ON THE IDENTIFIABILITY OF INFINITESIMAL GENERATORS

by

L. Le Cam* University of California, Berkeley

^{*}Research supported in part by National Science Foundation Grant MCS84-03239.

1. Introduction. Consider a Markov process Z with a finite number of states and stationary transition probabilities given by an infinitesimal generator A. The matrix A uniquely determines the matrix of transition probabilities P, given by $P_{j,k} = P[Z(1) = k | Z(0) = j]$. The matrix P can be written $P = \exp\{A\}$.

In many statistical problems A is unknown and must be estimated. This does not present much difficulty if enough independent replicates of the process are observed continuously in the entire interval [0,1]. However if instead one observes the process only at times 0 and 1 difficulties can occur. Indeed, in 1967, J. 0. Speakman gave an example of two different generators A_1 and A_2 such that $\exp\{A_1\} = \exp\{A_2\}$. Thus, not only $\exp\{A_1\}$ and $\exp\{A_2\}$ might be very close for widely different A_1 , they might be identical.

An isolated example is not enough to be a great source of concern, but we shall see that the phenomenon is widespread.

We shall consider only the case of a Markov process with 3 states and a unique invariant probability measure m such that mP = m. Furthermore we shall restrict ourselves to the case where P is diagonalizable, even though its eigenvalues are not all distinct.

This last restriction is not too serious: If $P=e^A$ for an A with distinct eigenvalues then P is diagonalizable whether its eigenvalues are distinct or not. Furthermore if $P=e^{A_1}=e^{A_2}$ for two different A_j then, one of the two A_j must have distinct eigenvalues.

Finally, we shall study only the case where m gives strictly positive probability to each of the three states. Other cases will be treated later.

Under these conditions we shall show the following:

If A has complex eigenvalues $\lambda_2 = -r + 2\pi ki$, $\lambda_3 = -r - 2\pi ki$ with k integer different from zero, then there is an A_0 with eigenvalues (-r) and (-r) such that $\exp\{A_0\} = \exp\{A\}$.

There may be other generators A_n with $\exp\{A_n\} = \exp\{A\}$ and with eigenvalues $\lambda_2 = -r + 2\pi ni$, $\lambda_3 = -r - 2\pi ni$ for some $n \neq k$. If so there may be a finite or continuum of them.

If A has complex eigenvalues $\lambda_2 = -r + ci$, $\lambda_3 = -r - ci$ for some $c \in (-\pi,\pi)$, there may be other generators A_n with $\exp\{A\} = \exp\{A_n\}$ and eigenvalues $\lambda_2 = -r + ci + 2\pi ni$, $\lambda_3 = -r + ci - 2\pi ni$, n integer different from zero. If so there are only a finite number of them.

2. Conditions for indeterminacy of the generator. Let A be an infinitesimal generator. Its first eigenvalue is zero, corresponding to the eigenvector (1,1,1)'. It has two other eigenvalues λ_2 and λ_3 that may be real, distinct or not. They may also be complex, in which case they are complex conjugate.

The corresponding eigenvalues of $P=e^A$ are always 1, $e^{\lambda 2}$, $e^{\lambda 3}$. If v is an eigenvector of A with Av = λv then $Pv=e^{\lambda}v$.

Since $|e^{k\lambda}| \le 1$ for all positive integers k, any eigenvalue of A must have a negative real part. Let q_2 and q_3 be the eigenvalues of P that are different from unity. Since $P = e^A$ one must have $q_j = \exp\{-r_j + ia_j\}$ for some real numbers r_j and q_j with $r_j > 0$. In particular $|q_j| = \exp\{-r_j\}$ so that r_j is well determined by $r_j = -\log|q_j|$.

Now to see whether $P = e^{A}$ determines A, consider the following cases.

CASE 1. $q_2 \neq q_3$ and they are real. Then if $\log |q_2| \neq \log |q_3|$ one must have $r_2 \neq r_3$. However since the complex eigenvalues of A must be conjugate, this implies $a_2 = a_3 = 0$. Hence the eigenvalues of A must be real $\lambda_2 = -r_2$, $\lambda_3 = -r_3$. If $q_2 \neq q_3$, real but $|q_2| = |q_3|$ the eigenvalues of A would be complex conjugate but differ by an odd multiple of π . Thus one would have, say $a_2 - a_3 \sim (2k+1)\pi$ and $a_3 = -a_2$. Equivalently $a_2 = (2k+1)\frac{\pi}{2}$, $a_3 = -(2k+1)\frac{\pi}{2}$. However $\exp\{(2k+1)\frac{\pi}{2}i\}$ is not real. Thus this is impossible.

In summary $q_2 \neq q_3$, both real, implies that $\lambda_2 = -\log|q_2|$, $\lambda_3 = -\log|q_3|$ and in fact q_2 and q_3 are positive. The eigenvectors of P are well determined. They must be the same as the eigenvectors of

A. So A is well determined.

CASE 2. $q_2 \neq q_3$ and they are complex conjugate. Then $\lambda_2 = -r + ia + 2\pi ki$, $\lambda_3 = -r - ia - 2\pi ki$ for some integer k. The eigenvectors of A are the same as those of P and therefore determined (up to a multiplicative constant). Then, as we shall see, there may be several possibilities for k.

CASE 3. $q_2 = q_3$. Then they must be real and either of the form $q_2 = q_3 = e^{-r}$ or of the form $q_2 = q_3 = e^{-r\pm ri}$. In this case the eigenvectors of P form an entire two dimensional vector space. Thus neither the eigenvalues of A, nor the eigenvectors are well determined.

In all cases the exponential function admits a local inverse given by a Cauchy contour integral. The eigenvalues of P lie in the unit disk of the complex plane. If none of them lies on the negative part of the real line $\{\Re e \ z \le 0 \ , \ Im \ z = 0 \}$ (where $\Re e$ means "real part" and Im means "imaginary part"), one can surround the eigenvalues by a contour C that stays strictly away from the negative real line. The principal branch of the logarithm, with $\log 1 = 0$, is analytic in a neighborhood of such a contour. Thus the standard Cauchy formula $B = \log P = \int_C (zI-P)^{-1} \log z \, dz \text{ gives a matrix such that } P = e^B. \text{ This matrix B has eigenvalues } (0,-r+ic,-r-ic) \text{ for some } c \in (-\pi,\pi).$ One could attempt to extend the formula to the case where the eigenvalues of P are $(1,-e^{-r},-e^{-r})$. This can be done by taking a contour that surrounds all the eigenvalues of P but does not wind around zero. A contour of the form

will do. However the Cauchy integral on such a contour gives a matrix B with eigenvalues $(0,-r+\pi i,-r+\pi i)$. This corresponds to a matrix with complex entries that cannot be an infinitesimal generator.

In other cases whether B given by the Cauchy formula is an infinitesimal generator will depend on the sign of the off diagonal entries of B. They must all be positive.

3. A bit of algebra. Let A be an infinitesimal generator with entries $a_{j,k}$. Assume that A is diagonalizable. Then it has a matrix of eigenvectors V of the type

$$V = \begin{pmatrix} 1 & v_{12} & v_{13} \\ 1 & v_{22} & v_{23} \\ 1 & v_{32} & v_{33} \end{pmatrix}$$

where the columns are eigenvectors and V is nonsingular. Thus one has $AV = V\Delta$ for a diagonal matrix Δ whose diagonal is $(0,\lambda_2,\lambda_3)$.

In all the cases where A is not well determined by P, there is an A with P = e^A and with $\lambda_2 \neq \lambda_3$ and therefore $\lambda_3 = \overline{\lambda_2}$. For such a case it is convenient to write Δ as the diagonal matrix with entries (0,-r,-r) to which is added a matrix $i\gamma J$

$$J = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Let Π be the projection

$$\pi = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Then Δ may be written

$$\Delta = -rI + r\Pi + i\gamma J .$$

This gives

$$A = V\Delta V^{-1} = -rI + rV\Pi V^{-1} + i\gamma VJV^{-1}$$
.

The matrix

$$V\Pi V^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} V^{-1}$$

is a matrix whose rows are all identical to the first row of V^{-1} . One has $PV = Ve^{\Delta}$. Also if m is the invariant measure with m = mP, one has

$$mPV = mV = MVe^{\Delta}$$
.

If $V_{\circ k}$ is the k^{th} column of V this gives $mV_{\circ l} = \sum_{j=1}^3 m_j = 1$ and $mV_{\circ 2} = mV_{\circ 3} = 0$. Thus the first row of V^{-1} is equal to m.

This suggests looking for solutions of the form

$$B = -rI + rX\Pi X^{-1} + i\gamma XJX^{-1}$$

where

$$X = \begin{pmatrix} 1 & x_{12} & x_{13} \\ 1 & x_{22} & x_{23} \\ 1 & x_{32} & x_{33} \end{pmatrix}$$

is an invertible matrix whose columns are eigenvectors of P.

PROPOSITION 1. Assume that P is diagonalizable with two equal eigenvalues $q_2 = q_3 = e^{-r}$. Let X be a matrix of eigenvectors of P as above.

Then

$$B_0 = -rI + rX\Pi X^{-1}$$

is an infinitesimal generator with $P=e^{0}$. It is the unique infinitesimal generator B that satisfies $P=e^{B}$ with real eigenvalues.

PROOF. It is easy to check that the rows of B_0 add up to zero. The off diagonal entries come from the matrix $X\Pi X^{-1}$ whose rows are all identical to the vector m given by the invariant probability measure. Thus B_0 is an infinitesimal generator. One can write $X^{-1}B_0X = -rI + r\Pi = \Delta$ where Δ is a diagonal matrix with diagonal (0,-r,-r). Thus $\exp\{B_0\}$ is $Xe^{\Delta}X^{-1} = P$.

To show that it is the unique solution with real eigenvalues note that the Cauchy formula gives the unique solution with eigenvalues whose imaginary part is smaller than Π in absolute value.

Note that the generator B_0 does not depend on the choice of the matrix X since $X\Pi X^{-1}$ always has rows equal to m. However if we take for X a real matrix, the formula $B = -rI + rX\Pi X^{-1} + i\gamma XJX^{-1}$ cannot be an infinitesimal generator unless γXJX^{-1} is zero. Thus we are led to seek other solutions where X is a complex matrix. If so and if X is the matrix of eigenvectors for a generator with distinct eigenvalues, the two vectors X_{02} and X_{03} must be complex conjugate and the matrix will take the form

$$\begin{pmatrix} 1 & z_1 & \overline{z}_1 \\ 1 & z_2 & \overline{z}_2 \\ 1 & z_3 & \overline{z}_3 \end{pmatrix}$$

for three complex numbers z_j , j=1,2,3. We shall now investigate what $IXJX^{-1}$ looks like for such a matrix. However it is easier to first compute the matrix $XJX^* = (\det X)XJX^{-1}$ where X^* is the matrix of

cofactors of X.

Note that the rows of XJX^{-1} or XJX* always add up to zero. Indeed $XJX^{-1}(|)$ is the first column of

$$xJx^{-1}x = xJ\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

but

$$J\begin{pmatrix}1\\0\\0\end{pmatrix}=0.$$

So we shall not bother to computer the diagonal terms of XJX^{-1} except the first one.

Generally, if $X = \{x_{j,k}\}$, with a first column made of ones, one can write X^* in the form

For the matrix X given by the z_j this gives the following:

$$X^* = \begin{cases} 2i \text{Im } z_2 z_3 & 2i \text{Im } z_3 \overline{z}_1 & 2i \text{Im } z_1 \overline{z}_2 \\ -(z_3 - z_2)^{-} & -(z_1 - z_3)^{-} & -(z_2 - z_1)^{-} \\ z_3 - z_2 & z_1 - z_2 & z_2 - z_1 \end{cases}$$

In particular

$$\det X = 2i \operatorname{Im} \left[z_2 \overline{z}_3 + z_3 \overline{z}_1 + z_1 \overline{z}_2 \right] .$$

The matrix XJX* is equal to -2Q where Q is the real part of

$$\begin{pmatrix} -s_1 & \overline{z}_1(z_1-z_3) & \overline{z}_1(z_2-z_1) \\ \overline{z}_2(z_3-z_2) & -s_2 & \overline{z}_2(z_2-z_1) \\ \overline{z}_3(z_3-z_2) & \overline{z}_3(z_1-z_3) & -s_3 \end{pmatrix}$$

where the term S_j is the sum of the off diagonal terms in the same row. The matrix $iXJX^{-1}$ is therefore $iXJX^{-1} = \frac{1}{K}Q$ where K is defined by $K = -\frac{1}{21} \det X = Im\{z_3\overline{z}_2 + z_1\overline{z}_3 + z_2z_1\}$.

Note that the rows of the matrix Q are organized as follows: One obtains $Q_{1,2}$ from $Q_{3,1}$ by changing the indices of the z_j according to the rotation scheme 1+2+3+1. Similarly $Q_{3,2}$ is obtained from $Q_{2,1}$ by the rotation. Also $Q_{1,3}$ comes from $Q_{3,2}$ and $Q_{2,3}$ comes from $Q_{1,2}$.

According to the same scheme $m_1 = \frac{1}{K} \operatorname{Im} z_3 \overline{z}_2$ and m_2 and m_3 can be written by rotation of the indices. For simplicity in writing we shall denote the matrix $iXJX^{-1}$ by the letter Φ and let M be the matrix whose rows are identical to the invariant probability measure m. Then our presumed generator B takes the form

$$B = -rI + rM + \gamma \Phi .$$

It will be an infinitesimal generator (of something) if all the off diagonal terms of $rM + \gamma \Phi$ are positive.

To find out how these terms behave let us consider the terms $Q_{2,1}$ and $Q_{3,1}$. One can write $Q_{2,1} = \Re z_3 \overline{z}_2 - |z_2|^2$ and $Q_{3,1} = |z_3|^2 - \Re z_3 \overline{z}_2$. The other terms can be written by rotation of the indices. Note the following.

LEMMA 1. The sum $\sum\limits_{j\neq k}Q_{j,k}$ of the off diagonal terms of Q is equal to zero.

This follows easily from the above formulas. However, it is important because it shows that the $Q_{j,k}$ cannot be all of the same sign.

Let $z_j = \rho_j e^{i\theta_j}$ and introduce the differences $\varphi_1 = \theta_3 - \theta_2$, $\varphi_2 = \theta_1 - \theta_3$, $\varphi_3 = \theta_2 - \theta_1$. Then $Q_{2,1}$ and $Q_{3,1}$ may be written

$$Q_{2,1} = \rho_2 [\rho_3 \cos \varphi_1 - \rho_2]$$

 $Q_{3,1} = \rho_3 [\rho_3 - \rho_2 \cos \varphi_1]$.

Also $K = \rho_3 \rho_2 \sin \varphi_1 + \rho_1 \rho_3 \sin \varphi_2 + \rho_2 \rho_1 \sin \varphi_3$.

According to previous remarks the vector m is the first row of X^{-1} . Thus one has $m_1 = \frac{\rho_3 \rho_2}{K} \sin \varphi_1$ and the rest can be written by rotation. It would be more convenient to write that $m_j = C \frac{\sin \varphi_j}{\rho_j}$ or $\rho_j = C \frac{\sin \varphi_j}{m_j}$. The division is legal since the assumption, made throughout, that $m_j > 0$ for all j implies that $\rho_j > 0$ for all j. The entire system being homogeneous in the ρ_j we shall take

$$\rho_{j} = \frac{\sin \varphi_{j}}{m_{j}}$$

provided that K > 0. This can be arranged by interchange of the last two columns of X and will be assumed in the sequel.

With this choice for the ρ_j , the determinant term K becomes

$$K = \prod_{j=1}^{3} \frac{\sin \varphi_{j}}{m_{j}}$$

Similarly

$$Q_{2,1} = \frac{\sin \varphi_2}{m_2} \left[\frac{1}{m_3} \sin \varphi_3 \cos \varphi_1 - \frac{1}{m_2} \sin \varphi_2 \right],$$

$$Q_{3,1} = \frac{\sin \varphi_3}{m_3} \left[\frac{1}{m_3} \sin \varphi_3 - \frac{1}{m_2} \sin \varphi_2 \cos \varphi_1 \right].$$

Now $\varphi_2=-(\varphi_1+\varphi_3)$. Thus $-\sin\varphi_2=\sin\varphi_3\cos\varphi_1+\cos\varphi_3\sin\varphi_1$ and the terms in Q become

$$Q_{2,1} = \frac{\sin \varphi_2}{m_2^2} \left\{ \left(\frac{m_3 + m_2}{m_3} \right) \sin \varphi_3 \cos \varphi_1 + \sin \varphi_1 \cos \varphi_3 \right\},$$

$$Q_{3,1} = -\frac{\sin \varphi_3}{m_3^2} \left\{ \left(\frac{m_3 + m_2}{m_2} \right) \sin \varphi_2 \cos \varphi_1 + \sin \varphi_1 \cos \varphi_2 \right\}.$$

For the matrix $\Phi = \frac{1}{K}Q$ this gives

$$\Phi_{2,1} = \frac{m_1 m_3}{m_2} \left\{ \frac{m_3 + m_2}{m_3} \cot \varphi_1 + \cot \varphi_3 \right\},$$

$$\Phi_{3,1} = -\frac{m_1 m_2}{m_3} \left\{ \frac{m_3 + m_2}{m_2} \cot \varphi_1 + \cot \varphi_2 \right\}.$$

The other off diagonal terms are obtained by rotation of the indices.

They are

$$\Phi_{3,2} = \frac{m_2 m_1}{m_3} \left\{ \frac{m_1 + m_3}{m_1} \cot \varphi_2 + \cot \varphi_1 \right\},$$

$$\Phi_{1,2} = -\frac{m_2 m_3}{m_1} \left\{ \frac{m_1 + m_3}{m_3} \cot \varphi_2 + \cot \varphi_3 \right\}$$

$$\Phi_{1,3} = \frac{m_3 m_2}{m_1} \left\{ \frac{m_2 + m_1}{m_2} \cot \varphi_3 + \cot \varphi_2 \right\}$$

$$\Phi_{2,3} = -\frac{m_3 m_1}{m_2} \left\{ \frac{m_2 + m_1}{m_1} \cot \varphi_3 + \cot \varphi_3 \right\}.$$

We have written them all out in full to show that they cannot all vanish. If for instance one has $\phi_{3,1} = \phi_{3,2} = 0$ then

$$\cot \varphi_2 = -\frac{m_3 + m_2}{m_2} \cot \varphi_1 = \left(\frac{m_3 + m_2}{m_2}\right) \left(\frac{m_1 + m_3}{m_1}\right) \cot \varphi_2.$$

This is an impossibility unless $\cot \varphi_2 = 0$ or $\cot \varphi_2 = \pm \infty$. Now $\cot \varphi_2 = 0$ means that $\varphi_2 = \frac{\pi}{2} \pmod{\pi}$. If this holds for all three φ_j we have $\varphi_1 + \varphi_2 + \varphi_3 = 0 = \frac{3\pi}{2}$, $\pmod{\pi}$. This is a contradiction. The possibility $\cot \varphi_j = \pm \infty$ is ruled out by the condition that $K = \prod_j \left(\frac{\sin \varphi_j}{m_j}\right)$ is not zero.

Now let us look at other conditions that must be satisfied by the angles φ_j . One of them is the orthogonality relation $\sum_j m_j z_j = 0$. Taking into account the fact that the vector m is proportional to the first row of X*, this relation becomes

$$z_1 \operatorname{Im} \overline{z}_3 z_2 + z_2 \operatorname{Im} z_1 \overline{z}_3 + z_3 \operatorname{Im} z_2 \overline{z}_1 = 0$$
.

Equivalently

$$\sum_{j}^{i\theta_{j}} \sin \varphi_{j} = 0.$$

Dividing by $e^{i\theta}j$, one obtains

$$\sin \varphi_1 + e^{-i\varphi_3} \sin \varphi_2 + e^{-i\varphi_2} \sin \varphi_3$$
.

It is easily verifiable that this is always equal to zero.

We shall now look at the consequences of this state of affairs for the possible multiplicity of the solutions of $e^A = P$.

4. The range of indeterminacy of the solutions of $e^A = P$. Let us consider a transition matrix P with eigenvalues $(1,e^{-r+ia},e^{-r-ia})$ and a matrix of eigenvectors $X = (1,Z,\overline{Z})$ where $Z' = (z_1,z_2,z_3)$ is a vector of complex numbers written $z_j = \frac{\sin \varphi_j}{m_j} e^{i\theta_j}$ as in Section 3. Let Φ be the matrix $iXJX^{-1}$ and let M be the matrix whose rows are all equal to the invariant probability measure m such that mP = m.

According to Section 3, a necessary and sufficient condition for $B = -rI + rM + \gamma \Phi$ to be the infinitesimal generator of some process is that all the off diagonal terms of $rM + \gamma \Phi$ be nonnegative.

Note that this condition involves only the angles φ_j . This is as it should be since one could multiply Z by any one of the $e^{-i\theta_j}$.

This gives the following result. Let θ_1 , θ_2 , θ_3 be three angles such that $|\theta_j| \leq \pi$. Let $\varphi_1 = \theta_3 - \theta_2$, $\varphi_2 = \theta_1 - \theta_3$ and $\varphi_3 = \theta_2 - \theta_1$. Let $Z' = (z_1, z_2, z_3)$ be given by $z_j = \frac{\sin \varphi_j}{m_j} e^{i\theta_j}$ and form the matrices M and Φ as described in Section 3.

THEOREM 1. Assume II $\sin \phi_j \neq 0$. In order that $B = -rI + rM + \gamma \phi$ be the infinitesimal generator of some Markov process it is necessary and sufficient that all the off diagonal terms of $rM + \gamma \phi$ be nonnegative. If so B will generate P by the formula $P = e^B$ if and only if the following conditions are satisfied.

- i) mP = m
- ii) The eigenvalues of P are (1,e-r+iy,e-r-iy).
- iii) The vector Z is an eigenvector of P.

If the eigenvalues of P are real (and therefore equal, by (ii) above), the condition (iii) is automatically satisfied.

PROOF. This follows immediately from the relations given in

Sections 2 and 3.

COROLLARY. If P admits complex eigenvectors and an invariant measure m with $m_j > 0$ for all j, then for all sufficiently large values of t the equation $P^t = e^{tA}$ will have multiple solutions.

PROOF. Consider the matrix X of eigenvectors of P and form $B = -rI + rM + \beta \Phi$. This will be an infinitesimal generator as soon as $\inf_j rm_j \geq \sup_{j \neq k} |\beta \Phi_{j,k}|$. One can write $\exp\{tB\} = Xe^{t\Delta}X^{-1}$ where Δ is the diagonal matrix with diagonal entries $(0,-r+i\beta,-r-i\beta)$. Let $(1,e^{-r+i\gamma},e^{-r-i\gamma})$ be the eigenvalues of P with $|\gamma| \leq \pi$. Then one will have $P^t = e^{tB}$ whenever $t\gamma = t\beta$, mod 2π . Now β is allowed to vary in some interval [-a,a] with $a = (\inf_j rm_j)[\sup_{j \neq k} |\Phi_{j,k}|]^{-1}$. As soon as at $\geq 4\pi$, the relation $t\gamma = t\beta \mod 2\pi$ will have several solutions, the number of solutions increasing as t increases.

In the above argument we have assumed $|\gamma| \leq \pi$, but one can assume that $\gamma \in (-\pi,\pi]$ for definiteness. Then there are three possible cases: (1) $\gamma \neq 0$, $\gamma \neq \pi$, (2) $\gamma = 0$ and (3) $\gamma = \pi$. In the first case, the eigenvector Z is well determined. Thus, there is only one matrix ϕ . Therefore in such a situation the number of solutions of $e^{tB} = P^t$ is finite for each given t. That number increases roughly linearly as t increases.

In the cases where $\gamma=0$ the situation is entirely different. Every choice of vector Z such that II $\sin\varphi_j\neq 0$ will give a possible matrix Φ and $B=-rI+rM+2\pi n\Phi$ will be a generator such that $P=e^B$ provided that the off diagonal terms $rM_{j,k}+2\pi n\Phi_{j,k}$ be nonnegative. Similarly, if $\gamma=\pi$, the matrices $B=-rI+rM+(2n+1)\pi\Phi$ will be such that $P=e^B$ and they will be generators if they satisfy the appropriate positivity requirements. This leads to the following result.

PROPOSITION 2. Let P be fixed with $\gamma = 0$ and let $\varphi^o = (\varphi_1^o, \varphi_2^o, \varphi_3^o)$ be such that, for the corresponding matrix Φ^o , the off diagonal entries of B = -rI + rM + $2\pi n\Phi^o$, are all positive for a given positive integer n. Then, for any integer m such that 0 < m < n there is a neighborhood V of φ^o such that if Φ corresponds to a $\varphi \in V$ then B = -rI + rM + $2\pi m\Phi$ is an infinitesimal generator with $P = e^B$.

PROOF. The determinant $\prod_{j} \frac{\sin \varphi_{j}}{m_{j}}$ is a continuous function of φ . Since it does not vanish at φ° , its absolute value is bounded away from zero in a neighborhood of φ° . In that neighborhood, φ is a continuous function of the vector of angles φ . By assumption the terms $r^{\mathsf{M}}_{\mathbf{j},\mathbf{k}} + 2\pi n \varphi^{\circ}_{\mathbf{j},\mathbf{k}}$ are all nonnegative. Consider a pair \mathbf{j} , \mathbf{k} where $\varphi^{\circ}_{\mathbf{j},\mathbf{k}} < 0$. Then $\varphi_{\mathbf{j},\mathbf{k}} < 0$ and $|\varphi_{\mathbf{j},\mathbf{k}}| < \frac{n}{m} |\varphi^{\circ}_{\mathbf{j},\mathbf{k}}|$ for φ in some neighborhood of φ° . Therefore $r^{\mathsf{M}}_{\mathbf{j},\mathbf{k}} + 2\pi n \varphi^{\circ}_{\mathbf{j},\mathbf{k}} \geq 0$ by virtue of the fact that $\varphi^{\circ}_{\mathbf{j},\mathbf{k}} = 0$, then $|\varphi_{\mathbf{j},\mathbf{k}}|$ will remain small for φ in some neighborhood of φ° . Since $r^{\mathsf{M}}_{\mathbf{j},\mathbf{k}} = r^{\mathsf{m}}_{\mathbf{k}} > 0$, the combination $r^{\mathsf{M}}_{\mathbf{j},\mathbf{k}} + 2\pi n \varphi^{\circ}_{\mathbf{j},\mathbf{k}}$ will still be positive in a neighborhood of φ° . Hence the assertion.

A similar argument can be carried out for the case where $\gamma=\pi$. In summary, for a given φ and $B=-rI+rM+\beta\varphi$ the equation $P=e^B$ can have only a finite number of solutions. Thus if $\gamma\neq 0, \gamma\neq \pi$, the equation $P=e^B$ can have only a finite number of solutions. If

however $\gamma=0$ or $\gamma=\pi$, one may be able to obtain an infinity of solutions by varying φ . For the case $\gamma=0$ this will happen whenever $-rI+rM+4\pi\varphi^\circ$ is an infinitesimal generator, and this will certainly happen whenever r is sufficiently large.

Increasing r amounts to the same thing as increasing the length of observation [0,1] to [0,t], t>1. Therefore, if $\gamma=0$ there will be integer times t where $P^t=e^{tB}$ has a set of distinct solutions having the power of the continuum.

To terminate, let us note that two generators A and B that yield the same P can correspond to very different behaviors of the Markov process they define. For the interval [0,1], the example given by J. O. Speakman uses the generators

$$A = \frac{4n\pi}{\sqrt{3}} \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

$$B = \frac{4n\pi}{\sqrt{3}} \begin{pmatrix} -1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix}$$

where n is a positive integer.

For the generator A the process goes through the states circularly 1+2+3+1. For the generator B the process goes from one state to the other two selecting each one of them with probability $\frac{1}{2}$. One could note that B is the unique generator with real eigenvalues corresponding to $P = e^A$. Also if one takes for n an integer $\frac{1}{2}$, the equation $P = e^G$ has a continuum of solutions. The Speakman example

can be used to show indeterminacy for a case where P has a pair of distinct complex conjugate roots. For the matrix A, the matrix Φ is

$$\Phi = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}.$$

For n = 1, the eigenvalues are $(0,-r+2\pi i,-r-2\pi i)$ with $r=2\pi\sqrt{3}$. Consider then the matrix

$$D = \pi \sqrt{3} \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

It has the same matrix Φ . Its eigenvalues are $(0,-a+\frac{3\pi}{2}i,-a-\frac{3\pi}{2}i)$ with $a=\frac{3\pi\sqrt{3}}{2}$. However, modulo 2π , the eigenvalues are equivalent to $(0,-a-\frac{\pi}{2}i,-a+\frac{\pi}{2}i)$. Thus the generators $D^{\left(1\right)}=-aI+aM+\frac{3\pi}{2}\Phi$ and $D^{\left(2\right)}=-aI+aM-\frac{\pi}{2}\Phi$ will yield the same transition matrix P with eigenvalues

$$\left(1,e^{-a-\frac{\pi i}{2}},e^{-a+\frac{\pi i}{2}}\right)$$
.

The generator $D^{(2)}$ is what one obtains by applying the standard Cauchy formula to P.

Conclusions. According to Theorem 1 and its corollaries, it can easily happen that a transition matrix P is insufficient for the determination of the infinitesimal generator of the Markov process that gave P. This can happen even if P has distinct eigenvalues and well determined eigenvectors. However it cannot happen if the eigenvalues of P are real and distinct. If they are complex and distinct, multiplicities can occur only if the modulus of those different from unity is sufficiently small corresponding to a sufficiently large value of the number called $r = -\log|q_2|$ in the notation of Section 2. If faced with a particular P one can determine the invariant measure m. If in addition the eigenvectors are determined then one can construct the matrix Φ and check whether multiple solutions are possible. If on the contrary the second and third eigenvalues of P are equal, one is faced with the problem that all vectors $\varphi = (\varphi_1, \varphi_2, \varphi_3)$ with $\varphi_1 + \varphi_2 + \varphi_3 = 0$ are admissible in the construction of Φ . However note that, for a given invariant measure m, $\sup_{j\neq k} \Phi_{j,k}^{+}$ and $\sup_{j\neq k} \Phi_{j,k}^{-}$ admit a lower bound independent of φ . Indeed, as argued in Section 3, $\Phi_{3,1}$ and $\Phi_{3,2}$ cannot vanish simultaneously. Neither can $\phi_{1,2}$ and $\phi_{1,3}$ or $\phi_{2,1}$ and $\phi_{2,3}$. Thus, as long at $\prod_{j} \sin \varphi_{j} \ge \alpha > 0$ for a fixed α inf sup $\phi_{j,k}^-$ stays bounded away from zero. It is also easy to check that $\varphi_{j\neq k}$ if any φ_j tends to zero then $\int\limits_{j\neq k}^{-} \varphi_{j,k}^-$ must tend to infinity. Therefore there is some number $\varepsilon(m)>0$ such that inf $\sup\limits_{\varphi} \varphi_{j,k}^- \geq \varepsilon(m)$. This $\sup\limits_{\varphi} j\neq k$ again shows that multiplicities will not occur unless r is sufficiently large. For this conclusion, it is easier to work with $\frac{1}{m_k} \Phi_{j,k}$ instead of $\Phi_{j,k}$ itself. If $\eta(m) = \inf \sup_{\varphi \in j \neq k} \frac{1}{m_k} \Phi_{j,k}$, then in order for multiplicities to occur one must have $r \ge 2\pi n(m)$.

According to the above, if r is sufficiently small, or if the

eigenvalues of P are real and distinct, the generator A such that $P = e^A$ is well determined. This means that if considering two possibilities say $P^{(1)}$ and $P^{(2)}$ for P, one could hope to obtain lower bounds for the information available when observing at zero and one only in terms of the information available by continuous observation in $\{0,1\}$. However such lower bounds do not seem to have been derived in the literature.

REFERENCES

SPEAKMAN, J. O. (1967). "Two Markov chains with a common skeleton. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 7 224.