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Chapter 14 Linear Least Squares

We can use Theorem A of Section 4.4.1 to find E (ﬁ ) under the new model:
EB) = E(EBIE))

= E(B)

=B
where the outer expectation is with respect to the distribution of E. The least squares
estimate is thus unbiased under the new model as well.

Next we ider the variance of the least squares estimate. From Theorem B of

Section 14.2! r(B;|E = X) = UZ(XTX);-]. This is the conditional variance. To

find the unconditional variance we can use Theorem B of Section 4.4.1, according to
which

Var(B;) = Var (E(B:|1E)) + E (Var(B;|E))
= Var(8) + E (6*(E" B);;")
=o’E(ETE);!

This is a highly nonlinear function of the random vectors &, &,, ..., &, and would
generally be difficult to evaluate analytically.

Thus for the new, unconditional model, the least squares estimates are still unbi-
ased, but their variances (and covariances) are different. Surprisingly, it turns out that
the confidence intervals we have developed still hold at their nominal levels of cover-
age. Let C(X) denote the 100(1 — )% confidence interval for §; that we developed
under the old model. Using /, to denote the indicator variable of the event A, we can
express the fact that this is a 100(1 — «)% confidence interval as

E(I{ﬂ,'EC(X)HE = X) —1l—-«

that is, the conditional probability of coverage is 1 — «. Because the conditional
probability of coverage is the same for every value of Z, the unconditional probability
of coverage is also 1 — a:

Elg.ccey = E (E(Lipeczyl B))
—E(-a)

=1—-«a

This very useful result says that for forming confidence intervals we can use the old
fixed-X model and that the intervals we thus form have the correct coverage in the
new random-X model as well.

We complete this section by discussing how the bootstrap can be used to estimate
the variability of a parameter estimate under the new model according to which the
parameter estimate, say 0, is based on 1 i.i.d. random vectors Yy, &), (12, &), ...,
(Y,, &,). Depending on the context, there are a variety of parameters 6 that might be
of interest. For example, 6 could be one of the regression coefficients, §;; 6 could be
E(Y|& = xp), the expected response at a fixed level x, of the independent variables
(see Problem 13); in simple linear regression, 6 could be that value x, such that
E(Y|E = x9) = po for some fixed 1p; in simple linear regression, 6 could be the
correlation coefficient of ¥ and £. Now if we knew the probability distribution of the
random vector (Y, £), we could simulate the sampling distribution of the parameter
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