suppose that P on RI has characteristic function P̃ (t) =
[1 − |t|]+. Then P ∗ M1 = P ∗ M2 if M̃1(t) = M̃2(t) for t ∈ [−1, +1]. There
are many such pairs (M1, M2) according to Polyá’s theorem on characteristic
functions that are convex in t for t ≥ 0. The possibility P ∗M1 = P ∗M2 for
M1 6= M2 cannot arise if P is Gaussian.

Remark 4. The case where P is a Gaussian cylinder measure can be
treated without recourse to the shuffle operations of lemmas 1 and 2. To
see this note that if {Pθ; θ ∈ Θ} is Gaussian shift the function (θ1, θ2) ;

−8 log
∫ √

dPθ1dPθ1 (if finite valued as in Millar [1985]), is the square of a
Hilbertian or prehilbertian norm on Θ = X . Then one can write X as a di-
rect sum X = F (H)⊕V where V is isomorphic to X /F (H) but orthogonal to
F (H) for the prehilbertian norm. For shifts Sθ where θ ∈ V the experiment
{PSθ; θ ∈ V } is equivalent to the experiment {(PM)Sθ; θ ∈ V } where M is
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the canonical projection on V = X /F (H), by a sufficiency argument. Thus
{(PM)Sθ; θ ∈ V } is also stronger than {QSθA; θ ∈ V }. One can then apply
the finite dimensional convolution theorem. The general result follows.

Remark 5. Theorem 3 says that, under its conditions, the experiment
F = {Qθ; θ ∈ Θ} is also weaker than {PθA; θ ∈ Θ}. That this need not be
the case if the projection domination is removed can be seen on the following
example. Take X to be the plane RI 2 with first coordinate called x and
second called y. Let C be the circle C = {(x, y) : x2 + y2 = 1}. Place on C
a measure P that has a density with respect to the Lebesgue measure of C .
Take Θ = RI 2. Let A be the projection on the second axis. One can choose P
so that its projection on the second axis Y has density [1−|y|]+ with respect
to the Lebesgue measure of Y.

Let Q be the measure carried by Y that has density unity with respect
to the Lebesgue measure on [−1/2, +1/2]. Let Qθ = QSθA. The experiment
E = {PSθ; θ ∈ Θ} is certainly stronger than {QSθA; θ ∈ Θ} since E is
“perfect” in the sense that any two different PSθi are disjoint. However
Q is not obtainable as (PA) ∗ M , since, for instance, the support of Q is
[−1/2, +1/2] while that of PA is [−1, +1]. Here, for good measure, we have
taken P so that (PA) = Q ∗ Q.

One could attempt to spread P by convolution, for instance with a prob-
ability measure m carried by the ball (centered at zero) of radius ε in RI 2.
Take m to be proportional to Lebesgue measure on that ball. Carry a similar
operation on Q convoluting it with a probability measure m′ proportional to
the Lebesgue measure on [−ε, +ε].

Then, for ε small enough, the shift experiments based on P ∗m and Q∗m′

cannot be comparable. Indeed if one takes a θ ∈ RI 2 with norm |θ| ≤ 1/100
and an ε that is much smaller, say ε = 10−4, the affinity between Q ∗m′ and
(Q ∗m′)SθA is close to unity but the affinity between (P ∗m) and (P ∗m)Sθ

is small. Thus, if the experiments were comparable Q∗m′ would be obtained
as a convolution of the marginal of P ∗ m with some probability measure
(by Theorem 3). This cannot be as can be seen from the supports of the
measures.

8. A theorem of P.W. Millar
It has been customary to state theorems such as Theorem 2 and especially
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Theorem 3 for the case where Q is a Radon measure on the space Y. For
instance Millar [1985] imbeds all spaces in suitable completions so that the
measures P and Q become Radon measures. This complicate matters some
since if one completes X to say, X̃ , the shifts used are only the Sθ, θ ∈
Θ = X ⊂ X̃ . Actually there is no need to perform such embeddings as will
follow from Proposition 1 below. To avoid excessive notation we have stated
Proposition 1 in a simplified form using only one linear space X . In the spirit
of Theorem 3 it can be used in the space Y of Theorem 3 replacing the P in
the Proposition by PA.

Proposition 1. Let P and M be cylinder probabilities on X . Assume that
Q = P ∗M extends to a Radon measure on X . Then there is a shift Sz in the
algebraic dual Z of the dual Y of X such that PSz and MS−z are extendable
to Radon measures on X . If one of P or M is already extendable to a Radon
measure on X , so is the other.

Note. The algebraic dual Z of the dual Y of X can be identified to the
completion of X for the weak topology w(X ,Y). All the functions γ ∈
D considered previously are w(X ,Y) uniformly continuous. They extend
continuously to Z. A cylinder measure on X is also a cylinder measure on
Z.

Proof. According to a theorem of E. Mourier improved by Prohorov [1966]
and then Schwartz [1973], a cylinder probability Q on X extends to a Radon
measure on X if and only if it has the following property. Take an ε ∈ (0, 1/5).
Then there is a sequence {Cn} of compact symmetric subsets of X such that
for each F ∈ C the image of Cn by Π(X ,X /F ) has measure at least 1 − ε2n

for the projection measure QΠ(X ,X /F ).
Now let us look at a fixed F ∈ C and the projected measures pF , mF and

qF so that pF ∗ mF = qF . The sets Cn project onto compacts cn,F .
By assumption on Q one has qF (cn,F ) ≥ 1− ε2n. Thus by the convolution

formula on X/f there are elements y of X /f such that pF (cn,F −y) ≥ 1−ε2n.
These form a certain set An,F that is a compact set and the measure m(An,F )
is at least 1− εn. It follows that BF = ∩nAn,F is not empty and has measure
at least (1 − ε

1−ε
) ≥ 1/4, since ε ≤ 1/5. Thus if P is shifted by any element

y of BF the shifted measure pF Sy projection of PSy will give mass at least
1 − ε2n to cn,F for all n.
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Now look at G ⊂ F , G ∈ C. If pG(cn,G − y) ≥ 1 − ε2n then one will have
pF ((cn,G−y)Π) ≥ 1−ε2n for the projection Π of X /G onto X /F . This shows
that BG projects into a subset of BF . All these sets are compact. Thus, as
G ⊂ F runs through C, the projections of BG into BF have a non empty
intersection. In other words, there are elements yF ∈ BF , F ∈ C such that
yF = yGΠ(X /G,X /F ) and such that, shifted by SyF the image of P gives
mass at least 1− ε2n to the projection of Cn. Such a system {yF , f ∈ C} may
or may not arise from an element in X , but it obviously defines an element
z of Z.

Thus we have Q = (PSz) ∗ (MS−z) and PSz is extendable to a Radon
measure. By the same argument there is some other shift t ∈ Z such that
MS−t extends to a Radon measure. Then (PSz) ∗ (MS−t) = (P ∗M)Sz−t is
also extendable to a Radon measure on X . Since Q = P ∗M is also extend-
able, z − t, must belong to X and MS−z = (MS−tS(t−z) is also extendable
to a Radon measure. Hence the result. 2

Note that we cannot claim that the shift z is always in X . That is because
any shift Sz for z ∈ Z still yields cylinder measures PSz and MS−z with
convolution

(PSz) ∗ (MS−z) = P ∗ M.

Proposition 1, above, is just another expression of Paul Lévy’s principle:
A convolution P ∗ M is less concentrated than each of P and M .

As mentioned earlier, Millar’s theorem was only for the case where the
experiment E = {PSθ; θ ∈ Θ} is obtained by shifting a Gaussian measure. In
such a case one can use special arguments as sketched in Remark 4, Section 7.
Another theorem, similar to Theorem 3, Section 7, has been given by van der
Vaart [1991] for a non-Gaussian E formed by shifting product measures. By
application of Proposition 1 these results become consequences of Theorem
3, Section 7.

9. Final remarks
It was already observed in LeCam [1972] that there are cases other than

the LAN ones in which one can use the combination of the results of Sections
3 to 5. This happens for instance when one shifts densities f that have
certain singularities. However, in many cases the limit experiments obtained
in this fashion are not of the type E = {PSθ; θ ∈ Θ} where P is a cylinder
measure on the space X = Θ itself. For instance limits of triangular arrays
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of product measures, as described in LeCam [1986], are infinitely divisible
and therefore products of a Gaussian experiment by a Poisson experiment.
Poisson experiments are obtained by using a ring A of subsets of a suitable
space and observing for each A ∈ A an ordinary Poisson variable N(A)
with expectation λ(A). For disjoint systems A1, A2, . . . , Am with Aj ∈ A,
the Poisson variables N(Aj) are mutually independent. The experiment is
parametrized by the intensity measure λ allowed to vary in a set Θ. Such
experiments are not invariant under the “natural shifts” which would consist
of adding another measure to the intensity λ. To see what happens one can
look at the examples given by Prakasa Rao [1968] and by Ibragimov and
Has’minskii [1981].

However, in many such cases, as in the LAMN cases of Jeganathan [1981],
one can still obtain transitions that are conditionally representable by con-
volutions. See LeCam [1972].

The situation is then reminiscent of the one described in Section 5 for
bands that are stable but not irreducible.

There are however many non-Gaussian situations where one obtains ex-
periments E of the form E = {PSθ; θ ∈ Θ} with P a cylinder measure on
X = Θ as required for Theorem 3, Section 7, and where in addition one has
distinguished sequences of statistics as in Section 3. One can, for instance,
consider experiments En that tend to a limit E given by an exponential fam-
ily that is shift invariant. See for instance LeCam [1986], Chapter 8, Section
5 and in particular Proposition 7 and the work by LeCam [1975]. The ex-
periment of Proposition 7, Chapter 8 Section 5 of LeCam [1986] is a limit
experiment obtainable by looking at extreme values of a sequence of i.i.d.
random variables.

A multitude of other cases can be obtained from the stable processes
studied by C. Hesse [1991]. There the distinguished statistics may have to
be infinite dimensional.

Note that Theorem 2 and 3 apply to the abelian shift group of a linear
space X . It seems possible to extend the proof to other cases where the space
X is a projective limit of solvable locally compact groups and for “cylinder
measures” defined appropriately. However, one should beware of the fact
that convolution theorems apply only to special situations. Even though
they give at once information about a variety of loss functions, they need a
particular structure. Such structure is noticeably absent in the asymptotic
minimax theorem (see LeCam [1986], page 109) which can often be used
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directly to obtain a variety of results.

Acknowledgement. The author wishes to extend his heartfelt thanks to
the anonymous referee who suggested that Theorem 2 be rewritten to become
Theorem 3, Section 7.
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[20] Le Cam, L. [1986]. Asymptotic methods in statistical decision theory.
Springer Verlag. New York, Heidelberg, Berlin.

[21] Lehmann, E.L. [1988]. “Comparing location experiments.” Ann.
Statist. 16, 521-533.

23



[22] Millar, P.W. [1985]. “Nonparametric applications of an infinite dimen-
sional convolution theorem.” Z. Wahrsch. verw. Gebiete 68, 545-556.
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