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1. Introduction. Consider a Markov process I with a finite

number of states and stationary transition probabilities given by an
infinitesimal generator A. The matrix A wuniquely determines the matrix
of transition probabilities P, given by Pj.k = PZ(1) =k|Z{0) = j].

The matrix P can be written P = exp{Al.

In many statistical problems A 1is unknown and must be estimated.
This does not present much difficulty if enough independent replicates of
the process are observed continuously in the entire interval [0,1].
However if instead one observes the process only at times 0 and 1
difficulties can occur. Indeed, in 1967, J. 0. Speakman gave an example
| of two different generators A1 and AE such that :xp{A1} = exp{AE}.
Thus, not only Eip{ﬂl} and Exp[ﬂz} might be very close for widely
different AJ. they might be identical.

An isolated example is not enough to be a great source of concern,
but we shall see that the phenomenon is widespread.

We shall consider only the case of a Markov process with 3 states
and a unique invariant probability measure m such that mP = m.
Furthermore we shall restrict ourselves to the case where P is
diagonalizable, even though its eigenvalues are not all distinct.

This last restriction is not too serious: If P = e® for an A
with distinct eigenvalues then P 1{is diagonalizable whether its eigenvalues
are distinct or not. Furthernors 1f P =o' = a2 for two different
Aj then, one of the two AJ must have distinct eigenvalues.

Finally, we shall study only the case where m gives strictly
positive probability to each of the three states. Other cases will be
treated later.

Under these conditions we shall show the following:



If A has complex eigenvalues lE = -r + 2rki, 13 = -r - 2rki with
k integer different from zero, then there is an AD with eigenvalues
(-r) and (-r) such that exp{A;} = exp{A}l.

There may be other generators A with enn{An} = exp{A} and with
eigenvalues Ay = =T + 2rni, Ay = -r - 2rni for some n # k. If so
there may be a finite or continuum of them.

If A has complex eigenvalues Ay = =1 ¢ ci, Ay = =r - ci for some
¢ € (-w,7), there may be other generators A" with exp{A} = Ekp{ﬁn} and
eigenvalues }'E = -r + ci + 2mni, 13 = «r +¢ci = 2mni, n integer

"different from zero. If so there are only a finite number of them,



2. Conditions for indeterminacy of the generator. Let A be an

infinitesimal generator. Its first eigenvalue is zero, corresponding

to the eigenvector (1,1,1)'. It has two other eigenvalues 12 and hs
that may be real, distinct or not. They may also be complex, in which

case they are complex conjugate.

A A
The corresponding eigenvalues of P = EA are always 1, e E, e 3.

If v is an eigenvector of A with Av = Av then Py =

Iekll

"I' .
Since <1 for all positive integers k, any eigenvalue of
A must have a negative real part. Let a9y and 93 be the eigenvalues

A one must have

of P that are different from unity. Since P = e
qj = Enp{*r]~+1aj} for some real numbers rj and 9 with ry > 0.
In particular |qd| = exp{-rj} so that rs is well determined by
ry = -logla,|.

Now to see whether P = eA determines A, consider the following

cases.

CASE 1. q, # 93 and they are real. Then if 1ng|qz| # Iug|q3|
one must have ro # ry- However since the complex eigenvalues of A
must be conjugate, this implies 3, = aq = 0. Hence the eigenvalues
of A must be real hz = =Py Ay ™ -ra. If a, F a3 real but
qul = |q;| the eigenvalues of A would be complex conjugate but differ
by an odd multiple of =. Thus one would have, say a, - ag ™ (2k+1)m
and a3 = -a,. Equivalently a, = (2k+1) %~, 2, = -(2k+1) 5 . However
expf{(2k+1) %-i} is not real. Thus this is impossible.

In summary 9, # q3. both real, implies that Ay = ~Ing|q2i.
Ay = -Iug|q3| and in fact 9, and q; are positive. The efgenvectors

of P are well determined. They must be the same as the eigenvectors of



A. S0 A 1s well determined.

CASE 2. q; # 9y and they are complex conjugate. Then
hz = -r + ja + 2nki, 13 = -r = ia - Zrki for some integer k. The
eigenvectors of A are the same as those of P and therefore determined
(up to a multiplicative constant). Then, as we shall see, there may be

several possibilities for k.

CASE 3. 9 = Gy. Then they must be real and either of the form
9 = G5 = e or of the form 9y = 43 = I-riri‘ In this case the
eigenvectors of P form an entire two dimensional vector space. Thus

neither the eigenvalues of A, nor the eigenvectors are well determined.

In all cases the exponential function admits a local inverse given
by a Cauchy contour integral. The eigenvalues of P 1lie in the unit
disk of the complex plane. I[f none of them lies on the negative part of
the real line {Rez<0, Imz=0} (where fe means "real part" and
Im means “imaginary part"), one can surround the eigenvalues by a contour
C that stays strictly away from the negative real line. The principal
branch of the logarithm, with log 1 = 0, is analytic in a neighborhood
of such a contour. Thus the standard Cauchy formula
B=1logP = I [z[-F]'Ilug zdz gives a matrix such that P = e®. This
matrix B haE eigenvalues (0,-r+ic,-r-ic) for some c € (-w,7n).

One could attempt to extend the formula to the case where the eigenvalues

“T). This can be done by taking a contour that

of P are (1,-e " ,-e
surrounds all the eigenvalues of P but does not wind around zero. A

contour of the form



ol
-

will do. However the Cauchy integral on such a contour gives a matrix

B with eigenvalues (0,-r+mi,-r+ri). This corresponds to a matrix with
complex entries that cannot be an infinitesimal generator.

In other cases whether B given by the Cauchy formula is an
infinitesimal generator will depend on the sign of the off diagonal

entries of B. They must all be positive.



3. A bit of algebra. Let A be an infinitesimal generator with

entries aj‘k. Assume that A 1is diagonalizable. Then it has a matrix

of eigenvectors V of the type

T v Y3
v=1_1 vEE vES
1 v3p Vg

where the columns are eigenvectors and V is nonsingular. Thus one has
AV = YA for a diagonal matrix A whose diagonal is 10.12,13}.

In all the cases where A 1is not well determined by P, there is an
A with P = EA and with lz # ha and therefore Ay = Ié. For
such a case it is convenient to write A as the diagonal matrix with -

entries (0,-r,-r) to which is added a matrix dvyJ

0 0 o0
J=10 1 ©0
0 0 -1
Let NI be the projection
1 0 0

Then A may be written
A=-rl +rl + iyd .

This gives

A= vaﬂ'1 = -r] + rvnu" + iTVJv" .



The matrix

is a matrix whose rows are all identical to the first row of v“.
One has PY = Heﬁ. Also if m 1is the invariant measure with

m = mP, one has

mPY = my = m'aa .

th

If V,, is the k™" column of Vv this gives nv, = Eg.1 m =1 and

mV,, = mV, 5 = 0. Thus the first row of v ois equal to m.

This suggests looking for solutions of the form

B = -rl + rXix™! + fyXx™)
whare
T X %5
K= 1 x5 a3
1 X35 %35

is an invertible matrix whose columns are eigenvectors of P.

PROPOSITION 1. Asswme that P is diagomalizable with two equal
eigenvalues G = Gy = e". Let X be a matriz of eigenvectors of P
ag above.

Than

=1
Eﬂ -rl + rinx



B
Mt - . 1] - Y .
is an infinitesimal gemerator with P = e ~. It is the unique infinitesimal

generator B that satisfies P = EB with real eigenvalues.

PROOF. It is easy to check that the rows of Bcr add up to zero.
1

The off diagonal entries come from the matrix XIX~' whose rows are all
identical to the vector m given by the invariant probability measure.
Thus B, 1s an infinitesimal generator. One can write
X"'ByX = -rI + r1 = & where & is a diagonal matrix with diagonal
(0,-r.-r). Thus exp{By} 1s xebx™! = p.

To show that it is the unique solution with real eigenvalues note
that the Cauchy formula gives the unique solution with eigenvalues whose

imaginary part is smaller than T 1in absolute value.

Note that the generator Eu does not depend on the choice of the

1

matrix X since XOX ' always has rows equal to m. However if we take

1 1

for X a real matrix, the formula B = =rl + rXOX" " + §yXJX~' cannot

1 is zero. Thus we are led

be an infinitesimal generator unless yXJX~
to seek other solutions where X 1is a complex matrix. If so and if X

is the matrix of eigenvectors for a generator with distinct eigenvalues,
the two vectors X , and X , must be complex conjugate and the matrix

will take the form

1 12 zz
1 zJ 13

for three complex numbers IJ..j'1.E]3. We shall now investigate what
IIJI" looks 1ike for such a matrix. However it is easier to first

compute the matrix XJX* = (det I}IJI'I where X* is the matrix of



cofactors of X.

1

Note that the rows of XJXor XJX* always add up to zero.

Indeed XJX™'(|) is the first column of
1 0 o0
wx'lx=xlo 1 o
0 0 1

but

D)-

So we shall not bother to computer the diagonal terms of xJx"1 except
the first one.
Generally, if X = {x:] k}, with a first column made of ones, one

can write X* in the form

Xap%33 = Xa3%32 *13%32 = *12%33 X12%23 ~ *13%22
X23 = *33 *33 = *13 %13 = %23
¥32 = %22 *12 ~ %32 X232 = %92

For the matrix X given by the IJ this gives the following:

21Im 2,2, 2ilmz,z;  2ilmz;z,
X = 4 -(z3-2,) -(z;-2,) -(z,-7;)

In particular

det X = Eilm[1223+z3z1 ”":32’ .



The matrix XJX* ds equal to -2Q where ( is the real part of

-5, ?] (zy-2,) E] (25-2,)
?3{:3-22} ?3111-:3} -53

where the term sj is the sum of the off diagonal terms in the same row.

The matrix iXJX™' is therefore iXJX™| = 1 Q where K is defined by
K= '?!f det X =Im{z32,+ 2725+ 2,2,}.

Note that the rows of the matrix Q are organized as follows: One
obtains QI.E from Q3.1 by changing the indices of the zj according
to the rotation scheme 1 =2 + 3 =1, Similarly 03.2 is obtained from
QEJ by the rotation. Al 50 QI.S comes from ES.E and :12,3 comes
from q] 2

According to the same scheme my = ]f Im 23_2-2 and my and m, can
be written by rotation of the indices. For simplicity in writing we
shall denote the matrix iXJX™| by the letter & and let M be the
matrix whose rows are identical to the invariant probability measure m.

Then our presumed generator B takes the form
B=-rl +rM + yp .

It will be an infinitesimal generator (of something) if all the off
diagonal terms of rM + yd are positive.

To find out how these terms behave let us consider the terms
Qp,q 2and Q3 4. One can write Q,, = HEIEEE - ]zzlE and
f.'a'] = l=3|2 -ﬂezz":'z . The other terms can be written by rotation of the
indices. Note the following.

10
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LEMMA 1. The sum ] uj.k of the off diagomal terms of Q is
jrk
equal to sero.

This follows easily from the above formulas. However, it is
important because it shows that the 'I.'.l‘1 K cannot be all of the same
sign.

Let W iff

e zJ nje and introduce the differences o &3 - &2.
¥y = 31 - '331 ¥y = BE - &]. Then uz'.[ and qﬂ.l may be written

QE.] - ﬂal P3 cos ¥ "'-DE]
qi.'l — pj[pa' ";'2 Cos ':F'Il *

Also K = P3Py sin v+ P93 sin vy * PaPq sin ¥q

According to previous remarks the vector m is the first row of
- I:I ﬂ
X 1+ Thus one has m, = —-:-’E—E sin ) and the rest can be written by

sin ¢
rotation. It would be more convenient to write that my = c —-1- or
sin ¢ Pj

P = C _lmj . The division is legal since the assumption, made
throughout, that my > 0 for all j implies that Py > 0 for all j.

The entire system being homogeneous in the pj we shall take

sin ¢
p_ = _i
N | mj
provided that K > 0. This oan be arremged by interchange of the last
tue colume of X and will be assumed in the sequel.

With this choice for the Py the determinant term K becomes

3 sin
w= X Twi
=1

Similarly
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] s5in ¥s ( 1 ; 1 ] |
= — 51N ¥4 COS s = =— 51N @ ¥
2,1 m, My 3 1 my 2
sin Y3 1 1
”3.1 = D [@ sin ¥3 - @sin ¢y COS w]] .

Now ¢, = -i_’\p.l hpa}. Thus -sin vy = sin ¥y COS @, + COS vy Sin v,

and the terms in Q become

sin ¢y [(mym,
QE.] = I'I'IE - |'|'|3 sin 'Pa cos 'P-I + s5in 'P~l Cos 1’3 '
2

sin 'PE TlTa"'m'E
”3.1 = - —mg_ ( "2 )sin *’E cos "'T + s5in wI Cos w? -

For the matrix o = 1 Q this gives

m,m M. Hm
173 )73
¢2'-| = {?E cotg 1’1 + cotg 'FE} »

Ma
m.m m.+m
1
%30 7 - m: { ::nzz cotg ¢y * cotg 'Pz}

The other off diagonal terms are obtained by rotation of the indices.

They are

e I'“l*‘“s
'5‘3.2 B — T cotyg 'FE + catg l;-'r-l »
3 [ 1 .

H'Izﬂ'l m, +m
3 )1 3
LR ?{T; cotg v, + cots ~a3}

m_z':.z;{mz*mu

%,37 Tmy | Tm, o9 ¥yt cotg "'z}

m3™ Jme™™
#Ll - _EEH{-'T“I_ cotg ¥3 + cotg LTI

[}
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We have written them all out in full to show that they cannot all

vanish. If for instance one has *3.1 = ¢3,2 =0 then

My, ) ('“T Hny
e ™

_ Mgty

cotg ¥y = cotg 1#1 = ( ) cotg npz .

This is an impossibility unless cotg Wy = 0 or cotg ¥y = = Now
cotg v, = 0 means that v, = 5 (mod 7). If this holds for all three ¢
we have Pty tey s 0= %"1 » {mod 7). This 1s a contradiction. The
possibility cotg o is ruled out by the condition that K = g (515321)
is not zero.

Now let us look at other conditions that must be satisfied by the
angles 'Fj' One of them is the orthogonality relation Emjlj = 0. Taking
into account the fact that the vector m 1is proportional to the first row
of X*, this relation becomes

:l Im1312 + 22 Irl':z.[z3 + Zq Im zzz.l =0 .

Equivalently

i@
] e 3 sin 7 0.
J

Dividing by e , one obtains

i:..:r3 -i-.|:|2
sin ] +e sin ¥ + e sin vy -
It is easily verifiable that this is always equal to zero.
We shall now look at the consequences of this state of affairs for

the possible multiplicity of the solutions of e = P.
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A

4. The range of indeterminacy of the solutions of e = P. Let

us consider a transition matrix P with eigenvalues {t,e'r”a,g""'h]

and a matrix of eigenvectors X = (1,2,Z) where 7' = {zt.rz.zaj is
5i ig
a vector of complex numbers written :J = #ﬂle J as in Section 3.

1 and let M be the matrix whose rows are

Let ¢ be the matrix {iXJX™
all equal to the invariant probability measure m such that mP = m.

According to Sectfon 3, a necessary and sufficient condition for
B=-rI +rM+ y® to be the infinitesimal generator of some process
is that all the off diagonal terms of rM + y& be nonnegative.

Note that this condition involves only the angles 2T Th:: is as
it should be since one could multiply Z by any one of the E- j.

This gives the following result. Let Er]. Bz, 63 be three anglli
such that |Hj| <7 let ¢ =8, - 6,, ¥y = 511; 83 and wy =8, - 8,.
Let I' = 111.12,23} be given by 1: = s_inr;j_"i e J and form the matrices
M and ¢ as described in Section 3.

THEOREM 1. Aasume g sin wj # 0. Inorder that B = -r] + rM + vd
be the infinitesimal generator of some Markov process it is mecessary
and sufficient that all the off diagonal terms of M + yd bke nomnegative.
If so B will gemerate P by the formula P = e if and omly if the
following comditiome are satisfied.

i) mP=m
i1) The eigemvalues of P are H.E'ﬂh.e-r'w].

ii1) The vector I is an eigenvector of P.

If the eigenvalues of P are real (and therefore equal, by (i)
above), the comdition (i1i1) is automatioally satisfied.

PROOF. This follows immediately from the relations given in
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Sections 2 and 3.

COROLLARY. If P admits complex eigemvectors and an inmvariant measure
m with rl'l‘,J >0 for all j, then for all sufficiently large values of

tA

t the equation P° = e™® will have multiple solutions.

PROOF. Consider the matrix X of eigenvectors of P and form
B=-rl +rM+p88. This will be an infinitesimal generator as soon as
tﬂx-l

inf my 2 s_gﬂlﬂﬁj k|- One can write exp{tB} = Xe where A s
J L]

tge diagonal matrix with diagonal entries (0,-r+ig,-r-ig). Let
(1,e”™1Y,e 1Y) e the eigenvalues of P with |y| <4. Then cne
will have P' = e™ ihenever ty = t8, mod 27. MNow B is allowed to
vary in some interval [-a,a] with a = {1?1' mj][jgﬂlij_kllﬂ. As sn.';nn
as at > 4w, the relation ty = tB mod 2r will have several solutions,
the number of solutions increasing as t increases.

In the above argument we have assumed |y| < v, but one can
assume that vy € (-m,nm] for definiteness. Then there are three possible
cases: (1) v#0,y#wm, (2) y=0 and (3) vy =m. In the first
case, the eigenvector I 1is well determined. Thus, there is only one
matrix ¢. Therefore in such a situation the number of solutions of
etB = Pt is finite for each given t. That number increases roughly
linearly as t 1increases.

In the cases where vy = 0 the situation is entirely different.
Every choice of veoctor I such that I sin "’j # 0 will give a possible
matriz & and B = -rl + rM + 2rné¢ will be a gemerator such that

P = EB provided that the off diagomal terms r"j.k + Eumﬁj-k be

nomnegative.
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Similarly, if y = n, the matrices B = -rl + rM + (2n+1)me will
be such that P = e and they will be generators if they satisfy the
appropriate positivity requirements. This leads to the following result.

PROPOSITION 2. Let P be fized with vy =0 and ?.et:.
g = I[np‘i .p%.ﬁ] be such that, for the corresponding matriz &, the
off diagonal entries of B = -rl + rM + 2mn#°, are all positive for a
given positive integer n. Then, for any integer M such that 0 <m < n
there is a neighborhood V of ¢ such that if & corresponds to a
vEV then B =-rl + rM + 2md iz an infinitesimal generator with

F'-aﬂ+

siny i
PROOF. The determinant I;Tﬂi is a continuous function of .
J J
Since it does not vanish at ¢, its absolute value is bounded away from
zero in a neighborhood of " . In that neighborhood, & 1s a continuous
function of the vector of angles . By assumption the terms
rH'j Kt EiTI"I'I'Ti g are all nonnegative. Consider a pair j, k where
L] ¥
[ n -
:p.i-k < 0. Then 5k < 0 and |¢j.k| < = H‘j.k! for ¢ fin some
neighborhood of . Therefore rHj Kt Ernn-lj K2 0 for such a neighborhood.
& = )
If r"j.k + E‘rrn#} K2 0 by virtue of the fact that ¢j,lr. 0, then M.:Iiki
will remain small for ¢ in some neighborhood of . Since
m,j,k =m, > 0, the combination er x? mj,k will still be positive

in a neighborhood of . Hence the assertion.

A similar argument can be carried out for the case where y = 7.
In summary, for a given v and B = -rl + rM + B® the equation
P= EE' can have only a finite number of solutions. Thus if v #0, v # w,

the equation P = uﬂ can have only a finite number of solutions. If



however y =0 or vy = w, one may be able to obtain an infinity of
solutions by varying . For the case v = 0 this will happen whenever
=rl + rM + 4n¢® 4is an infinitesimal generator, and this will certainly
happen whenever r is sufficiently large.

Increasing r amounts to the same thing as increasing the length
of observation ([0,1] to [0,t]l, t > 1. Therefore, if ¥y =0 there
will be integer times t where P% s atﬂ has a set of distinct solutions
having the power of the contfnuum.

To terminate, Tet us note that two generators A and B that yield

‘the same P can correspond to very different behaviors of the Markoy

process they define. For the interval [0,1], the example given by

J. 0. Speakman uses the generators

1 0 -

-1 %y

B=30m{ »
% - T

where n is a positive integer.

For the generator A the process goes through the states circularly
1+2+3+1. For the generator B the process goes from one state
to the other two selecting each one of them with probability %. One
could note that B is the unique generator with real eigenvalues

A

corresponding to P = e”. Also if one takes for n an integer > 2, the

equation P = =E has a continuum of solutions. The Speakman example

17



can be used to show indeterminacy for a case where P has a pair of

distinct complex conjugate roots. For the matrix A, the matrix ¢ s

0 T
= |-k 0 5
5 N 0

For n =1, the eigenvalues are (0,-r+2ni,-r-2ni) with r = 21,/7.

Consider then the matrix

=1 1 0
D=m3 0 =1 1
1 0 =1

It has the same matrix ¢. Its eigenvalues are (0,-a +§£1{.-a-3T“i )
with a = 3—?‘5 . However, modulo 2w, the eigenvalues are egquivalent to
[ﬂ.-a-%h -a +5—i ). Thus the generators D{” = -al + aM + 3!'3 ¢ and
Dm = -3l + aM - %# will yield the same transition matrix P with

eigenvalues

(! ,e-a-% -a+—!-) .

e

The generator DEE] is what one obtaing by applying the standard Cauchy
formula to P.

18



5. Conclusions. According to Theorem 1 and its corollaries, it

can easily happen that a transition matrix P 4is insufficient for the
determination of the infinitesimal generator of the Markov process that
gave P. This can happen even if P has distinct eigenvalues and well
determined eigenvectors. However it cannot happen if the eigenvalues of

P are real and distinct. If they are complex and distinct, multiplicities
can occur only if the modulus of those different from unity is sufficiently
small corresponding to a sufficiently large value of the number called

r = -log|g,| 1in the notation of Section 2. If faced with a particular

P one can determine the invariant measure m. If in addition the
eigenvectors are determined then one can construct the matrix % and
check whether multiple solutions are possible. If on the contrary the
second and third eigenvalues of P are equal, one is faced with the
problem that all vectors ¢ = [F1fw2,ﬂ3} with 01+, t 9y =0 are
admissible in the construction of ¢. However note that, for a given
invariant measure m, ;;g *;,k and ;:E &E,h admit a lower bound
independent of ¢. Indeed, as argued in Section 3, ¢3’] and @apz
cannot vanish simultaneously. MNeither can ¢1.2 and ¢],3 or @E,l

and @, 5. Thus, as long at I sin ¢j2a>0 fora fixed o

1;f jﬁt t&.h stays bounded away from zero. It is also easy to check that
if any ¥ tends to zero then ) ¢3.k must tend to infinity. Therefore
there is some number <c(m) > 0 such that i:f ;:E ¢.-i-k > g(m). This
again shows that multiplicities will not occur unless r is sufficiently
large. Fu} this conclusion, it is easier to work with %t-ﬁj,k instead
of *j,k itself. If ni(m) = i:f g:ﬂ %t-#;ik. then in order for
multiplicities to occur one must have r > 2m(m).

According to the above, if r 1is sufficiently small, or if the

19



20

eigenvalues of P are real and distinct, the generator A such that

P =e" is well determined. This means that if considering two
possibilities say P“} and F'“"I for P, one could hope to obtain
lower bounds for the information available when observing at zero and
one only in terms of the information available by continuous observation
in [0,1]. However such Tower bounds do not seem to have been derived

in the literature.
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