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586 Chapter 14 Linear Least Squares

We can use Theorem A of Section 4.4.1 to find E(β̂) under the new model:

E(β̂) = E(E(β̂|�))

= E(β)

= β

where the outer expectation is with respect to the distribution of �. The least squares
estimate is thus unbiased under the new model as well.

Next we consider the variance of the least squares estimate. From Theorem B of
Section 14.2.2, Var(β̂ i |� = X) = σ 2(XT X)−1

i i . This is the conditional variance. To
find the unconditional variance we can use Theorem B of Section 4.4.1, according to
which

Var(β̂ i ) = Var
(

E(β̂ i |�)
) + E

(
Var(β̂ i |�)

)
= Var(βi ) + E

(
σ 2(�T �)−1

i i

)
= σ 2 E(�T �)−1

i i

This is a highly nonlinear function of the random vectors ξ 1, ξ 2, . . . , ξ n and would
generally be difficult to evaluate analytically.

Thus for the new, unconditional model, the least squares estimates are still unbi-
ased, but their variances (and covariances) are different. Surprisingly, it turns out that
the confidence intervals we have developed still hold at their nominal levels of cover-
age. Let C(X) denote the 100(1 − α)% confidence interval for β j that we developed
under the old model. Using IA to denote the indicator variable of the event A, we can
express the fact that this is a 100(1 − α)% confidence interval as

E
(

I{β j ∈C(X)}|� = X
) = 1 − α

that is, the conditional probability of coverage is 1 − α. Because the conditional
probability of coverage is the same for every value of �, the unconditional probability
of coverage is also 1 − α:

E I{β j ∈C(	)} = E
(

E(I{β j ∈C(	)}|�)
)

= E(1 − α)

= 1 − α

This very useful result says that for forming confidence intervals we can use the old
fixed-X model and that the intervals we thus form have the correct coverage in the
new random-X model as well.

We complete this section by discussing how the bootstrap can be used to estimate
the variability of a parameter estimate under the new model according to which the
parameter estimate, say θ̂ , is based on n i.i.d. random vectors (Y1, ξ1), (Y2, ξ2), . . . ,

(Yn, ξn). Depending on the context, there are a variety of parameters θ that might be
of interest. For example, θ could be one of the regression coefficients, βi ; θ could be
E(Y |ξ = x0), the expected response at a fixed level x0 of the independent variables
(see Problem 13); in simple linear regression, θ could be that value x0 such that
E(Y |ξ = x0) = µ0 for some fixed µ0; in simple linear regression, θ could be the
correlation coefficient of Y and ξ . Now if we knew the probability distribution of the
random vector (Y, ξ), we could simulate the sampling distribution of the parameter
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