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“Le raisonnement est manifestement sans valeur; mais il n’en est pas
moins remarquable que la formule put servir à Gompertz pour représenter la
loi de survie de la table de Carlisle, entre 10 et 60 ans.”

Henri Galbrun, 1924

1. Introduction
Neyman is well known for his fundamental contributions to the theory of

Statistics, but he started his statistical career by a series of papers on ap-
plications of statistics. These were applications to agricultural experiments.
Later on he was to spend much time and effort on applications to various
scientific domains. We shall be concerned here with a particular aspect of
Neyman’s interests, namely the building and use of stochastic models. He did
that in very many fields, from Astronomy to Zoology following a consistent
philosophy throughout: Given a question about a particular phenomenon,
Neyman tried to visualize the “mechanism” underlying the phenomenon. He
then translated this vision into mathematical assumptions and formulas. Af-
ter devising the stochastic model to his satisfaction, he would derive the
statistical methods appropriate to the case at hand.

This procedure sets Neyman apart from the more typical “applied statis-
tician” who has learned a large number of statistical methods and applies to
the particular problem one of the procedures in his tool kit. It meant that
Neyman had to learn about the field and consult with experts in it.

Of course when trying to decipher the mechanism behind a particular
phenomenon, one cannot be sure that one has really caught what makes it
work. Neyman’s philosophy was that one should try anyway and that it is
better to catch a bit of the mechanism than to use sundry “interpolation
formulas”. When pressed on this point he would occasionally quote H. Gal-
brun who wrote about the Gompertz-Makeham derivation of a distribution
for human survival.
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Here we shall sketch Neyman’s construction of a few particular stochastic
models. It will be seen that, even in very different fields the models are often
related to each other.
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2. The theory of clusters
In 1939, Neyman published a paper entitled “On a new class of contagious

distributions applicable in entomology and bacteriology”. He describes the
origin of the problem as that of comparing effects of insecticides by counting
larvae in plots in a field. The paper is notable for its main contribution but
also for several discussion of the role of models in Statistics.

Neyman notes that observed distributions of counts of larvae cannot be
fitted by a Poisson distribution. There are too many empty plots and too
few with one larva. He goes on to say that it is not difficult to find one of
the reasons:

“Larvae are hatched from eggs which are being laid in so-called ‘masses’.
After being hatched they begin to travel in search of food. Their movements
are slow...”

He then goes on to say that “A similar explanation may apply to mi-
croorganisms counted in single squares of a haemacytometer or to colonies
on parallel plates. However, here the situation is not as clear as in the case
of larvae”. Later, on the same page, he says:

“Owing to the fact that the cause of the contagiousness of the distribution
of larvae is clear... Consequently, if the theoretical distributions that we shall
deduce fit the empirical ones, we shall be more or less justified in assuming
that we guessed the actual machinery of movements of larvae. On the other
hand, if the same theoretical distributions appear also to fit satisfactorily
empirical counts of bacteria then in respect of these applications it will be
safer to consider that we were lucky enough to find a sufficiently flexible
interpolation formula”.

The passage set very clearly a philosophy that Neyman would apply in
many other domains: If the “machinery” is clear and the formula fits one
is more or less justified in assuming that our guess at the machinery was
correct. However, if the machinery is not clear, we just have an “interpolation
formula”.

The actual assumptions made in the derivation are as follows:
(A) A larva born at (ξ, η) and surviving at the time of observation will

be found a random location according to a density f(x − ξ, y − η).
(B) The mass of eggs located at (ξ, η) will furnish a random number S of

survivers with P [S = n] = p(n).
(C) The various larvae are asocial and behave independently.
(D) There are N masses of eggs on the field. They are distributed there
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independently and uniformly.
Eventually, Neyman fixes the average number of masses of eggs per unit

area to a value m and lets the number of unit areas in the field go to infinity.
It is possible to put the assumptions (A) to (D) together and obtain a

formula as follows
Let M be the measure that counts how many larvae are in any set and

let γ be an arbitrary positive bounded measurable function, perhaps with
compact support. Look at the random variable Z =

∫
γ(x)M(dx). One can

easily see that E exp{−Z} is equal to [
∫

G[h(ξ)]dξ]N where G(u) =
∑

n unp(n)
and where h(ξ) =

∫
exp{−γ(x)}f(x|ξ)dx. Here for simplicity of notation we

have abbreviated f(x− ξ, y− η) to f(x|ξ), x and ξ being points in the plane.
It is seen that this expression depends on two arbitrary functions: The

generating function G and the dispersal function f(x|ξ). To obtain specific
formulas, Neyman makes various choices for G and f , explaining that the
choices are really arbitrary, because not much is known about either G or
f . The choice where G is Poisson and f is uniform over an area A gives the
“contagious distributions of type A”.

It is interesting to note that at the start of his argument and later in
the conclusion, Neyman mentions that numbers of larvae in adjacent plots
are dependent random variables. However he does not attempt to compute
any correlations. They can readily be obtained from the generating function
written above.

Some 25 years later Neyman, with Elizabeth L. Scott, was going to con-
sider a mechanism for the spread of epidemics in some respects analogous
to the spread of the larvae. It starts with a population of susceptibles dis-
tributed geographically and a population of infected people who, after an
incubation period, become infectious. In the meantime they have travelled
to some random geographical location and they infect the susceptibles they
meet there. The difference between the larvae model and the epidemic one is
that the newly infected people will become infectious after the required in-
cubation period. They have travelled in the meantime and the process feeds
on itself and can continue indefinitely.

Neyman and Scott give formulas for the generating functions of the num-
ber of infected people to be found in any finite system of disjoint regions in
the habitat. This is done for the nth generation in the epidemic process as
well as for an epidemic continuously nurtured by mutations of the pathogens.

Neyman and Scott point out two unexpected results of that study. One is
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that the probability of an epidemic getting out of hand in a small community
is just the same as the probability of the epidemic becoming explosive in the
entire habitat. The other is that vaccinating at random a proportion θ of
the population reduces the expected total size of the epidemic by a factor
(1 − θ)/θ.

Another paper of Neyman, with Grace E. Bates, deals with another aspect
of “contagion”. It is about accident proneness. It had been observed that
in many instances the number of accidents occuring in a given period of
time in a well defined population (such as bus drivers in London) has a
distribution that is well fitted by a negative binomial. O. Lundeberg and
W. Feller observed that the same negative binomial can be obtained from
two entirely different mechanisms. One is that different individuals have
different proneness to accidents, but a proneness that does not change in
time. A different mechanism would be that all individuals start alike but that
each accident disturbs the situation and makes the affected individual more
susceptible to further accidents. The particular disturbance of proneness was
imitated from a paper of G. Pólya. The basic assumption states that if an
individual has by time S incured m accidents, then the probability Pm,0(S, T )
of having zero accidents in the interval (S, T ] is such that

dPm,0(S, T )

dT
= −λ

1 + µm

1 + νS

where λ, µ and ν are numerical coefficients. Grace E. Bates and Neyman ar-
gue that if one counts the number of accidents in several intervals I1, I2, . . . , Ik

then the mixture possibility with individuals of different proneness can be
distinguished from the Pólya contagion process if k ≥ 2, except for the odd
case where ν = λµ.

The problem was of much interest to the U.S. Air Force who was trying to
predict the probability that a pilot would have severe accidents by recording
his past number of minor accidents. Neyman did not get to try his model on
actual Air Force data because as a result of the political climate of the time
he was denied clearance to look at the data.

Turning his attention from larvae to galaxies, Neyman, around 1950 was
to argue that galaxies occur in clusters, probably by a mechanism similar
to the one he had guessed in 1939 for haemacytometer counts or bacteria
on Petri plates: They might attract each other. That such is the case for
galaxies is certainly true. He embarked, with E.L. Scott in a long study
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of the spatial distribution of galaxies. They assumed that clusters occur
around “centers” distributed Poisson wise uniformly, gave each “center” a
random number of galaxies and placed them independently of one another
at random distances from the center. This simple clustering model seemed
to fit reasonably well the observed counts of galaxies in the sky. However,
when Neyman and Scott produced a simulated appearance of the sky from
their model they were very surprised: The actual pictures of the sky were
a lot more lumpy than what their simulation had produced. A picture of a
piece of that simulation appears in Scientific American (Sept. 1956).

One had to cluster more. Neyman and Scott proceeded to do so, in-
troducing recursively what they called nth order clustering. The first order
clustering consists of the system we just described with “centers” around
which one places galaxies. An nth order clustering process proceeds in the
same way but the “centers” instead of being taken Poissonwise are themselves
taken from an (n−1)th order clustering process. Even with only a 2nd-order
clustering process the simulated appearance of the sky looked much more like
the real thing. Neyman and Scott pursued that study for many years, work-
ing in particular on the abundance of different types of galaxies (elliptical,
spirals, etc.).

This clustering picture was the one almost universally used by astronomers
till the late seventies. By that time many more observations were available,
in particular for estimates of the distance of various galaxies. Due to the
work of G.D. Abell and others we have now a different view of the organiza-
tion of the universe; It looks more like a mass of (empty) soap bubbles with
galaxies strewn around the places were bubbles touch each other. As said
above, that picture became available only shortly before Neyman’s death.
One wonders what he would have done with it had he had a chance.

The Neyman-Scott model of the spatial distribution of galaxies was mo-
tivated by the fact that galaxies attract each other. Nowadays several cos-
mologists go further. They attribute the bumpy appearance of the skies to
minute local fluctuations in the radiation soup that followed the Big Bang
and are trying to argue from the basic physical principles of quantum theory.
The fact that to get something similar to the actual sky they have to assume
that 90 to 99% of the matter in the universe is “dark” and invisible certainly
should incite some caution.

3. Carcinogenesis
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The collaboration between Neyman and Scott on cosmology extended
from around 1950 to Neyman’s death in 1981. Another collaboration of
long duration had to do with carcinogenesis. This started around 1957,
then around 1960 Neyman spent several months at the National Institutes
of Health in Washington D.C. There he met M.B. Shimkin, who with col-
laborators, had been studying the experimental induction of lung tumors in
mice by injection of urethane.

Urethane is a water soluble fairly simple chemical that had a history of
use as a veterinary anesthetic. Shimkin and Polissar had carried out exper-
iments where mice were sacrificed at various times after urethane injection.
They found not only frankly cancerous cells but also modified cells occurring
in what they called “hyperplastic loci”. They adduced that these may be
precursors of cancer cells. For more information on this point see the article
by M.B. Shimkin et al in the 4th volume of the Fifth Berkeley Symposium.

Neyman, who had earlier (unpublished) proposed a two stage theory of
carcinogenesis seized the opportunity to test a theory on actual experimental
data.

Multistage theories of carcinogenesis have a long history. A short sum-
mary is given by P. Armitage and R. Doll in the 4th volume of the Proceedings
of the Fourth Berkeley Symposium.

The particular model considered by Neyman and Scott is one in which
i) The growth of both benign and concerns tumors are described by birth

and death processes. For benign tumors the process is subcritical. For cancer
it is supercritical.

For injection at time zero, let Df(t) represents the amount of carcinogen
present in the time at time t for a function f such that

∫ ∞
0 f(t)dt = 1. Then:

ii) Cells will suffer first order mutations according to a Poisson process of
intensity proportional to Df(t).

iii) Cells that are daughters of first order mutants and their descendants
can suffer a second mutation with intensity a + bDf(t). If so they become
cancerous, subject to the supercritical branching process.

Neyman and Scott also incorporate in the model a provision for counting
errors, with small clones more likely to be missed than larger ones.

Some of the conclusions derived are as follows. Let X be the tumor count
at the end of the experiment. Then, if excretion of the carcinogen is rapid
the expectation of X for a single injection is linear in the dose D. Under the
one stage hypothesis, or if b = 0 the expectation of X is always proportional
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to the dose D and does not depend on the function f .
On the contrary, for a two-stage model, the expectation of X will depend

on f .
These conclusions, when compared to experimental results, favor a two-

stage model with b > 0.
It should be noted that Neyman and Scott express this conclusion very

cautiously. They had obtained the collaboration of Dr. Margaret White and
colleagues at the Donner Laboratory, Berkeley. Dr. White performed many
experiments on mice, including some where the time pattern of excretion of
urethane was determined. One of the conclusions is that the rate of excretion
decreases when the dose is increased. This, if taken into account in the
Neyman Scott model would further enhance the parabolic shape of the dose-
response relation.

Many other conclusions were tested including the effect of giving a total
dose D but in a fractionated protocol. This for adult mice, decreases the
tumor yield, but may increase it for young mice. The model can fit these
observations at least qualitatively, but the case is not closed.

4. Struggle for existence
In a totally different domain Neyman and Scott became interested in

the experiments carried out by Thomas Park on the struggle for existence.
Park had two species of flour beetles Tribolium castaneum and Tribolium
confusum. They were bred in small vials with monthly replacement of the
flour and counts of all present, eggs, larvae, pupae and adults. The two
species at adult stage could only be distinguished under the microscope. Park
had surmised that, since the two species were very much alike, competition
would be severe.

One of his observations was that if bred separately each one of the two
species survived “indefinitely” that being of the order of 30 years in Park’s
experiments. They established stable populations. If, however, two or four
beetles of each species were placed in the same vial then, within a year or so,
there was only one species left in the population.

It was not always the same and the proportion of vials where castaneum
won over confusum depended on temperature and humidity conditions.

Flour beetles behave in a most disgraceful manner: They cannibalize their
eggs and pupae, be they of their own species or another.

Neyman, Park and Scott built models of such interacting population with
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different fertility and voracity. The model was a stochastic version of the
deterministic struggle for life of Volterra and Lotka. As is well known, the
resulting equations are not solvable in any analytic manner.

Neyman, with Park and Scott give a report in the Third Berkeley Sym-
posium, vol. 3.

The total population in Park’s vials was of the order of 400 beetles per 8
grams of flour. It would be interesting to find solutions of the equations on
a high speed computer.

5. Radiation
Neyman was concerned for a long time with effects of radiation. Together

with Prem S. Puri he devised models of the action of radiation on cells in
culture. One irradiate the cells, separate them and plate them on Petri-
dishes. The “survivors” form colonies that can be counted. Some of the
colonies are disorganized and aberrant. They represent cells that underwent
a malignant mutation in the process.

One of the typical results of such experiments can be described as follows.
One plots the logarithm of the surviving fraction as function of the radiation
dose in rads or Grays. If the radiation operates in such a way that any single
hit on the nucleus of the cells will kill it, the dose response curve would be a
straight line. This is what is usually observed for high LET irradiation, say,
by neutrons or accelerated heavy ions.

On the contrary low LET radiation such as X-rays or gamma rays, or
electrons, produces a different type of dose response curves. They have a
“shoulder”. That is the response is curved and concave, looking straighter
for large doses that kill a high proportion of the cells.

Neyman and Puri attempted to construct a stochastic model that would
accomodate both possibilities. See Proceeding of the Royal Soc. of London
1981. The model has a mechanism for the induction of lesions and for their
repair or misrepair.

Neyman and Puri do get a shoulder but that is at the cost of representing
the length of time T the cell was irradiated as T = D/ρ where D is the total
dose and ρ is the dose rate. Later Yang and Swenberg were to modify the
model. They introduced a different definition of “death”. The Neyman Puri
cells could survive with an indefinite number of unrepaired lesions (that did
not become “lethal”). The Yang-Swenberg cells die if they have unrepaired
lesions. Also Yang and Swenberg modified the initiation of lesion process in a
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manner analogous to the Kellerer-Rossi idea: The effect of incoming radiation
becomes more severe as the lesions accumulate. Such a model does produce
shoulders without any difficulty. However the Yang-Swenberg model, just as
the Neyman-Puri one uses a linear mechanism for repair. That is, lesions are
repaired independently of each other. There is considerable evidence that
such is not the case. C. Tobias and colleagues have proposed mechanisms
where a form of repair is an interaction of two lesions. A stochastic, Markov
chain version, of Tobias model was investigated by N. Albright. One could
insert that in the Yang-Swenberg model, but then the equations are impossi-
ble to solve. Further investigation by R. Sachs and others are likely to shed
some light on what is really happening, but, at the time of this writing the
case is not closed.

6. Conclusion
The above are just a few of Neyman’s contributions to applications of

Statistics. They have been chosen mostly because the stochastic models he
used had a reasonable background of “mechanism” behind them instead of
mere “interpolating formulas”. He clearly prefered the “mechanisms”. Some
of Neyman’s other contributions are very good indeed but they do not quite
carry that flavor.

One can cite, for instance, his thesis of 1923, partly translated in Statis-
tical Science of November 1990. In it Neyman considers fictitious quantities
called Ui,k which would be the true yield of variety i if grown on plot k.
He allows for measurement errors and random variability but bases his es-
timates and calculations of variances on an assumption that the assignment
of varieties to plots is completely random. This is a model in a sense but it
could also be taken as an instruction to the experimenter to “randomize”,
but Neyman himself says that he did not mean it that way. He attributes
to R.A. Fisher the idea that one must randomize. For the analysis Neyman
introduces “fertility gradients” with polynomial form. The paper is now
considered a classic.

Another part of Neyman’s work was his discussion of sampling human
populations. The methods he introduced have now been adopted almost
everywhere.

He did much more, but it would be too long to report it here. Still one
can say that Neyman had a particular flair for those domains of science where
sound statistical thinking would be useful. As far as I know he was one of
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the first statisticians to look at applications of statistics in molecular biology.
This is reflected in a large volume of the Sixth Berkeley Symposium.

He was always full of energy and ideas and “imprinted” them on his
students in courses or in individual contacts.

11



References

Feller, W. (1949). “On the theory of stochastic processes, with particular
references to applications”. Proc. Berkeley Symp. on Math. Stat. and
Proba. University of California Press.
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